On Orbit Equivalence of Measure Preserving
Actions !

Damien GABORIAU

Unité de Mathématiques Pures et Appliquées (UMPA),
Unité Mixte de Recherche CNRS 5669

46, allée d’Italie

69364 Lyon cedex 07, France
damien.gaboriau@Qumpa.ens-lyon.fr

http://www.umpa.ens-lyon.fr/~gaboriau/

Abstract

We give a brief survey of some classification results on orbit equivalence
of probability measure preserving countable group actions. The notion of
£? Betti numbers for groups is gently introduced. An account of orbit
equivalence invariance for ¢? Betti numbers is presented together with
a description of the theory of equivalence relation actions on simplicial
complexes. We relate orbit equivalence to a measure theoretic analogue
of commensurability and quasi-isometry of groups : measure equivalence.
Rather than a complete description of these subjects, a lot of examples
are provided.

1 Equivalence Relations

1.1 Equivalence Relation defined by an action

Let (X, 1) be a standard Borel space, where p is a probability measure without
atoms. Remember that it is Borel isomorphic to the unit interval of the reals,
with Lebesgue measure.

Let T be a countable group and « an action of I on (X, u) by p-preserving
Borel automorphisms. Consider the orbit equivalence relation on X:

Ra ={(z,y.2):x € X, yeT}

As a subset of X x X, this equivalence relation is just the union of the graphs
of the v € I'. In this measured context, null sets are neglected. Thus the action
is free if the only element of I with a fixed-point set of positive measure is the
identity element.

Examples 1.1 The first ezamples to keep in mind are the following:
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1. The action of Z" on the circle St by rationally independent rotations (belongs
to the next two families). This gives an idea of the wildness of the quotient
spaces T\ X.

2. Free volume-preserving group actions on finite volume manifolds.

3. A compact group K, its Haar measure p and the action of a countable subgroup
I by left multiplication on K.

4. The shift action of ' on the space X = {0,1}! of sequences of 0, 1 indexed by T,
with any invariant probability measure, for example the product of equiprobability
on {0,1}. The action is free when T is infinite. Thus, every countable group
admits at least one free probability measure preserving (p.m.p.) action.

Question 1 Which properties of the group I' are determined by the orbit equiv-
alence relation Rr?

1.2 Standard Countable Borel Equivalence Relations
The orbit equivalence relation R = R, enjoys the following properties:
1. the equivalence classes (or orbits) of R are countable
2. R is a Borel subset of X x X

3. every partial isomorphism ¢ : A — B whose graph is contained in R
preserves the measure (R preserves p).

A partial isomorphism ¢ : A — B is a Borel isomorphism between two Borel
subsets A and B of X. Observe that if its graph {(z, ¢(z)) : © € A} is contained
in R then A admits a partition A =[] . A, where z € A, = ¢(z) = a(y)(z)
(replaced soon by the notation v.x). The third item is now obvious.

A countable standard measure preserving equivalence relation R on (X, i)
is an equivalence relation that satisfies items 1-3. This more general notion
was introduced by J. Feldman and C. Moore who immediately showed [FM77a,
th. 1] that every such equivalence relation is in fact the orbit relation of some
group I' acting by p-preserving Borel automorphisms of X. The question of
finding a freely acting I" remained open until A. Furman’s work [Fur99b, th. D],
exhibiting a lot of examples where it is impossible.

Examples 1.2 There are at least two kinds of examples — where an underlying
I" is not obvious — for introducing this generalization:

1. Let Y C X be a Borel subset which meets all orbits of R. The induced
equivalence relation Ry := RNY XY on Y, whose classes are restrictions of
classes to Y, preserves the normalized probability-measure py = pu/u(Y).

2. When looking at a minimal measured lamination, choose a total transversal X
of finite measure. The holonomy pseudogroup gives rise to such a general equiv-
alence relation on X, with the normalized (to a probability measure) transverse
measure. It is generated by the “return maps”. Two points of the transversal
are in the same class iff they belong to the same leaf of the lamination.



1.3 Orbit Equivalence

Definition 1.3 Two such actions «; of groups T'; on (X;, p;), i = 1,2 are said
to be Orbit Equivalent (OE) if they define the same equivalence relation, i.e. if
there exists a Borel isomorphism f : X1 — Xa such that f.(u1) = pe and for
w1 almost all x € X7,

f(Ty.2) =Ts.f(x).

An orbit equivalence between free actions gives rise to a cocycle (see R. Feres’
contribution to the present volume [Fer01]) o : 'y x X; — T'g, where o (v, x) is
the unique element A € 'y s.t. A.x = v.z. The cocycle identity is easily checked:
c(mv2,z) = o(71,72-2)0 (72, ).

The coarseness of this notion may be really distressing for certain ergodic
theorists: H. Dye showed that (for I'y = 'y = Z) any two ergodic probability
measure preserving Z-actions are orbitally equivalent [Dye59, th. 1 p. 143 and
th. 5 p. 154]. A. Vershik obtained the same result about at the same time.

Later on, in [Dye63, th. 1, p. 560], Dye showed the same result for any
group I' of polynomial growth or I' infinite abelian: any free ergodic probability
measure preserving I'-action is orbitally equivalent to an ergodic Z-action. All
these actions thus define THE same equivalence relation R,. The sadness of
those people I just mentioned is far from decreasing.

R. Zimmer [Zim78] introduced the notion for an equivalence relation to be
amenable and showed, in particular, that if I' has a free p.m.p. action which is
orbitally equivalent to a Z-action then I' is amenable. The natural conjecture
was that any p.m.p. ergodic action of an amenable group is orbitally equivalent
to THE relation R,, and this was proved by Ornstein-Weiss [OW80], and by
Connes-Feldman-Weiss [CFW81], in the context of general non-singular (rather
than p.m.p.) amenable equivalence relations.

This p.m.p. equivalence relation R, is characterized as ergodic and hyperfi-
nite: it is an increasing union of equivalence relations with finite classes.

Recall that abelian, nilpotent, solvable groups are amenable groups. By
contrast, the free groups F,,, n > 2 are not, as well as any group containing Fs,
and it’s not easy to produce a non amenable group not containing Fs.

1.4 Stable Orbit Equivalence

It’s important to realize that when the classes are infinite (in all non trivial sit-
uations), the equivalence relation doesn’t admit any Borel fundamental domain,
i.e. a Borel subset D C X that meets once and only once the orbit of p-almost
all x € X. In words it is not possible to measurably pick one point in each orbit,
or the space of orbits is ugly. This is obvious in the free actions context, where
the iterates . D of a hypothetical fundamental domain would furnish a partition
of almost all of X (finite measure) with infinitely many equal-measure pieces.
And it is almost that obvious in general.

Nevertheless, the following notion gives a sense to the idea of two equivalence
relations R and Ry having the “same space of orbits”: First, if a Borel subset



Y C X meets almost all orbits of R, the induced equivalence relation Ry
(example 1.2.(1)) would have the same space of orbits as R. Now comes the:

Definition 1.4 Two equivalence relations R1 and Re on (X;, u;), i = 1,2 are
said to be Stably Orbit Equivalent (SOE) if there exist Borel subsets Y; C X,
1 =1,2 which meet almost all orbits of R; on which the induced equivalence
relations are the same: Riy, =~ Ray,, by an isomorphism f : Y] — Yy which
preserves the normalized measures fi(u1/p1(Y1)) = po/u2(Y2). The number
i(R1,Ra) = p2(Y2)/u1(Y1) is called the index of Ry in Ry (given by this SOE).

In example 1.2.(2), choosing various transversal leads to SOE equivalence
relations. Notice that for a given R, the set of possible i(R, R) forms a subgroup
of R%, called its fundamental group.

Remark 1.5 Why is it called stable? The countable stabilization of an equiva-
lence relation (X, p, R) is the equivalence relation R’ on the space (X x C, u'),
where C is any infinite discrete countable set and p’ = pxcounting measure,
defined by (x1,¢1) ~ (22,c2) iff (z1,22) € R. It can be shown that SOE equiv-
alence relations Ry and Ry have isomorphic countable stabilizations. More

precisely, there exists a Borel isomorphism X; x Cy 4, X5 x Cy sending p
to A - ph, with A1 = (R, R2), and sending almost every R)-class onto an
Rb-class.

We refer to [FM77a], [Mo082], [Sch87] and [Zim84] for more material on this
section.

2 Measure Equivalence

Stable orbit equivalence must be related to another notion introduced by M. Gro-
mov and developed by A. Furman [Fur99a]: Measure Equivalence (ME) between
countable groups which is a measure theoretical analog of quasi-isometry.

Criterion for quasi-isometry. [Gro93, 0.2.C5] Two finitely generated groups
I'y and T'y are quasi-isometric (QI) iff there exist commuting, continuous actions
of I'; and I's on some locally compact space M, such that the action of each of
the groups is properly discontinuous and has a compact fundamental domain.

Similarly:

Definition 2.1 [Gro93, 0.5.E] Two countable groups 'y and I'y are Measurably
Equivalent (ME) iff there exist commuting, measure preserving, free actions of
I'y and 'y on some Lebesque measure space (2, m) such that the action of each
of the groups admits a finite measure fundamental domain (D; for T';). In this

case, we say that (2, m) (together with the actions) is a coupling between T’
and Ty and that Ty is ME to T'y with index iq(T'1,T2) = m(D3)/m(Dy).

Examples 2.2



(1) The basic example of QI groups are cocompact lattices in the same locally
compact second countable group G (applying the criterion to M = G and T'y
and T'y acting by left and right multiplication).

(2) The basic example of ME groups are general lattices I'1 and I's in the same
locally compact second countable group G. Existence of a lattice (= a discrete,
finite covolume subgroup) forces G' to be unimodular (The modulus A(g) of an
element g € G is the number by which the left Haar measure is multiplied when
g acts from the right on G as well as on I';\G): Haar measure is invariant under
the commuting actions by left and right multiplication of I'y and I's.

Thus, (G, Haar) gives a measure equivalence between I'y and I's which are
ME with index ig(T'1,T's) = Vol(G/T'2)/Vol(T'1\G).

(3) Notice that the definition also makes sense when I'y ~ I's and that the values
i(I,T") for various couplings may a priori assume any number in R , as shown
by the example of I'; = Z, I's = aZ acting on R by translations which (produces
the value ig(Z,Z) = |a|) (see sect. 2.2).

2.1 Comparison SOE-ME

ME is an equivalence relation on countable groups and is strongly related to
SOE (as was already noticed by A. Furman [Fur99b]).

Theorem 2.3 Groups T'y and T's are measurably equivalent (with index i) iff
they admit SOFE free actions (with index i).

Proof: Suppose, that the free actions Rr;, ¢ = 1,2 are in fact orbit equivalent
(via a measure preserving isomorphism f : X; — Xs, def. 1.3). Then one gets
an identification of the equivalence relations Ry, = Rr,, as subsets of X; x Xj.
The product free action on X; x X5 of the group I'y x 'y (by (71,72).(z,y) =
(y1.w,y2.2)) restricts to an action on Rr, = Rr,, which preserves the natural
measure v (cf. ex. 5.1). Each group I'; admits as finite measure fundamental
domain: the diagonal of the relation {(z1,x2) € X1 x Xa; f(x1) = x2}. We have
constructed the desired coupling.

Given now SOE free actions Rr,, ¢ = 1,2. The products X3 x N ~ X5 x N
are isomorphic by a scaling measure isomorphism f, which allows the identifi-
cation of the countable stabilizations R} = RS := R’ as a subset of (X7 x N) x
(X2 x N) (cf. remark 1.5). The two possible measures on it are proportional:
choose, say, that given by R5, denoted by v. The same as above may now be
done on the intersection R’ N (X7 x {0}) x (X2 x {0}) leading to a free action
of I'y x T's. Any Borel section of (X3 x {0}) is a fundamental domain for the
I'y-action (resp. (X3 x {0}) for I';). Their respective v-measures are 1 and
i(Rry, Rr,)-

Conversely, start from a coupling (2,m) and finite measure fundamental
domains D; C Q for T';, ¢ = 1,2. By commutativity, one gets (extending the
left-right notations of example 2.2 to the commuting actions) an action of I'y
on Q/T'y ~ Dy and an action of I's on T'1\Q ~ D;.



These actions are SOE: The corresponding equivalence relations Rr, and
Rr, have countable stabilizations on Q = /Ty x T's and on Q = ')\ x Ty
that both identify to the orbit equivalence relation of the (I'; x I'y)-action on
Q.

Recall that the measure must be normalized on €2/I'; and I';1\Q. The SOE
map (f = id: Q — Q) sends 7%~ to A+ 7, where A = "PU = ig!. The
SOE index i(Rr,, Rr,) thus equals ig (cf. remark 1.5).

If the actions are not free, just choose any free probability measure preserving
action of I'; on a standard Borel space (X, ), let I'y act trivially (yex = ) and
replace (€, m) by (Q x X, m x u) with the diagonal T'; x T's-action, which turns
out to be free. This new coupling leads to free actions. |

2.2 Values of indices

Remark that two groups I'; and I'y are commensurable (i.e. there exists a group
A which is isomorphic to a finite index subgroup in both of them) iff they are
ME for a countable coupling 2 (with counting measure) and then i (I';,T'2) =
[y : A]/[T2 : A]l. Given T, the set of values {iq(I",T")} is denoted by Ip g (T")
or I.om(T), according to whether one considers all possible couplings €2, or only
countable couplings. One easily checks the inclusions Q% D Iom(T1,T2) C
Inp(I'1,T2) C RY, and notice that Iyg(T) is a ME invariant.

The condition Ipsg(T") = {1} means that for each free p.m.p. action of T,
the induced equivalence relation (Rr)y (ex. 1.2) cannot be generated by any
free action of T', when Y is a proper (1(Y) < (X)) Borel subset which meets
all orbits. This implies, in particular, property:

(*) for each free p.m.p. action of T', the equivalence relation Rr has trivial
fundamental group (i.e. for every self SOE, i(Rr,Rr) = 1).

It also implies that io(I',I'1) only depends on I'y in the ME class of I' and
not on the particular coupling €.

Amenable groups do not have (*) and neither do groups I" which are ME
to the direct product of an infinite amenable group by any group. In fact,
Inge(T) = R, as for Z. On the other hand, it follows from th. 4.1 below,
that if one of its £2-Betti numbers is # 0, 00 (see sect. 4), then I p(T) = {1}.
Also lattices in higher rank connected simple Lie groups satisfy Ip/g(T) = {1}
[GG88, Cor. B.3][Fur99a, Fur99b).

Question 2 Does there exist groups I' with an infinite discrete Insp(I") ¢ For
that question to make sense, one should restrict attention to ergodic situations.

2.3 Comparison QI-ME

- Amenability is both a QI and a ME invariant. In fact, Ornstein-Weiss’ result
(cf. section 1.3) implies that all infinite (countable) amenable groups belong to
the same ME class. This single class splits into many QI classes (distinguished
for example by growth).



This could suggest that QI implies ME and that the latter in just a coarser
equivalence relation. The QI classification of lattices in semi-simple Lie groups
(where lattices in a given G split into several QI classes, but remain in the same
ME class, ex. 2.2) also support such an idea. However it turns out to be wrong :

- A. Furman proved that Kazhdan’s property (T) is a ME invariant [Fur99a,
th. 8.2]. But Kazhdan’s property (T) is not a QI invariant: If T has property
(T) and admits a non-trivial 2-cocycle to Z which is bounded (many property
(T) hyperbolic groups admit such cocycles, e. g. cocompact lattices in Sp(1,n))
then the direct product I'y =T x Z does not have property (T), but is QI to a
non-trivial central extension of I" by Z which has (T). I'm grateful to A. Furman
and N. Monod for discussions on this example.

- For ME groups, the Euler characteristics are positively proportional (th. 4.1
below). This is not the case for QI: By forming the free product I'«F,, of a group
I with various free groups (p > 2), one gets QI groups (Gromov hyperbolic if T’
was). This is because the F), are in fact Lipschitz equivalent (a theorem due to
P. Papasoglu; see P. De la Harpe’s book [Har00, IV-B.46] for further results and
references). Now, if x(I') > 2, the Euler characteristics x(I' * F,) = x(I') — p
do not all have the same sign. In fact, th. 4.1 states that ME groups have
proportional ¢? Betti numbers (3,, while P. Pansu showed that for QI groups I'y
and T'a, one has 5,(I'1) = 0 iff 5,(T'2) = 0.

To complete the picture, let’s come back to lattices in Lie groups :

- A. Furman, improving R. Zimmer’s super-rigidity for cocycles, showed
[Fur99a, th. 3.2] that for a higher rank simple Lie group G, the collection of all
its lattices (up to finite groups) forms a single ME class. More precisely: Let
I" be a lattice in a simple, connected Lie group G with finite center and R-rank
> 2. If a countable group A is measure equivalent to ', then A has a finite index
subgroup which maps with finite kernel onto a lattice of Ad(G).

- The ME class of the free group Fy on two generators, in addition to all
finitely generated (non cyclic) free groups and compact surface fundamental
groups, contains all free products of a finite number of amenable groups (but
Z7]27. % 7./27,).

3 Cost of an Equivalence Relation

3.1 Graphings

Given a group T, there is an associated number n(T'), the minimal number of
generators of I'. The cost of an equivalence relation is a similar quantity. It was
first introduced by G. Levitt [Lev95].

One way to produce an equivalence relation is by considering a graphing, i.e.
a countable family ® = (¢; : A; — B;)ier of p-preserving partial isomorphisms
between Borel subsets A;, B; € X. A graphing generates a p-preserving stan-
dard countable Borel equivalence relation Re¢: the smallest equivalence relation
that satisfies

x ~ p;(x) for all i € I and all x € A;.



In other words, (z,y) € R, iff there exists a ®*1-word (i.e. a word in the ¢;’s
and their inverses) whose associated partial isomorphism is defined at x and
sends x to y.

The cost of the generating system @ is the number of elements in @, weighted
by the measure of their domain: C(®) = >, ; u(A;).

The cost of the equivalence relation is the infimum of the costs over all the
generating graphings: C(R) := inf{C(®) : Rg = R}. This is by definition
an invariant of the equivalence relation (of OE), and the difficulty is now the
computation. If all classes are infinite, then C(R) > 1. The costs of SOE
equivalence relations R; and Ry are related as follows : pus(Y2)(C(R1) — 1) =
p1(Y1)(C(R2) — 1), where uq, uo are probability measures on X7, X ([Gab00a,
Cor. I1.12.]).

A generating graphing ® associates in a Borel varying way a Cayley graph
like structure to each orbit (this explains the terminology). Precisely, for each
x in X, its orbit under R is the vertex set of a graph ®,, where two points
are neighbors if one of the ¢; sends one to the other. The generating condi-
tion implies connectedness of these graphs. Graphings appeared in a paper of
S. Adams [Ada90].

Examples 3.1

1. For a free action o of a group T', given a generating family (v1,72, ) of
T, one has a particular graphing ® where each @; is the automorphism a(v;),
defined on all of X. FEach orbit graph for that graphing is then isomorphic to
the Cayley graph of T'.

2. Ornstein-Weiss’ theorem (cf. sectionl.3) implies that almost all orbits of a
free action of an infinite amenable group can be given a line structure and thus
the corresponding orbit relation has cost 1.

A treeing is a graphing where the graphs associated to almost all z € X are
trees. If @ is not a treeing, there is a ®*!-word with a non trivial fixed point set.
One can then remove a subset from the domain of one of its letters (opening
cycles in the graphs @), in order to define a new generating graphing with
smaller cost (when finite). Conversely:

Theorem 3.2 [Gab98], [Gab00a, th. 2] If © is a treeing of the equivalence
relation R, then it realizes the infimum of the costs: C(R) = C(®).

While the general result involving free products with amalgamation over
amenable groups can be found in [Gab00a, th. 2, th. IV.15], the reader interested
in the proof of that restricted statement is advised to look at the simplified proof
in the announcement [Gah98].

As a corollary, any free action of the free group F,, has cost n (see ex. 3.1
with a basis of F,, as generating set), thus free groups of different ranks cannot
have orbit equivalent actions. Now comes the natural:

Question 3 How many non orbitally equivalent p.m.p. free actions does the
free group Fo admit?



Only finitely many of them are known (three following a personnal communica-
tion of S. Popa). Note that S. Gefter and V. Golodets [GG88, cor.A.9, p. 843]
showed that non cocompact lattices in a simple, connected Lie group with finite
center and R-rank > 2, have a continuum of non OE free p.m.p. ergodic actions.

Costs of actions are computed for a lot of groups I" in [Gab00a]. For example,
If T is an amalgamated product Axc B of finite groups, then cost=1— (1/|A|+
1/|B| — 1/|C|) (it is always treeable); if I' is the fundamental group m(Sy) of
an orientable genus g compact surface then cost= 2g — 1.

Question 4 Does there exist a group with two actions of different costs?

3.2 Non treeability

But not every equivalence relation admits a treeing. Countable groups with
Kazhdan’s property (T) are not tree-friendly. For example: Any simplicial ac-
tion of such a group on a tree has to firx a point. Adams and Spatzier [AS90,
th. 1.8, lem.2.1] showed: Probability measure preserving ergodic free actions of
(infinite) Kazhdan property (T) groups don’t have any treeing. The analogy be-
tween these two result will be made more transparent in example 6.4, section 6.

The difficulty in showing that the cost is a non trivial invariant comes from
the fact that a lot of groups have only cost 1 actions (like direct products
of infinite groups, see [Gab00a, part. VI-D] for other examples). Thus, the
following statement delivers a lot of groups with no treeable free action: The
only groups which admit both a cost 1 and a treeable free action are amenable
[Gab00a, cor.VI.22].

Question 5 Does the surface group m(Sy) admit a non treeable action?

3.3 An application

The theory of graphings is useful for a classification of equivalence relations. It
can also be applied to group theory in order to show a result similar to Schreier’s
theorem for normal subgroups of the free group:

Theorem 3.3 [Gab01] If the first £? Betti number of T is not zero, then any
finitely generated normal subgroup N of I is either finite or has finite indez.

Notice that finite generation may be replaced by [1(N) finite and that
W. Liick got this result, under an additional hypothesis on the quotient I'/ N,
like containing an infinite order element or arbitrarily large finite groups [Liic94]
and [Liic98b, th. 3.3]. Let’s show the following weaker statement:

Theorem 3.4 IfT" has no cost 1 free action, then any finitely generated normal
subgroup of T" is either finite or has finite indez.



Proof: Consider an extension 1 - N — I EX @ — 1. Suppose N and @) are
infinite and NV is finitely generated; let’s show that I" has a cost 1 free action
(by exhibiting generating graphings of small costs).

Consider a free probability measure preserving ergodic action of I' (resp. Q)
on X (resp. Y), then the diagonal T-action v.(z,y) = (v.z, f(7).y) on Z = X xY
is free and preserves the product measure. It generates an equivalence relation
R = Rr. The fibers of the projection 7 : Z — Y are preserved by N.

Fix € > 0. The relation Rg, as any equivalence relation whose classes are
infinite, contains a hyperfinite (see section 1.3) subrelation S, whose classes are
all infinite. The latter is generated by an automorphism ¢ of ¥ and Y admits
a partition Y = [[ oY, where z € Yy iff ¢(z) = t(z). Put Z, = 77'(Yy),
choose a pullback v, € f~!(¢) and denote by ¢, the (partial isomorphism of Z)
restriction of v, to Z;. As the Z,’s form a partition of Z, the cost of &1 := (¢q)
equals 1.

Now let A C Z be a m-saturated Borel subset of measure ¢ and denote by
<p; the restriction of n; to A where nq,---,n, is a generating set for N. The
graphing ®2 := (¢});j=1,.., generates the restriction of Ry to A and its cost
equals (re).

Claim: The relation generated by ®; U ®5 contains Ry . For each (z,y) € Z
there exists a ®F'-word m; (defined at and) sending (z,y) into A. Let w be the
corresponding element of T'. If n € N, the point n.(x,y) lies in the same w-fiber,
so that w is also defined at it. By normality, wnw ™! belongs to N, thus w(z,y)
and wn(x,y) are connected by a <I>2i1—word my. The word m; 'mam; connects
(2.1) to n.(x,y).

Choose a series of positive numbers (1) er with sum < e and Borel subsets
A, C Z of measure < 71, which meet every N-orbit — since N is infinite, this
is possible; one could also have supposed that the N-action is ergodic on X.
Denote by . the restriction of v to A,. The graphing ®3 = (¢~ )~er has cost
<e

Claim: ®; U ®5 U @3 generates Ry. For each (z,y) € Z, there is an element
of N sending it into A, and also a (®1 U ®2)*-word m. By normality, v.(z,y)
and @, m(x,y) are N-equivalent, thus they are connected by a (®1U®2)*!-word
m’. Now m/p,m connects (z,y) to v.(z,y).

Since &1 U @5 U &3 has cost 1 4 re + €, one concludes that Rr has cost 1. l

4 (? Betti numbers for groups

To each countable group I' is associated a sequence of numbers € [0, oo] called
its ¢2 Betti numbers (8,(T'))nen that are defined using the ¢? chains of CW-
complexes on which I" acts. They were defined in this generality in [CG86].

Theorem 4.1 [Gab01] If Ty and Ty are measurably equivalent, then they have
proportional €2 Betti numbers.

More precisely if (2,m) is a coupling between them with index iq(I'1,Ts),
then for all n € N, one has 3,(T'2) = iq(T1,T2) - Bn(T1).
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In particular, ME groups have positively proportional Euler characteristics
(when defined) x(I') = x(T) = 3, (=1)"B,(I).

Corollary 4.2 Lattices in the same locally compact second countable group have
02 Betti numbers that are proportional as the covolumes are.

4.1 (%> homology

In this section, we give some indications about £2 homology and ¢2 Betti numbers
for cocompact free actions on simplicial complexes. We refer to W. Liick’s and
B. Eckmann’s surveys ([Liic98], [Eck00]) for a general exposition of these ideas,
or to Liick’s forthcoming book [Liick].

Let K be a simplicial complex on which I' acts freely and simplicially. The
space of n-chains is the free Z-module C,, (K, Z) with the family .S,, of n-simplices
as a basis. It is the space of (finite) formal integer linear combinations of ele-
ments of S,,. The boundary map 9,, sends an n-simplex to the obvious n—1-chain
(One has at some point to order simplices, let’s forget about it) and extends by
linearity.

If now S, is considered as a Hilbert orthonormal base, one gets the space
of 2 n-chains C?) (K), i.e. the space of (infinite) formal linear combinations of
elements of 5,, with square summable coefficients.

Once a representative is chosen in each orbit of S,,, there are natural T-
equivariant identifications of .S,, with v, copies of I' (where «, is the number of
I-orbits in S,,), inducing C), (K, Z) ~ @y ZT" and CT(LQ)(K) ~ @i ¢3(T) where
I' acts by left translations, and the latter is a Hilbert sum. The spaces of chains
thus get a I'-module structure.

The 0, , defined on the Hilbert basis, requires some finiteness condition to
extend to a well defined and bounded (=continuous) operator on ¢? chains.

For (counter)-example suppose a vertex v is the endpoint of infinitely many
edges e, ea,--- of K. The chain %ej is £2 (i.e. belongs to C{Q)(K)) since
> jEN ]% converges, but by the boundary operator 0, the vertex v would like
to receive the coefficient 3,y % II' More precisely, the sequence 81(Z§:1 %ej)
is not bounded when p — oo since, when expressed in the vertices Hilbert base,
its v-coefficient is ) 7_; %

If K is cocompact, then the boundary maps extend to bounded operators
still denoted 0,,. They give a chain complex (00 d = 0)

(%) 0% P (k) & P (k) & o () 2 P (K) &

As usual, consider its homology Hy(Lz)(K) := Ker 9,,/Im 9,,11. If one wants to
keep dealing with Hilbert spaces one has to divide out by a closed subspace,
i.e. to consider the closure Im 0,41 of Im 0,1, thus considering the so called

(2)(K) := Ker 9,,/Im 0y, 11.

n

reduced ¢? homology H
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4.2 (? Betti numbers

In fact, all of this is I-equivariant, so that the reduced ¢2 homology has the
additional structure of a Hilbert I'-module: 1t is a Hilbert space, with a I" repre-
sentation and it admits an isometric equivariant embedding into an orthogonal
sum L, = ®7_,*(T') (where I acts by A, the sum of its left regular represen-

tations A on each ¢*(T")). Namely, FS)(K) embeds into C\? (K) ~ @ (2(T)
as the space H,, (K) of harmonic n-chains: the orthocomplement of Im 0,11 in
Ker 9,.

It thus gets a I'-dimension (see section 4.4), in some sense a dimension
modulo the T-action (cf. items 1-2, section 4.4).

The ¢ Betti numbers for the action of I' on K are by definition:

Bo(K,T) = dimp H. (K).

These numbers were first introduced by M. Atiyah in [Ati76], and Cheeger-
Gromov have extended the notion to not necessarily cocompact simplicial ac-
tions [CG86], and even in a much more general context (singular 2 cohomology).
We mention a very nice alternative theory developed by W. Liick ([Liic98al,
[Liic98b]).

The ¢ Betti numbers of the group I' are those of any free I'-action on a
contractible simplicial complex ET":

Bn() = Bn(ET,T),
they are shown to depend only on I' [CG86].

4.3 Example

Let’s consider the example of the free group I' = F,, acting on the regular tree
T which is the universal cover of a bouquet of n circles (built of one vertex
and n oriented edges eq,es, -, e,). The tree is the Cayley graph of F,, for a
generating basis. Once a vertex T and an edge €; in each of the n orbits of edges
are chosen, Cy(T,Z) = ZI'.T and C1(T,Z) = ®}_,ZT'e; give a chain complex

0—zr & @ ZT' — 0 where 0; is injective and not surjective (the image
0-chains are those for which the sum of the coefficients vanishes), leading to a
1-dimensional Hy and trivial H; which is not very interesting (just related to
the fact that T is contractible). To get something interesting one has to “divide
out first” by T

By contrast, at the ¢2 level and for n > 2, in the associated chain com-

plex 0 « ¢*(T) & @ 12(T) « 0, the operator d; becomes, surjective (as

Kesten’s theorem shows, since I' is non amenable) and far from injective since
dimr Ker 9; = dimp ®7_,¢*(I') —dimr Im 9; = n—1 (item 7, section 4.4). Thus

Féz) (T') = 0 while Ff) (T) ~ @"¢*(T"). Taking the von Neumann dimension

amounts in some sense to “divide out afterwards”.
An example of a harmonic 1-chain is obtained in the most obvious manner:
put the coefficient +1 on some oriented edge e = [a,b]. Tail a and head b of e

12



receives —1, resp. +1. Compensate this by putting the coefficient (2n — 1)~*
on each edge with head a, resp. with tail b, and so on, put (2n — 1)_d on edges
at distance d oriented towards a, resp. from b. Since n > 2, this is an ¢ chain.
4.4 Von Neumann dimension

Hilbert I'-modules M possess a well defined generalized dimension dimp M. It
enjoys the following properties:

1. dimp 2(T) =1

2. if T is finite, dimp M = |1T\ dim M (usual vector space dimension)
dimp M >0

dimrM =0<= M =0

M C N = dimr M < dimp N

dimp M & N = dimp M + dimp N

N v »

dimr Ker f4+dimr Im f = dimpr My, when f : My — M, is a I'-equivariant
bounded operator between Hilbert I'-modules

The I'-dimension is defined as follows: consider first a closed I'-invariant
subspace M of ¢*(T) = £; and let p be the orthogonal projection onto M.
By T'-invariance, the operator p belongs to the von Neumann algebra of the
group T, the algebra N(T') of those operators that commute with all the unitary
operators A(y), v € I'. The crucial feature is the existence of a finite trace 7 on
N(I): fora € N(T'), 7(a) = (a(d¢)|be) (where & is the characteristic function of
the identity element of I'). Now the von Neumann dimension of M is the trace
of its projector dimpr M = 7(p).

If M is a closed I'-invariant subspace of L, its projection belongs to the
commuting algebra of A\,.(I") and admits a bloc decomposition as an r X r matrix
with coefficients p; ; in N(I'). By definition dimp M = >0, 7(pii)-

The trace property (t(ab) = 7(ba)) ensures that any two I'-equivariant iso-
metric embeddings in £, of a Hilbert I'-module have indeed the same dimension,
giving rise to the well defined notion of I'-dimension for such a module. This
definition has a natural extension when r = co.

5 Simplicial Actions of an Equivalence Relation

5.1 Fibered spaces
5.1.1 Fundamental example.

Consider a free measure preserving action of a countable group I' on (X, 1) and
the orbit equivalence relation Rr. Consider moreover an honest free simplicial
action of I' on a countable simplicial complex K. The space Y = X x K is

13



equipped with the diagonal action of T': ~v.(z,7) = (y.x,7v.7). It is fibered over
X.

Choose a fundamental domain D© := {v;,vs,---,} (= a set of I'-orbit
representatives) for the T-action on the O-skeleton K(*) of K. The set X x D)
is a fundamental domain for the diagonal action on X x K(©) which permits us
to identify the latter with countably many copies of R (one for each vertex v; €
D) by ©; : (x,7.vj) — (z,77 ! .x). Notice that the ©; are equivariant when R
is given the I'-action on the left coordinates: ©;(v'.(z,v.v;)) = (v .x,y L.x) =
v.0;(z,v.v).

An analogous treatment can be made in each dimension, by choosing a
fundamental domain D™ for the I-action on the set of n-simplices K™ of K.
This permits us to identify the space X x K (") with countably many copies of
R. Notice that an n-simplex in X x K is made of an (n + 1)-tuple of points
in X x K with the same projection on X.

5.1.2 Fibered spaces.

A standard Borel fibered space over X is a standard Borel space U together with
a specified Borel map (projection map), with countable fibers p: U — X.

The natural measure vy on U is defined as p (the measure on X) times
counting measure in the fibers of p. Thus, the measure of a Borel subset V C U
is obtained by integrating over (X, 1) the function & — number of points in the
intersection of V' with the fiber of x — Alternatively, vy is built by considering
any countable Borel partition U = [[U; such that the restrictions of p to each
U; are injective and by putting on each U; the pull back of .

When U and V are standard Borel fibered spaces over X, via projection
maps p and g, their fibered product

UxV ={(u,v) € UxV/p(u)=qv)}
is a standard Borel fibered space over X.

Example 5.1 The equivalence relation R has two natural fiberings over X,
given by the projection maps p; : (x,y) — x and p, : (x,y) — y. — the r in
pr stands for right while p; is the range map and p, is the source map for the
groupoid R — Due to the invariance of i for R, the natural measures defined
by these two fiberings coincide; just denote them by v.

5.2 Groupoid actions

5.2.1 Space with Standard Left R-Action

A standard left R-space or space with standard left R-action consists of a (stan-
dard Borel) fibered space U over X and a map called the action map defined
on the fibered product, where R fibers via p,.,

R+U—=U, ((y,2),u) = (y,2)-u,
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such that (z,9).[(y,2).u] = (z,z).u and (2, z).u = u. — In particular, z = p(u)
and y = p((y,2).u) — The space X itself is a standard left R-space. The
projection map p of a left R-space is R-equivariant: p((y, z).u) = (y,z).p(u).
The orbit of u is the set Ru = {(y,2).u : (y,2) € R,y = p(u)} and the
saturation R.B of a Borel subset B C U is the union of the orbits that meet B.

5.2.2 Discrete Actions

A standard left R-space U is discrete if the action admits a Borel fundamental
domain D, i.e. a Borel subset D C U that meets once and only once the orbit
of vy-almost all u € U.

Example 5.2 An obvious instance of such a left R-space is the fibered space
(U,p) = (R, py) itself, with the action map R« U — U, ((x,y),(y,2)) — (z,2)
and the diagonal of R = U as a fundamental domain.

Given a discrete standard left R-space U, choose any countable Borel parti-
tion of a fundamental domain D = [,.; D;, such that p restricts to bijections:
D; & p(D;) C X, on each D;. The natural identification of D; with the di-
agonal subset A; = {(2,2) : z € p(D;)} C R extends by R-equivariance to an
identification of the saturation R.D; with the saturation R.A; = p(p(D;))
One thus gets an isomorphism of discrete standard left R-spaces between U
and the disjoint union [[,.; R.A;.

If U is a discrete left R-space (with fundamental domain D), then also
UxUx---xU is a discrete left R-space (with f.d. D« U *---xU).

6 Actions of the equivalence relation on a sim-
plicial complex

Definition 6.1 A simplicial complex with standard left R-action or more briefly
an R-simplicial complex 3 consists of the following data:

— a discrete left R-space 20 2 X (space of vertices)

— for each n € N a Borel subset ©(") C $O s 2O (space of ordered n-
simplezes)(perhaps empty for large n’s) n+1 times

satisfying four conditions

1. (permutations) Y is invariant under permutation of the coordinates
2. (non degeneracy) if (vo,v1,---,v,) € B then vy # vy

3. (boundary condition) if (vo,---,v,) € 2 then (vy,---,v,) € X1
4. (inwvariance) R.%M = n(")

The data in the fiber of each € X is just an ordinary (countable) simplicial
complex, denoted by X,. Notice that the first two conditions could be slightly
modified according to your favorite definition of a simplicial complex.
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The R-simplicial complex ¥ is n-connected, resp. contractible, resp. n-
dimensional if for almost all  in X, the simplicial complex ¥, has the corre-
sponding property.

Examples 6.2

1. The basic and motivating example for this is the fundamental example in 5.1.1,
where each ¥, is identified with a copy of K.

2. A graphing ® = (p;)ier of R (cf. 3.1), with no loops or double edges, gives
a 1-dimensional connected R-simplicial complex: As left R-spaces (cf. ex. 5.2)
20 =R and 2O = {((z,), (z,2)) € R+ R :y = ¢ '(2) for some i € I}.

(3

3. The complete structure where each X(" = R % --. xR with all diagonals re-
moved (for non degeneracy) is a contractible infinite dimensional example.

Definition 6.3 The geometric dimension of an equivalence relation R is the
smallest dimension of a contractible R-simplicial complez.

The ergodic dimension of a countable group I is the smallest dimension of
the equivalence relations Rr produced by free actions of T'.

Example 6.4 Adams and Spatzier’s result already mentioned (section 3.2)
about non treeability for ergodic free actions of Kazhdan’s property (T) groups
I' can now be rephrased: Rr doesn’t admit any 1-dimensional contractible Rr-
simplicial complex and also Kazhdan’s property (T) groups have ergodic dimen-
sion > 1.

One easily concludes that measure equivalent groups have the same ergodic
dimension and that geometric (resp. ergodic) dimensions decrease when passing
to subrelations (resp. subgroups).

7 (? Betti Numbers for Equivalence Relations
and their Actions

7.1 /2 homology of ¥

An R-simplicial complex ¥ defines a Borel field of simplicial complexes x — ¥,
and, for each n € N, a Borel field of Hilbert spaces x — C,(LQ)(Ez).

What is a Borel vector field? Notice that a Borel section s of the fibering
»(™ — X leads to a C,(X,)-valued vector field = — s(z). A vector field
x—o(x) € CéQ)(Ew) is Borel if  — (o(z)|s(x)), is a Borel function for every
Borel section s.

The Hilbert integral of the ¢2 n-chains of ¥, is called the space of n-
dimensional £2 chains of ¥ and denoted by:

C(B) = /69 O (o) du(x).

X
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It is the Hilbert space of those Borel vector fields that are square integrable:
z = [lo(@)]]s € L*(X, p).

If the ¥, are uniformly locally bounded, then the fields of the boundary
operators lead by integration to bounded operators 0, : C’ff)(E) — Cfi)l(E)

still satisfying 9 o 9 = 0. The reduced homology FS)(E) of the associated
chain complex is called the reduced ¢?> homology of ¥. Like in the group case
(section 4), these spaces have additional structure: they are Hilbert modules —
The von Neumann algebra M involved is that of the equivalence relation R (see
section 7.2) — giving them a von Neumann dimension, “dimension modulo the
groupoid action”, which is called ¢2 Betti number of ¥ and denoted:

Ba(B,R) = dimy HO ().

n

By using some ideas from [CG86], this definition is extended from uniformly
locally bounded X’s to general ¥’s (see [Gab01]). A major difficulty arises here
from the fact that operators appearing in homotopy equivalences don’t lead to
bounded operators (see [Gab00b]). The next result must be compared to the
notion of foliation Betti numbers of A. Connes [Co82, p. 549] and to the claim
in [Gro93, 8.A4, p. 233] where the hypothesis forces boundedness of certain
operators.

Theorem 7.1 [Gab01] Any two contractible R-simplicial complexzes have the
same €2 Betti numbers, called the £ Betti numbers of the equivalence relation R
and denoted by B, (R). If R is defined by a free measure preserving action of a
countable group T, then for alln € N, B,(R) = 8,(T).

If ,(R) > 0 then the geometric dimension of R is > p. One deduce the
existence of equivalence relations of any geometric dimension: consider a free
action of Fo x Fo x -+ x Fo, p times, to get a relation of dimension exactly p.

By the Morse inequalities, one gets a relation between 2 Betti numbers and
cost: cost(R) —1 > (1(R) — Bo(R) with no known example of strict inequality.

Question 6 Is it always the case, that cost(R) —1 = 1 (R) — Bo(R)?

7.2 Von Neumann algebra of an equivalence relation

Consider the Hilbert space L?(R,v) arising from the Borel space R with its
measure v (see ex. 5.1).

For each partial isomorphism ¢ : A — B whose graph is contained in R (see
section 1.2) denote by L., the operator of L*(R,v) defined by L,(n(z,y)) =
n(¢~Y(z),y) if * € B and 0 otherwise. The von Neumann algebra M of R
is the algebra of those bounded operators that commute with the family £ of
all the L,’s (see [FM77b] and [Moo82]). Notice that adjoining to £ the Ly’s
defined for ¢ € L>(X, u) by Ly(n(z,y)) = ¥(z)n(x, y) wouldn’t change M.

If R = Rr, then by the observation in section 1.2, one could replace £ by
the L,’s, v € I', together with the Ly’s. In the free action case, M is described
as a “ cross product” of L™ (X, ) with T (see [MvN36, part IV, p. 192-209]).
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The algebra M possesses a trace 7(a) = (a(xa)|xa), where xa is the charac-
teristic function of the diagonal of R. This permits us to define, as in section 4.4,
the von Neumann dimension of closed L-invariant subspaces of ®L*(R,v).

The embedding of c? (¥) into a sum of L?(R,v) is obtained from the
identification at the end of section 5.2.2.
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