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2 CYRIL HOUDAYER

1. FINITE VON NEUMANN ALGEBRAS

1.1. Basics on von Neumann algebras. Let H be a separable complex Hilbert
space. We shall denote by (-,-) the inner product on H that we assumed to be
linear in the first variable (and conjugate linear in the second one). Let B(H) be
the algebra of all bounded linear maps 7' : H — H. This is a Banach algebra for
the uniform norm:
ITlloe = sup |T¢].
lel<1
We moreover have [[ST |l < [|S]/oo/|Tllos V'S, T € B(H). The algebra B(H) is

naturally endowed with x-operation called the adjonction defined as follows:
(T7&,m) = (£, Tn),v¢,n € H.

We have (T*)* =T, |[T*|lcc = ||T]|co and
IT*Tlloo = ITT*||oo = I T|3

Thus, B(H) is a C*-algebra. We can define several weaker topologies on B(H) as
well, in the following way. Let (7;) be a net of operators in B(H).

Topology T, — 0
norm ITillc — O
ultra-*-strong | > (L& + 117617 — 0, V() € P @ H
-strong [LEP+ T — 0, VecH
ultrastrong N ITE]?P — 0, V(E,) elPoH
strong Tl — 0, V€€ H
ultraweak Y, Tiénn) — 0, V(&,),(n,) €20 H
weak (T;¢,m) — 0, V¢,neH

For a non-empty subset S C B(H), define the commutant of S in B(H) by
S":={T €B(H): 2T =Txz,Vz € S}
One can then define inductively S” = (S’)/, S©®) = (§")", Sk+1) = (S®)) for all
k > 1. It is easy to see that
s c s
S® = 502 vk > 1.

Definition 1.1. Let M C B(H) be a unital x-subalgebra. We say that M is a von
Neumann algebra if M" = M.

Theorem 1.2 (Von Neumann’s Bicommutant Theorem). Let M C B(H) be a
unital x-subalgebra. The following are equivalent:

(1) M" =M.

(2) M is strongly closed.

(3) M is weakly closed.

Proof. We only sketch the proof.
(1) = (2) is clear since commutants are always strongly closed.
(2) = (1). Let . € M". Let
V(z,&1,...,6n6) ={y € B(H) : ||z& —y&ll <e,Vi=1,...,n}

be a strong neighborhood of x in B(H). Let K = ¢2 ® H and observe that B(K) =
M, (C) @ B(H). Let n = (&1,...,&,) € K. Define V.= (1® M)n C K. Since
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M is strongly closed, V is a closed subspace of K. Denote by Py € B(K) the
corresponding orthogonal projection. Since (1 ® a)Py = Py (1l ® a), Ya € M, it
follows that 1 ® x commutes with Py, since z € M"”. Thus (1®z)n € V and we can
find y € M such that (1 ® 2)n = (1 ® y)n, so in particular y € N(z,&y,..., &, €).
Then M" is contained in the strong closure of M and hence M = M".

The fact that (2) and (3) are equivalent follows from Hahn-Banach Separation
Theorem (M is convex since it is a vector subspace!). O

1.2. Finite von Neumann algebras. A von Neumann algebra M is said to be
finite, if every isometry v € M is a unitary, i.e.

viv=1= vv* =1,Yv e M.

One can show that a von Neumann algebra is finite if and only if it has a faithful
normal tracial state T : M — C:
e 7 is a positive linear functional with 7(1) = 1.
e 7 is faithful, i.e. Vo € M, 7(2*2) =0 = z = 0.
e 7 is normal, i.e. 7 is weakly continuous on (M);, the unit ball of M with
respect to the uniform norm || - ||oo-
e 7T is a trace, i.e. Va,y € M, 7(zy) = 7(yzx).
An infinite dimensional finite von Neumann algebra M with trivial center, i.e.
M' N M = C, is called a II; factor.
The most simple examples of finite von Neumann algebras are the following:
(1) Abelian von Neumann algebra. Let (X, u) be a standard probability
space. Represent L> (X, ) on the Hilbert space L?(X, 1) by multiplication

(fO(x) = f()&(x),¥f € L=(z, p), V€ € L*(X, p).
The von Neumann algebra M = L°°(X, u) comes equipped with the trace 7 given
by integration against the probability measure p, i.e. 7= [ -du.
(2) Group von Neumann algebra. Let I" be a countable discrete group. The
left regular representation \ : I' — U(¢?(T')) is defined as follows

AsOp = gt
The von Neumann algebra of I' is then defined by
L) ={);:s€T}".

The canonical trace 7 on L(I") is 7 = (-d, de). One checks that L(T') is a IT; factor
if and only if the group I' has infinite conjugacy classes (icc), that is, Vt # e, the
set {sts™!:s €I} is infinite.

Exercise 1.3. Let T = [Ts]ster € B(F2(T)), with Ts; = (T'9;,6s). Show that
T € L(T) if and only if T is constant down the diagonals, i.e. Ts; = Ty, whenever
st™t =yt

Assume that I is abelian. Then the dual T is a second countable compact
abelian group. Write F : ¢2(T') — L?(T") for the Fourier transform which is defined
by F(ds) = x — (s,x). We get a canonical identification

L>*(T) = FL(D)F™.

(3) Group measure space construction. Let I' ~ (X, u) be a probabil-

ity measure preserving (p.m.p.) action. Define an action o : I' ~ L*(X) by
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(0s(F))(z) = F(s71z), VF € L>*(X). We still denote by
o:T —UL*X))
the corresponding Koopman representation. We regard L>(X) = L®(X)® 1 C
B(L?(X) ® £3(T')). The unitaries us = 05 ® A\s € U(L*(X) @ (*(T")), for s € T,
satisfy the following covariance relation:
usFul = o4(F).

Observe that by Fell’s absorption principle, the unitary representation (us)ser is
simply a multiple of the left regular representation. The crossed product von Neu-
mann algebra is then defined by

L¥(X)xT = { > asugas € L‘X’(X)} C B(L*(X) ® *(T)).

finite
The trace is given by
T(Z asug) = / acdp.
sel’ X
Recall that the action is said to be free if

u{re X :sze=2})=0,Ve#seT.
It is moreover said to be ergodic if
F'’A=A= pu(A)(1 —u(A)) =0,VAC X.

One can check that the action is free if and only if L>°(X) is maximal abelian in
L>(X) xT. In that case, we say that L>°(X) is a Cartan subalgebra, i.e. L>®(X) C
L>(X) x T is maximal abelian and regular. Moreover, L>°(X) x I is a II; factor
if and only if the action is ergodic.

Observe that when the probability space X = {pt} is a point, then the group von
Neumann algebra and the group measure space construction coincide, i.e. L>(X)x
T =L(D).

Let M be a finite von Neumann algebra and fix 7 a faithful normal trace. We
endow M with the following sesquilinear form

(z,y)r = 7(y ), Va,y € M.
Denote by L?(M,7) or simply by L?(M) the completion of M with respect to
(-, -)r. The corresponding || - ||2-norm on M is defined by ||z||2 = /7(x*z). Write
M >z — 21 =7 € L?(M) for the natural embedding. Note that the unit vector 1
is cyclic (i.e. M1 is dense in L?(M)) and separating (i.e. 1 = 0= z = 0) for M.
For every z,y € M,

lzylls = 72 ay)
(2 2lloey)
12 l1y13,

so that we can represent M in a standard way on L?(M) by

VANVAN

m(z)y = 7y,Ya,y € M.

This is the so-called GNS-representation. Observe that © : M — B(L?*(M)) is a
normal #-representation and ||7(z)||c = ||Z]|co. Abusing notation, we identify m(z)
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with z € M and regard M C B(L%(M)). Let J : L2(M) 3 21 — 2*1 € L2(M) be
the canonical antiunitary.

Theorem 1.4. JMJ = M'.
Proof. We first prove JMJ C M’. Let z,y,a,b € M. We have

(JeJya,b) = (za*y*,b%) = r(bra’y") = 7(y"ba”)
= (za*,b'y) = (xJa, Jy*b) = (yJxJa,b),
so that JxJy = yJaJ.

Claim. The faithful normal state x — (z1,1) is a trace on M’.

~ ~

Let z € M’'. We first show that Jz1 = z*1. Indeed, for every a € M, we have
(Jal,al) = (Jal,z1) = (z*a*1,1)
= (a*z*1,1) = (*1,al)
Let now z,y € M’. We have
(xzy1,1) = (y1,2*1) = (y1,Jz1) = (21, Jyl)
= (xT, y*T) = <yxi T)

Denote the trace z — (x1,1) on M’ by 7/. Define the canonical antiunitary
K on L2(M',7)) = M'T = L2(M) by K21 = z*1, Y& € M’. The first part of
the proof yields KM'K C M” = M. Since K and J coincide on M’'1, which is
dense in L?*(M), it follows that K = J. Therefore, we have JM'J C M and so
JMJ =M. O

This Theorem shows in particular that the commutant of the (left) group von
Neumann algebra L(T') inside B(/*(T")) is the right von Neumann algebra R(T'),
that is, the von Neumann algebra generated by the right regular representation of
the group T'.

Exercise 1.5. Show that the strong operator topology on (M); is given by the
norm || - [|2. Thus, strong and *-strong topologies coincide on (M), since ||z||2 =
[lz*]|2, Y € M.

Let B C M be a von Neumann subalgebra. One can show that there exists
a unique 7-preserving faithful normal conditional expectation Eg : M — B (see
Section 2 for details)!. The map Ep : M — B is unital completely positive and
moreover satisfies

EB(blme) = blEB(if)bQ,VJJ S M,Vbl,bz € B.

We say that Ep is B-B bimodular. If we denote by ep : L?(M) — L?(B) the
orthogonal projection, we have eg(x1) = Eg(x)1, for every x € M.

Proposition 1.6 (Fourier coefficients). LetT' ~ (X, ) be a p.m.p. action. let A =
L>(X) and M = L>(X) x I". Every x € M has a unique Fourier decomposition

= § T,

sel’

LThese notes are nonlinear!
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with x5 = Ea(zu?). The convergence holds for the || - ||2-norm.? Moreover, ||z|% =
Dser llwsll3-

Proof. Define the unitary U : L?(M) — L?*(X) ® ¢2(T) by the formula

U (Z asu5> = Z as @ Js.

finite finite

Then ULU* = 1x ®6, is a cyclic separating vector for M represented on the Hilbert
space L?(X)®/2(T"). Abusing notation, we shall identify L?(M) with L?(X)®¢?(T).
Under this identification e 4 is the orthogonal projection L?(X)® ¢?(I') — L*(X)®
Cé6.. Moreover ugseau? is the orthogonal projection L?(X) ® ¢*(I') — L?(X) ® Cd,
and thus > usequl = 1. Let € M. Regarding z(1x ® é.) € L*(X) ® £3(I),
we know that there exists as € L?(X) such that

r(lx ®9de) = Zas ® 65 and H$||§ = Z ||as||§.

sel sel

Then we have

as ®0; = usequir(ly ®6.)
= usepuizes(lx ® dc)
= usEa(uiz)(1x ®d.)
= Fu(zul)(lx ®dy).

It follows that as = Ea(xu}). Therefore, we have x = ) . Ea(zu})us and the
convergence holds for the || - [|2-norm. Moreover, ||z]|3 = > .r [[Ea(zu})||3. O

Exercise 1.7. Let ' ~ (X, ) be a p.m.p. action. Let A = L*°(X) and M =
L>(X) % I

(1) Show that I ~ X is free if and only if A = A’N M (A is maximal abelian).

(2) Under the assumption that I' ~ X is free, show that M is a II; factor if
and only if I' ~ X is ergodic.

(3) Assume that I' is icc. Show that M is a II; factor if and only if I' ~ X is
ergodic.

Exercise 1.8. A von Neumann algebra M is diffuse if it has no minimal projection.

(1) Let N C M be an inclusion of von Neumann algebras and let e € N be a
projection. Show that e(N' N M)e = (eNe)' NeMe.

(2) Let M be a finite von Neumann algebra. Show that M is diffuse if and only
if there exists a sequence of unitaries u,, € U(M) such that u,, — 0 weakly.

For more on C*-algebras and finite von Neumann algebras, we refer to the ex-
cellent book by Brown and Ozawa [2].

1.3. Orbit equivalence relations.

2The convergence does not hold in the strong topology.
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1.3.1. Basic facts on measured equivalence relations. In this note, (X, u) will de-
note a nonatomic standard Borel probability space. A countable Borel equivalence
relation R is an equivalence relation defined on the space X x X which satisfies:

(1) R C X x X is a Borel subset.
(2) For any = € X, the class or orbit of 2 denoted by [z]g :={y € X : (z,y) €
R} is countable.

We shall denote by [R] the full group of the equivalence relation R, i.e. [R]
consists of all Borel isomorphisms ¢ : X — X such that graph(¢) C R. The set of
all partial Borel isomorphisms ¢ : dom(¢) — range(¢) such that graph(¢) C R will
be denoted by [[R]]. If I is a countable group and (g,z) — gz is a Borel action of
T" on X, then the equivalence relation given by

(z,y) ER(’ ~ X) <= Jge T,y =gz
is a countable Borel equivalence relation on X. Conversely, we have the following:

Theorem 1.9 (Feldman & Moore, [11]). If R is a countable Borel equivalence
relation on X, then there exist a countable group I' and a Borel action of ' on X
such that R = R(I' ~ X). Moreover, T’ and the action can be chosen such that

(r,y) ER<=3geT,¢> =1 and y = gz.

Given a countable Borel equivalence relation R on X, we say that p is R-
invariant if

bupp = p, Y9 € [R],

where ¢,u(U) = p(¢p=1(U)), for any Borel Y C X. The following proposition is
useful and easy to prove:

Proposition 1.10. Let R be a countable Borel equivalence relation defined on X.
The following are equivalent:
(1) p is R-invariant.
(2) w is T-invariant whenever T is a countable group acting in a Borel way on
X such that R = R(I' ~ X).
(3) p is T-invariant for some countable group T' acting in a Borel way on X
such that R = R(I' ~ X).

(4) V¢ € [[R]], p(dom(¢)) = p(range(9)).
For any U C X, we define the R-saturation of U by

Ur = bz
TzeU
= {yeX:3wel, (z,y) cR}.

We have U C [U]r and [U]r is a Borel subset of X. We say that Y C X is R-
invariant if [U]lg = U (up to null sets). The equivalence relation R is said to be
ergodic if any R-invariant Borel subset i/ C X is null or co-null.

Exercise 1.11. Let R be a measured equivalence relation for which (almost) every
orbit is infinite. Show that there exists a sequence (g,) in [R] such that go = Idx
and R = | |, graph(g,). In other words, we can write the equivalence relation R as
a countable disjoint union of graphs of elements in the full group [R].
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Important Convention. In the rest of this paper, when we write an equivalence
relation R defined on (X, 1), we always mean a countable Borel equivalence relation
such that the measure p is R-invariant. When we write & C X, we always mean a
Borel subset of X. From now on, we will neglect null sets, i.e. whenever a property
is true for every x € X, we mean for u-almost every x € X. From now on, we will
always assume that (almost) every orbit of R is infinite, that is, R is a type IIy
equivalence relation.

We define now a Borel measure on R. For W C R a Borel subset, we define
We={yeX:(z,y) e Whand WY = {z € X : (z,y) € W}. We define v on R by

v(W) = / (W |dp(z), YW C R.
X
Lemma 1.12. Since p is assumed to be R-invariant, we have:

/ Weldu(z) = / WYldu(y). YW C R.
X X

Proof. From Exercise 1.11, we know that R = | |,, graph(g, ), for some g, € [R]. Let
W C R be a Borel subset. Then W = [ |, (graph(g,) N W) and graph(g,) N W =
graph(¢,) for ¢, € [[R]]. Thus, we can write W as a countable disjoint union
of graphs of ¢ € [[R]]. Consequently, we just have to prove the equality when
W = graph(¢), for ¢ € [[R]]. For any ¢ : dom(¢) — range(¢) € [[R]], we have

u(dom(g)) = /X | eraph(@)eldu(z)

plrange(9) = [ |graph(e)”|duty).
X
Since p(dom(¢)) = p(range(¢)), we are done. O

We shall denote by D := {(x,2) : x € X} C R the diagonal. We have v(D) = 1.
For i = 1,2 let R; be a countable Borel equivalence relation on (Xj, i), and
assumed that p; is R;-invariant. We say that Ri; and Rs are isomorphic and
denote Ri =~ R if there exists a Borel isomorphism A : X; — X,, such that
A, p1 = po and

(z,y) € R1 <= (A(z),A(y)) € Rs.

We will be using the following important fact. For A : X; — X5 a Borel isomor-
phism such that A,u; = pe, we associate ma : L®(X;1) — L°°(X3) defined by
(raF)(z) = F(A™'z), for any F € L>(X;), and any € X;. Moreover the map
A — 7 is an onto isomorphism (see [28, Proposition XIII.1.2]).

1.3.2. Construction of the von Neumann algebra of R. We define the left reqular
representation of the equivalence relation R on the Hilbert space L?(R,v). For
¢ : dom(¢p) — range(¢) € [[R]] and & € L*(R,v), set

(u¢§)(m, y) = 1range(¢) (a:)f((bfl(z)?y),V(;z:,y) €ER.

In other words, (uyé)(z,y) = &(¢(z),y) if © € range(d) and 0 otherwise. The
von Neumann algebra L°°(X) acts in the following way. If F' € L>°(X) and £ €
L?(R,v), we have

(F&)(z,y) = F(x)¢(z,y),Y(z,y) € R.
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For F € L*™(X) and ¢ € [[R]], define Fy € L*>°(X) by

Fy(x) = Lrange(o) () F (¢ (2))-

In other words, Fy(z) = F(¢~1(x)) if x € range(¢) and 0 otherwise.
Note that, we can also define the right regular representation of R on L?(R,v)
in the following way: for ¢ : dom(¢) — range(¢) € [[R]] and & € L?(R,v), set

(’U¢§) (.T, y) = 1range(¢) (y){(x, d)il(y))a V(l‘, y) eER.

Exercise 1.13. Show that for any ¢, € [[R]], we have

(1) ugty = ugy.

(2) u} = ug-1.

(3) u;‘buqb = 1d0m(¢) and u¢u:‘; = 1range(¢)~

(4) upF = Fyug, for any F € L>®(X).
Definition 1.14 (Feldman & Moore, [12]). The von Neumann algebra L(R) C
B(L%(R,v)) of the equivalence relation R is then defined as follows:

L(R) = W{uy : ¢ € [[R]]}.
Likewise, we define R(R) = W*{v, : ¢ € [[R]]}. It is trivial to check that
L(R) C R(R)'. Define the canonical anti-unitary J : L?(R,v) — L?*(R,v) by
(JE)(x,y) = &(y, ), for any € € L?(R,v), for any (z,y) € R.

Proposition 1.15. Denote by & = 1p € L*(R,v) the characteristic function
corresponding to the diagonal D C R.
(1) & is a cyclic separating vector for L(R).
(2) The vector state T = (-£o,&o) is a faithful normal trace on L(R). In partic-
ular, L(R) is a finite von Neumann algebra.
(3) For any ¢ € [[R]], JugJ = vg. In particular, L(R) = R(R)'.

Proof. (1) Write & = 1p, where D C R is the diagonal. For ¢ € [[R]], we have
1graph(¢) = Ug-1§0- Recall that R can be written as a countable disjoint union
of graphs of Borel isomorphisms R = ||, graph(g,). Take any W C R. Then
W =|,, W, with W, = W N graph(g,). Since W, is the graph of a partial Borel
isomorphism, it follows that 1)y € L(R)&. Consequently, &y is cyclic for L(R).
Exactly in the same way, £y is cyclic for R(R), hence separating for L(R).

(2) Tt suffices to prove that T(uguy) = T(upug), for every ¢,¢ € [[R]]. Let
o, € [[R]]. We have

) = [ Limion s @)n(e)
/1{w=w*1¢*1(x)}($)du($)

X

[ Ao o @0 0 = 67 )

/X Lo (o)1 (2} (@)dp()

= T(upug).
(3) A straightforward computation shows that JugJ = vy, for any ¢ € [[R]].
It follows that JL(R)J = R(R). By the general theory of finite von Neumann
algebras (see Proposition 1.4), we get L(R) = R(R)'. O
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Denote A = L*°(X) and M = L(R). Observe that A C M. We know that there
exists a unique 7-preserving faithful normal conditional expectation E4 : M — A.
In order to know Ej,, it is sufficient to compute E4(ug) for any ¢ € [[R]]. Denote
by ep : L?>(R) — L?(D, 1) the orthogonal projection.

Proposition 1.16. We have

(1) EA(ug) = 1{:c=g*19¢}7 Vg € [R]

(2) en(ato) = Ealw)és, Vo € L(R).
Proof. In order to prove (1) and (2), it suffices to show that EFa(ug) = 1{z—p-1(a)3},
for every ¢ € [[R]]. Let ¢,7 € [[R]]. Write f = Lyz—g-1(z)} € L>(X). Then, we
have

T(Ba(ug)uy) = /X Ea(t9) () Lpampo oy (2)dpa()

/XEA(U¢1{I:WI(x)})(x)d#(x)
= T(Ba(upliz=yp-1(2)})) = T(Upl{z=y-1(2)})
/X 1y o) (@) F (@) dpa(a)

= [ H@ oy @)la) = ().
Thus, 7((Ea(ug) — f)z) = 0, for any « € M. Consequently, Ea(uy) = f =
Trp—o—1(2)1-
{e=¢=1(2)}

Proposition 1.17. Let (g,) be a sequence in [R] such that go = Idx and R =
LI, graph(g,'). Then any x € L(R) can be uniquely written

T = § :anugnv
n

O

where a, € A.

Proof. Since R = | ], graph(g,, ), we have
L*(R,v) = @ L*(graph(g, "), va),

where v, is the restriction of v to graph(g,'). Let z € L(R). Define a, =
Ea(zuy, ). Recall that 1, -1y = ug,&. Denote by ep : L*(R,v) — L*(D,vo)
the orthogonal projection. It is easy to check that ug, epuy is the orthogonal
projection L?(R,v) — L*(graph(g, '), v,). We have

ug,epty, (v€o) = ug,(epug, x80)
Ug, EA(U* 1’.)60

EA(u:; T)uy g, o
= Ea(zu ) tg,, £o-
Therefore z&y = ), Ea(zuy Jug, &o in LQ(R v) and so z = ) Ea(zuj )ug,
where the convergence holds for the || - [|2-norm. O

The above proposition yields in particular L(R) = (L>(X) U{u, : g € [R]})".
Proposition 1.18. Denote M = L(R) and A = L>*(X). Then
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(1) A=A NM, ice. AC M is a mazimal abelian *-subalgebra.
(2) Ny(A)' =M, i.e. AC M is regular.
Proof. (1) Let u € U(A’ N M). As before we may write v = ) anugy, for some
gn € [R]. Fix F € L*(X). Since uF = Fu, we get a,(F,, —F) = 0, for any n.
Thus, for any = € supp(a,), F(g,'(x)) = F(z). Using a previous remark, we get
gn * () =, for any x € supp(a,). Thus, u =3, @y lsupp(a,) € A
(2) It is trivial once we noticed that M = (AU {u, : g € [R]})". O

From this proposition, it follows that Z(M) = M'NM C A'NM = A. Moreover,
for any U C X, we have the following
U=Ur <= gU =UNVg € [R]

Indeed, assume that U = [U]r and fix g € [R]. For any = € U, since (z,gz) € R,
then gx € U. Conversely, assume that gif = U, for any g € [R]. Recall that there
exists a countable group and a p.m.p. action of T on X such that R = R(I' ~ X).
If (z,y) € R, with © € U, there exists g € ' such that y = gx. But then y € U.
Thus we obtain:

Proposition 1.19. L(R) is a factor if and only if R is ergodic.
Then we summarize what we did so far in the following theorem:

Theorem 1.20. Let (X, u) be a nonatomic probability space. Let R be an ergodic
countable Borel equivalence relation on X such that p is R-invariant. Then L(R)
is a IIy factor and L>=°(X) C L(R) is a Cartan subalgebra.

1.3.3. The full group of R and consequences. Denote A = L*>°(X) and M = L(R).
We prove the following;:

Theorem 1.21. We have
[R] = Nar(A)JU(A).

Proof. Let u € Ny (A). As before, we may write u = > anug,, for some a, € A,
dgn € [R]. We know that there exists a Borel isomorphism A : X — X such that
Aup = p and uF'u* = Fa, for any F' € A. Thus, uF = Fau and so a,(Fy, —FA) =
0, for any n and any F' € A. Hence, for any = € supp(a,,), for any F' € A

F(gy' (x)) = F(A™}(x)).
Denote Y = J,, supp(an). The Borel subset Y is co-null. Indeed, for all n € N, we
have
1x\vanug, =0
and so 1x\yu = 0. Thus, u(X\Y) = 0. This finally proves that A € [R].

We have constructed a group morphism

N (4)

u

[R]

D . A

N
—
which is onto since A = ua. Moreover, u € ker(®) if and only if u € A’N M. Thus,
ker(®) = U(A). This completes the proof. O

Corollary 1.22. We have Ny (A) = U(A) x [R].
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Proof. We already know that the sequence
1—UA) — Ny(A) — [R] — 1
is exact. It moreover splits with the following section
R] — Nu(4) .
g = Uy

O

Theorem 1.23. Fori = 1,2, let R; be a measured equivalence relation on (X;, ;).
Denote A; = L>°(X;) and M; = L(R;). Then

Ri1~Ro <= (A1 C M) ~ (A2 C Ms).
Proof. = First assume that Ry ~ Ro. Then there exists a Borel isomorphism
A : Xy — X, such that A,y = pe and for any (z,y) € X3 x X1, (z,y) € Ry iff
(A(z),A(y)) € Ra. We define a unitary as follows:
LQ(Rl,Vl) — LQ(R27V2)

£ = ((z,y) = A 2), A7 (y)) -

For any g € [R1], F € L*(X1) and any £ € L?(Ra,v2), we have

(UugU*E)(z,y) = &(Ag AT (2),y)

(UFU*&)(z,y) = F(A T (2)E(,y).
Thus, UugU* = upga-1 and UFU* = Fa. Consequently, § = Ad(U) : My — M,
is an onto #-isomorphism such that 6(A;) = As.

<— Assume now that there exists an onto *-isomorphism 6 : M; — Ms such
that 0(A1) = As. We know that there exists a Borel isomorphism A : X; — Xo
such that A, = po and 0(F) = Fa, for any F' € A;. Fix g € [R41]. Since u,
normalizes A, inside Mj, it follows that 0(u,) normalizes Ay inside My. Thus there
exist h € [Ro] and v € U(Az) such that 0(uy) = upv.
Fix F' € A;. From the one hand, we know that u,Fuj = F,. Thus we obtain
O(ugFuy) = 0(Fy) = (Fy)a. On the other hand, we have
BugFus) = 0(u)0(F)(u,)"

= upvFaviuy

U:

= thAu}‘fL

= (Fa)p.
Consequently, (F,)a = (Fa)n, and so g7'A™t = A7'h™1 on X,. Equivalently,
Ag = hA on X;. For any z € X1, (A(z),Ag(x)) = (A(z), hA(z)) € Ra, since
h e [RQ}

Let now (z,y) € R1. We know that there exists g € [R;] such that y = gz.

Thus, (A(z),A(y)) = (A(x),Ag(z)) € Re. Reasoning exactly the same way with
A~! we obtain that A is an isomorphism of equivalence relations. O

1.3.4. Group actions and their orbit equivalence relations. Given a p.m.p. action
I ~ (X, ), one can associate the orbit equivalence relation R(I' ~ X) defined by

(z,y) ER( ~» X) < Ts € ',y = su.
When the action I' ~ X is free, the map
(T x X, counting ®u) 3 (s,z) — (z,sz) € (R(I' ~ X),v)
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is a p.m.p. Borel isomorphism.

Exercise 1.24. Let I' ~ (X, u) be a free p.m.p. action. Show that the von
Neumann algebra of the orbit equivalence relation L(R(I' ~ X)) and the group
measure space construction L (X) x I' are *-isomorphic.

Definition 1.25. Let I' ~ (X, 1) and A ~ (Y, v) be two free p.m.p. actions. We
shall say that

(1) T~ (X,p) and A ~ (Y,v) are conjugate if there exist a p.m.p. Borel
isomorphism A : (X, u) ~ (Y,v) and a group isomorphism § : I' ~ A such
that A(sz) = 6(s)A(z), Vs e T, Vo € X.

(2) T ~ (X,u) and A ~ (Y, v) are orbit equivalent (abbreviated OE) if there
exist a p.m.p. Borel isomorphism A : (X, u) ~ (Y,v) such that A(Tz) =
AA(x), Vo € X.

(3) T ~ (X, p) and A ~ (Y, v) are W*-equivalent (abbreviated W*E) if L>°(X) x
[~ L®(Y) x A.

Let A =L*(X) C L®X)xI'=M and B = L>®(Y) C L*(Y) x A = N.
Observe that Theorem 1.23 yields

'y (X,p) ~oe A (Yv) = RIAX)>~RANY)
— (ACM)~(BCN)
Therefore the following implications are true

conjugacy = orbit equivalence = W™-equivalence.

2. HILBERT BIMODULES. COMPLETELY POSITIVE MAPS

2.1. Generalities.

2.1.1. Hilbert bimodules. The discovery of the appropriate notion of representations
for von Neumann algebras, as so-called correspondences or bimodules, is due to
Connes [5].

Definition 2.1. Let M, N be finite von Neumann algebras. A Hilbert space H
is said to be an M-N-bimodule if it comes equipped with two commuting normal
s-representations 7 : M — B(H) and p : N°° — B(H). We shall intuitively write
x-&-y=m(x)p(yP)E, vV € H,Vx € M,Vy € N.

We shall see that an M-M bimodule H is the analog of a unitary group repre-
sentation 7 : I' — U(H,).

Example 2.2. The following are important examples of bimodules:
(1) The identity bimodule L?(M) with = - ¢ - y = x€y.
(2) The coarse bimodule L?(M) ® L?(N) with x - (€ ®n) -y = (2€) @ (ny). It
can be checked that as M-N-bimodules,

L*(M)® L*(N) ~ HS(L*(M), L*(N))

where HS(L?(M), L>(N)) denotes the M-N-bimodule of Hilbert-Schmidt
operators on from L?(M) to L?(N).

(3) For any 7-preserving automorphism 6 € Aut(M), we regard L?(M) with
the following structure: x - £ -y = x€0(y).
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(4) Let B C M be a von Neumann subalgebra and denote by ep : L2(M) —
L?(B) the orthogonal projection. Consider the basic construction (M, ep)
which is the von Neumann subalgebra of B(L?(M)) generated by M and ep.
We endow (M, ep) with the following semifinite trace: Tr(zepy) = 7(zy),
for all z,y € M (see Subsection 2.3). Then L?((M,eg), Tr) is naturally en-
dowed with a structure of M-M-bimodule. Moreover, as M-M-bimodules,

L*((M, ep), Tr) ~ L*(M) @5 L*(M)
where ® g denotes Connes’ fusion tensor product (see [5, Appendix V.B]).
2.1.2. Unital completely positive maps. Let (M, ar), (N, 7n5) be finite von Neumann

algebras endowed with a fixed faithful normal trace. A linear map ¢ : M — N is
said to be completely positive if the maps

On =1d, ®¢: M,,(C)®@ M — M, (C)® N
are positive for every n > 1. We shall say that ¢ is unital if ¢(1) = 1, and trace-

preserving if moreover 7 (¢(x)) = Ta(z), for every x € M.

Theorem 2.3 (Stinespring dilation). Let ¢ : M — N be a (normal) u.c.p. map.
Then there exist a Hilbert space H, an isometry V : L>(N) — H and a (normal)
x-representation ™ : M — B(H) such that

¢(x) =V*r(z)V,Vz € M.
Proof. Equip Ho = M Ralg L? (N) with the following sesquilinear form
O ai@n, Y b @¢G)=> (6bjaim G) 2w
i J (2]
and promote it to a Hilbert space H by separation and completion. Denote by
(32, b5 ®(;)® the vector in H which it represents. Define now V' : L*(N) — H by

V(= (1®¢)*. It is clear that V' is an isometry, i.e. V*V = 1p2¢yy. For every
x € M, we define a bounded linear operator m(x) on H by

n@) (3 by @) = (3 ab; ©.6)"

As expected, # : M — B(H) is a (normal) s-representation such that ¢(z)
V*r(x)V, Ve e M.

Ol

It follows that a u.c.p. map ¢ : M — N satisfies for every z € M,
d(z*x) Vir(z*z)V

Va(a*)VV*n(z)V + Vir(a*)(1 = VV*)r(x)V

P(x)" ().

If ¢ is moreover assumed to be trace-preserving, the operator Ty : L?(M) — L?(N)
defined by

Y

—

Ty(Z) = ¢(z),Vx € M.
is bounded and || T/ = 1.

Example 2.4. The following are important examples of T-preserving u.c.p. maps:

(1) The trace 7 : M — M, the identity map Id : M — M and more generally
all *-automorphisms 0 : M — M which preserve the trace.



AN INTRODUCTION TO II; FACTORS 15

(2) Let B C M be a von Neumann subalgebra. Denote by e : L2(M) — L?(B)
the orthogonal projection. Denote by Eg : M — B the unique 7-preserving
conditional expectation from M onto B which satisfies

o —

Ep(z) =ep(Z),Vz € M.

It is easy to see that Ep is indeed a u.c.p. map.
(3) Let M = L(T") be the von Neumann algebra of a countable group I'. Let

@ : I' - C be a normalized positive definite function, i.e. for any finite

set F' C I the matrix (¢(st™1))s+cr is positive. Define the corresponding

T-preserving u.c.p. map ¢ : L(T") — L(T") by

d)(z asug) = Z o(s)asus.
sel sel

Exercise 2.5. Let ¢ : L(I') — L(T") be a 7-preverving u.c.p. map. Show that
¢ : ' = C defined by p(s) = 7(¢(us)ul) is a positive definite function.

2.2. Dictionary between Hilbert bimodules and u.c.p. maps.

2.2.1. From u.c.p. maps to Hilbert bimodules. Let ¢ : M — N be a trace-preserving
u.c.p. map. Equip Ho = M © L?(N) with the following sesquilinear form
O ai@n, Y b @¢) =Y (e(baim, §) 2w

i J .
and promote it to a Hilbert space Hy by separation and completion. Observe that
Hy is a Stinespring Dilation of ¢. Abusing notation, denote by b ® ¢ the vector in
H, which it represents. The action is given by

a(b® )z = (ab) ® (Cx),

for a € M and x € N. With the unit vector £ =1 ®le Hg, we have

<CL§3§‘, £y>7'l¢ = (d)(a)a?, 27>L2(N)
foreverya € M, xz,y € N. Since the u.c.p. map ¢ is assumed to be trace-preserving,
we get

(-€,€) =7 and (€, §) = 7n.
2.2.2. From Hilbert bimodules to u.c.p. maps. Let H be an M-N bimodule, with
a tracial unit vector &, i.e. (-:£,&) = 7as and (£, &) = 7. Then the linear operator
L¢ : L*(N) — H defined by L¢(Z) = &z is bounded and ||L¢[s = 1. For any
x,y € N, we have
@, Le()revy = (€2, &y)n
= 7(zy)
= <EE\7 :I/\>L2(N)v
so that Lg(€y) = y. Therefore L¢ is an isometry, i.e. L{L¢ = 1. Denote by J = Jy

the canonical antiunitary. Moreover, for any a € M, LiaLe € N. Indeed for any

Y, 21,22 € N, we have
(LgaLe)(Jy*J)21, 22) L2 () (aLeJy*J21, LeZa)n
= (a€xny,Ez)n
(Jy* D(LiaLe)5, ) ey = (wLedi, LeJyd)m
(

a&z1, E2y" )H.
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Define the u.c.p. map ¢ : M — N by ¢(a) = LiaLe. Since

™n(d(a)) = (LiaLel, 1) = (a€, &) = Tar(),

it follows that ¢ is trace-preserving. We moreover have

(d(a)2,Y) L2y = (aéx, EY),

We can now prove the uniqueness and existence of the trace-preserving faithful
normal conditional expectation Eg : M — B.

Proposition 2.6. Let (M, 7) be a finite von Neumann algebra with a fized trace
and let B C M be a von Neumann subalgebra such that g = 7g. Then there exists
a unique normal faithful trace-preserving conditional expectation Ep : M — B.

Proof. Consider the M-B-bimodule H = 3;L2(M)p. The vector 1 € H is obviously
a unit tracial vector. Denote by Ep the corresponding normal trace-preserving
u.c.p. map Fp : M — B. Recall

~

(z1a,1b)y = (Ep(x)a, b) 12(p), Vo € M,Va,b € B.
Let x € M, a,b,c,d € B. We have

<E3(axb)/c\,c?>Lz(B) = (azble,1d)y
a1be, Ta*d)y
Ep(x)be,a*d) 12 (p)

~

CLEB(J))b/C\, d>L2(B)a

o~ o~~~

hence Ep(axb) = aEp(x)b. Assume now that Eg(z*z) = 0. Then
0= (Ep(e*2)1, 1) 12(m) = (@21, 1)n = ||]3,

and so x = 0. Let £ : M — B be another trace-preserving conditional expectation.
Then

(Ep(z)e,dyepy = (xle,1d)y
7(d*zc)
= 7(E(d*zc))
= 7(d"E(x)c)

~

= <E($)E, d>L2(B)7

hence Ep(xz) = E(x). Therefore Ep : M — B is the unique normal faithful trace-
preserving conditional expectation. (I

2.2.3. From unitary group representations to Hilbert bimodules. Let m: T — U(H)
be a unitary representation of a countable discrete group I'. Let M = L(T") be the
group von Neumann algebra and denote by (us)ser the canonical unitaries. Define
on K, = H, ® £?(I') the following left and right commuting multiplications: for
every ¢ € H; and every s,t €T,

Us - ('5 ®) = (M@ A)(E® ) = Tl @ st
(5 & 5t) cUs = (]-H,r & ps_l)(f & 5t) = f & 62&5-
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It is clear that the right multiplication extends to the whole von Neumann algebra
M. Observe now that the unitary representations 7 ® A and 1gy,_ ® A are unitarily
conjugate. Indeed, define U : H, ® ¢*(T') — H, ® ¢*(T") by

U((® ;) = m @ 6y

It is routine to check that U is a unitary and U(lgy, ® As)U* = 75 ® A, for every
s € I'. Therefore, the left multiplication extends to M. We have proven:

Proposition 2.7. The formulae above endow the Hilbert space IC,. with a structure
of L(T')-L(T)-bimodule.

Observe that in the case m = A is the left regular representation of I'; the M-M-
bimodule K is nothing but the coarse bimodule L?(M) @ L*(M).

Exercise 2.8. Let ¢ : I' — C be a normalized positive definite function. Let
(m,Hy &), with £ € H, unit vector, be the GNS-representation of ¢, i.e., ¢(s) =
(ms&, &), for all s € T'. Show that the u.c.p. map ¢ associated to the bimodule K,

satisfies
00D asus) = p(s)asus.

sel sel’

Exercise 2.9. Prove the following dictionary between u.c.p. maps and Hilbert
bimodules:

u.c.p. maps Hilbert bimodules
d: M — M Identity bimodule L?(M)
T:M—M Coarse bimodule L?(M) @ L?(M)
Automorphism 6 : M — M L2(M) with z - & -y = 2€0(y)
EBZM—>M L2<M,63>

2.3. Popa’s intertwining techniques.

2.3.1. The basic construction. Throughout this section, we will denote by M a finite
von Neumann algebra with a distinguished faithful normal trace 7. Let B C M be
a unital von Neumann subalgebra. Let ep : L?(M) — L?(B) be the orthogonal
projection. We will denote by Ep : M — B the unique faithful normal 7-preserving
conditional expectation. It satisfies the following:

Ep(r) = ep(),
Ep(azxb) = aEp(x)bVYax € M,Ya,b < B.

The basic construction (M, eg) is the von Neumann subalgebra of B(L?(M)) gener-
ated by M and the projection eg. Observe that Jeg = epJ and egxep = Eg(z)ep,
Ve € M.

Proposition 2.10. The following are true.

(1) (M,eg) = JB'JNB(L?*(M)).

(2) The central support of e in (M, ep) equals 1. In particular, the x-subalgebra
span(MepM) is a x-strongly dense in (M,ep). The formula eprep =
Egp(x)ep extends the conditional expectation Eg : (M,eg) — B.

(3) (M,ep) is endowed with a semifinite faithful normal trace defined by

Tr(zepy) = 7(xy), Yo,y € M
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Proof. (1) For z € B, we clearly have zL?(B) C L?(B) and xL?(B)* C L?(B)*,
hence zeg = epx. If x € M N {ep}’, then

Ep(2)1 = ep(a1) = zep(1) = 1.
Therefore x = Ep(x) € B. Tt follows that B = M N{ep}’. Thus,

JB'J = (JM'J,JegJ) = (M,ep).

(2) The map B > x — zep € Bep is a x-isomorphism. Indeed, if zeg = 0,
then xn = 0, for every n € L?(B). Since x € B, it follows that z = 0. Denote by
z(ep) the central support of eg in B’. Then z(eg) € B and z(eg)ep = eg. Hence
z(eg) = 1. Thus the central support of eg = JepJ in JB'J is equal to 1. Tt is
clear that Z = span(MepM) is a *-subalgebra of (M,eg) and a 2-sided ideal of
the x-algebra generated by M and ep. Thus 7 is a closed 2-sided ideal of (M, ep).
Moreover

TL*(M) = MegL?(M) = ML*(B) > M1.

Since 7 is nondegenerate, we get Z = (M, eg).
(3) Since ep has central support 1 in (M, ep), one can find partial isometries
(v;) in (M, ep) such that viv; < ep and ), v;v] = 1. It follows that

P viL*(B) = L*(M).

Define the following normal weight Tr on (M, eg) by
Tr(z) = Z(mvﬁ, vil),Vz € (M, eg),.
Assume that Tr(z*z) = 0. Then vl = 0, for every i. For every b € B, we have
av;bl = 2, Jb* J1 = Jb* Jzv;1 = 0.
Therefore x = 0 and Tr is faithful. For every x,y € M, we have
Tr(zepy) = Z<xeBini Uﬁ> = Z<€Byvi631 6B$*Ui€BT>
i i

= Z<E3(yui)eBT, Ep(z*v;)epl) = ZT(EB(x*vi)*EB(in))
= ZT(EB(vi‘y*)*EB(vz‘x)) = Z<EB(v;*m)eBT, Ep(v]y*)egl)

= Z(egvfxe]gi epviytepl) = Z(vivfmi y*1)

7

i
= Q_vwjaly'l) = (a1,y'T) = r(ay).

We get that Tr is semifinite since span(MepM) is a *-strongly dense *-subalgebra
in (M,eg). For every x,y,z,t € (M, ep), we have

Tr(zepyzept) = Tr(zEp(yz)est) = 7(zEp(yz)t)
= 7(Ep(yz)Ep(tr)) = T(2Ep(tz)y)
= Tr(zEp(tx)epy) = Tr(zeptrepy).
Thus Tr is a trace. This completes the proof. (I
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It follows from the previous proposition that
(M,ep) = {T € B(L*(M)) : T(¢b) = T(€)b, V€ € L*(M),Vb € B}.

Let Hp be a right B-submodule of L?(M)g. Write Py : L*(M) — H for the
orthogonal projection. It is clear that Py € (M, ep). We define the von Neumann
dimension of Hg by dim(Hp) := Tr(Px).

Exercise 2.11 ([2]). Let (N, Tr) be a semifinite von Neumann algebra. Let Q@ =
{z € N :||z||2,1+ < 1}. Prove that the formal inclusion  — L?(N, Tr) is ultraweak-

weak continuous.

2.3.2. Intertwining subalgebras. In [23, 19], Popa introduced a very powerful tool
to prove the unitary conjugacy of two von Neumann subalgebras of a tracial von
Neumann algebra (M, 7). If A C (M, 7) is a (possibly non-unital) von Neumann
subalgebras, denote by 14 the unit of A.

Theorem 2.12 (Popa, [23, 19]). Let (M, 7) be a finite von Neumann algebra. Let
A C M be a possibly non-unital von Neumann subalgebra and B C M be a unital
von Neumann subalgebra. The following are equivalent:

(1) There exist n > 1, a possibly non-unital x-homomorphism 1 : A — M, (C)®

B and a non-zero partial isometry v € My ,(C) ® 1aM such that
v = v(x), Vo € A.
(2) There exists a nonzero A-B-subbimodule H of AL?*(14M)p such that
dlm(HB) < 00.
(3) There exists a nonzero element d € A’ N14(M,ep)+14 such that
Tr(d) < oo.
(4) There is no sequence of unitaries (ug) in A such that

klim |Es(a*urb)|l2 = 0,Va,b € 14 M.

If one of the previous equivalent conditions is satisfied, we shall say that A
embeds into B inside M and denote A =<j; B. For simplicity, we shall write
M"™:=M,(C)® M.

Proof. We first prove that (1), (2),(3) are equivalent. Then we show (1) = (4)
and (4) = (3).

(1) = (2). Take a nonzero component of v € M;j ,,(C) ® 14M that we may
assume to be v;. Set w = v;. We have Aw C Z;":lva. Define H = AwB.
Therefore H C v({2 @ L?(B)) and dim(Hpg) < n.

(2) = (3). Write d = Py. Then d € (M,eg)+ and Tr(d) = dim(Hp) < oo.
Since H is moreover a left A-module, we have ad = da, for every a € A, hence
de A N1g(M,eg)+14 such that 0 < Tr(d) < cc.

(3) = (1). Write ¢ = 1yg|../2,|d](d) for the nonzero spectral projection of
d. We get that K = qL?(M) is a nonzero A-B-subbimodule of L?(14M) such that
dim(Kpg) = Tr(q) < oo. Thus, cutting down by a central projection of B (see [29,
Lemma C.1]), we get a nonzero A-B-subbimodule H C L?(14M) which is finitely
generated over B. Hence, we can take n > 1, a projection p € B™ and a right
B-module isomorphism

Y pL*(B)®" — H.
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Since H is a left A-module, we get a (unital) *-homomorphism 6 : A — pB™p
satisfying z1(n) = (0(x)n) for all z € A, and n € pL?*(B)®". Define now e; €
L2(B)®" as e; = (0,...,1,...,0) and € = (&1,...,&,) € My ,(C) ® H, with &; =
(pej). Let j € {1,...,n}. For any z € A, write 0(z) = (Oi(2z))w € pB"p. We
have

v = wblpe;) = V(O()pe;) = VEO@)e;) = V(b Y i(x)es)
= Zq/}(p((], oy 0i5(), ..., 0))
i=1
— Zw((pei)%(x))

= Z Y (pe;)0ij(x) (¢ is a right B-module isomorphism)
i=1

= Zfzﬂzj ().
i=1

Consequently, for every z € A, x& = £0(z). In the von Neumann algebra M"*! C
B(L?(M) @ L?*(M)®"), define

x 0
X, = (0 9(;10)) ,Vr € A.

Note that X, € lAn+1Mn+11An+1, Vr € A, and = € 1An+1L2(Mn+1)1An+1. We
obtain X,= = 2X,, for all x € A. Denote by Tz the corresponding unbounded
operator affiliated with M™*!. and write T= = V|Tx| for its polar decomposition
(see Appendix A.1). We get X,V = VX,, for every z € A, and VV* < 1 4n+1.
Write

In the space L?(M"*1), define

[1]

It is straightforward to check that v € My ,(C) ® 14 M is a partial isometry from
ker w onto ker u* such that zv = v(x), for every x € A.

(1) = (4). By contradiction, assume that there exists a sequence of unitaries
(uk) be a sequence of unitaries in A such that limg, | Ep(a*ugb)|2 = 0 for all a,b €
14M. Then ||(Id, ®Ep)(v*ugv)|]2 — 0. But for every k € N, v urv = 0(ug)v*v.
Moreover, §(ux) € U(pB™p) and v*v < p. Thus,

[(Id, @E)(v )]z = [|(us)(Idn @Ep)(v70)]|2
= [|(dn ®ER)(6(ur)v™v)|2
|(Id,, ® Ep) (v ugv)||2 — 0.
We conclude that (Id,, ® Eg)(v*v) = 0 and so v = 0. Contradiction.
(4) = (3). We can take ¢ > 0 and K C 14M finite subset such that

* > .
Inax. |Es(a*ub)|l2 > €,Vu € U(A)
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Note that
|Eg(a*ub)||3 = 7(Ep(a*ub)*Ep(a*ub))
= Tr(ep(a*ub)*ep(a*ub)ep).
Define now the element ¢ = ) . aega® in 14(M,ep)14. Note that Tr(c) =
> ack T(aa™) < co. Denote by C the ultraweak closure of the convex hull of {u*cu :
u € U(A)}. Observe that C C (M, eg) NL*((M,eg)) is bounded for both ||-||o and
|- |2 and is closed in L?((M,eg)). Let d € C be the unique element of minimal

| - ll2, re-norm. Since ||udu*||2, e = ||d||2, 1 for all u € U(A), we get u*du = d, and
sode A N1g(M,eg)+14. We show now that d # 0. For all u € U(A), we have

ZTr(eBb*(u*cu)beB) = Z Tr(eg(a*ub)*ep(a*ub)ep)
beK a,be K

Z T(Ep(a*ub)*Ep(a*ub))

a,be K

Y IEs(@ub)|3 > &

a,be K

Consequently, using the facts that Tr(ep - ep) is a normal state on the basic con-
struction (M, ep) and d € C, we get

Z Tr(epb*dbeg) > 2.
beK

It follows that d # 0. The proof is complete. (]

Assume that M = Bx A where A ~ B is a trace-preserving action of a countable
group A on a finite von Neumann algebra B. Denote by (vs)sea the canonical
unitaries in M which implement the action. It is straightforward to see that A A/
B if and only if there a sequence of unitaries u,, € U(A) such that

lim || Eg (unvy)|l2 = 0,Vs € A.

In the case when A and B are maximal abelian in M, one can get a more precise
result (see [19, Theorem A.1]).

Proposition 2.13 (Popa, [19]). Let (M, T) be a finite von Neumann algebra. Let
A,B C M be a mazimal abelian von Neumann subalgebras. The following are
equivalent:
(1) A=<y B.
(2) There exists a nonzero partial isometry v € M such that vv* € A, v*v € B
and v*Av = Bv*v.

Proof. We only need to prove (1) = (2). The proof follows the one of [19, Theorem
A.1]. We will use exactly the same reasoning as in the proof of [29, Theorem C.3].

Since A <j; B, we can find n > 1, a nonzero projection ¢ € M,,(C) ® B, a
nonzero partial isometry w € M ,,(C) ® pM and a unital *-homomorphism 1 :
A — q(M,,(C) ® B)q such that zw = wip(z), Vo € A. Since we can replace g by an
equivalent projection in M,,(C) ® B, we may assume ¢ = Diag,,(¢1, ..., ¢n) (see for
instance second item in [29, Lemma C.2]). Observe now that Diag, (1 B, ..., ¢, B)
is maximal abelian in ¢(M,,(C)® B)q. Since B is abelian, ¢(M,,(C)® B)q is of finite
type L. Since A is abelian, up to unitary conjugacy by a unitary in ¢(M,(C)® B)g,
we may assume that ¢(A) C Diag,(¢1B,...,q.B) (see [29, Lemma C.2]). We can
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now cut down ¢ and w by one of projections (0,...,¢;,...,0) and assume n = 1
from the beginning.

Write e = ww* € A (since A’ NpMp = A) and f = w*w € Y(A) NgMq. By
spatiality, we have

fF@(A) NaMq)f = W(A)f) NfMf = (wAw)' 0 fMf = w" Aw,

which is abelian. Let @ := ¢(A) N ¢Mgq, which is a finite von Neumann algebra.
Since Bg C @ is maximal abelian and f € @ is an abelian projection, [29, Lemma
C.2] yields a partial isometry u € @ such that uu* = f and v*Qu C Bg. Define
now v = wu. We get

v* Av = wrw* Awu = u* f((A) NgMq) fu C Bq.

Moreover vv* = wuu*w* = wfw* = e € A. Since v* Av and Bv*v are both maximal
abelian, we get v* Av = Bv*v. ]

We can even go further if we moreover assume that A, B C M are both Cartan
subalgebras and M is a II; factor (see [19, Theorem A.1]).

Theorem 2.14 (Popa, [19]). Let M be a 11y factor. Let A,B C M be Cartan
subalgebras. The following are equivalent:

(1) A=m B.

(2) There exists uw € U(M) such that uAu* = B.

Proof. We only need to prove (1) = (2). By Proposition 2.13, there exists a
nonzero partial isometry v € M such that vv* € A, v*v € B and v*Av = Bv*v.
Since A is diffuse, we may shrink vo* € A so that 7(vv*) = 1/n, for some n € N.
Write p; = vv*, g1 = v*v and take projections ps,...,p, € A, ¢,...,qn € B
such that 7(p;) = 7(q;) = 1/n. Since Ny (A)” = Ny (B)” = M and M is a II;
factor, a classical exhaustion argument gives partial isometries u;, w; € M such that
p1 = i, pi = uul, uyAu; = Aulu,;, w;Auf = Auul and likewise ¢ = ij;f,
¢; = wiwj, w;Bw; = Bwjw;, wjBw; = Bw;jw}. Define

u = Z w; v w;.
i=1
It is now routine to check that v € U(M) and vAu* = B. O

3. APPROXIMATION PROPERTIES

3.1. Amenability.

3.1.1. Noncommutative L, spaces. We refer to [27, Chapter IX] for the details of
the following facts on noncommutative L, spaces. Let (N, Tr) be a semifinite
von Neumann algebra endowed with a faithful, normal, semifinite trace Tr. For
1 < p < oo, we define the Ly,-norm on A by |z[, = Tr(|z[?)!/?. By completing
{z € N :||z|, < co} with respect to the L,-norm, we obtain a Banach space L,(N).
We only deal with Li(N), La(N), and Loo(N) = N. The trace Tr extends to a
contractive linear functional on L;(N'). We occasionally write T for z € N' when
regarded as an element in Lo(N). For any 1 < p,q,r < oo, with 1/p+1/q =1/r,
there is a natural product map

L,(N) X Lg(N) 3 (z,y) — zy € L.(N)
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which satisfies ||zy||, < ||z|/pllyllq, V2, y. The Banach space Lq(N) is identified with

the predual of A/ under the duality
Li(N) x N 3 (¢,z) — Tr(¢z) € C.

The Banach space La(N) si identified with the GNS-Hilbert space L?(N/, Tr). El-
ements in L,(N) can be regarded as closed operators on L?(N') which are affil-
iated with A and hence in addition to the above-mentioned product, there are
well-defined notions of positivity, square root, etc... We shall use the generalized
Powers-Stgrmer Inequality (see [27, Theorem IX.1.2]):

1 = 1¢H13 < lIn* = ¢l < lln + Cllzlln = ¢ll2, ¥, ¢ € La(N).

The Hilbert space La(N) is an N-N bimodule such that (z€y,n) = Tr(z&yn*),
Vo,y € N, V&,n € La(N). We also recall the following formulae. Let f, be the
characteristic function of the interval (y/a,400). For any £, € La(N)4, we have
(see [7, Proposition 1.1] and [27, Theorem IX.2.14])

/0 1ful©2da = [€]2,

A

/0 1£al) = fu(m2da < € = nllall€ + nlo.

Let H be a complex separable Hilbert space and let (N, Tr) = (B(H), Tr),
where Tr is the canonical trace on B(H). Then, Li(B(H)) can be identified with
the space of trace-class operators on H, denoted by S;(H) in the sequel. In the
same way, L2(B(H)) can be identified with the space of Hilbert-Schmidt operators
on H, denoted by S2(H) in the sequel.

Let (M,7) be a finite von Neumann algebra, denote by H = L?(M,7) its L*-
space with respect to the finite trace 7. The Hilbert space H is endowed with a
canonical anti-unitary J defined by JZ = z*, Yz € M. In the sequel, we shall simply
denote H > n +— n* € H. We regard M C B(H) through the GNS-construction.
The following linear map

HeoH — Sy(H)
U S gom — > (i)
K k

defines a unitary. We shall identify Sy(H) and H ® H through this unitary U.
Moreover, for any £, € H, for any x € M,

Usen) = (a8 =a(n)=aUE@n)
U@nz) = (,mx))={(z"n")¢ = (z,n"){ =U@n)z.
Thus, U preserves the M-M-bimodule structure: So(L?*(M)) with its bimodule
structure, as a two-sided ideal of B(L?(M)), is identified with the so-called coarse
correspondence L*(M) ® L?(M).
Finally, note that the symbol “Lim” will be used for a state on ¢*°(IN) or more
generally on ¢°°(I) with I directed set.

3.1.2. Amenable finite von Neumann algebras. Recall that a countable discrete
group I' is amenable if one the following equivalent conditions holds:
e There exists a [-invariant state ¢ : £*°(I") — C, i.e. p(Asf) = @(f), for all
sel, fer>().
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e There exists a sequence of almost invariant unit vectors &, € £2(T), i.e.
lim,, [[As&n — &nll2 =0, for all s € T.
Let (M, 7) be a finite von Neumann algebra with separable predual. Denote H =

L?(M, 7). We regard M C B(H) through the GNS-construction. A state ¢ on
B(H) is said to be M-central if ¢ o Ad(u) = ¢, Yu € U(M).

Theorem 3.1 (Connes, [7]). Let M be a finite von Neumann algebra. The following
are equivalent:
(1) There exists a conditional expectation E : B(H) — M.
(2) There exists an M-central state o on B(H) such that oy = 7.
(3) There exists a net of unit vectors (&,,) in So(H) such that (x&,,&,) — 7(x),
Ve € M, and ||[&n, u]ll2 — 0, Yu € U(M).

Proof. (1) = (2). Let E be a conditional expectation from B(H) onto M. Denote
¢ =7o0F. Then Vx € B(H), Vu € M, one has

p(uzu’) = 7(E(uru”)) = T(uB(z)u’) = 7(E(z)) = ¢(z).

Thus, the state ¢ is M-central and ¢ja; = 7.

(2) = (3). Let ¢ be an M-central state on B(H) such that ¢, = 7. Take a
net (¢,) of positive norm-one elements in S;(H) such that Tr({, ) converges to ¢
pointwise. Then Vz € B(H), Yu € U(M), one has

Hm Tr((¢, — Ad(u)¢n)z) = lim Tr(yx) — lim Tr(ul,u*x)

= limTr(¢,z) — lim Tr
= o(z) —p(Ad(u")(z)) =0
by assumption. It follows that the net (¢, — Ad(u){,) in S;(H) converges to 0 in
the weak topology. By the Hahn-Banach Separation Theorem, one may assume,

by passing to finite convex combinations, that the net (¢, — Ad(u)(,) in S1(H)
converges to 0 in norm. Thus, ||[u,(y]|l1 — 0, Vu € U(M). Define the unit vectors

&n = M2es, (H). Using the Powers-Stgrmer Inequality, Yu € U(M),

(
(

Chuzu)

u, &alll3 = [lugnu® — &all3
< fluGuu” = Galla
= I, Gallly -
This implies that ||[u,&,]]|2 — 0, Yu € U(M). Moreover, Yo € M,
lim(z€,,&,) = lmTr(z€,£)) = lim Tr(z£2)

= lirrln Tr(Cuz) = p(z) = 7(2).

This proves (3).

(3) = (1). Assume that there exists a net of unit vectors (£,) in So(H) such
that (z&,,&,) — 7(x), Yo € M, and ||[§n, u]||2 — 0, Yu € U(M). Note that we also
have ||[&F, u]ll2 — 0, Vu € U(M). Write & = wyn, for the polar decomposition,
with 1, = (£,£)Y2 >0, ||7a]l2 = 1, and w,, partial isometry in B(H). Thus, Vn,
Vo € B(H),

(w&n, &n) = Tr(x€n&,,) = Tr(:cni) = (X7, Nn)-
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Consequently, lim,, (xn,,n,) = 7(x), Yo € M. Moreover, using the Powers-Stgrmer
Inequality, Vn, Yu € U(M),

||[Ua77n]||§ = |lun,u® — %H%
< lumpu® =i
< (W€ = &auw)én il + [[€n (ugy, — Eru)lla
< lu€n — Gnull2 + [luéy — Eulle

Therefore, lim,, ||[u, n,]||2 = 0. So, we may moreover assume that &, > 0, ¥n. Thus,
Yee M,

liTILn anCHg h}P(&nQ gnc> = liTILnTY<fncc*§:L)

= limTr(&2cc®) = 7(cc*) = ||e

2
2,7
Define the following state
o(x) = Lim(z&,, &), Ve € B(H).
n

Note that ¢y = 7. Moreover, Vb,c € M, Vy,z € B(H), since ||[£,,bc][l2 — 0, we
get

lp(beyz)| = | Lilm Tr (& beyz)|

| Lim Tr(£,bc6nyz)|

| Lim Tr((26,b) (c&ny))|
lim sup [[2€nbll2]lcEnyll2

IN

IN

lim sup [[€,b]l2]|&nl2]|ylloc [l 2|00
n

[1Bll2,7llell2, 1ylloo [ 21l oo-

Take now z € B(H), a € M and write a = v|a| its polar decomposition in M.
Thus, we have a = (v|a|'/?)|a|'/? and

lp(az)l < fvlal 2|l lal'?ll2,r oo
S [ P [ e P
= el rl]oo-

It follows that |¢(az)| < |lal1,+]|%||lc, Va € M, Yo € B(H). By the duality
M = Ly(M)*, we know that there exists ®(x) € M, such that 7(a®(x)) = p(azx),
Va € M, Vo € B(H). It is straightforward to check that ® : B(H) — M is a
conditional expectation. (Il

The state ¢ in (2) of Theorem 3.1 is called a hypertrace. Condition (3) says
that the identity bimodule L?(M) is “weakly contained” in the coarse bimodule
L*(M) ® L?(M), that we usually denote by L?(M) <yeax L*(M) ® L*(M). This
is the analog of the notion of amenability in the case of groups since the identity
bimodule plays the role of the trivial representation and the identity bimodule plays
the one of the left regular representation. For this reason, a finite von Neumann
algebra M which satisfies one of the equivalent conditions of Theorem 3.1 is said to
be amenable. Note that more generally for any M-M-bimodule H, L?(M) <weax H



26 CYRIL HOUDAYER

if there exists a net (&,) of unit vectors in H such that lim,(-£,,&,) = 7 pointwise
and lim, ||[u, &,]|| = 0.

Proposition 3.2. Let I" be a countable discrete group. Then, ' is amenable if and
only if the group von Neumann algebra L(T') is amenable.

Proof. Assume that I' is amenable. Denote by Ar the left regular representation of
T on /3(T). Then 1r < Ar, i.e. there exists a net of unit vectors (n,,) in £2(T") such
that lim,, [|[Agnn — nnll2 = 0, Vg € G. We shall identify ¢%(T") with the L?-space of
L(T). Denote the unit vector &, = n, @n;, € (2(T') ® £*(T') = S2(¢*(T)). Moreover,
we have for all g € T,
[tgnn @ 1, — 10 @ 1|2
[ugtn @ 15 =0 @ 1ll2 + 190 @ 117 = 100 @ Mg |2
”)‘gnn — Nnll2 + ”)‘g—lnn - 77n||2~
Therefore, lim,, [|ugé, — &nuglla = 0, Vg € I'. Thus Condition (3) in Theorem 3.1 is
satisfied, and L(I") is amenable.

Assume that L(T') is amenable. Let H = ¢*(T"). By Condition (3) in Theorem
3.1, we know that there exists a sequence of unit vectors (§,) in H ® H such

that for any g € T', lim,, [|ugé, — €nugll2 = 0. Define the unitary representation
m:T' - U(H® H) by

||“g§n - 5nug||2

IAIA

m(g)§ = uggu;
It is straightforward to see that 7 is a mutiple of Ar and that 1 < 7. Consequently,
1r < Ar and I' is amenable. O

Exercise 3.3. Let M be a diffuse amenable finite von Neumann algebra. Show
that a hypertrace ¢ given by Theorem 3.1 can never be normal on B(H).

Recall that a finite von Neumann algebra M is said to be approzimately finite
dimensional (AFD) if there exists an increasing sequence of finite dimensional unital
*-subalgebras @, C M such that (J,, @, is ultraweakly dense in M. Murray and
von Neumann showed in their seminal work the uniqueness of the AFD II; factor.
The following is easy to prove.

Proposition 3.4. Let M be a finite AFD von Neumann algebra. Then M is
amenable.

Proof. Let QQ,, C M be a sequence of finite dimensional unital x-subalgebras such
that (J,, @, is ultraweakly dense in M. Denote by p, the (probability) Haar mea-
sure on the compact group U(Q,). Fix w € B(N)\N a free ultrafilter. For every
x € B(L*(M)) define

E'(z) = 7}1_1)% o )uxu*dun(u).

It is clear that E’ : B(L?(M)) — M’ is a conditional expectation. Denote by J the
canonical antiunitary. Thus E : B(L?(M)) — M defined by E(x) = JE'(JxJ)J is
a conditional expectation. [

The converse is Connes’ fundamental result.

Theorem 3.5 (Connes, [7]). Let M be a finite von Neumann algebra. Then M is
AFD if and only if M is amenable. There exists a unique amenable 111 factor. In
particular, all icc amenable countable discrete groups give the same 111 factor.
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Exercise 3.6. Let ' ~ P be a trace-preserving action of an amenable group I' on
an amenable finite von Neumann algebra P. Show that M = P x I" is amenable.

3.2. Property Gamma.

Definition 3.7. A II; factor M is said to have the property Gamma if for every
e > 0 and every z1,...,z, € (M), there exists u € U(M) such that 7(u) = 0 and
w, 2]z < e, for all 1 <4 <n.

Theorem 3.8 (Connes, [8]). Let M be a Iy factor. The following are equivalent:

(1) M does not have property Gamma.
(2) There exists a non-trivial central sequence in M, i.e. M' N M¥ # C.
(3) M’ N M*¥ is diffuse.

Proof. For a free ultafilter w, we will denote by m,, : £>°(IN, M) — M* the quotient
map. For (1) = (2), fix a free ultrafilter w. Since M does not have property
Gamma, there exists a sequence of unitaries u, € U(M) such that 7(u,) = 0 and
limy, ||[tn, z]|l2 = 0, for all © € M. Define u = 7, ((u,)) € U(M' N M*). We have
that 7,(u) = 0 and so M'NM* # C. For (2) = (3), let e € M'NM* be a nonzero
projection such that e # 1. Write A = 7,(e) € (0,1). We may find a sequence of
projections e,, which represents e such 7, ((e,)) = e and 7(e,,) = A, for all n € N.

Observe that (e, ) is a central sequence and since M is a Iy factor, we have that
en — A weakly (by weak compactness of the unit ball (M);). Thus we construct a
subsequence ey, which satisfies for every n € N,

Ilesex,ll2 <
IT(ejer,) — N <

Define f := m,((ener,)) € M’ N M*. The previous inequalities show that f €
M’ N M¥ is indeed a nonzero projection such that f < e and f # e, since 7,(f) =
A2 < X\ = 7,(e). Therefore, M’ N M“ cannot have any minimal projections and
hence is diffuse.

(3) = (1). Assume that M’ N M* is diffuse. Let e € M’ N M* be a projection
such that 7,(e) = 1/2. We can then represent e = m,((e,)) with projections
en € U(M) such that 7(e,) = 1/2, for all n € N. Therefore, u =2e—1€ M'NM¥,
with u = 7, ((uy,)) and 7(u,,) = 0, for all n € N. Hence M does not have property
Gamma. d

The next Theorem, due to Connes, gives a spectral gap characterization of prop-
erty Gamma.

Theorem 3.9 (Connes, [7]). Let M be a 11y factor. The following are equivalent:
(1) M has property Gammea.
(2) There exists a sequence of unit vectors &, € L*(M) & C1 such that

liyrln lz&, — Enz|l2 = 0,V € M.
(3) K(L*(M))n C*(M, M) = {0}.

Proof. (1) = (2) is clear. For (2) = (1), write £ = (&,) € L?*(M)%. There are
two cases to consider.

Case (1): ¢ defines an element in L2(M%). We have (¢,1) = 0 and z€ = £,
for all z € M. Write £ = v|¢| for the polar decomposition of £&. We have that
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v € M'N MY is a partial isometry such that v # 0,1. Thus M has property
Gamma.

Case (2): ¢ does not define an element in L?(M“). We start by proving
the following claim.

Claim. For every finite subset F' C U(M), for every € > 0, there exists a projection
e € M such that 7(e) < € and ||[u, €]||2 < ¢|le]|2, for all u € F'.

By Proposition C.2, we know that
Je > 0,5a > 0, lim | fa([€a])[Enlll2 > ¢

We may then choose a subsequence (k) such that || f,(|€k, )|k, |2 > ¢, for all n €
N. Then with 5, = mfnﬂfkn DIk, |, we still have that lim,_,,, |29, —
Nn|l2 = 0, for all x € M. Observe that for all a > 0,

M 2 fa (M) > Vﬂifﬁ(nn)

and so 7(fo(nm)) < 1/+/a.
Let F C U(M) be a finite subset and ¢ > 0. Let § = */(4|F|). Choose n € N

large enough such that 1/y/n < ¢ and n = n,, satisfies
> " lln = unu*|f3 < 6.
uckl

It is clear that f,(unu*) = ufa(n)u*. Hence, we get

/0 | fulm)|3da = [n]2 = 1

and

3 / 1uln) — wfa(me3da <3 1y — wiu® alln + ]
0

ucl ueF

< 2|F] ) lIn— wnut|[3)"?
ueF

< 24/|F|6
— 2/[FP / I fu ()3
0

Therefore there exists a > n such that

Y M alm) = wfalmu®(l3 < 2V/1F16] fa(m)]3-
uck
Letting e = fa(n), we have 7(e) < 7(f.(n)) < € and |lue — eul|2 < e|le||2, for all
u € F. The claim is proven.
The next claim uses a maximality argument.

Claim. For every finite subset F' C U(M), for every € > 0, there exists a projection
e € M such that 7(e) = 1/2 and ||[u,€]|2 < &, for all u € F.

Once the claim is proven, we are done. Indeed, we can construct a sequence of
projections e, € M such that 7(e,) = 1/2 and lim,, ||[z, e,]||2 = 0, for all z € M.
We the get a sequence of unitaries u, = 2e, — 1, with 7(u,) = 0 and such that
lim,, ||[z, un]|l2 = 0, for all z € M. Hence, M has property Gamma. It only remains
to prove the claim.
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Let uy,...,ux € U(M) and € > 0. Let Z be the set of families : = (E, Uy, ..., Ug)
such that:
e F € M is a projection such that 7(F) < 1/2.
e Each U; € U(M) is a unitary commuting with E.
o |[Uj —uj|i <er(E), foralll <j<k.
We define a partial ordering on Z in the following way: we write ¢ < 4 if
E<FE and ||U; - Uj|ly <er(E' - E),V1 < j < k.

It is easy to see that if ¢ < i’ and ¢’ < 4", then ¢ < ¢”. The set (Z, <) is moreover
inductive. By Zorn’s Lemma, there exists a maximal element ¢ = (E,Uy,...,U;) €
Z. Assume that 7(E) < 1/2. We will deduce a contradiction. Let § > 0 such
that 7(E) + 6 < 1/2 and 46 < e. Let v; = (1 — E)U; = U;(1 — E) € U(N) where
N = (1-E)M(1—-E). By the previous claim (with V), we know that there exists a
projection e € N such that 7x(e) < 0 and ||[v;, €]||2,7x < 0]l€]|2,ry, foralll < j < k.

By Proposition D.1, there exists w; € U(N) such that w;vjeviw = e and

lw; = (1= B)1ry < V2vjev] = ellimy < 4llvevy = ellznyllell2my < 407 (e).

Let B/ = F+e € M. It is a projection stricly larger than E and such that
7(E") < 1/2. Let U; = U; E + wjv;. It is easy to see that U; € U(M) and Uj is
commuting with E’. Moreover, ||w;v; —v;l1 < 467(e), ||Uj — U;ll1 < 407(e). Since
46 < e and ||U; — uj|1 < er(E) by assumption, we get

U —ujlls <em(E+e) =er(E),V1<j <k

The element i = (E',Uq,...,U}) satisfies ¢ < 4’ and i # ¢/, which contradicts the
maximality of ¢ € Z. Therefore, we have that 7(E) = 1/2. We have thus shown for
each ¢ > 0, the existence of a projection E € M such that 7(E) =1/2, [E,U;] =0
and ||U; — u;|l1 <e. We finally get

sy Blllz = [wg = Uy, elllz < 2lluy — Ull2 < 2(2)"/2.

As € > 0 is arbitrary, we are done.

(1) = (3). Assume that K(L?*(M)) N C*(M,M') # {0}. Since C*(M,M’")
is a simple C*-algebra, we get K(L?*(M)) C C*(M,M’). Let (z,) be a (uni-
formly bounded) central sequence in M. We get that [y,x,] — 0 *-strongly for all
y € C*(M,M'). Denote by Pc : L>(M) — C the orthogonal projection. Since
K(L?*(M)) C C*(M, M’), we get [Pc,z,] — 0 x-strongly. We have that

lim ||, — 7(2,)1]]2 = lim || (z, Pc — Pex,)1] =0,

and so (z,) is trivial.
(3) = (2). Assume that it is impossible to find a sequence of unit vectors &,
like in (2). Then then exists 6 > 0, a finite subset F' C U(M) such that

ma € — ugu |z 2 dlig]a, V€ € L2(M).

We may assume that F' = F*. Define the self-adjoint operator
1

T=—
||

> uJuld € CH(M,M').

ueF

We have ||T]|oc < 1, T1 = 1, so that 1 is an eigenvector for the eigenvalue 1. We
show that T — 1 is invertible on L?(M) © C1, so that there is a spectral gap at 1
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for the operator T. Otherwise, since T is selfadjoint, there would be a sequence of
unit vectors & € L*(M) & C1 such that limy, ||(T — 1)&|l2 = 0. We have

1 - T)ex]s = H|71| 31— wud ).

ueF
Recall that a Hilbert space is uniformly convex. For all k € N, we have that

1
> m“ﬁk — uJuJE||* = 2 = 2R(&, T&) = 2R(Ek, & TEr) < 2[|& — T 2.
uck
We have that limy, ||& — uJuJEg |2 = 0, for all w € F and so limg, ||€x]|2 = 0, which
is absurd. Thus T — 1 is invertible on L?(M) © C1 and there exists ¢ > 0 such
that Sp(T) C [-1,1 — €] U {1}. By continuous functional calculus, we get that
Pc € C*(M, M) and so K(L*(M)) C C*(M,M"). O

A closely related concept for groups is the one of inner amenability. A countable
discrete group G is said to be inner amenable if the adjoint representation Ad : G —
U((*(G) © Cé.) defined by Ad, 6, = é,p,,-1 contains a sequence of almost invariant
unit vectors. Examples of inner amenable groups include amenable groups, direct
product groups G x H, where H is infinite amenable, Baumslag-Solitar groups.
Examples of groups which are not inner amenable include free groups F,,, n > 2,
and property (T) groups. The following is easy to prove.

Proposition 3.10 (Effros, [10]). Then G be an icc countable discrete group. If
L(G) has property Gamma, then G inner amenable.

Proof. Assume L(G) has property Gamma. There exists a sequence of unitaries
vp, € U(M) such that 7(v,) = 0 and lim, ||[vn,2]||2 = 0, for all x € M. Define
&n = upde € 12(Q) © C6,. Since

| Adg &n — &nll = llugvn — vnugll2,

we get that (&,) is a sequence of almost invariant unit vectors for the adjoint
representation Ad. O

The converse is false though, as it was recently discovered by Vaes [30]. We can
illustrate the subtle difference between the property Gamma of L(G) and the inner
amenability of G.

e The group G is inner amenable if and only if there exists a sequence of unit
vectors &, € £2(G) © C§, such that

lim [[2&, — {uzll2 = 0, V2 € CX(G).

e The von Neumann algebra L(G) has property Gamma if and only if there
exists a sequence of unit vectors &, € ¢2(G) © Cd, such that

lim ||x&, — &pz||2 = 0,Vx € L(G).
3.3. Haagerup property.

Definition 3.11 (Haagerup, [14]). A countable discrete group I is said to have
the property (H) if there exists a sequence of positive definite functions ¢, : I' = C
such that lim,, ¢, = 1 pointwise and ¢,, € ¢o(T'), for all n € N.

We will often write Haagerup property for property (H).



AN INTRODUCTION TO II; FACTORS 31

Example 3.12. The following groups have the Haagerup property: amenable
groups, free groups and more generally all groups which act properly on a tree.
The Haagerup property is moreover stable under taking subgroups, amenable ex-
tentions, free products, wreath products.

We refer to the book by P.A. Cherix, M. Cowling, P. Jolissaint, P. Julg and A.
Valette [3] for a comprehensive of groups with the Haagerup property

Definition 3.13 (Choda, [4]). Let (N, 7) be a finite von Neumann algebra endowed
with a fixed faithful normal trace. We say that N has the Haagerup property if
there exists a sequence 6,, : N — N of T-preserving ucp maps which satisfies:

o lim, ||0,(z) — z||2 =0, for all z € N.
e Whenever wy € (N); is a sequence such that wy, — 0 weakly, then we have
limyg, ||6,, (wg)|]2 = 0, for all n € N.

Proposition 3.14 (Choda, [4]). Let T' be a countable discrete group. Then T' has
the Haagerup property if and only if L(T") has the Haagerup property.

Proof. Assume that I' has the Haagerup property. Then there exists a sequence
¢n : I' = C such that lim,, ¢, = 1 pointwise and ¢,, € ¢o(I'), for all n € N. We
may assume that ¢, (e) =1, for all n € N. Define 6,, : L(I') — L(T") by

0, (Z asts) = pn(S)asus.

sel’

It is straightforward to check that 6,, is a sequence of T-preserving ucp maps which
satisfies conditions of Definition 3.13.

Conversely, assume that L(T") has the Haagerup property. Let 6,, be a sequence
of 7-preverving ucp maps given by Definition 3.13. Define ¢, (s) = 7(0, (us)ul),
for all s € I'. Then ¢, is a sequence of positive definite functions that does the
job. ([

Theorem 3.15 (Haagerup, [14]). The free groups F,, have the Haagerup property.

Proof. Denote by F,, 3 g — |g| € R the natural length function. We will show
that for all 0 < p < 1, the function ¢, defined by

is a positive definite function on F,,. Since ¢, € c¢o(F,,) and lim,_.; ¢, = 1, we get
that F,, has the Haagerup property.

We give a proof using Popa’s free malleable deformation [21, 24]. We may assume
that n < co. Let M = L(F,,) and M = L(F,, * f‘n), where f‘n is a copy of F,,
which is free from F,,. Denote by ai,...,a, the canonical generators of L(F,,)
(resp. b1,...,b, the ones of L(f‘n)) For 1 <k <mn, let

hk = log(bk),

1
v-—lr
where log denotes the principal branch of the logarithm. We get that hy is selfad-
joint and by, = exp(v/—1mhy). For ¢t € R, define

bl := exp(v/—1rthy) € U(L(F,)).
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It is straightforward to check that

sin(7rt)

y(t) :==7(b%) = /1 exp(v/—1rtz)dz =

Tt
Define the following *-automorphism « : M — M by
ai(ay) = apbt, and oy (by,) = b.

Since the unitaries {a1, ..., an,a1b}, ..., a;b}} generate M and are x-free from each

other, we check easily that (a;) is a one-paramater family of trace-preserving *-
automorphisms. Write N = L(F,,) and N = a;(N). We see that N VN = M

and N is sfree from N. Consequently, we get M = N x N and (o) satisfies
a1(zx1) = 1%z, for all x € N. Moreover, we have

(Ex 0 ay)(ug) = y(t)9uy, Vg € F,,

Since En o oy is u.c.p., it follows that ¢; : F,, — C defined by ¢:(g) = 7((En ©
o) (ug)uy) = v(t)?191 is a positive definite function. We are done. O

4. RicipiTy OF II; FACTORS

4.1. Rigid inclusions of von Neumann algebras. The notion of property (T)
for a II; factor was introduced by Connes and Jones in their seminal work [9]. Its
relative version for a inclusion of finite von Neumann algebras is due to Popa [19].

Definition 4.1 (Popa, [19]). Let (M, 7) be a finite von Neumann algebra with a
fixed trace and B C M be a subalgebra. The inclusion is said to be rigid if for every
€ > 0, there exist § > 0 and a finite subset /' C M such that for every 7-preserving
u.c.p. map ¢ : M — M, we have

sup [|p(z) —zll <6 = sup [|¢p(z) —zf2 <e.

zeF z€(B)1

The von Neumann algebra M has property (T) if the identity inclusion M C M

is rigid. Note that we can relax the assumptions in Definition 4.1. Indeed, let
¢ : M — M be a completely positive map such that ¢(1) <1 and 70¢ < 7. Then,

(E:M—>Mdeﬁned by
- (r—rod)a),
ERNCEEE A

is a T-preserving u.c.p. map.

Theorem 4.2 (Popa, [19]). Let B C M be an inclusion of finite von Neumann
algebras and let T be a fized trace on M. The following are equivalent:

(1) The inclusion B C M is rigid;

(2) For every € > 0, there exist 6 > 0 and a finite subset F' C M such that
for any M-M bimodule H and any tracial unit vector & € H for which
|lx€ — &x|| < 6, Vo € F, there exists a B-central vector n € H such that
ln—¢&ll <e.

Proof. We prove both directions.

(1) = (2). Let 0 < e < 1. Let F C M be a finite subset and 6 > 0 given by
Condition (1). Let H be an M-M-bimodule and a tracial unit vector £ € H such
that ||x€ — x| < 9, Vo € F. Let ¢ : M — M be the 7-preserving u.c.p. map
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associated with (H,§). Recall that (afz,Sy)n = (¢(a)Z,¥)12(n), Ya, 2,y € M.
Then we have

o(2)|5 + lz]3 — 2R(x¢, €x)

2|zl — 2R(w¢, Ex)

o€ — &x||* < 82

for every x € F. It follows that ||¢p(x) — z||2 < ¢, for every = € (B);. We get for
every u € U(B),

l¢(ar) — I3

IN

1€ — ugu™|? 2 = 2R7(p(u)u”)
= 2R7(1 — p(u)u™)
2|1 = p(u)utlls < 2e.

Denote by n the circumcenter of the bounded set C = {uéu* : u € U(B)}. Since
uCu* = C, Yu € U(B), by uniqueness it follows that unu* =, VYu € U(B). Thus n
follows B-central and moreover ||€ — || < (2¢)'/2.

(1) <= (2). Let 0 < e < 1. Let F C M be a finite subset and 0 < § < 1 given by
Condition (2). Let ¢ : M — M be a 7-preserving u.c.p. such that ||¢(x) — z||2 <
(2||z]|2)"16%, Vo € F. Let H be the M-M bimodule and ¢ be the tracial vector
associated with ¢. We have (afx,{y)n = (#(a)Z,y) 2Ny, Ya,z,y € M. For every
xz € F, we get

IN

€13 + ll€]l3 — 2R (=€, Ex)
= 2l|z[l3 - 2Rr(p(x)a”)

= 2R7((z - o(x))z7)

< 2z — ¢(@)|2]lzll2 < 67

Therefore, there exists a B-central vector n € H such that ||n — || < e. For every
x € (B)1, we get

o€ — &all3

e —o@)5 = [l3+ [lo(z)]3 — 2R7(p(x)z*)
< 2ljag|? — 2R (g, Ex)
< 2flzg|||x€ — x|
= 2lxg|lflx(§ —n) — (€ —n)=||
< Al zllsollzElllE = nll < 4e.

O

Exercise 4.3. For i = 1,2 let B; C M; be an embedding of finite von Neumann
algebras. Show that the following are equivalent:

(1) For i = 1,2, the inclusion B; C M; is rigid.

(2) The inclusion B1®Bs C M1®Mj is rigid.

Recall that a pair (I, A) consisting of a countable I" with subgroup A is said
to have the relative property (T) of Kazhdan-Margulis [16, 17] if every unitary
representation of I which admits a sequence of almost invariant unit vectors, admits
a non-zero A-invariant vector. Equivalently, for every ¢ > 0, there exist § > 0 and
a finite subset F' C T' such that for any unitary representation w : I' — U(H)
which has a (7(F'), §)-invariant unit vector &, there exists a non-zero 7 (A)-invariant
vector such that ||n—¢|| < e (see [15, Theorem 1.2(a3)]). A group I is said to have
property (T) if the pair (I',T") has the relative property (T).
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Example 4.4. Here are a few classical examples.

2 %

(1) The example by excellence of a pair with relative property (T) is (Z
SL(2,Z), Z?).

(2) For any n > 3, SL(n, Z) has property (T).

(3) For any property (T) group I' and any group H, the pair (H x I',T") has

relative property (T).

We refer to the book by Bekka, de la Harpe and Valette [1] for a comprehensive
list of groups with (relative) property (T).

Theorem 4.5 (Popa, [19]). Let A C T be an inclusion of countable groups. The
following are equivalent:

(1) The pair (T, A) has the relative property (T);
(2) The inclusion L(A) C L(T) is rigid.

Proof. Write B = L(A) C L(T") = M.

(1) = (2). Assume that the pair (I', A) has the relative property (T). Fix e > 0.
We know that there exist 6 > 0 and a finite subset F' C I" such that for any unitary
representation 7 : I' — U(H,) which has a (7w(F'),d)-invariant unit vector £, there
exists a non-zero m(A)-invariant vector such that ||n — &|| < e. Let now H be a
M-M-bimodule and a unit tracial vector £ € H such that [|us — Eusl] < I, Vs € T
Define the unitary representation = : I' — U(H) by 7s(n) = usnu’i. The vector &
is then (w(F'),0)-invariant. Thus there exists a 7(A)-invariant vector n € H such
that ||n — &|| < e. It is then clear that 7 is B-central.

(1) < (2). Assume that the inclusion B C M is rigid. Let e = 1/2. We
know that there exist 6 > 0 and a finite subset F* C M such that for any M-M-
bimodule H and any tracial vector £ € H for which ||z€ — x| < 0, Va € F, there
exists a B-central vector n € H such that |[n —§|| <e. Let 7 : ' — U(H,) be a
unitary representation. Consider the M-M-bimodule K, = H, ® ¢?(T") associated
with 7. Take a sequence ((,) € H, of almost invariant unit vectors and set &, =
Cn ® . Tt is then clear that (£,) € K, is a sequence of tracial vectors for which
lim,, ||x&, — &nz|| = 0, Vo € M. For n € N large enough, we have ||z&, — &, x| <4,
Ve € F. Write £ = &,. Therefore there exists a nonzero B-central vector n € K,
such that ||n — &|| < 1/2. Regard n € ¢*(I', H;) and write n = Y _ 75 ® 5, where
ns € H;. We have

e =<+ - lnsl® = lln—€)1° < 1/4.

sel'—{e}

Since ¢ € H, is a unit vector, we have that 7. # 0. Since 7. is moreover 7(A)-
invariant, the proof is complete. O

The previous theorem shows in particular that the inclusion L>°(T?) C L>(T?)x
SL(2,Z) is rigid.

4.2. Applications to rigidity of II; factors. We use now the tools we introduced
in the previous sections to get structural properties for property (T) II; factors.
Most of the proofs are based on a “separability vs property (T)” argument that
goes back to Connes [6].
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4.2.1. Symmetry groups of property (T) factors are countable. For a 11y factor M,
we endow the group Aut(M) with the topology of pointwise || - ||2-convergence: for
a sequence (0,,) in Aut(M), we have

0y, — Id <= ||0,,(z) — x||]2 — 0,Vz € M.

Note that Aut(M) is a polish group. We shall denote by Inn(M) C Aut(M) the
subgroup of inner automorphisms. For any u € U(M), we shall write Ad,(z) =
uzu®, Vo € M. We denote by Out(M) the quotient group Aut(M)/Inn(M).

For the hyperfinite II; factor R, the outer automorphisms group Out(R) is
“huge”. Indeed, one can embed any second countable locally compact group G
in Out(R). For property (T) II; factors, the situation is dramatically different.

Theorem 4.6 (Connes, [6]). Let M be a property (T) 11y factor. Then Out(M) is
countable.

Proof. We show that Inn(M) C Aut(M) is an open subgroup. Thus, it follows that
Out(M) = Aut(M)/Inn(M) is a Hausdorff discrete group, and by separability,
Out(M) is necessarily countable. Fix ¢ = 1/2.
By property (T) of M, we know that there exists § > 0 and F C M finite subset

such that for every u.c.p. 7-preserving map ¢ : M — M, we have

sup ||¢p(z) —zlla < 0 = sup ||¢(x) —x||2 < 1/2.

zeF ze(M)1
Let Vs = {0 € Aut(M) : ||6(z) — z||2 < §,Vz € F} be an open neighborhood
of Id in Aut(M). Let 8 € Vs p. Since [|0(z) — z|l2 < 0, Vo € F, we know that
10(x) — z||2 < 1/2, for every x € (M);. Observe that ||@(u)u* — 1]]2 < 1/2, for
every u € U(M). Consider

C=co"{O(w)u* :uelU(M)}

the weak closure of the convex hull of all the §(u)u*’s, for u € U(M). Observe that
C C (M), is closed in L*(M).

Denote by a € C the unique element of minimum || - ||z-norm. It follows that
la— 1|2 <1/2. We get a # 0. Observe that for every u € U(M), 6(u)au* € C and
[10(w)au*||2 = ||lal|2. By uniqueness, we get 6(u)au* = a, for every u € U(M). So
we have a*au = ua*a, for every v € U(M). It follows that a*a = A € R since M
is a factor. Therefore v = a/ﬁ € U(M) and 6 = Ad,,. O

Observe that a property (T) factor cannot have property Gamma. Recall that
for a II; factor M, the fundamental group of M is defined as follows:

F(M) ={r(p)/7(q) : pPMp ~ qMg}.
Murray & von Neumann showed that the unique AFD II; factor R has full fun-
damental group, i.e. F(M) = R¥. There is an alternative way of defining the
fundamental group of M. Denote by M = M®@B(¢?) the corresponding Il fac-
tor with semifinite trace Tr given by Tr = 7 ® Trg(s). For any 0 € Aut(M),
there exists a unique A > 0 such that Trof = X\. We shall denote this A by mod(#).
Moreover, the map mod : Aut(M>) — R is a group homomorphism. It is then
easy to check that

F(M) = {mod(h) : 0 € Aut(M>)}.

Using property (T), Connes [6] gave the first example of II; factor with countable

fundamental group.
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Theorem 4.7 (Connes, [6]). Let M be a property (T) Iy factor. Then F(M) is
countable.

Proof. We construct a one-to-one map « : F(M) — Out(M®M). Since M
has property (T), M®M has property (T) as well (cf Exercise 4.3) and then
Out(M®M) is countable by Theorem 4.6. Therefore, F (M) follows countable.

Claim. Let N be a II; factor. Let 6 € Aut(N°) such that mod(¢) = 1. Then
there exist u € U(N>°) and p € Aut(N) such that

0 = Ad, o(p @ Idg(s2)).
Therefore the group homomorphism
{B € Aut(N°) : mod(f5) = 1} 3 6 — [p] € Out(N)
is well-defined.

Denote by (e;;) € B(£?) the canonical matrix unit such that Tr(e;) = 1, Vi €
N. Let 6 € Aut(N*) such that mod(f) = 1. Write f;; = 6(1 ® e;;). Since
Tr(foo) = Tr(1 ® egn) = 1, foo and 1 ® eqp are equivalent projections in the factor
N, so that there exists a partial isometry v € N such that vv* = fyo and
v'v =1® egp. Define u = 3" fjov(1 ® ep;). It is routine to check that u € U(N>)
and u(1 ® e;;)u* = f;;, which finishes the proof of the claim.

Let t € F(M) and choose §; € Aut(M ) such that mod(6;) = t. Since 6;Q60,-1 €
Aut((M®M)*°) has modulus 1, the claim yields a unique oy = [p] € Out(M M),
so that the map

(1) F(M) >t ap € Out(MRM)
is well-defined. If s # ¢, 0716, is outer, and so is (65 ® 0,-1)"1(0; ® 6;-1). Thus
ps 7 pi. Since the map (1) is one-to-one, we are done. O

4.2.2. Connes’ rigidity conjecture. Connes in the late *70s conjectured the following;:
any countable icc property (T) groups I', A,

I' v A < L(A) ~ L(A).
Popa suggested the following strenghthening of Connes’ rigidity conjecture:

Conjecture 4.8 (Popa, [22]). If T is an icc property (T) group and A is a group,
then any *-isomorphism 6 : L(I') ~ L(A)! forces ¢ = 1 and there exist a group
isomorphism p : I' ~ A and a character y € Hom(T', T) such that

9(2 asug) = Z X(8)astp(s)-
sel’ sel
In particular,
F(L(T)) = {1} and Out(L(T")) = Out(T") x Hom(T", T).

Popa observed in [20] that Ozawa’s original result [18] could be used to prove
Connes’ rigidity conjecture up to “countable classes”.

Theorem 4.9 (Ozawa, [18]). For icc countable property (T) groups, the map T’ —
L(T") is countable-to-one.
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Proof. The proof is an analog of the one of Theorem 2 in [18]. We prove the
result by contradiction and assume that there are uncountably many pairwise non-
isomorphic icc property (T) groups (I';);c; which give the same II; factor M. By
Shalom’s result [25], we know that each property (T) group is the quotient of a
finitely presented property (T) group. Since there are only countably many finitely
presented groups, we may assume that all the I';’s are quotients of the same property
(T) group T.

We regard M C B(L?(M)) represented in its standard form and M = L(T;) for
every i € I, so that I'; C U(M). Denote by m; : T' — U(M) a group homomorphism
such that m;(T") = T';. Fix e = 1/4. Since T" is a property (T) group, there exist
0 < § < 1 and a finite subset £ C I' such that for any unitary representation
m: ' — U(H) and any (7(E),d)-invariant unit vector & € H, there exists a m(T')-
invariant vector n € H such that ||n — ¢ < 1/4.

Since the finite von Neumann ¢ (E, M) is || - ||2-separable, there exist ¢ # j €
I such that maxscp [|m;(s) — m;(s)[|l2 < 6. Let J be the canonical antiunitary
defined on L?(M) and define the unitary representation 7 : I' — U(M) by 7(s) =
mi(s)Jm;(s)J. We have

()T = Tlleary = llmi(s)ms(s)* — 1|2 < 6.

Since the vector 1 is (w(E), §)-invariant, it follows that there exists a m(I')-invariant
vector ) € L?(M) such that || — 1| z2(a) < 1/4. Thus, for every s € I’ we have

lmi(s) = mj()ll2 = llm(s)T = T2 any
()X =) = (T =)l z2ary < 1/2.

Exactly as in the proof of Theorem 4.6, denote by a the unique element of minimum
|| - [[2-norm in the weakly closed convex set C = co”{m;(s)m;(s)* : s € I'}. Since
la —1lls < 6 < 1, it follows that a # 0. Observe that m;(s)am;(s)* € C and
||mi(s)am;(s)*|l2 = |lallz- By uniqueness, we have m;(s)am;(s)* = a. Moreover,
a*amj(s) = mj(s)a*a, for every s € I'. Since M is a factor and 7,;(I')" = M, we
have a*a = A € R%. Thus v = a/VA € U(M) and 7;(s) = vm;(s)v*, for every
s € I'. It follows in particular that I'; and I'; are isomorphic, contradiction. [l

4.3. Uniqueness of Cartan subalgebras.

Theorem 4.10 (Popa, [19]). Let ' ~ B be a trace-preserving action of a countable
group T with the Haagerup property on a finite von Neumann algebra B. Denote
by M = B x T the crossed product. Let A C M be a rigid von Neumann subalgebra.
Then A <y B.

Proof. Since I' has the Haagerup property, let ¢, : I' — C be a sequence of positive
definite functions such that lim,, ¢,, = 1 pointwise and ¢,, € Cy(T'), for all n € N.
Define 6,, : M — M the sequence of T-preserving ucp maps as follows:

Hn(z aslg) = Z on(s)asus.
sel sel’

It is straightforward to check that every 6,, satisfies the following relative compact-
ness property: if (wy) is a sequence in (M); which satisfies limy, || Ep(awib)||2 = 0,
for all a,b € M, then limy, [|0,,(wy)||2 = 0. Indeed, write wy = ) . (wg)*us, where
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(wy)® = Ep(wgu}). Then we have 0, (wi) = D, cp @n(s)(wr)*us and thus
16n (wi)lI3 = ln(s)[?[l (wr)*[13-

sel

Assume that limy ||(wg)®]]2 = 0, for all s € I'. Fix ¢ > 0. Since ¢, € co(I),
Vi={s el :|pn(s)] >e?/2} is a finite set. Then we have

l6n(w)lz = D leals)PIlwr)lI3 + Y loa(s) Pl (wi)* 3

sel'=V sey
< /2 3 [l + D lea(s) Pl (we)*l13
sel'=V seV
< 2243 lonls) Pl (we) 3
sEV

We can choose kg € N large enough so that > ., [¢n(s)[?||(we)*||3 < £2/2. There-
fore, we have |0, (wk)|l2 < €, for all k > k.

Since A C M is rigid, there exists n € N such that ||0,(w) — w|]2 < 1/4, for all
w € U(A). By contradiction, assume that A A5; B. Then there exists a sequence
wy, € U(A) such that limg | Ep(awgbd)||2 = 0, for all a,b € M. For k € N large
enough, we get

1= [lwill2 < [|0n(wr) — will2 + [|0n(wr)|l2 < 1/4+1/4 =1/2,
which is absurd. O

Corollary 4.11 (Popa, [19]). Consider the linear action SLy(Z) ~ T2. Then, up
to unitary conjugacy, L>(T?) is the unique rigid Cartan subalgebra in L>°(T?) x
SLo(Z).

Proof. Write M = L>(T?) x SLy(Z). Let A C M be rigid Cartan subalgebra.
We get A <5 L°°(T?) by the previous Theorem. Since A, L°°(T?) C M are both
Cartan subalgebras of the II; factor M, Theorem 2.14 yields u € U(M) such that
uAu* = L>(T?). O

We can now apply this last result to compute explicitely the fundamental group of
L(Z?xSLy(Z)). Gaboriau [13] showed that the group SLa(Z) has fized price and its
cost equals 13/12. This means that for every free ergodic p.m.p. SLa(Z) ~ X, the
equivalence relation R(SLy(Z) ~ X) has cost 13/12. Tt follows from the induction
formula [13, Proposition II.6] that R(SL2(Z) ~ X) has trivial fundamental group.

Corollary 4.12 (Popa, [19]). We have F(L(Z* x SLy(Z))) = {1}.

)-
Proof. Let M = L(Z? x SLy(Z)) = A x SLy(Z). Let R be the equivalence relation
induced by the action SLy(Z) ~ T?. Let t < 1 such that M ~ M?*. We can assume
that p € A is a projection of trace t so that (pAp C pMp) ~ (A* C M?). Tt follows
that A* C M is a rigid Cartan subalgebra and thus there exists v € U(M) such
that uA'u* = A, by Corollary 4.11. This shows that R ~ R! (see Theorem 1.23)
and thus ¢ = 1. ]

Popa’s result was the first explicit computation of a fundamental group of a Iy
factor that was different from R, solving then a long-standing open problem of
Kadison.
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APPENDIX A. POLAR DECOMPOSITION OF A VECTOR

Let (N, 7) be a finite von Neumann algebra. Since 7 is fixed, we simply denote
L3(N,7) by L?(N). We regard N C B(L?*(N)). Let £ € L*(N) such that & # 0.
Let Tg : N — L?(N) be the linear operator defined by Tg () =&z, for all z € N.

Proposition A.1. The densily defined operator TgO is closable. Denote by Ty its
closure. The operator T¢ is affiliated with N. Write Te = v|T¢| for its polar decom-
position. Then v € N and |T¢| is affiliated with N.

Let B C N be a von Neumann subalgebra such that x€ = x, for allx € B. Then
we have xv = vz, for all x € B.

Proof. First, we prove that the operator Tg0 is closable. It suffices to show that
(T2)* is densily defined. Let y € N and z € N. Then,

(TP®),2) = (5,2) = (Jy*&,2)
(27 Jy"JE, 1) = (Jy* T2 0)

Then TY9, C (T¢)* and so (T})* is densily defined. Thus T} is closable and we
denote by T¢ its closure. We prove now that T¢ is affiliated with N. Let a,z € N.
On the one hand,

TEOJa*J(':E) = TEO(EE) = ¢{xa.
On the other hand,
Ja* JTQ(Z) = Exa.
Consequently, we have Ja*JTY C T Ja*J, for all a € N. Since JNJ = N', it
follows that T is affiliated with N. Write T¢ = v|T¢| for the polar decomposition
of T¢. Since v is bounded and affiliated with IV, we have that v € N. Moreover,
|T¢| is affiliated with N.

At last, let B C N be a von Neumann subalgebra such that for any x € B,
2§ = &x. Fix x € B. It is straightforward to check that 2Ty C Tex. We also have
z(Te)* C (Te)*z, and so x(T¢)*Te C (T¢)*Tex. By functional calculus, it follows
that x|T¢| C |T¢|z. Moreover, since N is a finite von Neumann algebra, since z € N
and |T¢| is affiliated with NV, it follows that x|T¢| and |T¢|z are closed, affiliated
with N and consequently the equality z|T¢| = |T¢|z holds. Thus,

2v|Te| = 2Ty C Tex C v|Te|x C va|Te|.

It follows that zv and vx coincide on the range of |T¢|, and so zv = vz. Thus,
zv = vz, for every x € B. O

APPENDIX B. VON NEUMANN’S DIMENSION THEORY

Let (N, 7) be a finite von Neumann algebra with a distinguished faithful normal
trace. Let H be a right Hilbert N-module, i.e. H is a complex (separable) Hilbert
space together with a normal *-representation = : N°° — B(H). For any b € N,
and ¢ € H, we shall simply write m(b°P)¢ = &b.

Proposition B.1. Let H be a right N-module. Then there exists an isometry
v:H — ?2® L?(N) such that v(€b) = v(€)b, for allé € H, b e N.
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Proof. Let p: N°°P — B(H @ (> ® L2(N))) be the *-representation defined by

m= (0 0

Let @ = p(N°P). It is clear that @ is a finite von Neumann algebra and the

projections
(10 and ¢ — 0 0
P=1o o =10 101

belong to Q'NB(H® ((?® L?(N))) which is a semifinite von Neumann algebra. Since
q is infinite and p is finite, [26, Theorem V.1.8] yields a nonzero central projection
z € Z(Q') such that zp 3 zq. There exists an isometry w € @’ such that w*w = zp
and ww* < zq. If we write

(=0 d_ab
Z_01®22 andw=1. qa)

we get
atat+cc = 2
b*b+d'd = 0
aa* +bb* = 0

cc* +ddt < 1® 2.
Thusa =0,b=0,d=0, c*c =2z and v = c: Hz; — (> ® L?>(N) is an isometry
(since u*u = z1) which moreover satifies vr(z) = (1 ® x)v (since w € Q’). Then a
simple maximality argument finishes the proof. O

Since p = vv* commutes with the right N-action on ¢? @ L?(N), it follows that
p € B({?)®@N. Thus, as right N-modules, we have

Hy ~ p(£* ® L*(N))n.
On B(£?)®N, we define the following faithful normal semifinite trace Tr (which
depends on 7): for any = = [z;5];; € (B(£*)®&N)4,
Tr ([2i)i) = > 7(@i)-
We set dim(Hy) = Tr(vv*). Note that the dimension of H depends on 7 but does
not depend on the isometry v. Indeed take another isometry w : H — 2 @ L%(N),

satisfying w(€b) = w(€)b, for any € € H, b € N. Note that vw* € B(2)®@N and
w*w = v*v = 1. Thus, we have

Tr(vv*) = Tr(vw*wv™) = Tr(wv*vw*) = Tr(ww™).
We define dim(Hy) := Tr(vv*), for any isometry v as in Proposition B.1.
APPENDIX C. ULTRAPRODUCTS

Let w be a free ultrafilter on N and (N, 7) a finite von Neumann algebra. Let
7., be the norm closed ideal of £>°(N, N) defined by

T, = {(xn) € (°(N,N) : lim [[zn]2 = o}.

Denote by m, : {*°(N,N) — (>*°(N,N)/Z, the quotient map. The tracial ul-
traproduct of N is defined as N¥ := 7,((>*°(N, N)) with tracial faithful state
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Tw(Tw(2))) = limy,—,, (2, ). It is easy to check that N is indeed a von Neumann
algebra and 7, is normal on N“.
Exercise C.1. Let w be a free ultrafilter and (N, 7) a finite von Neumann algebra.

e Prove that every projection e € N¥ lifts to a projection (e,) € £>°(IN, N)
such that lim,,_,, 7(e,) = 7, (e).
e Show that if N is a II; factor, so is N“.

Regard L?(N%) as a Hilbert subspace of L?(N)“. For a > 0, denote by f, the
characteristic function of the interval (y/a, +00).

Proposition C.2 ([7]). Let £ = (§,) € L?*(N)*. Then & € L?(N¥) if and only if
& satisfies the following equi-integrability condition:

©) Ve > 0,3a > 0, lim |fu((&al)lénl 2 <.

Proof. Assume that £ € L?(N)¥ satisfies (2). Simply write £ = (£,). Fix e > 0.
Then for some a > 0, one has lim,, ., || fo(|€n])€n ]2 < € so that the vector n = (1,,)

with 7, = & (1= fa)([€n]) satisfies [[n—¢|l2 = limp—y [ —&nllz < € and || < a.
Thus, & € L2(N®).

Conversely assume that £ € L2(N¥). We may assume that ||£,[2 < 1, for all
n € N. Let € € (0,1). We can then find a > 0 and z,, € N such that ||{, —zp]2 < ¢
and ||z, ||co < a, for all n € N. Up to extracting, Powers-Stgrmer Inequality yields
in particular

€n] = lnlll3 < l€al® = 2al?ll1 < €0 = zall2)l€n + 2nll2 < 3¢,Yn € N.

Using the same trick as in the proof of Theorem 3.9, we get

/0 1o(€]) = FollzaDIE < [Eal? — a1 < 3c.

Since Ey(|z,]) = 0 for all b > a, we get || f2q(|€a])]l2 < (32)'/2/a, for all n € N.
Then, for all n € N,

1f2a([€n])1€nlll2 1f2a(1€n ) ([€n] = [2nD)ll2 + 20 llcoll f2a (1n]) ]2
el = 2nalllz + l|znlloo | foa(€aD)ll2 < 2(3)'/2.

This finishes the proof. O

<
<

APPENDIX D. ON THE GEOMETRY OF TWO PROJECTIONS

Proposition D.1 ([7]). Let M be a finite von Neumann algebra. If e and f are
equivalent projections in M, then there exists u € U(M) such that
uveu* = f
ule—f| = le—flu
lu—1 < V2e—f].

Proof. Recall the analysis of two projections in [26, Chapter V]. Let e* =1 —¢
and f+ =1— f. Set

o = e—eANf—eNft
fo = f—fre—fAet
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We know that eqg A fo =0 and ey — eg A fo = eg ~ fo. We then represent

e = eAf@(ég>@eAfl@0@m

f

2 cs n
e/\fEB(cs a)eoeetAfao,
with ¢, s € (eg V fo)M (eg V fo) positive elements such that ¢2 + s2 = ey V fo. Since

e~ fand ey ~ fo, the finiteness of M yields e A f+ ~ et A f. Consequently, e A f+
and e® A f are represented by matrices:

o= (Y

et Nf = (8 (1))

Therefore we come to the following situation:

1 0 1 0

e = e/\f@(o 0)69(0 0)@0,
& cs 0 0

f = 6/\f@(08 82)@<0 1)@0

and
s 0 1 0
le—fl=0&® (O s> & (O 1> @ 0.
We set
. c —s 0 -1 1

ue/\f@(s C)@(l O)@(e\/f) .
It is straightforward to check that u is a unitary, ueu* = f, ule — f| = |e — f|u and
that

(u—1)"(u—1) <2(e— f)>
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