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1. Finite von Neumann algebras

1.1. Basics on von Neumann algebras. Let H be a separable complex Hilbert
space. We shall denote by 〈·, ·〉 the inner product on H that we assumed to be
linear in the first variable (and conjugate linear in the second one). Let B(H) be
the algebra of all bounded linear maps T : H → H. This is a Banach algebra for
the uniform norm:

‖T‖∞ = sup
‖ξ‖≤1

‖Tξ‖.

We moreover have ‖ST‖∞ ≤ ‖S‖∞‖T‖∞, ∀S, T ∈ B(H). The algebra B(H) is
naturally endowed with ∗-operation called the adjonction defined as follows:

〈T ∗ξ, η〉 = 〈ξ, Tη〉,∀ξ, η ∈ H.
We have (T ∗)∗ = T , ‖T ∗‖∞ = ‖T‖∞ and

‖T ∗T‖∞ = ‖TT ∗‖∞ = ‖T‖2∞.
Thus, B(H) is a C∗-algebra. We can define several weaker topologies on B(H) as
well, in the following way. Let (Ti) be a net of operators in B(H).

Topology Ti → 0
norm ‖Ti‖∞ → 0

ultra-∗-strong
∑
n(‖Tiξi‖2 + ‖T ∗i ξn‖2) → 0, ∀(ξn) ∈ `2 ⊗H

∗-strong ‖Tiξ‖2 + ‖T ∗i ξ‖2 → 0, ∀ξ ∈ H
ultrastrong

∑
n ‖Tiξn‖2 → 0, ∀(ξn) ∈ `2 ⊗H

strong ‖Tiξ‖ → 0, ∀ξ ∈ H
ultraweak

∑
n〈Tiξn, ηn〉 → 0, ∀(ξn), (ηn) ∈ `2 ⊗H

weak 〈Tiξ, η〉 → 0, ∀ξ, η ∈ H
For a non-empty subset S ⊂ B(H), define the commutant of S in B(H) by

S′ := {T ∈ B(H) : xT = Tx,∀x ∈ S}

One can then define inductively S′′ = (S′)′, S(3) = (S′′)′, S(k+1) = (S(k))′, for all
k ≥ 1. It is easy to see that

S ⊂ S′′

S(k) = S(k+2),∀k ≥ 1.

Definition 1.1. Let M ⊂ B(H) be a unital ∗-subalgebra. We say that M is a von
Neumann algebra if M ′′ = M .

Theorem 1.2 (Von Neumann’s Bicommutant Theorem). Let M ⊂ B(H) be a
unital ∗-subalgebra. The following are equivalent:

(1) M ′′ = M .
(2) M is strongly closed.
(3) M is weakly closed.

Proof. We only sketch the proof.
(1) =⇒ (2) is clear since commutants are always strongly closed.
(2) =⇒ (1). Let x ∈M ′′. Let

V(x, ξ1, . . . , ξn, ε) := {y ∈ B(H) : ‖xξi − yξi‖ < ε,∀i = 1, . . . , n}
be a strong neighborhood of x in B(H). Let K = `2n⊗H and observe that B(K) =
Mn(C) ⊗ B(H). Let η = (ξ1, . . . , ξn) ∈ K. Define V = (1 ⊗M)η ⊂ K. Since
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M is strongly closed, V is a closed subspace of K. Denote by PV ∈ B(K) the
corresponding orthogonal projection. Since (1 ⊗ a)PV = PV (1 ⊗ a), ∀a ∈ M , it
follows that 1⊗x commutes with PV , since x ∈M ′′. Thus (1⊗x)η ∈ V and we can
find y ∈ M such that (1 ⊗ x)η = (1 ⊗ y)η, so in particular y ∈ N(x, ξ1, . . . , ξn, ε).
Then M ′′ is contained in the strong closure of M and hence M = M ′′.

The fact that (2) and (3) are equivalent follows from Hahn-Banach Separation
Theorem (M is convex since it is a vector subspace!). �

1.2. Finite von Neumann algebras. A von Neumann algebra M is said to be
finite, if every isometry v ∈M is a unitary, i.e.

v∗v = 1 =⇒ vv∗ = 1,∀v ∈M.

One can show that a von Neumann algebra is finite if and only if it has a faithful
normal tracial state τ : M → C:

• τ is a positive linear functional with τ(1) = 1.
• τ is faithful, i.e. ∀x ∈M , τ(x∗x) = 0 =⇒ x = 0.
• τ is normal, i.e. τ is weakly continuous on (M)1, the unit ball of M with

respect to the uniform norm ‖ · ‖∞.
• τ is a trace, i.e. ∀x, y ∈M , τ(xy) = τ(yx).

An infinite dimensional finite von Neumann algebra M with trivial center, i.e.
M ′ ∩M = C, is called a II1 factor.

The most simple examples of finite von Neumann algebras are the following:
(1) Abelian von Neumann algebra. Let (X,µ) be a standard probability

space. Represent L∞(X,µ) on the Hilbert space L2(X,µ) by multiplication

(fξ)(x) = f(x)ξ(x),∀f ∈ L∞(x, µ),∀ξ ∈ L2(X,µ).

The von Neumann algebra M = L∞(X,µ) comes equipped with the trace τ given
by integration against the probability measure µ, i.e. τ =

∫
·dµ.

(2) Group von Neumann algebra. Let Γ be a countable discrete group. The
left regular representation λ : Γ→ U(`2(Γ)) is defined as follows

λsδt = δst.

The von Neumann algebra of Γ is then defined by

L(Γ) = {λs : s ∈ Γ}′′.

The canonical trace τ on L(Γ) is τ = 〈·δe, δe〉. One checks that L(Γ) is a II1 factor
if and only if the group Γ has infinite conjugacy classes (icc), that is, ∀t 6= e, the
set {sts−1 : s ∈ Γ} is infinite.

Exercise 1.3. Let T = [Tst]s,t∈Γ ∈ B(`2(Γ)), with Tst = 〈Tδt, δs〉. Show that
T ∈ L(Γ) if and only if T is constant down the diagonals, i.e. Tst = Txy whenever
st−1 = xy−1.

Assume that Γ is abelian. Then the dual Γ̂ is a second countable compact
abelian group. Write F : `2(Γ)→ L2(Γ̂) for the Fourier transform which is defined
by F(δs) = χ 7→ 〈s, χ〉. We get a canonical identification

L∞(Γ̂) = FL(Γ)F∗.

(3) Group measure space construction. Let Γ y (X,µ) be a probabil-
ity measure preserving (p.m.p.) action. Define an action σ : Γ y L∞(X) by
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(σs(F ))(x) = F (s−1x), ∀F ∈ L∞(X). We still denote by

σ : Γ→ U(L2(X))

the corresponding Koopman representation. We regard L∞(X) = L∞(X) ⊗ 1 ⊂
B(L2(X) ⊗ `2(Γ)). The unitaries us = σs ⊗ λs ∈ U(L2(X) ⊗ `2(Γ)), for s ∈ Γ,
satisfy the following covariance relation:

usFu
∗
s = σs(F ).

Observe that by Fell’s absorption principle, the unitary representation (us)s∈Γ is
simply a multiple of the left regular representation. The crossed product von Neu-
mann algebra is then defined by

L∞(X)o Γ =

{∑
finite

asus : as ∈ L∞(X)

}′′
⊂ B(L2(X)⊗ `2(Γ)).

The trace is given by

τ(
∑
s∈Γ

asus) =
∫
X

aedµ.

Recall that the action is said to be free if

µ({x ∈ X : sx = x}) = 0,∀e 6= s ∈ Γ.

It is moreover said to be ergodic if

ΓA = A =⇒ µ(A)(1− µ(A)) = 0,∀A ⊂ X.

One can check that the action is free if and only if L∞(X) is maximal abelian in
L∞(X)oΓ. In that case, we say that L∞(X) is a Cartan subalgebra, i.e. L∞(X) ⊂
L∞(X) o Γ is maximal abelian and regular. Moreover, L∞(X) o Γ is a II1 factor
if and only if the action is ergodic.

Observe that when the probability space X = {pt} is a point, then the group von
Neumann algebra and the group measure space construction coincide, i.e. L∞(X)o
Γ = L(Γ).

Let M be a finite von Neumann algebra and fix τ a faithful normal trace. We
endow M with the following sesquilinear form

〈x, y〉τ = τ(y∗x),∀x, y ∈M.

Denote by L2(M, τ) or simply by L2(M) the completion of M with respect to
〈·, ·〉τ . The corresponding ‖ · ‖2-norm on M is defined by ‖x‖2 =

√
τ(x∗x). Write

M 3 x→ x1̂ = x̂ ∈ L2(M) for the natural embedding. Note that the unit vector 1̂
is cyclic (i.e. M 1̂ is dense in L2(M)) and separating (i.e. x1̂ = 0 =⇒ x = 0) for M .
For every x, y ∈M ,

‖xy‖22 = τ(y∗x∗xy)
≤ τ(y∗‖x∗x‖∞y)
≤ ‖x‖2∞‖y‖22,

so that we can represent M in a standard way on L2(M) by

π(x)ŷ = x̂y,∀x, y ∈M.

This is the so-called GNS-representation. Observe that π : M → B(L2(M)) is a
normal ∗-representation and ‖π(x)‖∞ = ‖x‖∞. Abusing notation, we identify π(x)
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with x ∈ M and regard M ⊂ B(L2(M)). Let J : L2(M) 3 x1̂ 7→ x∗1̂ ∈ L2(M) be
the canonical antiunitary.

Theorem 1.4. JMJ = M ′.

Proof. We first prove JMJ ⊂M ′. Let x, y, a, b ∈M . We have

〈JxJyâ, b̂〉 = 〈x̂a∗y∗, b̂∗〉 = τ(bxa∗y∗) = τ(y∗bxa∗)

= 〈x̂a∗, b̂∗y〉 = 〈xJâ, Jŷ∗b〉 = 〈yJxJâ, b̂〉,
so that JxJy = yJxJ .

Claim. The faithful normal state x 7→ 〈x1̂, 1̂〉 is a trace on M ′.

Let x ∈M ′. We first show that Jx1̂ = x∗1̂. Indeed, for every a ∈M , we have

〈Jx1̂, a1̂〉 = 〈Ja1̂, x1̂〉 = 〈x∗a∗1̂, 1̂〉
= 〈a∗x∗1̂, 1̂〉 = 〈x∗1̂, a1̂〉.

Let now x, y ∈M ′. We have

〈xy1̂, 1̂〉 = 〈y1̂, x∗1̂〉 = 〈y1̂, Jx1̂〉 = 〈x1̂, Jy1̂〉
= 〈x1̂, y∗1̂〉 = 〈yx1̂, 1̂〉.

Denote the trace x 7→ 〈x1̂, 1̂〉 on M ′ by τ ′. Define the canonical antiunitary
K on L2(M ′, τ ′) = M ′1̂ = L2(M) by Kx1̂ = x∗1̂, ∀x ∈ M ′. The first part of
the proof yields KM ′K ⊂ M ′′ = M . Since K and J coincide on M ′1̂, which is
dense in L2(M), it follows that K = J . Therefore, we have JM ′J ⊂ M and so
JMJ = M ′. �

This Theorem shows in particular that the commutant of the (left) group von
Neumann algebra L(Γ) inside B(`2(Γ)) is the right von Neumann algebra R(Γ),
that is, the von Neumann algebra generated by the right regular representation of
the group Γ.

Exercise 1.5. Show that the strong operator topology on (M)1 is given by the
norm ‖ · ‖2. Thus, strong and ∗-strong topologies coincide on (M)1 since ‖x‖2 =
‖x∗‖2, ∀x ∈M .

Let B ⊂ M be a von Neumann subalgebra. One can show that there exists
a unique τ -preserving faithful normal conditional expectation EB : M → B (see
Section 2 for details)1. The map EB : M → B is unital completely positive and
moreover satisfies

EB(b1xb2) = b1EB(x)b2,∀x ∈M,∀b1, b2 ∈ B.
We say that EB is B-B bimodular. If we denote by eB : L2(M) → L2(B) the
orthogonal projection, we have eB(x1̂) = EB(x)1̂, for every x ∈M .

Proposition 1.6 (Fourier coefficients). Let Γ y (X,µ) be a p.m.p. action. let A =
L∞(X) and M = L∞(X)o Γ. Every x ∈M has a unique Fourier decomposition

x =
∑
s∈Γ

xsus,

1These notes are nonlinear!
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with xs = EA(xu∗s). The convergence holds for the ‖ · ‖2-norm.2 Moreover, ‖x‖22 =∑
s∈Γ ‖xs‖22.

Proof. Define the unitary U : L2(M)→ L2(X)⊗ `2(Γ) by the formula

U

(∑
finite

asus

)
=
∑
finite

as ⊗ δs.

Then U 1̂U∗ = 1X⊗δe is a cyclic separating vector for M represented on the Hilbert
space L2(X)⊗`2(Γ). Abusing notation, we shall identify L2(M) with L2(X)⊗`2(Γ).
Under this identification eA is the orthogonal projection L2(X)⊗ `2(Γ)→ L2(X)⊗
Cδe. Moreover useAu∗s is the orthogonal projection L2(X)⊗ `2(Γ)→ L2(X)⊗Cδs
and thus

∑
s∈Γ useAu

∗
s = 1. Let x ∈ M . Regarding x(1X ⊗ δe) ∈ L2(X) ⊗ `2(Γ),

we know that there exists as ∈ L2(X) such that

x(1X ⊗ δe) =
∑
s∈Γ

as ⊗ δs and ‖x‖22 =
∑
s∈Γ

‖as‖22.

Then we have

as ⊗ δs = useAu
∗
sx(1X ⊗ δe)

= useAu
∗
sxeA(1X ⊗ δe)

= usEA(u∗sx)(1X ⊗ δe)
= EA(xu∗s)(1X ⊗ δs).

It follows that as = EA(xu∗s). Therefore, we have x =
∑
s∈ΓEA(xu∗s)us and the

convergence holds for the ‖ · ‖2-norm. Moreover, ‖x‖22 =
∑
s∈Γ ‖EA(xu∗s)‖22. �

Exercise 1.7. Let Γ y (X,µ) be a p.m.p. action. Let A = L∞(X) and M =
L∞(X)o Γ.

(1) Show that Γ y X is free if and only if A = A′ ∩M (A is maximal abelian).
(2) Under the assumption that Γ y X is free, show that M is a II1 factor if

and only if Γ y X is ergodic.
(3) Assume that Γ is icc. Show that M is a II1 factor if and only if Γ y X is

ergodic.

Exercise 1.8. A von Neumann algebra M is diffuse if it has no minimal projection.

(1) Let N ⊂ M be an inclusion of von Neumann algebras and let e ∈ N be a
projection. Show that e(N ′ ∩M)e = (eNe)′ ∩ eMe.

(2) Let M be a finite von Neumann algebra. Show that M is diffuse if and only
if there exists a sequence of unitaries un ∈ U(M) such that un → 0 weakly.

For more on C∗-algebras and finite von Neumann algebras, we refer to the ex-
cellent book by Brown and Ozawa [2].

1.3. Orbit equivalence relations.

2The convergence does not hold in the strong topology.
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1.3.1. Basic facts on measured equivalence relations. In this note, (X,µ) will de-
note a nonatomic standard Borel probability space. A countable Borel equivalence
relation R is an equivalence relation defined on the space X ×X which satisfies:

(1) R ⊂ X ×X is a Borel subset.
(2) For any x ∈ X, the class or orbit of x denoted by [x]R := {y ∈ X : (x, y) ∈
R} is countable.

We shall denote by [R] the full group of the equivalence relation R, i.e. [R]
consists of all Borel isomorphisms φ : X → X such that graph(φ) ⊂ R. The set of
all partial Borel isomorphisms φ : dom(φ)→ range(φ) such that graph(φ) ⊂ R will
be denoted by [[R]]. If Γ is a countable group and (g, x)→ gx is a Borel action of
Γ on X, then the equivalence relation given by

(x, y) ∈ R(Γ y X)⇐⇒ ∃g ∈ Γ, y = gx

is a countable Borel equivalence relation on X. Conversely, we have the following:

Theorem 1.9 (Feldman & Moore, [11]). If R is a countable Borel equivalence
relation on X, then there exist a countable group Γ and a Borel action of Γ on X
such that R = R(Γ y X). Moreover, Γ and the action can be chosen such that

(x, y) ∈ R ⇐⇒ ∃g ∈ Γ, g2 = 1 and y = gx.

Given a countable Borel equivalence relation R on X, we say that µ is R-
invariant if

φ∗µ = µ,∀φ ∈ [R],

where φ∗µ(U) = µ(φ−1(U)), for any Borel U ⊂ X. The following proposition is
useful and easy to prove:

Proposition 1.10. Let R be a countable Borel equivalence relation defined on X.
The following are equivalent:

(1) µ is R-invariant.
(2) µ is Γ-invariant whenever Γ is a countable group acting in a Borel way on

X such that R = R(Γ y X).
(3) µ is Γ-invariant for some countable group Γ acting in a Borel way on X

such that R = R(Γ y X).
(4) ∀φ ∈ [[R]], µ(dom(φ)) = µ(range(φ)).

For any U ⊂ X, we define the R-saturation of U by

[U ]R =
⋃
x∈U

[x]R

= {y ∈ X : ∃x ∈ U , (x, y) ∈ R}.

We have U ⊂ [U ]R and [U ]R is a Borel subset of X. We say that U ⊂ X is R-
invariant if [U ]R = U (up to null sets). The equivalence relation R is said to be
ergodic if any R-invariant Borel subset U ⊂ X is null or co-null.

Exercise 1.11. Let R be a measured equivalence relation for which (almost) every
orbit is infinite. Show that there exists a sequence (gn) in [R] such that g0 = IdX
and R =

⊔
n graph(gn). In other words, we can write the equivalence relation R as

a countable disjoint union of graphs of elements in the full group [R].
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Important Convention. In the rest of this paper, when we write an equivalence
relationR defined on (X,µ), we always mean a countable Borel equivalence relation
such that the measure µ is R-invariant. When we write U ⊂ X, we always mean a
Borel subset of X. From now on, we will neglect null sets, i.e. whenever a property
is true for every x ∈ X, we mean for µ-almost every x ∈ X. From now on, we will
always assume that (almost) every orbit of R is infinite, that is, R is a type II1

equivalence relation.

We define now a Borel measure on R. For W ⊂ R a Borel subset, we define
Wx = {y ∈ X : (x, y) ∈ W} and Wy = {x ∈ X : (x, y) ∈ W}. We define ν on R by

ν(W) =
∫
X

|Wx|dµ(x),∀W ⊂ R.

Lemma 1.12. Since µ is assumed to be R-invariant, we have:∫
X

|Wx|dµ(x) =
∫
X

|Wy|dµ(y),∀W ⊂ R.

Proof. From Exercise 1.11, we know thatR =
⊔
n graph(gn), for some gn ∈ [R]. Let

W ⊂ R be a Borel subset. Then W =
⊔
n(graph(gn) ∩W) and graph(gn) ∩W =

graph(φn) for φn ∈ [[R]]. Thus, we can write W as a countable disjoint union
of graphs of φ ∈ [[R]]. Consequently, we just have to prove the equality when
W = graph(φ), for φ ∈ [[R]]. For any φ : dom(φ)→ range(φ) ∈ [[R]], we have

µ(dom(φ)) =
∫
X

| graph(φ)x|dµ(x)

µ(range(φ)) =
∫
X

| graph(φ)y|dµ(y).

Since µ(dom(φ)) = µ(range(φ)), we are done. �

We shall denote by D := {(x, x) : x ∈ X} ⊂ R the diagonal. We have ν(D) = 1.
For i = 1, 2 let Ri be a countable Borel equivalence relation on (Xi, µi), and
assumed that µi is Ri-invariant. We say that R1 and R2 are isomorphic and
denote R1 ' R2 if there exists a Borel isomorphism ∆ : X1 → X2, such that
∆∗µ1 = µ2 and

(x, y) ∈ R1 ⇐⇒ (∆(x),∆(y)) ∈ R2.

We will be using the following important fact. For ∆ : X1 → X2 a Borel isomor-
phism such that ∆∗µ1 = µ2, we associate π∆ : L∞(X1) → L∞(X2) defined by
(π∆F )(x) = F (∆−1x), for any F ∈ L∞(X1), and any x ∈ X1. Moreover the map
∆→ π∆ is an onto isomorphism (see [28, Proposition XIII.1.2]).

1.3.2. Construction of the von Neumann algebra of R. We define the left regular
representation of the equivalence relation R on the Hilbert space L2(R, ν). For
φ : dom(φ)→ range(φ) ∈ [[R]] and ξ ∈ L2(R, ν), set

(uφξ)(x, y) = 1range(φ)(x)ξ(φ−1(x), y),∀(x, y) ∈ R.

In other words, (uφξ)(x, y) = ξ(φ−1(x), y) if x ∈ range(φ) and 0 otherwise. The
von Neumann algebra L∞(X) acts in the following way. If F ∈ L∞(X) and ξ ∈
L2(R, ν), we have

(Fξ)(x, y) = F (x)ξ(x, y),∀(x, y) ∈ R.
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For F ∈ L∞(X) and φ ∈ [[R]], define Fφ ∈ L∞(X) by

Fφ(x) = 1range(φ)(x)F (φ−1(x)).

In other words, Fφ(x) = F (φ−1(x)) if x ∈ range(φ) and 0 otherwise.
Note that, we can also define the right regular representation of R on L2(R, ν)

in the following way: for φ : dom(φ)→ range(φ) ∈ [[R]] and ξ ∈ L2(R, ν), set

(vφξ)(x, y) = 1range(φ)(y)ξ(x, φ−1(y)),∀(x, y) ∈ R.

Exercise 1.13. Show that for any φ, ψ ∈ [[R]], we have
(1) uφuψ = uφψ.
(2) u∗φ = uφ−1 .
(3) u∗φuφ = 1dom(φ) and uφu

∗
φ = 1range(φ).

(4) uφF = Fφuφ, for any F ∈ L∞(X).

Definition 1.14 (Feldman & Moore, [12]). The von Neumann algebra L(R) ⊂
B(L2(R, ν)) of the equivalence relation R is then defined as follows:

L(R) := W ∗{uφ : φ ∈ [[R]]}.
Likewise, we define R(R) = W ∗{vφ : φ ∈ [[R]]}. It is trivial to check that

L(R) ⊂ R(R)′. Define the canonical anti-unitary J : L2(R, ν) → L2(R, ν) by
(Jξ)(x, y) = ξ(y, x), for any ξ ∈ L2(R, ν), for any (x, y) ∈ R.

Proposition 1.15. Denote by ξ0 = 1D ∈ L2(R, ν) the characteristic function
corresponding to the diagonal D ⊂ R.

(1) ξ0 is a cyclic separating vector for L(R).
(2) The vector state τ = 〈·ξ0, ξ0〉 is a faithful normal trace on L(R). In partic-

ular, L(R) is a finite von Neumann algebra.
(3) For any φ ∈ [[R]], JuφJ = vφ. In particular, L(R) = R(R)′.

Proof. (1) Write ξ0 = 1D, where D ⊂ R is the diagonal. For φ ∈ [[R]], we have
1graph(φ) = uφ−1ξ0. Recall that R can be written as a countable disjoint union
of graphs of Borel isomorphisms R =

⊔
n graph(gn). Take any W ⊂ R. Then

W =
⊔
nWn, with Wn =W ∩ graph(gn). Since Wn is the graph of a partial Borel

isomorphism, it follows that 1W ∈ L(R)ξ0. Consequently, ξ0 is cyclic for L(R).
Exactly in the same way, ξ0 is cyclic for R(R), hence separating for L(R).

(2) It suffices to prove that τ(uφuψ) = τ(uψuφ), for every φ, ψ ∈ [[R]]. Let
φ, ψ ∈ [[R]]. We have

τ(uφuψ) =
∫
X

1{x=(φψ)−1(x)}(x)dµ(x)

=
∫
X

1{x=ψ−1φ−1(x)}(x)dµ(x)

=
∫
X

1{x′=φ−1ψ−1(x′)}(x′)dµ(x′) (x′ = φ−1(x))

=
∫
X

1{x=(ψφ)−1(x)}(x)dµ(x)

= τ(uψuφ).

(3) A straightforward computation shows that JuφJ = vφ, for any φ ∈ [[R]].
It follows that JL(R)J = R(R). By the general theory of finite von Neumann
algebras (see Proposition 1.4), we get L(R) = R(R)′. �
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Denote A = L∞(X) and M = L(R). Observe that A ⊂M . We know that there
exists a unique τ -preserving faithful normal conditional expectation EA : M → A.
In order to know EA, it is sufficient to compute EA(uφ) for any φ ∈ [[R]]. Denote
by eD : L2(R)→ L2(D, ν0) the orthogonal projection.

Proposition 1.16. We have
(1) EA(ug) = 1{x=g−1x}, ∀g ∈ [R].
(2) eD(xξ0) = EA(x)ξ0, ∀x ∈ L(R).

Proof. In order to prove (1) and (2), it suffices to show that EA(uφ) = 1{x=φ−1(x)},
for every φ ∈ [[R]]. Let φ, ψ ∈ [[R]]. Write f = 1{x=φ−1(x)} ∈ L∞(X). Then, we
have

τ(EA(uφ)uψ) =
∫
X

EA(uφ)(x)1{x=ψ−1(x)}(x)dµ(x)

=
∫
X

EA(uφ1{x=ψ−1(x)})(x)dµ(x)

= τ(EA(uφ1{x=ψ−1(x)})) = τ(uφ1{x=ψ−1(x)})

=
∫
X

1{x=ψ−1(x)}(x)f(x)dµ(x)

=
∫
X

f(x)1{x=ψ−1(x)}(x)dµ(x) = τ(fuψ).

Thus, τ((EA(uφ) − f)x) = 0, for any x ∈ M . Consequently, EA(uφ) = f =
1{x=φ−1(x)}. �

Proposition 1.17. Let (gn) be a sequence in [R] such that g0 = IdX and R =⊔
n graph(g−1

n ). Then any x ∈ L(R) can be uniquely written

x =
∑
n

anugn ,

where an ∈ A.

Proof. Since R =
⊔
n graph(g−1

n ), we have

L2(R, ν) =
⊕
n

L2(graph(g−1
n ), νn),

where νn is the restriction of ν to graph(g−1
n ). Let x ∈ L(R). Define an =

EA(xu∗gn). Recall that 1graph(g−1
n ) = ugnξ0. Denote by eD : L2(R, ν) → L2(D, ν0)

the orthogonal projection. It is easy to check that ugneDu
∗
gn is the orthogonal

projection L2(R, ν)→ L2(graph(g−1
n ), νn). We have

ugneDu
∗
gn(xξ0) = ugn(eDu∗gnxξ0)

= ugnEA(u∗gnx)ξ0
= ugnEA(u∗gnx)u∗gnugnξ0
= EA(xu∗gn)ugnξ0.

Therefore xξ0 =
∑
nEA(xu∗gn)ugnξ0 in L2(R, ν) and so x =

∑
nEA(xu∗gn)ugn

where the convergence holds for the ‖ · ‖2-norm. �

The above proposition yields in particular L(R) = (L∞(X) ∪ {ug : g ∈ [R]})′′.

Proposition 1.18. Denote M = L(R) and A = L∞(X). Then
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(1) A = A′ ∩M , i.e. A ⊂M is a maximal abelian ∗-subalgebra.
(2) NM (A)′′ = M , i.e. A ⊂M is regular.

Proof. (1) Let u ∈ U(A′ ∩M). As before we may write u =
∑
n anugn for some

gn ∈ [R]. Fix F ∈ L∞(X). Since uF = Fu, we get an(Fgn − F ) = 0, for any n.
Thus, for any x ∈ supp(an), F (g−1

n (x)) = F (x). Using a previous remark, we get
g−1
n (x) = x, for any x ∈ supp(an). Thus, u =

∑
n an1supp(an) ∈ A.

(2) It is trivial once we noticed that M = (A ∪ {ug : g ∈ [R]})′′. �

From this proposition, it follows that Z(M) = M ′∩M ⊂ A′∩M = A. Moreover,
for any U ⊂ X, we have the following

U = [U ]R ⇐⇒ gU = U ,∀g ∈ [R].

Indeed, assume that U = [U ]R and fix g ∈ [R]. For any x ∈ U , since (x, gx) ∈ R,
then gx ∈ U . Conversely, assume that gU = U , for any g ∈ [R]. Recall that there
exists a countable group and a p.m.p. action of Γ on X such that R = R(Γ y X).
If (x, y) ∈ R, with x ∈ U , there exists g ∈ Γ such that y = gx. But then y ∈ U .
Thus we obtain:

Proposition 1.19. L(R) is a factor if and only if R is ergodic.

Then we summarize what we did so far in the following theorem:

Theorem 1.20. Let (X,µ) be a nonatomic probability space. Let R be an ergodic
countable Borel equivalence relation on X such that µ is R-invariant. Then L(R)
is a II1 factor and L∞(X) ⊂ L(R) is a Cartan subalgebra.

1.3.3. The full group of R and consequences. Denote A = L∞(X) and M = L(R).
We prove the following:

Theorem 1.21. We have

[R] = NM (A)/U(A).

Proof. Let u ∈ NM (A). As before, we may write u =
∑
n anugn , for some an ∈ A,

gn ∈ [R]. We know that there exists a Borel isomorphism ∆ : X → X such that
∆∗µ = µ and uFu∗ = F∆, for any F ∈ A. Thus, uF = F∆u and so an(Fgn−F∆) =
0, for any n and any F ∈ A. Hence, for any x ∈ supp(an), for any F ∈ A

F (g−1
n (x)) = F (∆−1(x)).

Denote Y =
⋃
n supp(an). The Borel subset Y is co-null. Indeed, for all n ∈ N, we

have
1X\Y anugn = 0

and so 1X\Y u = 0. Thus, µ(X\Y ) = 0. This finally proves that ∆ ∈ [R].
We have constructed a group morphism

Φ :
NM (A) → [R]

u 7→ ∆

which is onto since ∆ = u∆. Moreover, u ∈ ker(Φ) if and only if u ∈ A′∩M . Thus,
ker(Φ) = U(A). This completes the proof. �

Corollary 1.22. We have NM (A) = U(A)o [R].
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Proof. We already know that the sequence

1 −→ U(A) −→ NM (A) −→ [R] −→ 1

is exact. It moreover splits with the following section

s :
[R] → NM (A)
g 7→ ug

.

�

Theorem 1.23. For i = 1, 2, let Ri be a measured equivalence relation on (Xi, µi).
Denote Ai = L∞(Xi) and Mi = L(Ri). Then

R1 ' R2 ⇐⇒ (A1 ⊂M1) ' (A2 ⊂M2).

Proof. =⇒ First assume that R1 ' R2. Then there exists a Borel isomorphism
∆ : X1 → X2 such that ∆∗µ1 = µ2 and for any (x, y) ∈ X1 ×X1, (x, y) ∈ R1 iff
(∆(x),∆(y)) ∈ R2. We define a unitary as follows:

U :
L2(R1, ν1) → L2(R2, ν2)

ξ 7→
(
(x, y) 7→ ξ(∆−1(x),∆−1(y))

)
.

For any g ∈ [R1], F ∈ L∞(X1) and any ξ ∈ L2(R2, ν2), we have

(UugU∗ξ)(x, y) = ξ(∆g−1∆−1(x), y)

(UFU∗ξ)(x, y) = F (∆−1(x))ξ(x, y).

Thus, UugU∗ = u∆g∆−1 and UFU∗ = F∆. Consequently, θ = Ad(U) : M1 → M2

is an onto ∗-isomorphism such that θ(A1) = A2.
⇐= Assume now that there exists an onto ∗-isomorphism θ : M1 → M2 such

that θ(A1) = A2. We know that there exists a Borel isomorphism ∆ : X1 → X2

such that ∆∗µ1 = µ2 and θ(F ) = F∆, for any F ∈ A1. Fix g ∈ [R1]. Since ug
normalizes A1 inside M1, it follows that θ(ug) normalizes A2 inside M2. Thus there
exist h ∈ [R2] and v ∈ U(A2) such that θ(ug) = uhv.

Fix F ∈ A1. From the one hand, we know that ugFu∗g = Fg. Thus we obtain
θ(ugFu∗g) = θ(Fg) = (Fg)∆. On the other hand, we have

θ(ugFu∗g) = θ(ug)θ(F )θ(ug)∗

= uhvF∆v
∗u∗h

= uhF∆u
∗
h

= (F∆)h.

Consequently, (Fg)∆ = (F∆)h, and so g−1∆−1 = ∆−1h−1 on X2. Equivalently,
∆g = h∆ on X1. For any x ∈ X1, (∆(x),∆g(x)) = (∆(x), h∆(x)) ∈ R2, since
h ∈ [R2].

Let now (x, y) ∈ R1. We know that there exists g ∈ [R1] such that y = gx.
Thus, (∆(x),∆(y)) = (∆(x),∆g(x)) ∈ R2. Reasoning exactly the same way with
∆−1, we obtain that ∆ is an isomorphism of equivalence relations. �

1.3.4. Group actions and their orbit equivalence relations. Given a p.m.p. action
Γ y (X,µ), one can associate the orbit equivalence relation R(Γ y X) defined by

(x, y) ∈ R(Γ y X)⇐⇒ ∃s ∈ Γ, y = sx.

When the action Γ y X is free, the map

(Γ×X, counting⊗µ) 3 (s, x) 7→ (x, sx) ∈ (R(Γ y X), ν)
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is a p.m.p. Borel isomorphism.

Exercise 1.24. Let Γ y (X,µ) be a free p.m.p. action. Show that the von
Neumann algebra of the orbit equivalence relation L(R(Γ y X)) and the group
measure space construction L∞(X)o Γ are ∗-isomorphic.

Definition 1.25. Let Γ y (X,µ) and Λ y (Y, ν) be two free p.m.p. actions. We
shall say that

(1) Γ y (X,µ) and Λ y (Y, ν) are conjugate if there exist a p.m.p. Borel
isomorphism ∆ : (X,µ) ' (Y, ν) and a group isomorphism δ : Γ ' Λ such
that ∆(sx) = δ(s)∆(x), ∀s ∈ Γ,∀x ∈ X.

(2) Γ y (X,µ) and Λ y (Y, ν) are orbit equivalent (abbreviated OE) if there
exist a p.m.p. Borel isomorphism ∆ : (X,µ) ' (Y, ν) such that ∆(Γx) =
Λ∆(x), ∀x ∈ X.

(3) Γ y (X,µ) and Λ y (Y, ν) areW ∗-equivalent (abbreviated W∗E) if L∞(X)o
Γ ' L∞(Y )o Λ.

Let A = L∞(X) ⊂ L∞(X) o Γ = M and B = L∞(Y ) ⊂ L∞(Y ) o Λ = N .
Observe that Theorem 1.23 yields

Γ y (X,µ) ∼OE Λ y (Y, ν) ⇐⇒ R(Γ y X) ' R(Λ y Y )
⇐⇒ (A ⊂M) ' (B ⊂ N)

Therefore the following implications are true

conjugacy =⇒ orbit equivalence =⇒ W∗-equivalence.

2. Hilbert bimodules. Completely positive maps

2.1. Generalities.

2.1.1. Hilbert bimodules. The discovery of the appropriate notion of representations
for von Neumann algebras, as so-called correspondences or bimodules, is due to
Connes [5].

Definition 2.1. Let M,N be finite von Neumann algebras. A Hilbert space H
is said to be an M -N -bimodule if it comes equipped with two commuting normal
∗-representations π : M → B(H) and ρ : Nop → B(H). We shall intuitively write
x · ξ · y = π(x)ρ(yop)ξ, ∀ξ ∈ H,∀x ∈M, ∀y ∈ N .

We shall see that an M -M bimodule H is the analog of a unitary group repre-
sentation π : Γ→ U(Hπ).

Example 2.2. The following are important examples of bimodules:
(1) The identity bimodule L2(M) with x · ξ · y = xξy.
(2) The coarse bimodule L2(M)⊗ L2(N) with x · (ξ ⊗ η) · y = (xξ)⊗ (ηy). It

can be checked that as M -N -bimodules,

L2(M)⊗ L2(N) ' HS(L2(M), L2(N))

where HS(L2(M), L2(N)) denotes the M -N -bimodule of Hilbert-Schmidt
operators on from L2(M) to L2(N).

(3) For any τ -preserving automorphism θ ∈ Aut(M), we regard L2(M) with
the following structure: x · ξ · y = xξθ(y).
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(4) Let B ⊂ M be a von Neumann subalgebra and denote by eB : L2(M) →
L2(B) the orthogonal projection. Consider the basic construction 〈M, eB〉
which is the von Neumann subalgebra of B(L2(M)) generated byM and eB .
We endow 〈M, eB〉 with the following semifinite trace: Tr(xeBy) = τ(xy),
for all x, y ∈M (see Subsection 2.3). Then L2(〈M, eB〉,Tr) is naturally en-
dowed with a structure of M -M -bimodule. Moreover, as M -M -bimodules,

L2(〈M, eB〉,Tr) ' L2(M)⊗B L2(M)

where ⊗B denotes Connes’ fusion tensor product (see [5, Appendix V.B]).

2.1.2. Unital completely positive maps. Let (M, τM ), (N, τN ) be finite von Neumann
algebras endowed with a fixed faithful normal trace. A linear map φ : M → N is
said to be completely positive if the maps

φn = Idn⊗φ : Mn(C)⊗M →Mn(C)⊗N

are positive for every n ≥ 1. We shall say that φ is unital if φ(1) = 1, and trace-
preserving if moreover τN (φ(x)) = τM (x), for every x ∈M .

Theorem 2.3 (Stinespring dilation). Let φ : M → N be a (normal) u.c.p. map.
Then there exist a Hilbert space H, an isometry V : L2(N) → H and a (normal)
∗-representation π : M → B(H) such that

φ(x) = V ∗π(x)V,∀x ∈M.

Proof. Equip H0 = M ⊗alg L
2(N) with the following sesquilinear form

〈
∑
i

ai ⊗ ηi,
∑
j

bj ⊗ ζj〉 =
∑
i,j

〈φ(b∗jai)ηi, ζj〉L2(N)

and promote it to a Hilbert space H by separation and completion. Denote by
(
∑
j bj ⊗ ζj)• the vector in H which it represents. Define now V : L2(N) → H by

V ζ = (1 ⊗ ζ)•. It is clear that V is an isometry, i.e. V ∗V = 1L2(N). For every
x ∈M , we define a bounded linear operator π(x) on H by

π(x)(
∑
j

bj ⊗ ζj)• = (
∑
j

xbj ⊗ ζj)•.

As expected, π : M → B(H) is a (normal) ∗-representation such that φ(x) =
V ∗π(x)V , ∀x ∈M . �

It follows that a u.c.p. map φ : M → N satisfies for every x ∈M ,

φ(x∗x) = V ∗π(x∗x)V
= V ∗π(x∗)V V ∗π(x)V + V ∗π(x∗)(1− V V ∗)π(x)V
≥ φ(x)∗φ(x).

If φ is moreover assumed to be trace-preserving, the operator Tφ : L2(M)→ L2(N)
defined by

Tφ(x̂) = φ̂(x),∀x ∈M.

is bounded and ‖Tφ‖∞ = 1.

Example 2.4. The following are important examples of τ -preserving u.c.p. maps:
(1) The trace τ : M → M , the identity map Id : M → M and more generally

all ∗-automorphisms θ : M →M which preserve the trace.
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(2) LetB ⊂M be a von Neumann subalgebra. Denote by eB : L2(M)→ L2(B)
the orthogonal projection. Denote by EB : M → B the unique τ -preserving
conditional expectation from M onto B which satisfies

ÊB(x) = eB(x̂),∀x ∈M.

It is easy to see that EB is indeed a u.c.p. map.
(3) Let M = L(Γ) be the von Neumann algebra of a countable group Γ. Let

ϕ : Γ → C be a normalized positive definite function, i.e. for any finite
set F ⊂ Γ the matrix (ϕ(st−1))s,t∈F is positive. Define the corresponding
τ -preserving u.c.p. map φ : L(Γ)→ L(Γ) by

φ(
∑
s∈Γ

asus) =
∑
s∈Γ

ϕ(s)asus.

Exercise 2.5. Let φ : L(Γ) → L(Γ) be a τ -preverving u.c.p. map. Show that
ϕ : Γ→ C defined by ϕ(s) = τ(φ(us)u∗s) is a positive definite function.

2.2. Dictionary between Hilbert bimodules and u.c.p. maps.

2.2.1. From u.c.p. maps to Hilbert bimodules. Let φ : M → N be a trace-preserving
u.c.p. map. Equip H0 = M � L2(N) with the following sesquilinear form

〈
∑
i

ai ⊗ ηi,
∑
j

bj ⊗ ζj〉 =
∑
i,j

〈φ(b∗jai)ηi, ζj〉L2(N)

and promote it to a Hilbert space Hφ by separation and completion. Observe that
Hφ is a Stinespring Dilation of φ. Abusing notation, denote by b⊗ ζ the vector in
Hφ which it represents. The action is given by

a(b⊗ ζ)x = (ab)⊗ (ζx),

for a ∈M and x ∈ N . With the unit vector ξ = 1⊗ 1̂ ∈ Hφ, we have

〈aξx, ξy〉Hφ = 〈φ(a)x̂, ŷ〉L2(N)

for every a ∈M , x, y ∈ N . Since the u.c.p. map φ is assumed to be trace-preserving,
we get

〈·ξ, ξ〉 = τM and 〈ξ·, ξ〉 = τN .

2.2.2. From Hilbert bimodules to u.c.p. maps. Let H be an M -N bimodule, with
a tracial unit vector ξ, i.e. 〈·ξ, ξ〉 = τM and 〈ξ·, ξ〉 = τN . Then the linear operator
Lξ : L2(N) → H defined by Lξ(x̂) = ξx is bounded and ‖Lξ‖∞ = 1. For any
x, y ∈ N , we have

〈x̂, L∗ξ(ξy)〉L2(N) = 〈ξx, ξy〉H
= τ(xy∗)
= 〈x̂, ŷ〉L2(N),

so that L∗ξ(ξy) = ŷ. Therefore Lξ is an isometry, i.e. L∗ξLξ = 1. Denote by J = JN
the canonical antiunitary. Moreover, for any a ∈ M , L∗ξaLξ ∈ N . Indeed for any
y, z1, z2 ∈ N , we have

〈(L∗ξaLξ)(Jy∗J)ẑ1, ẑ2〉L2(N) = 〈aLξJy∗Jẑ1, Lξ ẑ2〉H
= 〈aξz1y, ξz2〉H

〈(Jy∗J)(L∗ξaLξ)ẑ1, ẑ2〉L2(N) = 〈xLξ ẑ1, LξJyJẑ2〉H
= 〈aξz1, ξz2y

∗〉H.
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Define the u.c.p. map φ : M → N by φ(a) = L∗ξaLξ. Since

τN (φ(a)) = 〈L∗ξaLξ1̂, 1̂〉 = 〈aξ, ξ〉 = τM (x),

it follows that φ is trace-preserving. We moreover have

〈φ(a)x̂, ŷ〉L2(N) = 〈aξx, ξy〉H,

We can now prove the uniqueness and existence of the trace-preserving faithful
normal conditional expectation EB : M → B.

Proposition 2.6. Let (M, τ) be a finite von Neumann algebra with a fixed trace
and let B ⊂M be a von Neumann subalgebra such that τB = τ|B. Then there exists
a unique normal faithful trace-preserving conditional expectation EB : M → B.

Proof. Consider the M -B-bimodule H = ML
2(M)B . The vector 1̂ ∈ H is obviously

a unit tracial vector. Denote by EB the corresponding normal trace-preserving
u.c.p. map EB : M → B. Recall

〈x1̂a, 1̂b〉H = 〈EB(x)â, b̂〉L2(B),∀x ∈M,∀a, b ∈ B.

Let x ∈M , a, b, c, d ∈ B. We have

〈EB(axb)ĉ, d̂〉L2(B) = 〈axb1̂c, 1̂d〉H
= 〈x1̂bc, 1̂a∗d〉H
= 〈EB(x)b̂c, â∗d〉L2(B)

= 〈aEB(x)bĉ, d̂〉L2(B),

hence EB(axb) = aEB(x)b. Assume now that EB(x∗x) = 0. Then

0 = 〈EB(x∗x)1̂, 1̂〉L2(B) = 〈x∗x1̂, 1̂〉H = ‖x‖22,

and so x = 0. Let E : M → B be another trace-preserving conditional expectation.
Then

〈EB(x)ĉ, d̂〉L2(B) = 〈x1̂c, 1̂d〉H
= τ(d∗xc)
= τ(E(d∗xc))
= τ(d∗E(x)c)

= 〈E(x)ĉ, d̂〉L2(B),

hence EB(x) = E(x). Therefore EB : M → B is the unique normal faithful trace-
preserving conditional expectation. �

2.2.3. From unitary group representations to Hilbert bimodules. Let π : Γ→ U(Hπ)
be a unitary representation of a countable discrete group Γ. Let M = L(Γ) be the
group von Neumann algebra and denote by (us)s∈Γ the canonical unitaries. Define
on Kπ = Hπ ⊗ `2(Γ) the following left and right commuting multiplications: for
every ξ ∈ Hπ and every s, t ∈ Γ,

us · (ξ ⊗ δt) = (πs ⊗ λs)(ξ ⊗ δt) = πsξ ⊗ δst
(ξ ⊗ δt) · us = (1Hπ ⊗ ρs−1)(ξ ⊗ δt) = ξ ⊗ δts.
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It is clear that the right multiplication extends to the whole von Neumann algebra
M . Observe now that the unitary representations π ⊗ λ and 1Hπ ⊗ λ are unitarily
conjugate. Indeed, define U : Hπ ⊗ `2(Γ)→ Hπ ⊗ `2(Γ) by

U(ξ ⊗ δt) = πtξ ⊗ δt.
It is routine to check that U is a unitary and U(1Hπ ⊗ λs)U∗ = πs ⊗ λs, for every
s ∈ Γ. Therefore, the left multiplication extends to M . We have proven:

Proposition 2.7. The formulae above endow the Hilbert space Kπ with a structure
of L(Γ)-L(Γ)-bimodule.

Observe that in the case π = λ is the left regular representation of Γ, the M -M -
bimodule Kλ is nothing but the coarse bimodule L2(M)⊗ L2(M).

Exercise 2.8. Let ϕ : Γ → C be a normalized positive definite function. Let
(π,Hπ, ξ), with ξ ∈ Hπ unit vector, be the GNS-representation of ϕ, i.e., ϕ(s) =
〈πsξ, ξ〉, for all s ∈ Γ. Show that the u.c.p. map φ associated to the bimodule Kπ
satisfies

φ(
∑
s∈Γ

asus) =
∑
s∈Γ

ϕ(s)asus.

Exercise 2.9. Prove the following dictionary between u.c.p. maps and Hilbert
bimodules:

u.c.p. maps Hilbert bimodules
Id : M →M Identity bimodule L2(M)
τ : M →M Coarse bimodule L2(M)⊗ L2(M)

Automorphism θ : M →M L2(M) with x · ξ · y = xξθ(y)
EB : M →M L2〈M, eB〉

2.3. Popa’s intertwining techniques.

2.3.1. The basic construction. Throughout this section, we will denote by M a finite
von Neumann algebra with a distinguished faithful normal trace τ . Let B ⊂M be
a unital von Neumann subalgebra. Let eB : L2(M) → L2(B) be the orthogonal
projection. We will denote by EB : M → B the unique faithful normal τ -preserving
conditional expectation. It satisfies the following:

ÊB(x) = eB(x̂),
EB(axb) = aEB(x)b,∀x ∈M,∀a, b ∈ B.

The basic construction 〈M, eB〉 is the von Neumann subalgebra of B(L2(M)) gener-
ated by M and the projection eB . Observe that JeB = eBJ and eBxeB = EB(x)eB ,
∀x ∈M .

Proposition 2.10. The following are true.
(1) 〈M, eB〉 = JB′J ∩B(L2(M)).
(2) The central support of eB in 〈M, eB〉 equals 1. In particular, the ∗-subalgebra

span(MeBM) is a ∗-strongly dense in 〈M, eB〉. The formula eBxeB =
EB(x)eB extends the conditional expectation EB : 〈M, eB〉 → B.

(3) 〈M, eB〉 is endowed with a semifinite faithful normal trace defined by

Tr(xeBy) = τ(xy),∀x, y ∈M
.
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Proof. (1) For x ∈ B, we clearly have xL2(B) ⊂ L2(B) and xL2(B)⊥ ⊂ L2(B)⊥,
hence xeB = eBx. If x ∈M ∩ {eB}′, then

EB(x)1̂ = eB(x1̂) = xeB(1̂) = x1̂.

Therefore x = EB(x) ∈ B. It follows that B = M ∩ {eB}′. Thus,

JB′J = 〈JM ′J, JeBJ〉 = 〈M, eB〉.

(2) The map B 3 x 7→ xeB ∈ BeB is a ∗-isomorphism. Indeed, if xeB = 0,
then xη = 0, for every η ∈ L2(B). Since x ∈ B, it follows that x = 0. Denote by
z(eB) the central support of eB in B′. Then z(eB) ∈ B and z(eB)eB = eB . Hence
z(eB) = 1. Thus the central support of eB = JeBJ in JB′J is equal to 1. It is
clear that I = span(MeBM) is a ∗-subalgebra of 〈M, eB〉 and a 2-sided ideal of
the ∗-algebra generated by M and eB . Thus I is a closed 2-sided ideal of 〈M, eB〉.
Moreover

IL2(M) = MeBL
2(M) = ML2(B) ⊃M 1̂.

Since I is nondegenerate, we get I = 〈M, eB〉.
(3) Since eB has central support 1 in 〈M, eB〉, one can find partial isometries

(vi) in 〈M, eB〉 such that v∗i vi ≤ eB and
∑
i viv

∗
i = 1. It follows that⊕

i

viL
2(B) = L2(M).

Define the following normal weight Tr on 〈M, eB〉 by

Tr(x) =
∑
i

〈xvi1̂, vi1̂〉,∀x ∈ 〈M, eB〉+.

Assume that Tr(x∗x) = 0. Then xvi1̂ = 0, for every i. For every b ∈ B, we have

xvib1̂ = xviJb
∗J 1̂ = Jb∗Jxvi1̂ = 0.

Therefore x = 0 and Tr is faithful. For every x, y ∈M , we have

Tr(xeBy) =
∑
i

〈xeByvi1̂, vi1̂〉 =
∑
i

〈eByvieB 1̂, eBx∗vieB 1̂〉

=
∑
i

〈EB(yvi)eB 1̂, EB(x∗vi)eB 1̂〉 =
∑
i

τ(EB(x∗vi)∗EB(yvi))

=
∑
i

τ(EB(v∗i y
∗)∗EB(v∗i x)) =

∑
i

〈EB(v∗i x)eB 1̂, EB(v∗i y
∗)eB 1̂〉

=
∑
i

〈eBv∗i xeB 1̂, eBv∗i y
∗eB 1̂〉 =

∑
i

〈viv∗i x1̂, y∗1̂〉

= 〈
∑
i

viv
∗
i x1̂, y∗1̂〉 = 〈x1̂, y∗1̂〉 = τ(xy).

We get that Tr is semifinite since span(MeBM) is a ∗-strongly dense ∗-subalgebra
in 〈M, eB〉. For every x, y, z, t ∈ 〈M, eB〉, we have

Tr(xeByzeBt) = Tr(xEB(yz)eBt) = τ(xEB(yz)t)
= τ(EB(yz)EB(tx)) = τ(zEB(tx)y)
= Tr(zEB(tx)eBy) = Tr(zeBtxeBy).

Thus Tr is a trace. This completes the proof. �
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It follows from the previous proposition that

〈M, eB〉 = {T ∈ B(L2(M)) : T (ξb) = T (ξ)b,∀ξ ∈ L2(M),∀b ∈ B}.
Let HB be a right B-submodule of L2(M)B . Write PH : L2(M) → H for the
orthogonal projection. It is clear that PH ∈ 〈M, eB〉. We define the von Neumann
dimension of HB by dim(HB) := Tr(PH).

Exercise 2.11 ([2]). Let (N,Tr) be a semifinite von Neumann algebra. Let Ω =
{x ∈ N : ‖x‖2,Tr ≤ 1}. Prove that the formal inclusion Ω ↪→ L2(N,Tr) is ultraweak-
weak continuous.

2.3.2. Intertwining subalgebras. In [23, 19], Popa introduced a very powerful tool
to prove the unitary conjugacy of two von Neumann subalgebras of a tracial von
Neumann algebra (M, τ). If A ⊂ (M, τ) is a (possibly non-unital) von Neumann
subalgebras, denote by 1A the unit of A.

Theorem 2.12 (Popa, [23, 19]). Let (M, τ) be a finite von Neumann algebra. Let
A ⊂ M be a possibly non-unital von Neumann subalgebra and B ⊂ M be a unital
von Neumann subalgebra. The following are equivalent:

(1) There exist n ≥ 1, a possibly non-unital ∗-homomorphism ψ : A→Mn(C)⊗
B and a non-zero partial isometry v ∈M1,n(C)⊗ 1AM such that

xv = vψ(x),∀x ∈ A.
(2) There exists a nonzero A-B-subbimodule H of AL2(1AM)B such that

dim(HB) <∞.
(3) There exists a nonzero element d ∈ A′ ∩ 1A〈M, eB〉+1A such that

Tr(d) <∞.
(4) There is no sequence of unitaries (uk) in A such that

lim
k→∞

‖EB(a∗ukb)‖2 = 0,∀a, b ∈ 1AM.

If one of the previous equivalent conditions is satisfied, we shall say that A
embeds into B inside M and denote A �M B. For simplicity, we shall write
Mn := Mn(C)⊗M .

Proof. We first prove that (1), (2), (3) are equivalent. Then we show (1) =⇒ (4)
and (4) =⇒ (3).

(1) =⇒ (2). Take a nonzero component of v ∈ M1,n(C) ⊗ 1AM that we may
assume to be v1. Set w = v1. We have Aw ⊂

∑n
j=1 vjB. Define H = AwB.

Therefore H ⊂ v(`2n ⊗ L2(B)) and dim(HB) ≤ n.
(2) =⇒ (3). Write d = PH. Then d ∈ 〈M, eB〉+ and Tr(d) = dim(HB) < ∞.

Since H is moreover a left A-module, we have ad = da, for every a ∈ A, hence
d ∈ A′ ∩ 1A〈M, eB〉+1A such that 0 < Tr(d) <∞.

(3) =⇒ (1). Write q = 1[‖d‖∞/2,‖d‖∞](d) for the nonzero spectral projection of
d. We get that K = qL2(M) is a nonzero A-B-subbimodule of L2(1AM) such that
dim(KB) = Tr(q) < ∞. Thus, cutting down by a central projection of B (see [29,
Lemma C.1]), we get a nonzero A-B-subbimodule H ⊂ L2(1AM) which is finitely
generated over B. Hence, we can take n ≥ 1, a projection p ∈ Bn and a right
B-module isomorphism

ψ : pL2(B)⊕n → H.
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Since H is a left A-module, we get a (unital) ∗-homomorphism θ : A → pBnp
satisfying xψ(η) = ψ(θ(x)η) for all x ∈ A, and η ∈ pL2(B)⊕n. Define now ej ∈
L2(B)⊕n as ej = (0, . . . , 1̂, . . . , 0) and ξ = (ξ1, . . . , ξn) ∈ M1,n(C) ⊗ H, with ξj =
ψ(pej). Let j ∈ {1, . . . , n}. For any x ∈ A, write θ(x) = (θkl(x))kl ∈ pBnp. We
have

xξj = xψ(pej) = ψ(θ(x)pej) = ψ(pθ(x)ej) = ψ(p
n∑
i=1

θij(x)ei)

=
n∑
i=1

ψ(p(0, . . . , θij(x), . . . , 0))

=
n∑
i=1

ψ((pei)θij(x))

=
n∑
i=1

ψ(pei)θij(x) (ψ is a right B-module isomorphism)

=
n∑
i=1

ξiθij(x).

Consequently, for every x ∈ A, xξ = ξθ(x). In the von Neumann algebra Mn+1 ⊂
B(L2(M)⊕ L2(M)⊕n), define

Xx =
(
x 0
0 θ(x)

)
,∀x ∈ A.

In the space L2(Mn+1), define

Ξ =
(

0 ξ
0 0

)
.

Note that Xx ∈ 1An+1Mn+11An+1 , ∀x ∈ A, and Ξ ∈ 1An+1L2(Mn+1)1An+1 . We
obtain XxΞ = ΞXx, for all x ∈ A. Denote by TΞ the corresponding unbounded
operator affiliated with Mn+1. and write TΞ = V |TΞ| for its polar decomposition
(see Appendix A.1). We get XxV = V Xx, for every x ∈ A, and V V ∗ ≤ 1An+1 .
Write

V =
(
u v
v′ w

)
.

It is straightforward to check that v ∈M1,n(C)⊗ 1AM is a partial isometry from
kerw onto keru∗ such that xv = vθ(x), for every x ∈ A.

(1) =⇒ (4). By contradiction, assume that there exists a sequence of unitaries
(uk) be a sequence of unitaries in A such that limk ‖EB(a∗ukb)‖2 = 0 for all a, b ∈
1AM . Then ‖(Idn⊗EB)(v∗ukv)‖2 → 0. But for every k ∈ N, v∗ukv = θ(uk)v∗v.
Moreover, θ(uk) ∈ U(pBnp) and v∗v ≤ p. Thus,

‖(Idn⊗EB)(v∗v)‖2 = ‖θ(uk)(Idn⊗EB)(v∗v)‖2
= ‖(Idn⊗EB)(θ(uk)v∗v)‖2
= ‖(Idn⊗EB)(v∗ukv)‖2 → 0.

We conclude that (Idn⊗EB)(v∗v) = 0 and so v = 0. Contradiction.
(4) =⇒ (3). We can take ε > 0 and K ⊂ 1AM finite subset such that

max
a,b∈K

‖EB(a∗ub)‖2 ≥ ε,∀u ∈ U(A).
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Note that

‖EB(a∗ub)‖22 = τ(EB(a∗ub)∗EB(a∗ub))
= Tr(eB(a∗ub)∗eB(a∗ub)eB).

Define now the element c =
∑
a∈K aeBa

∗ in 1A〈M, eB〉+1A. Note that Tr(c) =∑
a∈K τ(aa∗) <∞. Denote by C the ultraweak closure of the convex hull of {u∗cu :

u ∈ U(A)}. Observe that C ⊂ 〈M, eB〉+∩L2(〈M, eB〉) is bounded for both ‖·‖∞ and
‖ · ‖2,Tr and is closed in L2(〈M, eB〉). Let d ∈ C be the unique element of minimal
‖ · ‖2,Tr-norm. Since ‖udu∗‖2,Tr = ‖d‖2,Tr for all u ∈ U(A), we get u∗du = d, and
so d ∈ A′ ∩ 1A〈M, eB〉+1A. We show now that d 6= 0. For all u ∈ U(A), we have∑

b∈K

Tr(eBb∗(u∗cu)beB) =
∑
a,b∈K

Tr(eB(a∗ub)∗eB(a∗ub)eB)

=
∑
a,b∈K

τ(EB(a∗ub)∗EB(a∗ub))

=
∑
a,b∈K

‖EB(a∗ub)‖22 ≥ ε2.

Consequently, using the facts that Tr(eB · eB) is a normal state on the basic con-
struction 〈M, eB〉 and d ∈ C, we get∑

b∈K

Tr(eBb∗dbeB) ≥ ε2.

It follows that d 6= 0. The proof is complete. �

Assume that M = BoΛ where Λ y B is a trace-preserving action of a countable
group Λ on a finite von Neumann algebra B. Denote by (vs)s∈Λ the canonical
unitaries in M which implement the action. It is straightforward to see that A �M
B if and only if there a sequence of unitaries un ∈ U(A) such that

lim
n
‖EB(unv∗s )‖2 = 0,∀s ∈ Λ.

In the case when A and B are maximal abelian in M , one can get a more precise
result (see [19, Theorem A.1]).

Proposition 2.13 (Popa, [19]). Let (M, τ) be a finite von Neumann algebra. Let
A,B ⊂ M be a maximal abelian von Neumann subalgebras. The following are
equivalent:

(1) A �M B.
(2) There exists a nonzero partial isometry v ∈M such that vv∗ ∈ A, v∗v ∈ B

and v∗Av = Bv∗v.

Proof. We only need to prove (1) =⇒ (2). The proof follows the one of [19, Theorem
A.1]. We will use exactly the same reasoning as in the proof of [29, Theorem C.3].

Since A �M B, we can find n ≥ 1, a nonzero projection q ∈ Mn(C) ⊗ B, a
nonzero partial isometry w ∈ M1,n(C) ⊗ pM and a unital ∗-homomorphism ψ :
A→ q(Mn(C)⊗B)q such that xw = wψ(x), ∀x ∈ A. Since we can replace q by an
equivalent projection in Mn(C)⊗B, we may assume q = Diagn(q1, . . . , qn) (see for
instance second item in [29, Lemma C.2]). Observe now that Diagn(q1B, . . . , qnB)
is maximal abelian in q(Mn(C)⊗B)q. Since B is abelian, q(Mn(C)⊗B)q is of finite
type I. Since A is abelian, up to unitary conjugacy by a unitary in q(Mn(C)⊗B)q,
we may assume that ψ(A) ⊂ Diagn(q1B, . . . , qnB) (see [29, Lemma C.2]). We can
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now cut down ψ and w by one of projections (0, . . . , qi, . . . , 0) and assume n = 1
from the beginning.

Write e = ww∗ ∈ A (since A′ ∩ pMp = A) and f = w∗w ∈ ψ(A)′ ∩ qMq. By
spatiality, we have

f(ψ(A)′ ∩ qMq)f = (ψ(A)f)′ ∩ fMf = (w∗Aw)′ ∩ fMf = w∗Aw,

which is abelian. Let Q := ψ(A)′ ∩ qMq, which is a finite von Neumann algebra.
Since Bq ⊂ Q is maximal abelian and f ∈ Q is an abelian projection, [29, Lemma
C.2] yields a partial isometry u ∈ Q such that uu∗ = f and u∗Qu ⊂ Bq. Define
now v = wu. We get

v∗Av = u∗w∗Awu = u∗f(ψ(A)′ ∩ qMq)fu ⊂ Bq.

Moreover vv∗ = wuu∗w∗ = wfw∗ = e ∈ A. Since v∗Av and Bv∗v are both maximal
abelian, we get v∗Av = Bv∗v. �

We can even go further if we moreover assume that A,B ⊂M are both Cartan
subalgebras and M is a II1 factor (see [19, Theorem A.1]).

Theorem 2.14 (Popa, [19]). Let M be a II1 factor. Let A,B ⊂ M be Cartan
subalgebras. The following are equivalent:

(1) A �M B.
(2) There exists u ∈ U(M) such that uAu∗ = B.

Proof. We only need to prove (1) =⇒ (2). By Proposition 2.13, there exists a
nonzero partial isometry v ∈ M such that vv∗ ∈ A, v∗v ∈ B and v∗Av = Bv∗v.
Since A is diffuse, we may shrink vv∗ ∈ A so that τ(vv∗) = 1/n, for some n ∈ N.
Write p1 = vv∗, q1 = v∗v and take projections p2, . . . , pn ∈ A, q2, . . . , qn ∈ B
such that τ(pi) = τ(qj) = 1/n. Since NM (A)′′ = NM (B)′′ = M and M is a II1

factor, a classical exhaustion argument gives partial isometries ui, wj ∈M such that
p1 = u∗i ui, pi = uiu

∗
i , u

∗
iAui = Au∗i ui, uiAu

∗
i = Auiu

∗
i and likewise q1 = wjw

∗
j ,

qj = w∗jwj , w
∗
jBwj = Bw∗jwj , wjBw

∗
j = Bwjw

∗
j . Define

u =
n∑
i=1

uiv
∗wi.

It is now routine to check that u ∈ U(M) and uAu∗ = B. �

3. Approximation properties

3.1. Amenability.

3.1.1. Noncommutative Lp spaces. We refer to [27, Chapter IX] for the details of
the following facts on noncommutative Lp spaces. Let (N ,Tr) be a semifinite
von Neumann algebra endowed with a faithful, normal, semifinite trace Tr. For
1 ≤ p < ∞, we define the Lp-norm on N by ‖x‖p = Tr(|x|p)1/p. By completing
{x ∈ N : ‖x‖p <∞} with respect to the Lp-norm, we obtain a Banach space Lp(N ).
We only deal with L1(N ), L2(N ), and L∞(N ) = N . The trace Tr extends to a
contractive linear functional on L1(N ). We occasionally write x̂ for x ∈ N when
regarded as an element in L2(N ). For any 1 ≤ p, q, r ≤ ∞, with 1/p + 1/q = 1/r,
there is a natural product map

Lp(N )× Lq(N ) 3 (x, y) 7→ xy ∈ Lr(N )
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which satisfies ‖xy‖r ≤ ‖x‖p‖y‖q, ∀x, y. The Banach space L1(N ) is identified with
the predual of N under the duality

L1(N )×N 3 (ζ, x) 7→ Tr(ζx) ∈ C.

The Banach space L2(N ) si identified with the GNS-Hilbert space L2(N ,Tr). El-
ements in Lp(N ) can be regarded as closed operators on L2(N ) which are affil-
iated with N and hence in addition to the above-mentioned product, there are
well-defined notions of positivity, square root, etc... We shall use the generalized
Powers-Størmer Inequality (see [27, Theorem IX.1.2]):

‖|η| − |ζ|‖22 ≤ ‖η2 − ζ2‖1 ≤ ‖η + ζ‖2‖η − ζ‖2,∀η, ζ ∈ L2(N ).

The Hilbert space L2(N ) is an N -N bimodule such that 〈xξy, η〉 = Tr(xξyη∗),
∀x, y ∈ N , ∀ξ, η ∈ L2(N ). We also recall the following formulae. Let fa be the
characteristic function of the interval (

√
a,+∞). For any ξ, η ∈ L2(N )+, we have

(see [7, Proposition 1.1] and [27, Theorem IX.2.14])∫ ∞
0

‖fa(ξ)‖22 da = ‖ξ‖22,∫ ∞
0

‖fa(ξ)− fa(η)‖22 da ≤ ‖ξ − η‖2‖ξ + η‖2.

Let H be a complex separable Hilbert space and let (N ,Tr) = (B(H),Tr),
where Tr is the canonical trace on B(H). Then, L1(B(H)) can be identified with
the space of trace-class operators on H, denoted by S1(H) in the sequel. In the
same way, L2(B(H)) can be identified with the space of Hilbert-Schmidt operators
on H, denoted by S2(H) in the sequel.

Let (M, τ) be a finite von Neumann algebra, denote by H = L2(M, τ) its L2-
space with respect to the finite trace τ . The Hilbert space H is endowed with a
canonical anti-unitary J defined by Jx̂ = x̂∗, ∀x ∈M . In the sequel, we shall simply
denote H 3 η 7→ η∗ ∈ H. We regard M ⊂ B(H) through the GNS-construction.
The following linear map

U :
H ⊗H → S2(H)∑

k

ξk ⊗ ηk 7→
∑
k

〈·, η∗k〉ξk

defines a unitary. We shall identify S2(H) and H ⊗ H through this unitary U .
Moreover, for any ξ, η ∈ H, for any x ∈M ,

U(xξ ⊗ η) = 〈·, η∗〉xξ = x〈·, η∗〉ξ = xU(ξ ⊗ η)
U(ξ ⊗ ηx) = 〈·, (ηx)∗〉ξ = 〈·, x∗η∗〉ξ = 〈x·, η∗〉ξ = U(ξ ⊗ η)x.

Thus, U preserves the M -M -bimodule structure: S2(L2(M)) with its bimodule
structure, as a two-sided ideal of B(L2(M)), is identified with the so-called coarse
correspondence L2(M)⊗ L2(M).

Finally, note that the symbol “Lim” will be used for a state on `∞(N) or more
generally on `∞(I) with I directed set.

3.1.2. Amenable finite von Neumann algebras. Recall that a countable discrete
group Γ is amenable if one the following equivalent conditions holds:

• There exists a Γ-invariant state ϕ : `∞(Γ)→ C, i.e. ϕ(λsf) = ϕ(f), for all
s ∈ Γ, f ∈ `∞(Γ).
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• There exists a sequence of almost invariant unit vectors ξn ∈ `2(Γ), i.e.
limn ‖λsξn − ξn‖2 = 0, for all s ∈ Γ.

Let (M, τ) be a finite von Neumann algebra with separable predual. Denote H =
L2(M, τ). We regard M ⊂ B(H) through the GNS-construction. A state ϕ on
B(H) is said to be M -central if ϕ ◦Ad(u) = ϕ, ∀u ∈ U(M).

Theorem 3.1 (Connes, [7]). Let M be a finite von Neumann algebra. The following
are equivalent:

(1) There exists a conditional expectation E : B(H)→M .
(2) There exists an M -central state ϕ on B(H) such that ϕ|M = τ .
(3) There exists a net of unit vectors (ξn) in S2(H) such that 〈xξn, ξn〉 → τ(x),
∀x ∈M , and ‖[ξn, u]‖2 → 0, ∀u ∈ U(M).

Proof. (1) =⇒ (2). Let E be a conditional expectation from B(H) onto M . Denote
ϕ = τ ◦ E. Then ∀x ∈ B(H), ∀u ∈M , one has

ϕ(uxu∗) = τ(E(uxu∗)) = τ(uE(x)u∗) = τ(E(x)) = ϕ(x).

Thus, the state ϕ is M -central and ϕ|M = τ .
(2) =⇒ (3). Let ϕ be an M -central state on B(H) such that ϕ|M = τ . Take a

net (ζn) of positive norm-one elements in S1(H) such that Tr(ζn·) converges to ϕ
pointwise. Then ∀x ∈ B(H), ∀u ∈ U(M), one has

lim
n

Tr((ζn −Ad(u)ζn)x) = lim
n

Tr(ζnx)− lim
n

Tr(uζnu∗x)

= lim
n

Tr(ζnx)− lim
n

Tr(ζnu∗xu)

= ϕ(x)− ϕ(Ad(u∗)(x)) = 0

by assumption. It follows that the net (ζn − Ad(u)ζn) in S1(H) converges to 0 in
the weak topology. By the Hahn-Banach Separation Theorem, one may assume,
by passing to finite convex combinations, that the net (ζn − Ad(u)ζn) in S1(H)
converges to 0 in norm. Thus, ‖[u, ζn]‖1 → 0, ∀u ∈ U(M). Define the unit vectors
ξn = ζ

1/2
n ∈ S2(H). Using the Powers-Størmer Inequality, ∀u ∈ U(M),

‖[u, ξn]‖22 = ‖uξnu∗ − ξn‖22
≤ ‖uζnu∗ − ζn‖1
= ‖[u, ζn]‖1 .

This implies that ‖[u, ξn]‖2 → 0, ∀u ∈ U(M). Moreover, ∀x ∈M ,

lim
n
〈xξn, ξn〉 = lim

n
Tr(xξnξ∗n) = lim

n
Tr(xξ2

n)

= lim
n

Tr(ζnx) = ϕ(x) = τ(x).

This proves (3).
(3) =⇒ (1). Assume that there exists a net of unit vectors (ξn) in S2(H) such

that 〈xξn, ξn〉 → τ(x), ∀x ∈M , and ‖[ξn, u]‖2 → 0, ∀u ∈ U(M). Note that we also
have ‖[ξ∗n, u]‖2 → 0, ∀u ∈ U(M). Write ξ∗n = wnηn for the polar decomposition,
with ηn = (ξnξ∗n)1/2 ≥ 0, ‖ηn‖2 = 1, and wn partial isometry in B(H). Thus, ∀n,
∀x ∈ B(H),

〈xξn, ξn〉 = Tr(xξnξ∗n) = Tr(xη2
n) = 〈xηn, ηn〉.
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Consequently, limn〈xηn, ηn〉 = τ(x), ∀x ∈M . Moreover, using the Powers-Størmer
Inequality, ∀n, ∀u ∈ U(M),

‖[u, ηn]‖22 = ‖uηnu∗ − ηn‖22
≤ ‖uη2

nu
∗ − η2

n‖1
= ‖u(ξnξ∗n)− (ξnξ∗n)u‖1
≤ ‖(uξn − ξnu)ξ∗n‖1 + ‖ξn(uξ∗n − ξ∗nu)‖1
≤ ‖uξn − ξnu‖2 + ‖uξ∗n − ξ∗nu‖2.

Therefore, limn ‖[u, ηn]‖2 = 0. So, we may moreover assume that ξn ≥ 0, ∀n. Thus,
∀c ∈M ,

lim
n
‖ξnc‖22 = lim

n
〈ξnc, ξnc〉 = lim

n
Tr(ξncc∗ξ∗n)

= lim
n

Tr(ξ2
ncc
∗) = τ(cc∗) = ‖c‖22,τ .

Define the following state

ϕ(x) = Lim
n
〈xξn, ξn〉,∀x ∈ B(H).

Note that ϕ|M = τ . Moreover, ∀b, c ∈ M , ∀y, z ∈ B(H), since ‖[ξn, bc]‖2 → 0, we
get

|ϕ(bcyz)| = |Lim
n

Tr(ξ2
nbcyz)|

= |Lim
n

Tr(ξnbcξnyz)|

= |Lim
n

Tr((zξnb)(cξny))|

≤ lim sup
n
‖zξnb‖2‖cξny‖2

≤ lim sup
n
‖ξnb‖2‖cξn‖2‖y‖∞‖z‖∞

= ‖b‖2,τ‖c‖2,τ‖y‖∞‖z‖∞.

Take now x ∈ B(H), a ∈ M and write a = v|a| its polar decomposition in M .
Thus, we have a = (v|a|1/2)|a|1/2 and

|ϕ(ax)| ≤ ‖v|a|1/2‖2,τ‖|a|1/2‖2,τ‖x‖∞
≤ ‖|a|1/2‖2,τ‖|a|1/2‖2,τ‖x‖∞
= ‖a‖1,τ‖x‖∞.

It follows that |ϕ(ax)| ≤ ‖a‖1,τ‖x‖∞, ∀a ∈ M , ∀x ∈ B(H). By the duality
M = L1(M)∗, we know that there exists Φ(x) ∈ M , such that τ(aΦ(x)) = ϕ(ax),
∀a ∈ M , ∀x ∈ B(H). It is straightforward to check that Φ : B(H) → M is a
conditional expectation. �

The state ϕ in (2) of Theorem 3.1 is called a hypertrace. Condition (3) says
that the identity bimodule L2(M) is “weakly contained” in the coarse bimodule
L2(M) ⊗ L2(M), that we usually denote by L2(M) ≺weak L

2(M) ⊗ L2(M). This
is the analog of the notion of amenability in the case of groups since the identity
bimodule plays the rôle of the trivial representation and the identity bimodule plays
the one of the left regular representation. For this reason, a finite von Neumann
algebra M which satisfies one of the equivalent conditions of Theorem 3.1 is said to
be amenable. Note that more generally for any M -M -bimodule H, L2(M) ≺weak H
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if there exists a net (ξn) of unit vectors in H such that limn〈·ξn, ξn〉 = τ pointwise
and limn ‖[u, ξn]‖ = 0.

Proposition 3.2. Let Γ be a countable discrete group. Then, Γ is amenable if and
only if the group von Neumann algebra L(Γ) is amenable.

Proof. Assume that Γ is amenable. Denote by λΓ the left regular representation of
Γ on `2(Γ). Then 1Γ ≺ λΓ, i.e. there exists a net of unit vectors (ηn) in `2(Γ) such
that limn ‖λgηn − ηn‖2 = 0, ∀g ∈ G. We shall identify `2(Γ) with the L2-space of
L(Γ). Denote the unit vector ξn = ηn ⊗ η∗n ∈ `2(Γ)⊗ `2(Γ) = S2(`2(Γ)). Moreover,
we have for all g ∈ Γ,

‖ugξn − ξnug‖2 = ‖ugηn ⊗ η∗n − ηn ⊗ η∗nug‖2
≤ ‖ugηn ⊗ η∗n − ηn ⊗ η∗n‖2 + ‖ηn ⊗ η∗n − ηn ⊗ η∗nug‖2
≤ ‖λgηn − ηn‖2 + ‖λg−1ηn − ηn‖2.

Therefore, limn ‖ugξn − ξnug‖2 = 0, ∀g ∈ Γ. Thus Condition (3) in Theorem 3.1 is
satisfied, and L(Γ) is amenable.

Assume that L(Γ) is amenable. Let H = `2(Γ). By Condition (3) in Theorem
3.1, we know that there exists a sequence of unit vectors (ξn) in H ⊗ H such
that for any g ∈ Γ, limn ‖ugξn − ξnug‖2 = 0. Define the unitary representation
π : Γ→ U(H ⊗H) by

π(g)ξ = ugξu
∗
g.

It is straightforward to see that π is a mutiple of λΓ and that 1Γ ≺ π. Consequently,
1Γ ≺ λΓ and Γ is amenable. �

Exercise 3.3. Let M be a diffuse amenable finite von Neumann algebra. Show
that a hypertrace ϕ given by Theorem 3.1 can never be normal on B(H).

Recall that a finite von Neumann algebra M is said to be approximately finite
dimensional (AFD) if there exists an increasing sequence of finite dimensional unital
∗-subalgebras Qn ⊂ M such that

⋃
nQn is ultraweakly dense in M . Murray and

von Neumann showed in their seminal work the uniqueness of the AFD II1 factor.
The following is easy to prove.

Proposition 3.4. Let M be a finite AFD von Neumann algebra. Then M is
amenable.

Proof. Let Qn ⊂ M be a sequence of finite dimensional unital ∗-subalgebras such
that

⋃
nQn is ultraweakly dense in M . Denote by µn the (probability) Haar mea-

sure on the compact group U(Qn). Fix ω ∈ β(N)\N a free ultrafilter. For every
x ∈ B(L2(M)) define

E′(x) = lim
n→ω

∫
U(Qn)

uxu∗dµn(u).

It is clear that E′ : B(L2(M))→M ′ is a conditional expectation. Denote by J the
canonical antiunitary. Thus E : B(L2(M))→M defined by E(x) = JE′(JxJ)J is
a conditional expectation. �

The converse is Connes’ fundamental result.

Theorem 3.5 (Connes, [7]). Let M be a finite von Neumann algebra. Then M is
AFD if and only if M is amenable. There exists a unique amenable II1 factor. In
particular, all icc amenable countable discrete groups give the same II1 factor.
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Exercise 3.6. Let Γ y P be a trace-preserving action of an amenable group Γ on
an amenable finite von Neumann algebra P . Show that M = P o Γ is amenable.

3.2. Property Gamma.

Definition 3.7. A II1 factor M is said to have the property Gamma if for every
ε > 0 and every x1, . . . , xn ∈ (M)1, there exists u ∈ U(M) such that τ(u) = 0 and
‖[u, xi]‖2 < ε, for all 1 ≤ i ≤ n.

Theorem 3.8 (Connes, [8]). Let M be a II1 factor. The following are equivalent:
(1) M does not have property Gamma.
(2) There exists a non-trivial central sequence in M , i.e. M ′ ∩Mω 6= C.
(3) M ′ ∩Mω is diffuse.

Proof. For a free ultafilter ω, we will denote by πω : `∞(N,M)→Mω the quotient
map. For (1) =⇒ (2), fix a free ultrafilter ω. Since M does not have property
Gamma, there exists a sequence of unitaries un ∈ U(M) such that τ(un) = 0 and
limn ‖[un, x]‖2 = 0, for all x ∈ M . Define u = πω((un)) ∈ U(M ′ ∩Mω). We have
that τω(u) = 0 and so M ′∩Mω 6= C. For (2) =⇒ (3), let e ∈M ′∩Mω be a nonzero
projection such that e 6= 1. Write λ = τω(e) ∈ (0, 1). We may find a sequence of
projections en which represents e such πω((en)) = e and τ(en) = λ, for all n ∈ N.

Observe that (en) is a central sequence and since M is a II1 factor, we have that
en → λ weakly (by weak compactness of the unit ball (M)1). Thus we construct a
subsequence ekn which satisfies for every n ∈ N,

‖[ej , ekn ]‖2 <
1
n

|τ(ejekn)− λ2| <
1
n
,∀1 ≤ j ≤ n.

Define f := πω((enekn)) ∈ M ′ ∩ Mω. The previous inequalities show that f ∈
M ′ ∩Mω is indeed a nonzero projection such that f ≤ e and f 6= e, since τω(f) =
λ2 < λ = τω(e). Therefore, M ′ ∩Mω cannot have any minimal projections and
hence is diffuse.

(3) =⇒ (1). Assume that M ′ ∩Mω is diffuse. Let e ∈M ′ ∩Mω be a projection
such that τω(e) = 1/2. We can then represent e = πω((en)) with projections
en ∈ U(M) such that τ(en) = 1/2, for all n ∈ N. Therefore, u = 2e−1 ∈M ′∩Mω,
with u = πω((un)) and τ(un) = 0, for all n ∈ N. Hence M does not have property
Gamma. �

The next Theorem, due to Connes, gives a spectral gap characterization of prop-
erty Gamma.

Theorem 3.9 (Connes, [7]). Let M be a II1 factor. The following are equivalent:
(1) M has property Gamma.
(2) There exists a sequence of unit vectors ξn ∈ L2(M)	C1̂ such that

lim
n
‖xξn − ξnx‖2 = 0,∀x ∈M.

(3) K(L2(M)) ∩ C∗(M,M ′) = {0}.
Proof. (1) =⇒ (2) is clear. For (2) =⇒ (1), write ξ = (ξn) ∈ L2(M)ω. There are
two cases to consider.

Case (1): ξ defines an element in L2(Mω). We have 〈ξ, 1̂〉 = 0 and xξ = ξx,
for all x ∈ M . Write ξ = v|ξ| for the polar decomposition of ξ. We have that
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v ∈ M ′ ∩ Mω is a partial isometry such that v 6= 0, 1. Thus M has property
Gamma.

Case (2): ξ does not define an element in L2(Mω). We start by proving
the following claim.

Claim. For every finite subset F ⊂ U(M), for every ε > 0, there exists a projection
e ∈M such that τ(e) < ε and ‖[u, e]‖2 < ε‖e‖2, for all u ∈ F .

By Proposition C.2, we know that

∃c > 0,∀a > 0, lim
n→ω
‖fa(|ξn|)|ξn|‖2 > c.

We may then choose a subsequence (kn) such that ‖fn(|ξkn |)|ξkn |‖2 ≥ c, for all n ∈
N. Then with ηn = 1

‖fn(|ξkn |)|ξkn |‖2
fn(|ξkn |)|ξkn |, we still have that limn→ω ‖xηn −

ηnx‖2 = 0, for all x ∈M . Observe that for all a > 0,

ηn ≥ fa(ηn)ηn ≥
√
afa(ηn)

and so τ(fa(ηn)) ≤ 1/
√
a.

Let F ⊂ U(M) be a finite subset and ε > 0. Let δ = ε4/(4|F |). Choose n ∈ N
large enough such that 1/

√
n < ε and η = ηn satisfies∑

u∈F
‖η − uηu∗‖22 < δ.

It is clear that fa(uηu∗) = ufa(η)u∗. Hence, we get∫ ∞
0

‖fa(η)‖22da = ‖η‖22 = 1

and ∑
u∈F

∫ ∞
0

‖fa(η)− ufa(η)u∗‖22da ≤
∑
u∈F
‖η − uηu∗‖2‖η + uηu∗‖2

≤ 2(|F |
∑
u∈F
‖η − uηu∗‖22)1/2

< 2
√
|F |δ

= 2
√
|F |δ

∫ ∞
0

‖fa(η)‖22da.

Therefore there exists a ≥ n such that∑
u∈F
‖fa(η)− ufa(η)u∗‖22 < 2

√
|F |δ‖fa(η)‖22.

Letting e = fa(η), we have τ(e) ≤ τ(fa(η)) < ε and ‖ue − eu‖2 < ε‖e‖2, for all
u ∈ F . The claim is proven.

The next claim uses a maximality argument.

Claim. For every finite subset F ⊂ U(M), for every ε > 0, there exists a projection
e ∈M such that τ(e) = 1/2 and ‖[u, e]‖2 < ε, for all u ∈ F .

Once the claim is proven, we are done. Indeed, we can construct a sequence of
projections en ∈ M such that τ(en) = 1/2 and limn ‖[x, en]‖2 = 0, for all x ∈ M .
We the get a sequence of unitaries un = 2en − 1, with τ(un) = 0 and such that
limn ‖[x, un]‖2 = 0, for all x ∈M . Hence, M has property Gamma. It only remains
to prove the claim.
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Let u1, . . . , uk ∈ U(M) and ε > 0. Let I be the set of families i = (E,U1, . . . , Uk)
such that:

• E ∈M is a projection such that τ(E) ≤ 1/2.
• Each Uj ∈ U(M) is a unitary commuting with E.
• ‖Uj − uj‖1 ≤ ετ(E), for all 1 ≤ j ≤ k.

We define a partial ordering on I in the following way: we write i ≤ i′ if

E ≤ E′ and ‖Uj − U ′j‖1 ≤ ετ(E′ − E),∀1 ≤ j ≤ k.

It is easy to see that if i ≤ i′ and i′ ≤ i′′, then i ≤ i′′. The set (I,≤) is moreover
inductive. By Zorn’s Lemma, there exists a maximal element i = (E,U1, . . . , Uk) ∈
I. Assume that τ(E) < 1/2. We will deduce a contradiction. Let δ > 0 such
that τ(E) + δ < 1/2 and 4δ ≤ ε. Let vj = (1 − E)Uj = Uj(1 − E) ∈ U(N) where
N = (1−E)M(1−E). By the previous claim (with N), we know that there exists a
projection e ∈ N such that τN (e) < δ and ‖[vj , e]‖2,τN ≤ δ‖e‖2,τN , for all 1 ≤ j ≤ k.
By Proposition D.1, there exists wj ∈ U(N) such that wjvjev∗jw

∗
j = e and

‖wj − (1− E)‖1,τN ≤
√

2‖vjev∗j − e‖1,τN ≤ 4‖vjev∗j − e‖2,τN ‖e‖2,τN ≤ 4δτN (e).

Let E′ = E + e ∈ M . It is a projection stricly larger than E and such that
τ(E′) ≤ 1/2. Let U ′j = UjE + wjvj . It is easy to see that U ′j ∈ U(M) and U ′j is
commuting with E′. Moreover, ‖wjvj − vj‖1 ≤ 4δτ(e), ‖U ′j −Uj‖1 ≤ 4δτ(e). Since
4δ ≤ ε and ‖Uj − uj‖1 ≤ ετ(E) by assumption, we get

‖U ′j − uj‖1 ≤ ετ(E + e) = ετ(E′),∀1 ≤ j ≤ k.

The element i′ = (E′, U ′1, . . . , U
′
k) satisfies i ≤ i′ and i 6= i′, which contradicts the

maximality of i ∈ I. Therefore, we have that τ(E) = 1/2. We have thus shown for
each ε > 0, the existence of a projection E ∈M such that τ(E) = 1/2, [E,Uj ] = 0
and ‖Uj − uj‖1 ≤ ε. We finally get

‖[uj , E]‖2 = ‖[uj − Uj , e]‖2 ≤ 2‖uj − Uj‖2 ≤ 2(2ε)1/2.

As ε > 0 is arbitrary, we are done.
(1) =⇒ (3). Assume that K(L2(M)) ∩ C∗(M,M ′) 6= {0}. Since C∗(M,M ′)

is a simple C∗-algebra, we get K(L2(M)) ⊂ C∗(M,M ′). Let (xn) be a (uni-
formly bounded) central sequence in M . We get that [y, xn]→ 0 ∗-strongly for all
y ∈ C∗(M,M ′). Denote by PC : L2(M) → C the orthogonal projection. Since
K(L2(M)) ⊂ C∗(M,M ′), we get [PC, xn]→ 0 ∗-strongly. We have that

lim
n
‖xn − τ(xn)1‖2 = lim

n
‖(xnPC − PCxn)1̂‖ = 0,

and so (xn) is trivial.
(3) =⇒ (2). Assume that it is impossible to find a sequence of unit vectors ξn

like in (2). Then then exists δ > 0, a finite subset F ⊂ U(M) such that

max
u∈F
‖ξ − uξu∗‖2 ≥ δ‖ξ‖2,∀ξ ∈ L2(M).

We may assume that F = F ∗. Define the self-adjoint operator

T =
1
|F |

∑
u∈F

uJuJ ∈ C∗(M,M ′).

We have ‖T‖∞ ≤ 1, T 1̂ = 1̂, so that 1̂ is an eigenvector for the eigenvalue 1. We
show that T − 1 is invertible on L2(M) 	C1̂, so that there is a spectral gap at 1
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for the operator T . Otherwise, since T is selfadjoint, there would be a sequence of
unit vectors ξk ∈ L2(M)	C1̂ such that limk ‖(T − 1)ξk‖2 = 0. We have

‖(1− T )ξk‖2 = ‖ 1
|F |

∑
u∈F

(1− uJuJ)ξk‖2.

Recall that a Hilbert space is uniformly convex. For all k ∈ N, we have that∑
u∈F

1
|F |
‖ξk − uJuJξk‖2 = 2− 2<〈ξk, T ξk〉 = 2<〈ξk, ξkTξk〉 ≤ 2‖ξk − Tξk‖2.

We have that limk ‖ξk − uJuJξk‖2 = 0, for all u ∈ F and so limk ‖ξk‖2 = 0, which
is absurd. Thus T − 1 is invertible on L2(M) 	 C1̂ and there exists ε > 0 such
that Sp(T ) ⊂ [−1, 1 − ε] ∪ {1}. By continuous functional calculus, we get that
PC ∈ C∗(M,M ′) and so K(L2(M)) ⊂ C∗(M,M ′). �

A closely related concept for groups is the one of inner amenability. A countable
discrete group G is said to be inner amenable if the adjoint representation Ad : G→
U(`2(G)	Cδe) defined by Adg δh = δghg−1 contains a sequence of almost invariant
unit vectors. Examples of inner amenable groups include amenable groups, direct
product groups G × H, where H is infinite amenable, Baumslag-Solitar groups.
Examples of groups which are not inner amenable include free groups Fn, n ≥ 2,
and property (T) groups. The following is easy to prove.

Proposition 3.10 (Effros, [10]). Then G be an icc countable discrete group. If
L(G) has property Gamma, then G inner amenable.

Proof. Assume L(G) has property Gamma. There exists a sequence of unitaries
vn ∈ U(M) such that τ(vn) = 0 and limn ‖[vn, x]‖2 = 0, for all x ∈ M . Define
ξn := unδe ∈ `2(G)	Cδe. Since

‖Adg ξn − ξn‖ = ‖ugvn − vnug‖2,
we get that (ξn) is a sequence of almost invariant unit vectors for the adjoint
representation Ad. �

The converse is false though, as it was recently discovered by Vaes [30]. We can
illustrate the subtle difference between the property Gamma of L(G) and the inner
amenability of G.

• The group G is inner amenable if and only if there exists a sequence of unit
vectors ξn ∈ `2(G)	Cδe such that

lim
n
‖xξn − ξnx‖2 = 0,∀x ∈ C∗λ(G).

• The von Neumann algebra L(G) has property Gamma if and only if there
exists a sequence of unit vectors ξn ∈ `2(G)	Cδe such that

lim
n
‖xξn − ξnx‖2 = 0,∀x ∈ L(G).

3.3. Haagerup property.

Definition 3.11 (Haagerup, [14]). A countable discrete group Γ is said to have
the property (H) if there exists a sequence of positive definite functions ϕn : Γ→ C
such that limn ϕn = 1 pointwise and ϕn ∈ c0(Γ), for all n ∈ N.

We will often write Haagerup property for property (H).
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Example 3.12. The following groups have the Haagerup property: amenable
groups, free groups and more generally all groups which act properly on a tree.
The Haagerup property is moreover stable under taking subgroups, amenable ex-
tentions, free products, wreath products.

We refer to the book by P.A. Cherix, M. Cowling, P. Jolissaint, P. Julg and A.
Valette [3] for a comprehensive of groups with the Haagerup property

Definition 3.13 (Choda, [4]). Let (N, τ) be a finite von Neumann algebra endowed
with a fixed faithful normal trace. We say that N has the Haagerup property if
there exists a sequence θn : N → N of τ -preserving ucp maps which satisfies:

• limn ‖θn(x)− x‖2 = 0, for all x ∈ N .
• Whenever wk ∈ (N)1 is a sequence such that wk → 0 weakly, then we have

limk ‖θn(wk)‖2 = 0, for all n ∈ N.

Proposition 3.14 (Choda, [4]). Let Γ be a countable discrete group. Then Γ has
the Haagerup property if and only if L(Γ) has the Haagerup property.

Proof. Assume that Γ has the Haagerup property. Then there exists a sequence
ϕn : Γ → C such that limn ϕn = 1 pointwise and ϕn ∈ c0(Γ), for all n ∈ N. We
may assume that ϕn(e) = 1, for all n ∈ N. Define θn : L(Γ)→ L(Γ) by

θn(
∑
s∈Γ

asus) = ϕn(s)asus.

It is straightforward to check that θn is a sequence of τ -preserving ucp maps which
satisfies conditions of Definition 3.13.

Conversely, assume that L(Γ) has the Haagerup property. Let θn be a sequence
of τ -preverving ucp maps given by Definition 3.13. Define ϕn(s) = τ(θn(us)u∗s),
for all s ∈ Γ. Then ϕn is a sequence of positive definite functions that does the
job. �

Theorem 3.15 (Haagerup, [14]). The free groups Fn have the Haagerup property.

Proof. Denote by Fn 3 g 7→ |g| ∈ R+ the natural length function. We will show
that for all 0 < ρ < 1, the function ϕρ defined by

Fn 3 g 7→ ρ|g|

is a positive definite function on Fn. Since ϕρ ∈ c0(Fn) and limρ→1 ϕρ = 1, we get
that Fn has the Haagerup property.

We give a proof using Popa’s free malleable deformation [21, 24]. We may assume
that n < ∞. Let M = L(Fn) and M̃ = L(Fn ∗ F̃n), where F̃n is a copy of Fn
which is free from Fn. Denote by a1, . . . , an the canonical generators of L(Fn)
(resp. b1, . . . , bn the ones of L(F̃n)). For 1 ≤ k ≤ n, let

hk =
1√
−1π

log(bk),

where log denotes the principal branch of the logarithm. We get that hk is selfad-
joint and bk = exp(

√
−1πhk). For t ∈ R, define

btk := exp(
√
−1πthk) ∈ U(L(F̃n)).
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It is straightforward to check that

γ(t) := τ(btk) =
∫ 1

−1

exp(
√
−1πtx)dx =

sin(πt)
πt

Define the following ∗-automorphism αt : M̃ → M̃ by

αt(ak) = akb
t
k and αt(bk) = bk.

Since the unitaries {a1, . . . , an, a1b
t
1, . . . , akb

t
k} generate M̃ and are ∗-free from each

other, we check easily that (αt) is a one-paramater family of trace-preserving ∗-
automorphisms. Write N = L(Fn) and Ñ = α1(N). We see that N ∨ Ñ = M̃

and Ñ is ∗-free from N . Consequently, we get M̃ = N ∗ Ñ and (αt) satisfies
α1(x ∗ 1) = 1 ∗ x, for all x ∈ N . Moreover, we have

(EN ◦ αt)(ug) = γ(t)2|g|ug,∀g ∈ Fn,

Since EN ◦ αt is u.c.p., it follows that ψt : Fn → C defined by ψt(g) = τ((EN ◦
αt)(ug)u∗g) = γ(t)2|g| is a positive definite function. We are done. �

4. Rigidity of II1 factors

4.1. Rigid inclusions of von Neumann algebras. The notion of property (T)
for a II1 factor was introduced by Connes and Jones in their seminal work [9]. Its
relative version for a inclusion of finite von Neumann algebras is due to Popa [19].

Definition 4.1 (Popa, [19]). Let (M, τ) be a finite von Neumann algebra with a
fixed trace and B ⊂M be a subalgebra. The inclusion is said to be rigid if for every
ε > 0, there exist δ > 0 and a finite subset F ⊂M such that for every τ -preserving
u.c.p. map φ : M →M , we have

sup
x∈F
‖φ(x)− x‖2 ≤ δ =⇒ sup

x∈(B)1

‖φ(x)− x‖2 ≤ ε.

The von Neumann algebra M has property (T) if the identity inclusion M ⊂M
is rigid. Note that we can relax the assumptions in Definition 4.1. Indeed, let
φ : M →M be a completely positive map such that φ(1) ≤ 1 and τ ◦ φ ≤ τ . Then,
φ̃ : M →M defined by

φ̃(x) = φ(x) +
(τ − τ ◦ φ)(x)
(τ − τ ◦ φ)(1)

(1− φ(1))

is a τ -preserving u.c.p. map.

Theorem 4.2 (Popa, [19]). Let B ⊂ M be an inclusion of finite von Neumann
algebras and let τ be a fixed trace on M . The following are equivalent:

(1) The inclusion B ⊂M is rigid;
(2) For every ε > 0, there exist δ > 0 and a finite subset F ⊂ M such that

for any M -M bimodule H and any tracial unit vector ξ ∈ H for which
‖xξ − ξx‖ ≤ δ, ∀x ∈ F , there exists a B-central vector η ∈ H such that
‖η − ξ‖ ≤ ε.

Proof. We prove both directions.
(1) =⇒ (2). Let 0 < ε < 1. Let F ⊂ M be a finite subset and δ > 0 given by

Condition (1). Let H be an M -M -bimodule and a tracial unit vector ξ ∈ H such
that ‖xξ − ξx‖ ≤ δ, ∀x ∈ F . Let φ : M → M be the τ -preserving u.c.p. map
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associated with (H, ξ). Recall that 〈aξx, ξy〉H = 〈φ(a)x̂, ŷ〉L2(N), ∀a, x, y ∈ M .
Then we have

‖φ(x)− x‖22 = ‖φ(x)‖22 + ‖x‖22 − 2<〈xξ, ξx〉
≤ 2‖x‖22 − 2<〈xξ, ξx〉
= ‖xξ − ξx‖2 ≤ δ2

for every x ∈ F . It follows that ‖φ(x) − x‖2 ≤ ε, for every x ∈ (B)1. We get for
every u ∈ U(B),

‖ξ − uξu∗‖2 = 2− 2<τ(φ(u)u∗)
= 2<τ(1− φ(u)u∗)
≤ 2‖1− φ(u)u∗‖2 ≤ 2ε.

Denote by η the circumcenter of the bounded set C = {uξu∗ : u ∈ U(B)}. Since
uCu∗ = C, ∀u ∈ U(B), by uniqueness it follows that uηu∗ = η, ∀u ∈ U(B). Thus η
follows B-central and moreover ‖ξ − η‖ ≤ (2ε)1/2.

(1)⇐= (2). Let 0 < ε < 1. Let F ⊂M be a finite subset and 0 < δ < 1 given by
Condition (2). Let φ : M → M be a τ -preserving u.c.p. such that ‖φ(x) − x‖2 ≤
(2‖x‖2)−1δ2, ∀x ∈ F . Let H be the M -M bimodule and ξ be the tracial vector
associated with φ. We have 〈aξx, ξy〉H = 〈φ(a)x̂, ŷ〉L2(N), ∀a, x, y ∈ M . For every
x ∈ F , we get

‖xξ − ξx‖22 = ‖xξ‖22 + ‖ξx‖22 − 2<〈xξ, ξx〉
= 2‖x‖22 − 2<τ(φ(x)x∗)
= 2<τ((x− φ(x))x∗)
≤ 2‖x− φ(x)‖2‖x‖2 ≤ δ2.

Therefore, there exists a B-central vector η ∈ H such that ‖η − ξ‖ ≤ ε. For every
x ∈ (B)1, we get

‖x− φ(x)‖22 = ‖x‖22 + ‖φ(x)‖22 − 2<τ(φ(x)x∗)
≤ 2‖xξ‖2 − 2<〈xξ, ξx〉
≤ 2‖xξ‖‖xξ − ξx‖
= 2‖xξ‖‖x(ξ − η)− (ξ − η)x‖
≤ 4‖x‖∞‖xξ‖‖ξ − η‖ ≤ 4ε.

�

Exercise 4.3. For i = 1, 2 let Bi ⊂ Mi be an embedding of finite von Neumann
algebras. Show that the following are equivalent:

(1) For i = 1, 2, the inclusion Bi ⊂Mi is rigid.
(2) The inclusion B1⊗B2 ⊂M1⊗M2 is rigid.

Recall that a pair (Γ,Λ) consisting of a countable Γ with subgroup Λ is said
to have the relative property (T) of Kazhdan-Margulis [16, 17] if every unitary
representation of Γ which admits a sequence of almost invariant unit vectors, admits
a non-zero Λ-invariant vector. Equivalently, for every ε > 0, there exist δ > 0 and
a finite subset F ⊂ Γ such that for any unitary representation π : Γ → U(Hπ)
which has a (π(F ), δ)-invariant unit vector ξ, there exists a non-zero π(Λ)-invariant
vector such that ‖η− ξ‖ ≤ ε (see [15, Theorem 1.2(a3)]). A group Γ is said to have
property (T) if the pair (Γ,Γ) has the relative property (T).
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Example 4.4. Here are a few classical examples.

(1) The example by excellence of a pair with relative property (T) is (Z2 o
SL(2,Z),Z2).

(2) For any n ≥ 3, SL(n,Z) has property (T).
(3) For any property (T) group Γ and any group H, the pair (H × Γ,Γ) has

relative property (T).

We refer to the book by Bekka, de la Harpe and Valette [1] for a comprehensive
list of groups with (relative) property (T).

Theorem 4.5 (Popa, [19]). Let Λ ⊂ Γ be an inclusion of countable groups. The
following are equivalent:

(1) The pair (Γ,Λ) has the relative property (T);
(2) The inclusion L(Λ) ⊂ L(Γ) is rigid.

Proof. Write B = L(Λ) ⊂ L(Γ) = M .
(1) =⇒ (2). Assume that the pair (Γ,Λ) has the relative property (T). Fix ε > 0.

We know that there exist δ > 0 and a finite subset F ⊂ Γ such that for any unitary
representation π : Γ → U(Hπ) which has a (π(F ), δ)-invariant unit vector ξ, there
exists a non-zero π(Λ)-invariant vector such that ‖η − ξ‖ ≤ ε. Let now H be a
M -M -bimodule and a unit tracial vector ξ ∈ H such that ‖usξ− ξus‖ ≤ δ, ∀s ∈ Γ.
Define the unitary representation π : Γ → U(H) by πs(η) = usηu

∗
s. The vector ξ

is then (π(F ), δ)-invariant. Thus there exists a π(Λ)-invariant vector η ∈ H such
that ‖η − ξ‖ ≤ ε. It is then clear that η is B-central.

(1) ⇐= (2). Assume that the inclusion B ⊂ M is rigid. Let ε = 1/2. We
know that there exist δ > 0 and a finite subset F ⊂ M such that for any M -M -
bimodule H and any tracial vector ξ ∈ H for which ‖xξ − ξx‖ ≤ δ, ∀x ∈ F , there
exists a B-central vector η ∈ H such that ‖η − ξ‖ ≤ ε. Let π : Γ → U(Hπ) be a
unitary representation. Consider the M -M -bimodule Kπ = Hπ ⊗ `2(Γ) associated
with π. Take a sequence (ζn) ∈ Hπ of almost invariant unit vectors and set ξn =
ζn ⊗ δe. It is then clear that (ξn) ∈ Kπ is a sequence of tracial vectors for which
limn ‖xξn − ξnx‖ = 0, ∀x ∈M . For n ∈ N large enough, we have ‖xξn − ξnx‖ ≤ δ,
∀x ∈ F . Write ξ = ξn. Therefore there exists a nonzero B-central vector η ∈ Kπ
such that ‖η − ξ‖ ≤ 1/2. Regard η ∈ `2(Γ, Hπ) and write η =

∑
s∈Γ ηs ⊗ δs, where

ηs ∈ Hπ. We have

‖ηe − ζ‖2 +
∑

s∈Γ−{e}

‖ηs‖2 = ‖η − ξ‖2 ≤ 1/4.

Since ζ ∈ Hπ is a unit vector, we have that ηe 6= 0. Since ηe is moreover π(Λ)-
invariant, the proof is complete. �

The previous theorem shows in particular that the inclusion L∞(T2) ⊂ L∞(T2)o
SL(2,Z) is rigid.

4.2. Applications to rigidity of II1 factors. We use now the tools we introduced
in the previous sections to get structural properties for property (T) II1 factors.
Most of the proofs are based on a “separability vs property (T)” argument that
goes back to Connes [6].
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4.2.1. Symmetry groups of property (T) factors are countable. For a II1 factor M ,
we endow the group Aut(M) with the topology of pointwise ‖ · ‖2-convergence: for
a sequence (θn) in Aut(M), we have

θn → Id⇐⇒ ‖θn(x)− x‖2 → 0,∀x ∈M.

Note that Aut(M) is a polish group. We shall denote by Inn(M) ⊂ Aut(M) the
subgroup of inner automorphisms. For any u ∈ U(M), we shall write Adu(x) =
uxu∗, ∀x ∈M . We denote by Out(M) the quotient group Aut(M)/ Inn(M).

For the hyperfinite II1 factor R, the outer automorphisms group Out(R) is
“huge”. Indeed, one can embed any second countable locally compact group G
in Out(R). For property (T) II1 factors, the situation is dramatically different.

Theorem 4.6 (Connes, [6]). Let M be a property (T) II1 factor. Then Out(M) is
countable.

Proof. We show that Inn(M) ⊂ Aut(M) is an open subgroup. Thus, it follows that
Out(M) = Aut(M)/ Inn(M) is a Hausdorff discrete group, and by separability,
Out(M) is necessarily countable. Fix ε = 1/2.

By property (T) of M , we know that there exists δ > 0 and F ⊂M finite subset
such that for every u.c.p. τ -preserving map φ : M →M , we have

sup
x∈F
‖φ(x)− x‖2 < δ =⇒ sup

x∈(M)1

‖φ(x)− x‖2 < 1/2.

Let Vδ,F = {θ ∈ Aut(M) : ‖θ(x) − x‖2 < δ,∀x ∈ F} be an open neighborhood
of Id in Aut(M). Let θ ∈ Vδ,F . Since ‖θ(x) − x‖2 < δ, ∀x ∈ F , we know that
‖θ(x) − x‖2 ≤ 1/2, for every x ∈ (M)1. Observe that ‖θ(u)u∗ − 1‖2 ≤ 1/2, for
every u ∈ U(M). Consider

C = cow{θ(u)u∗ : u ∈ U(M)}
the weak closure of the convex hull of all the θ(u)u∗’s, for u ∈ U(M). Observe that
C ⊂ (M)1 is closed in L2(M).

Denote by a ∈ C the unique element of minimum ‖ · ‖2-norm. It follows that
‖a− 1‖2 ≤ 1/2. We get a 6= 0. Observe that for every u ∈ U(M), θ(u)au∗ ∈ C and
‖θ(u)au∗‖2 = ‖a‖2. By uniqueness, we get θ(u)au∗ = a, for every u ∈ U(M). So
we have a∗au = ua∗a, for every u ∈ U(M). It follows that a∗a = λ ∈ R∗+ since M
is a factor. Therefore v = a/

√
λ ∈ U(M) and θ = Adv. �

Observe that a property (T) factor cannot have property Gamma. Recall that
for a II1 factor M , the fundamental group of M is defined as follows:

F(M) = {τ(p)/τ(q) : pMp ' qMq}.
Murray & von Neumann showed that the unique AFD II1 factor R has full fun-
damental group, i.e. F(M) = R∗+. There is an alternative way of defining the
fundamental group of M . Denote by M∞ = M⊗B(`2) the corresponding II∞ fac-
tor with semifinite trace Tr given by Tr = τ ⊗ TrB(`2). For any θ ∈ Aut(M∞),
there exists a unique λ > 0 such that Tr ◦θ = λ. We shall denote this λ by mod(θ).
Moreover, the map mod : Aut(M∞) → R∗+ is a group homomorphism. It is then
easy to check that

F(M) = {mod(θ) : θ ∈ Aut(M∞)}.
Using property (T), Connes [6] gave the first example of II1 factor with countable

fundamental group.
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Theorem 4.7 (Connes, [6]). Let M be a property (T) II1 factor. Then F(M) is
countable.

Proof. We construct a one-to-one map α : F(M) → Out(M⊗M). Since M
has property (T), M⊗M has property (T) as well (cf Exercise 4.3) and then
Out(M⊗M) is countable by Theorem 4.6. Therefore, F(M) follows countable.

Claim. Let N be a II1 factor. Let θ ∈ Aut(N∞) such that mod(θ) = 1. Then
there exist u ∈ U(N∞) and ρ ∈ Aut(N) such that

θ = Adu ◦(ρ⊗ IdB(`2)).

Therefore the group homomorphism

{β ∈ Aut(N∞) : mod(β) = 1} 3 θ 7→ [ρ] ∈ Out(N)

is well-defined.

Denote by (eij) ∈ B(`2) the canonical matrix unit such that Tr(eii) = 1, ∀i ∈
N. Let θ ∈ Aut(N∞) such that mod(θ) = 1. Write fij = θ(1 ⊗ eij). Since
Tr(f00) = Tr(1⊗ e00) = 1, f00 and 1⊗ e00 are equivalent projections in the factor
N∞, so that there exists a partial isometry v ∈ N∞ such that vv∗ = f00 and
v∗v = 1⊗ e00. Define u =

∑
fj0v(1⊗ e0j). It is routine to check that u ∈ U(N∞)

and u(1⊗ eij)u∗ = fij , which finishes the proof of the claim.
Let t ∈ F(M) and choose θt ∈ Aut(M∞) such that mod(θt) = t. Since θt⊗θt−1 ∈

Aut((M⊗M)∞) has modulus 1, the claim yields a unique αt = [ρt] ∈ Out(M⊗M),
so that the map

(1) F(M) 3 t 7→ αt ∈ Out(M⊗M)

is well-defined. If s 6= t, θ−1
s θt is outer, and so is (θs ⊗ θs−1)−1(θt ⊗ θt−1). Thus

ρs 6= ρt. Since the map (1) is one-to-one, we are done. �

4.2.2. Connes’ rigidity conjecture. Connes in the late ’70s conjectured the following:
any countable icc property (T) groups Γ,Λ,

Γ ' Λ⇐⇒ L(Λ) ' L(Λ).

Popa suggested the following strenghthening of Connes’ rigidity conjecture:

Conjecture 4.8 (Popa, [22]). If Γ is an icc property (T) group and Λ is a group,
then any ∗-isomorphism θ : L(Γ) ' L(Λ)t forces t = 1 and there exist a group
isomorphism ρ : Γ ' Λ and a character χ ∈ Hom(Γ,T) such that

θ(
∑
s∈Γ

asus) =
∑
s∈Γ

χ(s)asuρ(s).

In particular,

F(L(Γ)) = {1} and Out(L(Γ)) = Out(Γ)×Hom(Γ,T).

Popa observed in [20] that Ozawa’s original result [18] could be used to prove
Connes’ rigidity conjecture up to “countable classes”.

Theorem 4.9 (Ozawa, [18]). For icc countable property (T) groups, the map Γ→
L(Γ) is countable-to-one.
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Proof. The proof is an analog of the one of Theorem 2 in [18]. We prove the
result by contradiction and assume that there are uncountably many pairwise non-
isomorphic icc property (T) groups (Γi)i∈I which give the same II1 factor M . By
Shalom’s result [25], we know that each property (T) group is the quotient of a
finitely presented property (T) group. Since there are only countably many finitely
presented groups, we may assume that all the Γi’s are quotients of the same property
(T) group Γ.

We regard M ⊂ B(L2(M)) represented in its standard form and M = L(Γi) for
every i ∈ I, so that Γi ⊂ U(M). Denote by πi : Γ→ U(M) a group homomorphism
such that πi(Γ) = Γi. Fix ε = 1/4. Since Γ is a property (T) group, there exist
0 < δ < 1 and a finite subset E ⊂ Γ such that for any unitary representation
π : Γ → U(H) and any (π(E), δ)-invariant unit vector ξ ∈ H, there exists a π(Γ)-
invariant vector η ∈ H such that ‖η − ξ‖ ≤ 1/4.

Since the finite von Neumann `∞(E,M) is ‖ · ‖2-separable, there exist i 6= j ∈
I such that maxs∈E ‖πi(s) − πj(s)‖2 ≤ δ. Let J be the canonical antiunitary
defined on L2(M) and define the unitary representation π : Γ → U(M) by π(s) =
πi(s)Jπj(s)J . We have

‖π(s)1̂− 1̂‖L2(M) = ‖πi(s)πj(s)∗ − 1‖2 ≤ δ.

Since the vector 1̂ is (π(E), δ)-invariant, it follows that there exists a π(Γ)-invariant
vector η ∈ L2(M) such that ‖η − 1̂‖L2(M) ≤ 1/4. Thus, for every s ∈ Γ we have

‖πi(s)− πj(s)‖2 = ‖π(s)1̂− 1̂‖L2(M)

= ‖π(s)(1̂− η)− (1̂− η)‖L2(M) ≤ 1/2.

Exactly as in the proof of Theorem 4.6, denote by a the unique element of minimum
‖ · ‖2-norm in the weakly closed convex set C = cow{πi(s)πj(s)∗ : s ∈ Γ}. Since
‖a − 1‖2 ≤ δ < 1, it follows that a 6= 0. Observe that πi(s)aπj(s)∗ ∈ C and
‖πi(s)aπj(s)∗‖2 = ‖a‖2. By uniqueness, we have πi(s)aπj(s)∗ = a. Moreover,
a∗aπj(s) = πj(s)a∗a, for every s ∈ Γ. Since M is a factor and πj(Γ)′′ = M , we
have a∗a = λ ∈ R∗+. Thus v = a/

√
λ ∈ U(M) and πi(s) = vπj(s)v∗, for every

s ∈ Γ. It follows in particular that Γi and Γj are isomorphic, contradiction. �

4.3. Uniqueness of Cartan subalgebras.

Theorem 4.10 (Popa, [19]). Let Γ y B be a trace-preserving action of a countable
group Γ with the Haagerup property on a finite von Neumann algebra B. Denote
by M = BoΓ the crossed product. Let A ⊂M be a rigid von Neumann subalgebra.
Then A �M B.

Proof. Since Γ has the Haagerup property, let ϕn : Γ→ C be a sequence of positive
definite functions such that limn ϕn = 1 pointwise and ϕn ∈ C0(Γ), for all n ∈ N.
Define θn : M →M the sequence of τ -preserving ucp maps as follows:

θn(
∑
s∈Γ

asus) =
∑
s∈Γ

ϕn(s)asus.

It is straightforward to check that every θn satisfies the following relative compact-
ness property: if (wk) is a sequence in (M)1 which satisfies limk ‖EB(awkb)‖2 = 0,
for all a, b ∈M , then limk ‖θn(wk)‖2 = 0. Indeed, write wk =

∑
s∈Γ(wk)sus, where
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(wk)s = EB(wku∗s). Then we have θn(wk) =
∑
s∈Γ ϕn(s)(wk)sus and thus

‖θn(wk)‖22 =
∑
s∈Γ

|ϕn(s)|2‖(wk)s‖22.

Assume that limk ‖(wk)s‖2 = 0, for all s ∈ Γ. Fix ε > 0. Since ϕn ∈ c0(Γ),
V := {s ∈ Γ : |ϕn(s)| ≥ ε2/2} is a finite set. Then we have

‖θn(wk)‖22 =
∑

s∈Γ−V
|ϕn(s)|2‖(wk)s‖22 +

∑
s∈V
|ϕn(s)|2‖(wk)s‖22

≤ ε2/2
∑

s∈Γ−V
‖(wk)s‖22 +

∑
s∈V
|ϕn(s)|2‖(wk)s‖22

≤ ε2/2 +
∑
s∈V
|ϕn(s)|2‖(wk)s‖22.

We can choose k0 ∈ N large enough so that
∑
s∈V |ϕn(s)|2‖(wk)s‖22 ≤ ε2/2. There-

fore, we have ‖θn(wk)‖2 ≤ ε, for all k ≥ k0.
Since A ⊂ M is rigid, there exists n ∈ N such that ‖θn(w)− w‖2 ≤ 1/4, for all

w ∈ U(A). By contradiction, assume that A �M B. Then there exists a sequence
wk ∈ U(A) such that limk ‖EB(awkb)‖2 = 0, for all a, b ∈ M . For k ∈ N large
enough, we get

1 = ‖wk‖2 ≤ ‖θn(wk)− wk‖2 + ‖θn(wk)‖2 ≤ 1/4 + 1/4 = 1/2,

which is absurd. �

Corollary 4.11 (Popa, [19]). Consider the linear action SL2(Z) y T2. Then, up
to unitary conjugacy, L∞(T2) is the unique rigid Cartan subalgebra in L∞(T2) o
SL2(Z).

Proof. Write M = L∞(T2) o SL2(Z). Let A ⊂ M be rigid Cartan subalgebra.
We get A �M L∞(T2) by the previous Theorem. Since A,L∞(T2) ⊂ M are both
Cartan subalgebras of the II1 factor M , Theorem 2.14 yields u ∈ U(M) such that
uAu∗ = L∞(T2). �

We can now apply this last result to compute explicitely the fundamental group of
L(Z2oSL2(Z)). Gaboriau [13] showed that the group SL2(Z) has fixed price and its
cost equals 13/12. This means that for every free ergodic p.m.p. SL2(Z) y X, the
equivalence relation R(SL2(Z) y X) has cost 13/12. It follows from the induction
formula [13, Proposition II.6] that R(SL2(Z) y X) has trivial fundamental group.

Corollary 4.12 (Popa, [19]). We have F(L(Z2 o SL2(Z))) = {1}.

Proof. Let M = L(Z2 o SL2(Z)) = Ao SL2(Z). Let R be the equivalence relation
induced by the action SL2(Z) y T2. Let t ≤ 1 such that M 'M t. We can assume
that p ∈ A is a projection of trace t so that (pAp ⊂ pMp) ' (At ⊂M t). It follows
that At ⊂ M is a rigid Cartan subalgebra and thus there exists u ∈ U(M) such
that uAtu∗ = A, by Corollary 4.11. This shows that R ' Rt (see Theorem 1.23)
and thus t = 1. �

Popa’s result was the first explicit computation of a fundamental group of a II1

factor that was different from R+, solving then a long-standing open problem of
Kadison.
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Appendix A. Polar decomposition of a vector

Let (N, τ) be a finite von Neumann algebra. Since τ is fixed, we simply denote
L2(N, τ) by L2(N). We regard N ⊂ B(L2(N)). Let ξ ∈ L2(N) such that ξ 6= 0.
Let T 0

ξ : N̂ → L2(N) be the linear operator defined by T 0
ξ (x̂) = ξx, for all x ∈ N .

Proposition A.1. The densily defined operator T 0
ξ is closable. Denote by Tξ its

closure. The operator Tξ is affiliated with N . Write Tξ = v|Tξ| for its polar decom-
position. Then v ∈ N and |Tξ| is affiliated with N .

Let B ⊂ N be a von Neumann subalgebra such that xξ = ξx, for all x ∈ B. Then
we have xv = vx, for all x ∈ B.

Proof. First, we prove that the operator T 0
ξ is closable. It suffices to show that

(T 0
ξ )∗ is densily defined. Let y ∈ N and z ∈ N . Then,

〈T 0
ξ (ŷ), ẑ〉 = 〈ξy, ẑ〉 = 〈Jy∗ξ, ẑ〉

= 〈z∗Jy∗Jξ, 1̂〉 = 〈Jy∗Jz∗ξ, 1̂〉
= 〈ŷ, Jz∗ξ〉 = 〈ŷ, (Jξ)z〉 = 〈ŷ, T 0

Jξ(ẑ)〉.

Then T 0
Jξ ⊂ (T 0

ξ )∗ and so (T 0
ξ )∗ is densily defined. Thus T 0

ξ is closable and we
denote by Tξ its closure. We prove now that Tξ is affiliated with N . Let a, x ∈ N .
On the one hand,

T 0
ξ Ja

∗J(x̂) = T 0
ξ (x̂a) = ξxa.

On the other hand,
Ja∗JT 0

ξ (x̂) = ξxa.

Consequently, we have Ja∗JT 0
ξ ⊂ T 0

ξ Ja
∗J , for all a ∈ N . Since JNJ = N ′, it

follows that Tξ is affiliated with N . Write Tξ = v|Tξ| for the polar decomposition
of Tξ. Since v is bounded and affiliated with N , we have that v ∈ N . Moreover,
|Tξ| is affiliated with N .

At last, let B ⊂ N be a von Neumann subalgebra such that for any x ∈ B,
xξ = ξx. Fix x ∈ B. It is straightforward to check that xTξ ⊂ Tξx. We also have
x(Tξ)∗ ⊂ (Tξ)∗x, and so x(Tξ)∗Tξ ⊂ (Tξ)∗Tξx. By functional calculus, it follows
that x|Tξ| ⊂ |Tξ|x. Moreover, since N is a finite von Neumann algebra, since x ∈ N
and |Tξ| is affiliated with N , it follows that x|Tξ| and |Tξ|x are closed, affiliated
with N and consequently the equality x|Tξ| = |Tξ|x holds. Thus,

xv|Tξ| = xTξ ⊂ Tξx ⊂ v|Tξ|x ⊂ vx|Tξ|.

It follows that xv and vx coincide on the range of |Tξ|, and so xv = vx. Thus,
xv = vx, for every x ∈ B. �

Appendix B. Von Neumann’s dimension theory

Let (N, τ) be a finite von Neumann algebra with a distinguished faithful normal
trace. Let H be a right Hilbert N -module, i.e. H is a complex (separable) Hilbert
space together with a normal ∗-representation π : Nop → B(H). For any b ∈ N ,
and ξ ∈ H, we shall simply write π(bop)ξ = ξb.

Proposition B.1. Let H be a right N -module. Then there exists an isometry
v : H → `2 ⊗ L2(N) such that v(ξb) = v(ξ)b, for all ξ ∈ H, b ∈ N .
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Proof. Let ρ : Nop → B(H⊕ (`2 ⊗ L2(N))) be the ∗-representation defined by

ρ(yop) =
(
π(yop) 0

0 1`2 ⊗ yop

)
.

Let Q = ρ(Nop). It is clear that Q is a finite von Neumann algebra and the
projections

p =
(

1 0
0 0

)
and q =

(
0 0
0 1⊗ 1

)
belong to Q′∩B(H⊕(`2⊗L2(N))) which is a semifinite von Neumann algebra. Since
q is infinite and p is finite, [26, Theorem V.1.8] yields a nonzero central projection
z ∈ Z(Q′) such that zp - zq. There exists an isometry w ∈ Q′ such that w∗w = zp
and ww∗ ≤ zq. If we write

z =
(
z1 0
0 1⊗ z2

)
and w =

(
a b
c d

)
,

we get

a∗a+ c∗c = z1

b∗b+ d∗d = 0
aa∗ + bb∗ = 0
cc∗ + dd∗ ≤ 1⊗ z2.

Thus a = 0, b = 0, d = 0, c∗c = z1 and v = c : Hz1 → `2 ⊗ L2(N) is an isometry
(since u∗u = z1) which moreover satifies vπ(x) = (1⊗ x)v (since w ∈ Q′). Then a
simple maximality argument finishes the proof. �

Since p = vv∗ commutes with the right N -action on `2 ⊗ L2(N), it follows that
p ∈ B(`2)⊗N . Thus, as right N -modules, we have

HN ' p(`2 ⊗ L2(N))N .

On B(`2)⊗N , we define the following faithful normal semifinite trace Tr (which
depends on τ): for any x = [xij ]i,j ∈ (B(`2)⊗N)+,

Tr ([xij ]i,j) =
∑
i

τ(xii).

We set dim(HN ) = Tr(vv∗). Note that the dimension ofH depends on τ but does
not depend on the isometry v. Indeed take another isometry w : H → `2 ⊗ L2(N),
satisfying w(ξb) = w(ξ)b, for any ξ ∈ H, b ∈ N . Note that vw∗ ∈ B(`2)⊗N and
w∗w = v∗v = 1. Thus, we have

Tr(vv∗) = Tr(vw∗wv∗) = Tr(wv∗vw∗) = Tr(ww∗).

We define dim(HN ) := Tr(vv∗), for any isometry v as in Proposition B.1.

Appendix C. Ultraproducts

Let ω be a free ultrafilter on N and (N, τ) a finite von Neumann algebra. Let
Iω be the norm closed ideal of `∞(N, N) defined by

Iω =
{

(xn) ∈ `∞(N, N) : lim
n→ω
‖xn‖2 = 0

}
.

Denote by πω : `∞(N, N) → `∞(N, N)/Iω the quotient map. The tracial ul-
traproduct of N is defined as Nω := πω(`∞(N, N)) with tracial faithful state
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τω(πω((xn))) = limn→ω τ(xn). It is easy to check that Nω is indeed a von Neumann
algebra and τω is normal on Nω.

Exercise C.1. Let ω be a free ultrafilter and (N, τ) a finite von Neumann algebra.
• Prove that every projection e ∈ Nω lifts to a projection (en) ∈ `∞(N, N)

such that limn→ω τ(en) = τω(e).
• Show that if N is a II1 factor, so is Nω.

Regard L2(Nω) as a Hilbert subspace of L2(N)ω. For a ≥ 0, denote by fa the
characteristic function of the interval (

√
a,+∞).

Proposition C.2 ([7]). Let ξ = (ξn) ∈ L2(N)ω. Then ξ ∈ L2(Nω) if and only if
ξ satisfies the following equi-integrability condition:

(2) ∀ε > 0,∃a > 0, lim
n→ω
‖fa(|ξn|)|ξn|‖2 < ε.

Proof. Assume that ξ ∈ L2(N)ω satisfies (2). Simply write ξ = (ξn). Fix ε > 0.
Then for some a > 0, one has limn→ω ‖fa(|ξn|)ξn‖2 < ε so that the vector η = (ηn)
with ηn = ξn(1−fa)(|ξn|) satisfies ‖η−ξ‖2 = limn→ω ‖ηn−ξn‖2 ≤ ε and ‖ηn‖∞ ≤ a.
Thus, ξ ∈ L2(Nω).

Conversely assume that ξ ∈ L2(Nω). We may assume that ‖ξn‖2 ≤ 1, for all
n ∈ N. Let ε ∈ (0, 1). We can then find a > 0 and xn ∈ N such that ‖ξn−xn‖2 ≤ ε
and ‖xn‖∞ ≤ a, for all n ∈ N. Up to extracting, Powers-Størmer Inequality yields
in particular

‖|ξn| − |xn|‖22 ≤ ‖|ξn|2 − |xn|2‖1 ≤ ‖ξn − xn‖2‖ξn + xn‖2 ≤ 3ε, ∀n ∈ N.

Using the same trick as in the proof of Theorem 3.9, we get∫ ∞
0

‖fb(|ξn|)− fb(|xn|)‖22 ≤ ‖|ξn|2 − |xn|2‖1 ≤ 3ε.

Since Eb(|xn|) = 0 for all b > a, we get ‖f2a(|ξn|)‖2 ≤ (3ε)1/2/a, for all n ∈ N.
Then, for all n ∈ N,

‖f2a(|ξn|)|ξn|‖2 ≤ ‖f2a(|ξn|)(|ξn| − |xn|)‖2 + ‖xn‖∞‖f2a(|ξn|)‖2
≤ ‖|ξn| − |xn|‖2 + ‖xn‖∞‖f2a(|ξn|)‖2 ≤ 2(3ε)1/2.

This finishes the proof. �

Appendix D. On the geometry of two projections

Proposition D.1 ([7]). Let M be a finite von Neumann algebra. If e and f are
equivalent projections in M , then there exists u ∈ U(M) such that

ueu∗ = f

u|e− f | = |e− f |u
|u− 1| ≤

√
2|e− f |.

Proof. Recall the analysis of two projections in [26, Chapter V]. Let e⊥ = 1 − e
and f⊥ = 1− f . Set

e0 = e− e ∧ f − e ∧ f⊥

f0 = f − f ∧ e− f ∧ e⊥.
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We know that e0 ∧ f0 = 0 and e0 − e0 ∧ f0 = e0 ∼ f0. We then represent

e = e ∧ f ⊕
(

1 0
0 0

)
⊕ e ∧ f⊥ ⊕ 0⊕ 0,

f = e ∧ f ⊕
(
c2 cs
cs s2

)
⊕ 0⊕ e⊥ ∧ f ⊕ 0,

with c, s ∈ (e0 ∨ f0)M(e0 ∨ f0) positive elements such that c2 + s2 = e0 ∨ f0. Since
e ∼ f and e0 ∼ f0, the finiteness of M yields e∧f⊥ ∼ e⊥∧f . Consequently, e∧f⊥
and e⊥ ∧ f are represented by matrices:

e ∧ f⊥ =
(

1 0
0 0

)
e⊥ ∧ f =

(
0 0
0 1

)
.

Therefore we come to the following situation:

e = e ∧ f ⊕
(

1 0
0 0

)
⊕
(

1 0
0 0

)
⊕ 0,

f = e ∧ f ⊕
(
c2 cs
cs s2

)
⊕
(

0 0
0 1

)
⊕ 0.

and

|e− f | = 0⊕
(
s 0
0 s

)
⊕
(

1 0
0 1

)
⊕ 0.

We set

u = e ∧ f ⊕
(
c −s
s c

)
⊕
(

0 −1
1 0

)
⊕ (e ∨ f)⊥.

It is straightforward to check that u is a unitary, ueu∗ = f , u|e− f | = |e− f |u and
that

(u− 1)∗(u− 1) ≤ 2(e− f)2.

�
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