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June 28, 2011

Disclaimer

These notes are full of typos and mistakes as they are made available as soon as possible and
depend on the author’s comprehension of the talk... We still hope they can be of some interest for
the people who follow the lectures.

Growth

Let G be a finitely generated group G = 〈S〉 where S is finite. We can then define the growth:

aG,S(n) = |g ∈ G : ‖g‖S 6 n|

It is easy to see that the growth type of this function does not depend on S. So the property ∃K
such that aG,S(n) 6 Knd does not depend on S and then we say that G has polynomial growth.

Example. : G = Zd, then aG,S(n) 6 Knd. More generally, nilpotent groups have polynomial
growth and there is an exact formula for d in terms on the structure of G. For instance, G is the
Heisenberg group

G =


 1 x z

0 1 y
0 0 0

 ,

we have d(G) = 4
Nilpotent: consider sequences Gi+1 = [G,Gi] and G0 = G; nilpotent means that Gi = {e} for

some i. Other inductive definition: if Z < Z(G) and G/Z is nilpotent then G is nilpotent.

Fact. Passing to finite index subgroup does not change the growth type. So if G is almost
(virtually) nilpotent, then G has polynomial growth.

Theorem 1 (Gromov). The converse is also true.

Gromov’s proof depended on the Montgomery-Zippin work on Hilbert’s fifth problem. In 2007,
Kleiner replaced all of the Montgomery-Zippin argument by results on harmonic functions on
groups with polynomial growth. In 2009, Shalom-Tao proved a quantitative finitery version of
Gromov’s theorem.
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Theorem 2 (Shalom-Tao). There exists an absolute (explicit) constant C such that for every
finitely generated group G, d > 0, the following holds: if there exists some R0 > exp(exp(CdC)),
such that for some S finite generating G, a(G,S)(R0) < Rd

0, then G is almost nilpotent; , and even
almost polycyclic with an explicit bound to the index of the finite index polycyclic subgroup.

The proof uses simplified steps of Montgomery-Zippin, so we are going to see an elementary
proof of Gromov’s theorem. today, we do the first reduction:

Theorem 3. If G infinite has polynomial growth, then there is a finite index subgroup G0 < G
and φ : G0 � Z and Kerφ is finitely generated.

Proposition 4. This theorem implies Gromov’s theorem.

Proof. We will prove it by induction on bdc that a(G,S)(n) 6 K · nd implies that G has a finite
index subgroup which is nilpotent and torsion free.

Base: bdc = 0, then G is finite (exercise; d < 1!).
Induction: assume a(G,S)(n) 6 Knd. By theorem 3 there exists G0 < G of finite index and

ρ : G0 � Z. Let H be the kernel. We have 1→ H → G0 → Z→ 1. Note that H has polynomial
growth of degree 6 d− 1. This follows from

Lemma 1. Suppose we have 1→ B → G→ A→ 1 where B generate by F and A by SA, the we
can lift S ′A such taht G is generated by F ∪ S ′A, and then

a(B,F )(n) · a(A,SA)(n) 6 a(G,F∪SA)(2n)

So by induction we get that there is H0 < H of finite index nilpotent torsion free. We can
replace it by H1 normal in H of finite index. Let K = [H : H1]. Then for all h ∈ H, hk ∈ H1 by
Lagrange’s theorem. Let

L =
⋃
h∈H

〈hk〉 < H.

Clearly L < H1 is a characteristic subgroup. Note that it has finite index in H1 because H1/L is
a finitely generated nilpotent group which has torsion so is finite.

Let g0 ∈ G0, such taht φ(g0) = 1 ∈ Z, ie G0 = 〈g0, H〉 so 〈G0, L〉 has finite index in G0. We
will show this is almost nilpotent.

L is a torsion free finitely generated nilpotent group, and all Gi are finitely generated as well
(in the nilpotent sequence). So {0} / Lm · · · / L1 / L, and Lm is finitely generated abelian torsion
free so it is a Zr. Now it is normalised by g0 so the conjugation action of g0 is an automorphism
of the abelian group Zr, so represented by A ∈ Glr(Z).

Claim. Every eigenvalue λ of a power of A has modulus one. Indeed otherwise for some k B = Ak

has an eigenvalue |λ| > 2. [This will imply exponential growth] λ is also an eigenvalue of Bt, and
let v ∈ Cr such that Btv = λv where |λ| > 2. Take some u ∈ Zr such that 〈u, v〉 6= 0. Now
look at all the vectors of the form

∑M
i=1 αiB

iu, αi = 0, 1. Notice that all are different, because if

not βi = ±1, 0, and 〈
∑M

i=0 βiB
iu, v〉 =

∑
βiλ

i〈u, v〉 6= 0. This translates back to something inside
Zr = Lm, which gives exponential growth, a contradiction.

Claim. Every eigenvalue λ of Ak is a root of unity. Indeed, all Ak are integer matrices of r
dimension; their characteristic polynomials are

χAk(t) = (t− λ1) · · · (t− λr)
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So χAk(t) =
∑r

i=0 ait
i where |ai| < 2r, so there are finitely many λi, so some i 6= j such that

λi = λj and it is thus a root of one.
Thus some high power of g0 has eigenvalue one for its conjugation action on L, and we can find

a rational eigenvector, so an integer one: we have g0wg
−1
0 = w for some w ∈ Lm, it has infinite

order and is in the center; we can divide by it and get something again of polynomial growth lesser
than d−1, but this time w it is in the center of infinite order so we get finite index nilpotent...
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