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TD 5-Lissité

Dans la suite k sera un corps algébriquement clos.

0.1 Complément au cours

Soit F ∈ k[X,Y ] un polynôme non constant et P ∈ V (F ). Montrer que si
(
∂F
∂X (P ), ∂F∂Y (P )

)
6=

(0, 0), alors P est un point lisse de V (F ) et la tangente en P à V (F ) est donnée par l’équation
usuelle.

0.2 Exemples explicites

Pour chacune des courbes suivantes, décrire le lieu singulier et donner, pour chaque point
singulier, la multiplicité et les tangentes au point en question :

x2y + xy2 = x4, x2y + xy2 = x4 + y4, x6 + y6 = xy, (x2 + y2 − 1)3 + 27x2y2 = 0.

0.3 Finitude du lieu singulier

a) Soient f, g ∈ k[X,Y ] premiers entre eux et sans facteurs carrés. Montrer qu’un point P de
V (fg) est singulier si et seulement si P est un point singulier d’une des courbes V (f), V (g) ou
P ∈ V (f) ∩ V (g).

b) Montrer que si P est un point d’une courbe plane C qui se trouve sur au moins deux
composantes irréductibles de C, alors P est un point singulier de C.

c) Montrer qu’une courbe affine plane n’a qu’un nombre fini de points singuliers.

0.4 Coniques

On suppose que car(k) 6= 2.
a) Montrer qu’une conique irréductible est lisse.
b) Montrer que si C est une conique affine irréductible, alors par un point situé hors de C

passent en général exactement deux tangentes de C.

0.5 Points doubles ordinaires

Soit C la courbe d’équation f(x, y) = 0 et soit P un point singulier sur C. On suppose que
car(k) 6= 2. Montrer que P est un point double avec des tangentes distinctes si et seulement si(

∂2f

∂x∂y
(P )

)2

6= ∂2f

∂2x
(P ) · ∂

2f

∂2x
(P ).

0.6 Désingularisation d’une courbe

On considère la courbe C = V (Y 2 −X3 +X4) et on note f = y
x ∈ k(C).

a) Montrer que f2 = x− x2 et en déduire que k[x, f ] est entier sur k[C].
b) Montrer que k[x, f ] est intégralement clos, et que c’est la clôture intégrale de k[C] dans

k(C).
c) Trouver une désingularisation de C.
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0.7 Un anneau normal non factoriel

On suppose dans cet exercice que k n’est pas de caractéristique 2 et on considère la cubique
C = V (Y 2 −X3 +X).

a) Montrer que C est irréductible et que tout f ∈ k[C] s’écrit de manière unique sous la forme
f = P (x) +Q(x)y avec P,Q ∈ k[X] (x, y ∈ k[C] étant les images de X et Y ).

b) Montrer que σ(x, y) = (x,−y) définit un automorphisme de C et décrire les éléments de
k[C] fixés par σ∗.

c) En utilisant l’application N : k[C]→ k[C] qui à f associe f ·σ∗(f), montrer que k[C]∗ = k∗.
d) Montrer que x et y sont irréductibles et non associés dans k[C] (utiliser l’application N de

la question c)).
e) Trouver le lieu singulier de C.
f) Montrer que k[C] est intégralement clos, non factoriel, et que l’idéal maximal (x, y) corres-

pondant au point lisse (0, 0) de C n’est pas principal.

0.8 Lissité d’un arc paramétré

Soit f : A1 → C un morphisme surjectif, avec C une courbe plane. Soit x ∈ C.
a) On suppose qu’il existe t1 6= t2 ∈ f−1(x) tels que dft1(1) et dft2(1) soient linéairement

indépendants sur k. Montrer que x est un point singulier de C.
b) On suppose que la fibre f−1(x) a un unique point t, tel que dft(1) 6= (0, 0). Montrer que x

est un point lisse de C.

0.9 Bitangentes

On suppose que k n’est pas de caractéristique 2 et on se donne P ∈ k[X] non constant et qui
n’est pas le carré d’un polynôme. On note C la courbe affine V (Y 2 − P (X)).

a) Montrer que C est irréductible.
b) Montrer que C est lisse si et seulement si k[X,Y ]/(Y 2 − P (X)) est intégralement clos, si

et seulement si P est sans racines multiples.
c) On prend P = X4 + 1.
i) Trouver les droites passant par (0, 0) et tangentes à C.
ii) Trouver les bitangentes de C, i.e. les droites tangentes en deux points distincts.

0.10 L’espace tangent en général

Soit X un fermé algébrique et x ∈ X. Un vecteur tangent en x est une forme linéaire d sur
k[X] telle que

d(fg) = f(x)d(g) + g(x)d(f)

pour tous f, g ∈ k[X]. On note Tx(X) l’ensemble des vecteurs tangents en x.
a) Montrer que

Tx(A
n) =

n⊕
i=1

k · ∂

∂Xi
(x),

où ∂
∂Xi

(x) est l’application f 7→ ∂f
∂Xi

(x). En déduire que si X ⊂ An, alors

Tx(X) ' {a = (a1, ..., an) ∈ kn|
n∑

j=1

aj
∂f

∂Xi
(x) = 0, ∀f ∈ I(X)}.

b) En déduire que si X ⊂ An est un fermé et si I(X) = (f1, ..., fs), alors pour tout x ∈ X

dimTx(X) = n− rgJac(f1, ..., fs)(x),
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où Jac(f1, ..., fs)(x) =
(

∂fi
∂xj

(x)
)
i,j

est la matrice jacobienne en x.

c) Montrer que si d ∈ Tx(X), alors d induit une forme linéaire sur mx/m
2
x, où mx ⊂ k[X] est

l’idéal maximal associé à x. En déduire un isomorphisme canonique entre Tx(X) et le dual du
k-espace vectoriel mx/m

2
x.

d) Soit mX,x = mxOX,x l’idéal maximal de OX,x. Montrer que l’on a un isomorphisme ca-
nonique mx/m

2
x ' mX,x/m

2
X,x, et donc que Tx(X) ne dépend que de l’anneau local de X en

x.
e) Soit ϕ : X → Y un morphisme de fermés algébriques. Montrer que d → d ◦ ϕ∗ induit une

application k-linéaire dϕx : Tx(X)→ Tϕ(x)(Y ). Vérifier que cette application est la transposée de
l’application naturellemϕ(x)/m

2
ϕ(x) → mx/m

2
x induite par ϕ, si on identifie Tx(X) (resp. Tϕ(x)(Y ))

avec le dual de mx/m
2
x (resp. mϕ(x)/m

2
ϕ(x)). Vérifier la formule usuelle d(ψ ◦ϕ)x = dψϕ(x) ◦ dϕx.

f) Montrer que si Y est un fermé de X, alors Ty(Y ) est un sous-espace de Ty(X) pour
y ∈ Y . Montrer que si f : X → Y est un isomorphisme, alors dfx : Tx(X) → Tf(x)(Y ) est un
isomorphisme pour tout x ∈ X.

g) On considère la courbe C = {(tn, tn+1, ..., t2n−1)|t ∈ k}, avec n ≥ 1. On admet qu’il
s’agit d’un fermé algébrique de An. Calculer Tx(C) pour x = (0, ..., 0). En déduire que C n’est
isomorphe à aucun fermé algébrique de Am, avec m < n.

h) Vérifier que T(x,y)(X × Y ) ' Tx(X)⊕ Ty(Y ).

0.11 Lissité en général

Soit X un fermé algébrique et x ∈ X. On note dimx(X) le maximum des dimensions des
composantes irréductibles de X passant par x.

I. Nous allons montrer que dimk Tx(X) ≥ dimx(X) pour tout x ∈ X.
a) Expliquer pourquoi on peut supposer que X est irréductible, ce que l’on fera dans la suite.
b) Soient f1, ..., fr ∈ mx tels que leurs images dans mx/m

2
x forment une k-base de mx/m

2
x

(donc r = dimTx(X)). Soit Y = {x ∈ X, f1(x) = ... = fr(x) = 0} et soit C une composante
irréductible de Y contenant x.

i) Soit m = {f ∈ k[C], f(x) = 0}. Montrer que m = m2.
ii) En déduire que C = {x} et conclure en utilisant le Hauptidealsatz de Krull (voir la feuille

de TD 3).
II. On dit que x ∈ X est lisse si dimk Tx(X) = dimx(X). Dans la suite X est un fermé

irréductible de dimension d de An,
a) Supposons que I(X) = (f1, ..., fs). Montrer que x ∈ X est lisse si et seulement si

rgJac(f1, ..., fs)(x) = n− d.

En déduire que l’ensemble Xsing des points singuliers (i.e. non lisses) de X est un fermé algébrique
de X.

b) Supposons queX = V (f1, ..., fs) ∈ An, mais pas forcément que I(X) = (f1, ..., fs). Montrer
que si rgJac(f1, ..., fs)(x) = n− d, alors X est lisse en x.

c) (plus difficile) Montrer que X − Xsing est un ouvert dense de X (commencer par le cas
où X est une hypersurface, ensuite utiliser un exercice d’une feuille précédente, disant que X est
birationnel à une hypersurface).

On verra dans le TD prochain (ou pas...) que si X n’est pas forcément irréductible, alors tout
point lisse appartient à une unique composante irréductible de X (autrement dit que l’anneau
local de X en x est intègre). Cela permet d’étendre le résultat du c) au cas non irréductible.
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