Final take-home exam

Exercise 1 Let $\Gamma=\mathbb{S L}_{2}(\mathbb{Z})$

1. Prove that the subspaces $M_{k}(\Gamma)$ (for various integers k) are in direct sum inside $\mathscr{O}(\mathscr{H})$ (the space of holomorphic functions on the upper half-plane $\mathscr{H})$.
2. Prove that for k even

$$
\operatorname{dim} S_{k}(\Gamma)=\max \left(0, \operatorname{dim} M_{k}(\Gamma)-1\right)
$$

and that $f \rightarrow f \Delta$ induces an isomorphism $M_{k}(\Gamma) \simeq S_{k+12}(\Gamma)$.
3. Conclude that $\left(E_{4}^{a} E_{6}^{b}\right)_{4 a+6 b=k, a, b \geq 0}$ is a basis of $M_{k}(\Gamma)$.
4. Prove that there is an isomorphism of \mathbb{C}-algebras

$$
\bigoplus_{k \in \mathbb{Z}} M_{k}(\Gamma) \simeq \mathbb{C}[X, Y] .
$$

5. Without doing all the nasty computations, explain how to prove that

$$
\Delta=\frac{E_{4}^{3}-E_{6}^{2}}{1728}
$$

and

$$
E_{12}-E_{6}^{2}=\frac{2^{6} \cdot 3^{5} \cdot 7^{2}}{691} \Delta
$$

6. Deduce that if $\Delta=\sum_{n \geq 1} \tau(n) q^{n}$, then

$$
\tau(n) \equiv \sigma_{11}(n) \quad(\bmod 691)
$$

Exercise 2

1. Prove that there is a natural homeomorphism

$$
\mathbb{S L}_{2}(\mathbb{R}) / \mathbb{S O}_{2}(\mathbf{R}) \simeq \mathscr{H}:=\{z \in \mathbb{C} \mid \operatorname{Im}(z)>0\}
$$

2. Prove that the natural representation of \mathbf{R} on $L^{2}(\mathbf{R})$ has no irreducible subrepresentation.
3. Give an example of a closed subgroup G of $\mathbb{G}_{n}(\mathbf{R})$ and of a representation $V \in \operatorname{Rep}(G)$ with the property that there is a $\mathfrak{g}=\operatorname{Lie}(G)$-stable subspace $W \subset V^{\infty}$ whose closure is not stable under G.

Exercise 3 Let $\Gamma=\mathbb{S L}_{2}(\mathbb{Z})$ and let $f=\sum_{n \geq 1} a_{n} q^{n} \in S_{k}(\Gamma)$ be such that $a_{1}=1$ and f is an eigenvector of the Hecke operator T_{n} for all n. For each prime p let $\alpha_{p}, \beta_{p} \in \mathbb{C}$ be such that

$$
1-a_{p} X+p^{k-1} X^{2}=\left(1-\alpha_{p} X\right)\left(1-\beta_{p} X\right)
$$

Define

$$
L(s)=\prod_{p} \frac{1}{\left(1-\alpha_{p}^{2} p^{-s}\right)\left(1-\alpha_{p} \beta_{p} p^{-s}\right)\left(1-\beta_{p}^{2} p^{-s}\right)} .
$$

1. Briefly recall why $a_{m n}=a_{m} a_{n}$ for $\operatorname{gcd}(m, n)=1$.
2. Prove that $a_{p^{n}}=\frac{\alpha_{p}^{n+1}-\beta_{p}^{n+1}}{\alpha_{p}-\beta_{p}}$ for all primes p and all $n \geq 1$.
3. Prove that a_{n} is a real number for any n.
4. Let

$$
A(s)=\sum_{n \geq 1} \frac{a_{n}^{2}}{n^{s}} .
$$

Prove that for $\operatorname{Re}(s)$ large enough we have

$$
A(s)=\frac{\zeta(s-k+1)}{\zeta(2 s-2 k+2)} L(s) .
$$

5. Deduce that $s \rightarrow L(s)$ has meromorphic continuation to \mathbb{C} and that there is a constant $c_{k}>0$ depending only on k such that

$$
L(k)=c_{k}\langle f, f\rangle,
$$

where $\langle.,$.$\rangle is the Petersson inner product.$
6. Let

$$
\Lambda(s)=\pi^{-3 s / 2} \Gamma\left(\frac{s}{2}\right) \Gamma\left(\frac{s+1}{2}\right) \Gamma\left(\frac{s-k+2}{2}\right) L(s) .
$$

Prove that $\Lambda(2 k-1-s)=\Lambda(s)$.
7. Let

$$
B(s)=\sum_{n \geq 1} \frac{a_{n^{2}}}{n^{s}} .
$$

Prove that

$$
L(s)=\zeta(2 s-2 k+2) B(s)
$$

and that $s \rightarrow B(s)$ has meromorphic continuation to \mathbb{C}.
Exercise 4 Let V be a unitary representation of $G=\mathbb{S L}_{2}(\mathbb{R})$ on a Hilbert space. Write $a(t)=\left(\begin{array}{cc}t & 0 \\ 0 & t^{-1}\end{array}\right)$ for $t>0$ and $u(s)=\left(\begin{array}{ll}1 & s \\ 0 & 1\end{array}\right)$.

1. Let $v \in V$ and let $g, g_{n}, h_{n}, h_{n}^{\prime} \in G$ be such that $\lim _{n \rightarrow \infty} g_{n}=g, h_{n} . v=v=$ $h_{n}^{\prime} \cdot v$ for all n, and $\lim _{n \rightarrow \infty} h_{n} g_{n} h_{n}^{\prime}=1$. Prove that $g \cdot v=v$.
2. Suppose that $a(t) \cdot v=v$ for some $t>1$. Prove that $u(s) \cdot v=v$ for all s.
3. Suppose that $u(s) \cdot v=v$ for some $s \neq 0$. Prove that $a(t) \cdot v=v$ for all $t>0$. Deduce that v is fixed by G.
Suppose now that $V^{G}=0$. We want to prove that for all $v, w \in V$ we have $\lim _{g \rightarrow \infty}\langle g . v, w\rangle=0$. We argue by contradiction and assume that this does not hold.
4. Prove that we can find $v^{\prime}, w^{\prime} \in V, \alpha \in \mathbf{C}^{*}, t_{n} \rightarrow \infty$ and $v_{0} \in V$ such that $\lim _{n \rightarrow \infty}\left\langle a\left(t_{n}\right) \cdot v^{\prime}, w^{\prime}\right\rangle=\alpha$ and $\left\langle a\left(t_{n}\right) \cdot v^{\prime}, x\right\rangle \rightarrow\left\langle v_{0}, x\right\rangle$ for all $x \in V$.
5. Prove that $v_{0} \neq 0$ and that v_{0} is fixed by $u(1)$. Conclude.

Let Γ be a lattice in G and let $d x$ be the unique G-invariant probability measure on $X:=\Gamma \backslash G$. Let $V=\left\{f \in L^{2}(X) \mid \int_{\Gamma \backslash G} f(x) d x=0\right\}$, with the action of G given by $g \cdot f(x)=f(x g)$ (for the natural action of G on X).
6. Prove that $V^{G}=0$. Deduce that for all $\phi, \psi \in L^{2}(X)$ we have

$$
\lim _{g \rightarrow \infty} \int_{X} \phi(x) \psi(x g) d x=\frac{1}{\operatorname{vol}(X)} \int_{X} \phi(x) d x \cdot \int_{X} \psi(x) d x
$$

7. (challenging) Prove that the translates $Y g$ of the K-orbit $Y=(\Gamma \cap K) \backslash K$ in X become equidistributed on X as $g \rightarrow \infty$, i.e. whenever $f \in C_{c}(X)$ we have

$$
\lim _{g \rightarrow \infty} \int_{Y_{g}} f(y) d y=\int_{X} f(x) d x
$$

where we endow Y with the unique K-invariant probability measure.

