Revision exercises

1. Prove that if G is a locally compact unimodular group, then $L^{2}(G, d g)$ is a continuous representation of G (acting by right translation).
2. Prove that the natural representation of \mathbf{R} on $L^{2}(\mathbf{R})$ has no irreducible subrepresentation.
3. Prove that there is a natural homeomorphism

$$
\mathbb{S L}_{2}(\mathbb{R}) / \mathbb{S O}_{2}(\mathbf{R}) \simeq \mathscr{H}:=\{z \in \mathbb{C} \mid \operatorname{Im}(z)>0\}
$$

4. Prove that the measure $\frac{d x d y}{y^{2}}$ on \mathscr{H} is $\mathbb{S L}_{2}(\mathbb{R})$-invariant.
5. Prove that $\Delta=-y^{2}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)$ is a self-adjoint operator on $C^{\infty}(\mathscr{H})$, commuting with the action of $\mathbb{S L}_{2}(\mathbb{R})$.
6. Describe the finite dimensional unitary representations of $\mathbb{S L}_{2}(\mathbb{R})$.
7. Give an example of a locally compact unimodular group G and of an irreducible representation $V \in \operatorname{Rep}(G)$ for which the space V^{∞} of smooth vectors is not a simple \mathfrak{g}-module.
8. Give an example of a locally compact unimodular group G and of a representation $V \in \operatorname{Rep}(G)$ with the property: there is a \mathfrak{g}-stable subspace $W \subset V^{\infty}$ whose closure is not stable under G.
9. Let $k \geq 0$ be even and let $d=\operatorname{dim} M_{k}\left(\mathbb{S L}_{2}(\mathbb{Z})\right)$. Prove that there are unique $f_{0}, \ldots, f_{d-1} \in M_{k}\left(\mathbb{S L}_{2}(\mathbb{Z})\right)$ such that for any $0 \leq i, j \leq d-1$ the coefficient of q^{i} in the q-expansion of f_{j} is 1 if $i=j$ and 0 otherwise. Prove that the q expansion of f_{j} has integral coefficients and that any form whose q-expansion has integral coefficients is an integral linear combination of the f_{i}.
10. Prove that if p is a prime, then $\Gamma_{0}(p)$ has two inequivalent cusps.
11. a) Prove that for any prime p and any $k \geq 1$ we have

$$
\left|\mathbb{S L}_{2}\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)\right|=p^{3 k}\left(1-p^{-2}\right)
$$

b) Prove that for any $n \geq 1$ the map $\mathbb{S L}_{2}(\mathbb{Z}) \rightarrow \mathbb{S L}_{2}(\mathbb{Z} / n \mathbb{Z})$ is surjective and that

$$
\left|\mathbb{S L}_{2}(\mathbb{Z} / n \mathbb{Z})\right|=N^{3} \prod_{p \mid N}\left(1-p^{-2}\right) .
$$

c) Prove that

$$
\left[\mathbb{S L}_{2}(\mathbb{Z}): \Gamma_{0}(N)\right]=N \prod_{p \mid N}\left(1+p^{-1}\right)
$$

Hint: introduce an analogue $\Gamma_{1}(N)$ of $\Gamma_{0}(N)$ such that $\Gamma_{1}(N) / \Gamma(N) \simeq \mathbb{Z} / N \mathbb{Z}$ and $\Gamma_{0}(N) / \Gamma_{1}(N) \simeq(\mathbb{Z} / N \mathbb{Z})^{*}$, where $\Gamma(N)=\operatorname{ker}\left(\mathbb{S L}_{2}(\mathbb{Z}) \rightarrow \mathbb{S L}_{2}(\mathbb{Z} / n \mathbb{Z})\right)$.
12. Let $\Gamma=\mathbb{S L}_{2}(\mathbb{Z})$. Prove that (for k even)

$$
\operatorname{dim} S_{k}(\Gamma)=\max \left(0, \operatorname{dim} M_{k}(\Gamma)-1\right)
$$

and that $f \rightarrow f \Delta$ induces an isomorphism $M_{k}(\Gamma) \simeq S_{k+12}(\Gamma)$. Conclude that $\left(E_{4}^{a} E_{6}^{b}\right)_{4 a+6 b=k, a, b \geq 0}$ is a basis of $M_{k}(\Gamma)$ and that $\operatorname{dim} M_{k}(\Gamma)$ is $[k / 12]$ for $k \equiv 2$ $(\bmod 12)$ and $[k / 12]+1$ otherwise.
13. Let $G \subset \mathbb{G}_{L_{n}}(\mathbf{R})$ be a closed subgroup and $V \in \operatorname{Rep}(G)$.
a) Prove that $f . v \in V^{\infty}$ for $v \in V$ and $f \in C_{c}^{\infty}(G)$ and deduce that V^{∞} is dense in V.
b) Prove that V^{∞} is stable under G and that it is a representation of the Lie algebra $\mathrm{J}=\operatorname{Lie}(G)$.
14. For a modular form $f=\sum_{n \geq 0} a_{n} q^{n} \in M_{k}\left(\mathbb{S L}_{2}(\mathbb{Z})\right)$ define

$$
L(f, s)=\sum_{n \geq 1} \frac{a_{n}}{n^{s}} .
$$

Compute $L\left(E_{k}, s\right)$ in terms of the Riemann zeta function.
15. Prove by hand that $\frac{1}{\mid \operatorname{det}\left(x_{i j}\right)^{n}} \prod_{i, j=1}^{n} d x_{i j}$ is a left and right invariant measure on $\mathbb{G L}_{n}(\mathbf{R})$.
16. Prove that

$$
\Delta=\frac{E_{4}^{3}-E_{6}^{2}}{1728}
$$

and

$$
E_{12}-E_{6}^{2}=\frac{2^{6} \cdot 3^{5} \cdot 7^{2}}{691} \Delta
$$

Deduce that if $\Delta=\sum_{n \geq 1} \tau(n) q^{n}$, then

$$
\tau(n) \equiv \sigma_{11}(n) \quad(\bmod 691)
$$

17. Prove that $E_{4}^{2}=E_{8}, E_{4} E_{6}=E_{10}, E_{6} E_{8}=E_{14}$. Deduce that

$$
\sigma_{13}(n)-21 \sigma_{5}(n)+20 \sigma_{7}(n)=10080 \sum_{k=1}^{n-1} \sigma_{5}(k) \sigma_{7}(n-k)
$$

18. With the usual notations, prove that the product map $A \times N \times K \rightarrow \mathbb{S L}_{2}(\mathbf{R})$ is a homeomorphism.
19. Let $k \geq 4$ be an even integer and let G_{k} be the corresponding Eisenstein series for $\mathbb{S L}_{2}(\mathbb{Z})$. Given a prime p, express in terms of G_{k} the modular form $T_{p}\left(G_{k}\right)$.
20. Consider the operator

$$
D=D_{k}: \mathscr{O}(\mathscr{H}) \rightarrow \mathscr{O}(\mathscr{H}), f \rightarrow \frac{1}{2 i \pi} \frac{d f}{d z}-\frac{k}{12} E_{2} f .
$$

a) Prove that D induces an operator $D: M_{k}\left(\mathbb{S L}_{2}(\mathbb{Z})\right) \rightarrow M_{k+2}\left(\mathbb{S L}_{2}(\mathbb{Z})\right)$, and that $D f \in S_{k+2}\left(\mathbb{S L}_{2}(\mathbb{Z})\right)$ if and only if $f \in S_{k}\left(\mathbb{S L}_{2}(\mathbb{Z})\right)$.
b) Compute $D\left(E_{4}\right), D\left(E_{6}\right)$ and show that $D(\Delta)=0$.

In the next problems G is a unimodular locally compact group.
21. Let H, H^{\prime} be unitary representations of G, with H irreducible. Prove that any $T \in \operatorname{Hom}_{G}\left(H, H^{\prime}\right)$ has closed image and induces an isomorphism between H and a sub-representation of H^{\prime}. Hint: use Schur's lemma.
22. Let H, H^{\prime} be unitary representations of G such that $H \simeq H^{\prime}$ in $\operatorname{Rep}(G)$. Prove that there is an isomorphism $U \in \operatorname{Hom}_{G}\left(H, H^{\prime}\right)$ such that $\|U(h)\|=\|h\|$ for all $h \in H$.
23. Let K be a compact group. Prove that the characters ϕ_{π} of elements $\pi \in \hat{K}$ form an ON-basis of $L^{2}(K)$. Also, a finite dimensional representation V of K is irreducible if and only if $\left\langle\chi_{V}, \chi_{V}\right\rangle=1$.
In the next exercises H is a separable Hilbert space and we use the notations $B(H), H S(H), T C(H)$, etc as in the lecture.
24. Let $T \in H S(H)$ and let $\left(e_{n}\right)$ and $\left(f_{n}\right)_{n}$ be an ON-bases of H. Using the Plancherel formula twice, prove that $\sum_{n}\left\|T\left(e_{n}\right)\right\|^{2}=\sum_{n}\left\|T^{*}\left(f_{n}\right)\right\|^{2}$. Deduce that $T^{*} \in H S(H)$ and that $\sum_{n}\left\|T\left(e_{n}\right)\right\|^{2}$ is independent of the ON-basis $\left(e_{n}\right)_{n}$.
25. Prove that any $T \in H S(H)$ is compact. Hint: pick an ON-basis $\left(e_{n}\right)$ and consider the operators $T_{n}(v)=\sum_{k \leq n}\left\langle v, e_{k}\right\rangle T\left(e_{k}\right)$.
26. Let $T \in B(H)$ and $S \in H S(H)$.
a) Prove that $T S, S T \in H S(H)$.
b) If $T \in H S(H)$, prove that $T S, S T \in T C(H)$.
27. In this exercise we will prove that any $T \in T C(H)$ can be written $T=A B$ with $A, B \in H S(H)$.
a) Explain why T is compact and why $\operatorname{ker}\left(T^{*} T\right)=\operatorname{ker}(T)$. Deduce that $\operatorname{ker}(T)^{\perp}$ has an ON-basis $\left(v_{n}\right)_{n}$ such that $T^{*} T v_{n}=\lambda_{n} v_{n}$ for some $\lambda_{n}>0$ tending to 0 .
b) Define operators S, U by setting them equal to 0 on $\operatorname{ker}(T)$ and asking that $S v_{n}=\sqrt[4]{\lambda_{n}} v_{n}$ and $U v_{n}=\frac{1}{\sqrt{\lambda_{n}}} v_{n}$. Prove that $T=U S^{2}$ and that $\|U v\|=\|v\|$ for $v \in \operatorname{ker}(T)^{\perp}$.
c) Let $\left(e_{n}\right)$ be an ON-basis of H such that $\sum\left\|T e_{n}\right\|<\infty$. Prove that $\left\|T e_{n}\right\| \geq$ $\left\|S e_{n}\right\|^{2}$ (use Cauchy-Schwarz) and deduce that $S, U \in H S(H)$. Conclude.
d) Deduce that $\sum\left\|T f_{n}\right\|<\infty$ for any ON-basis $\left(f_{n}\right)_{n}$ of H.
28. Let $T \in T C(H)$ and let $\left(e_{n}\right)_{n}$ and $\left(f_{n}\right)_{n}$ be two ON-bases of H.
a) Prove that

$$
\sum_{k}\left|\left\langle T e_{n}, f_{k}\right\rangle\left\langle f_{k}, e_{n}\right\rangle\right| \leq\left\|T e_{n}\right\|
$$

and deduce that $\sum_{n, k}\left|\left\langle T e_{n}, f_{k}\right\rangle\left\langle f_{k}, e_{n}\right\rangle\right|<\infty$.
b) By computing $\sum_{n, k}\left\langle T e_{n}, f_{k}\right\rangle\left\langle f_{k}, e_{n}\right\rangle$ in two different ways, prove that

$$
\sum_{n}\left\langle T e_{n}, e_{n}\right\rangle=\sum_{n}\left\langle T f_{n}, f_{n}\right\rangle .
$$

In the problems below Γ is a finite index subgroup of $\Gamma(1):=\mathbb{S L}_{2}(\mathbb{Z})$.
29. Prove that $M(\Gamma):=\sum_{k \in \mathbb{Z}} M_{k}(\Gamma)$ is a sub-ring of $\mathscr{O}(\mathscr{H})$ and that $S(\Gamma):=$ $\sum_{k \in \mathbb{Z}} S_{k}(\Gamma)$ is an ideal in $M(\Gamma)$.
30. Prove that the subspaces $M_{k}(\Gamma)$ (for various integers k, but fixed Γ) are in direct sum in $\mathscr{O}(\mathscr{H})$.
31. Prove that if $f \in M_{k}(\Gamma)$ and $\alpha \in \mathbb{S L}_{2}(\mathbb{Z})$, then $\left.f\right|_{k} \alpha \in M_{k}\left(\alpha^{-1} \Gamma \alpha\right)$.
32. Prove that $\sum_{(c, d) \in \mathbb{Z}^{2} \backslash\{(0,0)\}} \frac{1}{(c z+d)^{k}}$ converges uniformly on compact subsets of \mathscr{H} for $k \geq 3$, but that this fails for $k=2$.
33. Let $k \geq 3$ and let $\varphi \in \mathscr{O}(\mathscr{H})$ be an h-periodic and bounded function, where $h>0$ is such that $\Gamma_{\infty}:=\Gamma \cap\left(\begin{array}{cc}1 & \mathbb{Z} \\ 0 & 1\end{array}\right)=\left(\begin{array}{cc}1 & h \mathbb{Z} \\ 0 & 1\end{array}\right)$. Prove that $p_{\varphi}:=\left.\sum_{\gamma \in \Gamma_{\infty} \backslash \Gamma} \varphi\right|_{k} \gamma$ is well-defined and belongs to $M_{k}(\Gamma)$. What is p_{φ} for φ the constant function 1 and $\Gamma=\mathbb{S L}_{2}(\mathbb{Z})$?
34. The goal of this exercise is to prove that $G_{2}(-1 / z)=z^{2} G_{2}(z)-2 i \pi z$, where

$$
G_{2}(z)=\sum_{c \in \mathbb{Z}}\left(\sum_{d \in \mathbb{Z},(c, d) \neq(0,0)} \frac{1}{(c z+d)^{2}}\right) .
$$

a) Explain why $\sum_{d \in \mathbb{Z}} \frac{1}{(c z+d)(c z+d+1)}=0$ for all c and deduce that

$$
G_{2}(z)=\sum_{d \neq 0} \frac{1}{d^{2}}+\sum_{d} \sum_{c \neq 0} \frac{1}{(c z+d)^{2}(c z+d+1)} .
$$

b) Show that

$$
z^{-2} G_{2}(-1 / z)=\sum_{c \neq 0} \frac{1}{c^{2}}+\sum_{d} \sum_{c \neq 0} \frac{1}{(c z+d)^{2}}
$$

c) Conclude that

$$
z^{-2} G_{2}(-1 / z)-G_{2}(z)=\sum_{d} \sum_{c \neq 0} \frac{1}{(c z+d)(c z+d+1)} .
$$

d) Using Euler's identity, show that

$$
\begin{gathered}
\sum_{d} \sum_{c \neq 0} \frac{1}{(c z+d)(c z+d+1)}= \\
\lim _{N \rightarrow \infty} \sum_{c \neq 0}\left(\frac{1}{c z-N}-\frac{1}{c z+N}\right)=\frac{2 i \pi}{z} .
\end{gathered}
$$

35. Let $\varphi \in L^{1}(G)$ be left and right K-finite and \mathscr{C}-finite. Prove that the associated Poincaré series p_{φ} is bounded.
36. Prove directly (i.e. without using theorems in the course) that if a discrete subgroup Γ of G contains a nontrivial unipotent matrix, then $\Gamma \backslash \mathscr{H}$ is not compact.
