Revision exercises

- 1. Prove that if G is a locally compact unimodular group, then $L^2(G, dg)$ is a continuous representation of G (acting by right translation).
- 2. Prove that the natural representation of \mathbf{R} on $L^2(\mathbf{R})$ has no irreducible subrepresentation.
- 3. Prove that there is a natural homeomorphism

$$\mathbb{SL}_2(\mathbb{R})/\mathbb{SO}_2(\mathbb{R}) \simeq \mathscr{H} := \{ z \in \mathbb{C} | \operatorname{Im}(z) > 0 \}.$$

- 4. Prove that the measure $\frac{dxdy}{y^2}$ on \mathscr{H} is $\mathbb{SL}_2(\mathbb{R})$ -invariant.
- 5. Prove that $\Delta = -y^2 (\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2})$ is a self-adjoint operator on $C^{\infty}(\mathscr{H})$, commuting with the action of $SL_2(\mathbb{R})$.
- 6. Describe the finite dimensional unitary representations of $SL_2(\mathbb{R})$.
- 7. Give an example of a locally compact unimodular group G and of an irreducible representation $V \in \operatorname{Rep}(G)$ for which the space V^{∞} of smooth vectors is not a simple \mathfrak{g} -module.
- 8. Give an example of a locally compact unimodular group G and of a representation $V \in \operatorname{Rep}(G)$ with the property: there is a \mathfrak{g} -stable subspace $W \subset V^{\infty}$ whose closure is not stable under G.
- 9. Let $k \ge 0$ be even and let $d = \dim M_k(\mathbb{SL}_2(\mathbb{Z}))$. Prove that there are unique $f_0, ..., f_{d-1} \in M_k(\mathbb{SL}_2(\mathbb{Z}))$ such that for any $0 \le i, j \le d-1$ the coefficient of q^i in the q-expansion of f_j is 1 if i = j and 0 otherwise. Prove that the q-expansion of f_j has integral coefficients and that any form whose q-expansion has integral coefficients is an integral linear combination of the f_i .
- 10. Prove that if p is a prime, then $\Gamma_0(p)$ has two inequivalent cusps.
- 11. a) Prove that for any prime p and any $k \ge 1$ we have

$$\mathbb{SL}_2(\mathbb{Z}/p^k\mathbb{Z})| = p^{3k}(1-p^{-2}).$$

b) Prove that for any $n \ge 1$ the map $\mathbb{SL}_2(\mathbb{Z}) \to \mathbb{SL}_2(\mathbb{Z}/n\mathbb{Z})$ is surjective and that

$$|\mathbb{SL}_2(\mathbb{Z}/n\mathbb{Z})| = N^3 \prod_{p|N} (1-p^{-2}).$$

c) Prove that

$$[\mathbb{SL}_2(\mathbb{Z}):\Gamma_0(N)] = N \prod_{p|N} (1+p^{-1})$$

Hint: introduce an analogue $\Gamma_1(N)$ of $\Gamma_0(N)$ such that $\Gamma_1(N)/\Gamma(N) \simeq \mathbb{Z}/N\mathbb{Z}$ and $\Gamma_0(N)/\Gamma_1(N) \simeq (\mathbb{Z}/N\mathbb{Z})^*$, where $\Gamma(N) = \ker(\mathbb{SL}_2(\mathbb{Z}) \to \mathbb{SL}_2(\mathbb{Z}/n\mathbb{Z}))$.

12. Let $\Gamma = \mathbb{SL}_2(\mathbb{Z})$. Prove that (for k even)

$$\dim S_k(\Gamma) = \max(0, \dim M_k(\Gamma) - 1)$$

and that $f \to f\Delta$ induces an isomorphism $M_k(\Gamma) \simeq S_{k+12}(\Gamma)$. Conclude that $(E_4^a E_6^b)_{4a+6b=k,a,b\geq 0}$ is a basis of $M_k(\Gamma)$ and that dim $M_k(\Gamma)$ is [k/12] for $k \equiv 2 \pmod{12}$ and [k/12] + 1 otherwise.

13. Let $G \subset \mathbb{GL}_n(\mathbf{R})$ be a closed subgroup and $V \in \operatorname{Rep}(G)$.

a) Prove that $f.v \in V^{\infty}$ for $v \in V$ and $f \in C_c^{\infty}(G)$ and deduce that V^{∞} is dense in V.

b) Prove that V^{∞} is stable under G and that it is a representation of the Lie algebra $\mathfrak{g} = \operatorname{Lie}(G)$.

14. For a modular form $f = \sum_{n \ge 0} a_n q^n \in M_k(\mathbb{SL}_2(\mathbb{Z}))$ define

$$L(f,s) = \sum_{n \ge 1} \frac{a_n}{n^s}.$$

Compute $L(E_k, s)$ in terms of the Riemann zeta function.

- 15. Prove by hand that $\frac{1}{|\det(x_{ij})|^n} \prod_{i,j=1}^n dx_{ij}$ is a left and right invariant measure on $\mathbb{GL}_n(\mathbf{R})$.
- 16. Prove that

$$\Delta = \frac{E_4^3 - E_6^2}{1728}$$

and

$$E_{12} - E_6^2 = \frac{2^6 \cdot 3^5 \cdot 7^2}{691} \Delta.$$

Deduce that if $\Delta = \sum_{n \ge 1} \tau(n) q^n$, then

$$\tau(n) \equiv \sigma_{11}(n) \pmod{691}.$$

17. Prove that $E_4^2 = E_8, E_4 E_6 = E_{10}, E_6 E_8 = E_{14}$. Deduce that

$$\sigma_{13}(n) - 21\sigma_5(n) + 20\sigma_7(n) = 10080 \sum_{k=1}^{n-1} \sigma_5(k)\sigma_7(n-k).$$

18. With the usual notations, prove that the product map $A \times N \times K \to \mathbb{SL}_2(\mathbf{R})$ is a homeomorphism.

- 19. Let $k \ge 4$ be an even integer and let G_k be the corresponding Eisenstein series for $SL_2(\mathbb{Z})$. Given a prime p, express in terms of G_k the modular form $T_p(G_k)$.
- 20. Consider the operator

$$D = D_k : \mathscr{O}(\mathscr{H}) \to \mathscr{O}(\mathscr{H}), f \to \frac{1}{2i\pi} \frac{df}{dz} - \frac{k}{12} E_2 f.$$

a) Prove that D induces an operator $D: M_k(\mathbb{SL}_2(\mathbb{Z})) \to M_{k+2}(\mathbb{SL}_2(\mathbb{Z}))$, and that $Df \in S_{k+2}(\mathbb{SL}_2(\mathbb{Z}))$ if and only if $f \in S_k(\mathbb{SL}_2(\mathbb{Z}))$.

b) Compute $D(E_4), D(E_6)$ and show that $D(\Delta) = 0$.

In the next problems G is a unimodular locally compact group.

- 21. Let H, H' be unitary representations of G, with H irreducible. Prove that any $T \in \operatorname{Hom}_G(H, H')$ has closed image and induces an isomorphism between H and a sub-representation of H'. Hint: use Schur's lemma.
- 22. Let H, H' be unitary representations of G such that $H \simeq H'$ in $\operatorname{Rep}(G)$. Prove that there is an isomorphism $U \in \operatorname{Hom}_G(H, H')$ such that ||U(h)|| = ||h|| for all $h \in H$.
- 23. Let K be a compact group. Prove that the characters ϕ_{π} of elements $\pi \in \hat{K}$ form an ON-basis of $L^2(K)$. Also, a finite dimensional representation V of K is irreducible if and only if $\langle \chi_V, \chi_V \rangle = 1$.

In the next exercises H is a separable Hilbert space and we use the notations B(H), HS(H), TC(H), etc as in the lecture.

- 24. Let $T \in HS(H)$ and let (e_n) and $(f_n)_n$ be an ON-bases of H. Using the Plancherel formula twice, prove that $\sum_n ||T(e_n)||^2 = \sum_n ||T^*(f_n)||^2$. Deduce that $T^* \in HS(H)$ and that $\sum_n ||T(e_n)||^2$ is independent of the ON-basis $(e_n)_n$.
- 25. Prove that any $T \in HS(H)$ is compact. Hint: pick an ON-basis (e_n) and consider the operators $T_n(v) = \sum_{k \leq n} \langle v, e_k \rangle T(e_k)$.
- 26. Let $T \in B(H)$ and $S \in HS(H)$.
 - a) Prove that $TS, ST \in HS(H)$.
 - b) If $T \in HS(H)$, prove that $TS, ST \in TC(H)$.
- 27. In this exercise we will prove that any $T \in TC(H)$ can be written T = AB with $A, B \in HS(H)$.

a) Explain why T is compact and why $\ker(T^*T) = \ker(T)$. Deduce that $\ker(T)^{\perp}$ has an ON-basis $(v_n)_n$ such that $T^*Tv_n = \lambda_n v_n$ for some $\lambda_n > 0$ tending to 0.

b) Define operators S, U by setting them equal to 0 on ker(T) and asking that $Sv_n = \sqrt[4]{\lambda_n}v_n$ and $Uv_n = \frac{1}{\sqrt{\lambda_n}}v_n$. Prove that $T = US^2$ and that ||Uv|| = ||v|| for $v \in \ker(T)^{\perp}$.

c) Let (e_n) be an ON-basis of H such that $\sum ||Te_n|| < \infty$. Prove that $||Te_n|| \ge ||Se_n||^2$ (use Cauchy-Schwarz) and deduce that $S, U \in HS(H)$. Conclude. d) Deduce that $\sum ||Tf_n|| < \infty$ for any ON-basis $(f_n)_n$ of H.

28. Let $T \in TC(H)$ and let $(e_n)_n$ and $(f_n)_n$ be two ON-bases of H. a) Prove that

$$\sum_{k} |\langle Te_n, f_k \rangle \langle f_k, e_n \rangle| \le ||Te_n||$$

and deduce that $\sum_{n,k} |\langle Te_n, f_k \rangle \langle f_k, e_n \rangle| < \infty$.

b) By computing $\sum_{n,k} \langle Te_n, f_k \rangle \langle f_k, e_n \rangle$ in two different ways, prove that

$$\sum_{n} \langle Te_n, e_n \rangle = \sum_{n} \langle Tf_n, f_n \rangle.$$

In the problems below Γ is a finite index subgroup of $\Gamma(1) := \mathbb{SL}_2(\mathbb{Z})$.

- 29. Prove that $M(\Gamma) := \sum_{k \in \mathbb{Z}} M_k(\Gamma)$ is a sub-ring of $\mathcal{O}(\mathcal{H})$ and that $S(\Gamma) := \sum_{k \in \mathbb{Z}} S_k(\Gamma)$ is an ideal in $M(\Gamma)$.
- 30. Prove that the subspaces $M_k(\Gamma)$ (for various integers k, but fixed Γ) are in direct sum in $\mathcal{O}(\mathcal{H})$.
- 31. Prove that if $f \in M_k(\Gamma)$ and $\alpha \in \mathbb{SL}_2(\mathbb{Z})$, then $f|_k \alpha \in M_k(\alpha^{-1}\Gamma\alpha)$.
- 32. Prove that $\sum_{(c,d)\in\mathbb{Z}^2\setminus\{(0,0)\}} \frac{1}{(cz+d)^k}$ converges uniformly on compact subsets of \mathscr{H} for $k \geq 3$, but that this fails for k = 2.
- 33. Let $k \geq 3$ and let $\varphi \in \mathscr{O}(\mathscr{H})$ be an *h*-periodic and bounded function, where h > 0 is such that $\Gamma_{\infty} := \Gamma \cap \begin{pmatrix} 1 & \mathbb{Z} \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & h\mathbb{Z} \\ 0 & 1 \end{pmatrix}$. Prove that $p_{\varphi} := \sum_{\gamma \in \Gamma_{\infty} \setminus \Gamma} \varphi|_k \gamma$ is well-defined and belongs to $M_k(\Gamma)$. What is p_{φ} for φ the constant function 1 and $\Gamma = \mathbb{SL}_2(\mathbb{Z})$?

34. The goal of this exercise is to prove that $G_2(-1/z) = z^2 G_2(z) - 2i\pi z$, where

$$G_2(z) = \sum_{c \in \mathbb{Z}} \left(\sum_{d \in \mathbb{Z}, (c,d) \neq (0,0)} \frac{1}{(cz+d)^2} \right)$$

a) Explain why $\sum_{d \in \mathbb{Z}} \frac{1}{(cz+d)(cz+d+1)} = 0$ for all c and deduce that

$$G_2(z) = \sum_{d \neq 0} \frac{1}{d^2} + \sum_{d} \sum_{c \neq 0} \frac{1}{(cz+d)^2(cz+d+1)}.$$

b) Show that

$$z^{-2}G_2(-1/z) = \sum_{c \neq 0} \frac{1}{c^2} + \sum_d \sum_{c \neq 0} \frac{1}{(cz+d)^2}$$

c) Conclude that

$$z^{-2}G_2(-1/z) - G_2(z) = \sum_d \sum_{c \neq 0} \frac{1}{(cz+d)(cz+d+1)}.$$

d) Using Euler's identity, show that

$$\sum_{d} \sum_{c \neq 0} \frac{1}{(cz+d)(cz+d+1)} =$$
$$\lim_{N \to \infty} \sum_{c \neq 0} \left(\frac{1}{cz-N} - \frac{1}{cz+N} \right) = \frac{2i\pi}{z}.$$

- 35. Let $\varphi \in L^1(G)$ be left and right K-finite and C-finite. Prove that the associated Poincaré series p_{φ} is bounded.
- 36. Prove directly (i.e. without using theorems in the course) that if a discrete subgroup Γ of G contains a nontrivial unipotent matrix, then $\Gamma \backslash \mathscr{H}$ is not compact.