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Foreword

Mathematicians have ambiguous relations with the history of their discipline.
They experience pride in describing how important new concepts emerged grad-
ually or suddenly, but sometimes tend to prettify the history, carried away with
imaginings of how ideas might have developed in harmonious and coherent fash-
ion. This tendency has sometimes irritated professional historians of science, well
aware that the development has often been much more tortuous.

It is our implicit belief that the uniformization theorem is one of the major
results of 19th century mathematics. In modern terminology its formulation is
simple:

Every simply connected Riemann surface is isomorphic to the complex plane,
the open unit disc, or the Riemann sphere.

And one can even find proofs in the recent literature establishing it by means
of not very complicated argumentation in just a few pages (see e.g. [Hub2006]).
Yet it required a whole century before anyone managed to formulate the theorem
and for a convincing proof to be given in 1907. The present book considers this
maturation process from several angles.

But why is this theorem interesting? In the introduction to his celebrated 1900
article [Hil1900b] listing his 23 most significant open problems, David Hilbert
proposed certain “criteria of quality” characterizing a good problem. The first
of these requires that the problem be easy to state, and the uniformization theo-
rem certainly satisfies this condition since its statement occupies only two lines!
The second requirement — that the proof be beautiful — we leave to the reader
to check. Finally, and perhaps most importantly, it should generate connections
between different areas and lead to new developments. The reader will see how
the uniformization theorem evolved in parallel with the emergence of modern
algebraic geometry, the creation of complex analysis, the stirrings of functional
analysis, the blossoming of the theory of linear differential equations, and the
birth of topology. It is one of the guiding principles of 19th century mathematics.
And furthermore Hilbert’s twenty-second problem was directly concerned with
uniformization.
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We should give the reader fair warning that this book represents a rather mod-
est contribution. Its authors are not historians — many of them can’t even read
German! They are mathematicians wishing to cast a stealthy glance at the past of
this so fundamental theorem in the hope of bringing to light some of the beautiful
— and potentially useful — ideas lying hidden in long-forgotten papers. Further-
more, the authors cannot claim to belong to the first rank of specialists in modern
aspects of the uniformization theorem. Thus the present work is not a complete
treatise on the subject, and we are aware of the gaps we should have plugged if
only we had had the time.

Our exposition is perhaps somewhat unusual. We don’t so much describe the
history of a result as re-examine the old proofs with the eyes of modern math-
ematicians, querying their validity and attempting to complete them where they
fail, first as far as possible within the context of the background knowledge of the
period in question, or, if that turns out to be too difficult, then by means of modern
mathematical tools not available at the time. Although the proofs we arrive at as a
result are not necessarily more economical than modern ones, it seems to us that
they are superior in terms of ease of comprehension. The reader should not be
surprised to find many anachronisms in the text — for instance calling on Sobolev
to rescue Riemann! Nor should he be surprised that results are often stated in a
much weaker form than their modern-day versions — for example, we present
the theorem on isothermal coordinates, established by Ahlfors and Bers under the
general assumption of measurability, only in the analytic case dealt with by Gauss.
Gauss’ idea seems to us so limpid as to be well worth presenting in his original
context.

We hope that this book will be of use to today’s mathematicians wishing to
glance back at the history of their subject. But we also believe that it can be used
to provide masters-level students with an illuminating approach to concepts of
great importance in contemporary research.

The book was conceived as follows: In 2007 fifteen mathematicians fore-
gathered at a country house in Saint-Germain-la-Forét, Sologne, to spend a week
expounding to one another fifteen different episodes from the history of the uni-
formization theorem, given its first complete proof in 1907. It was thus a week
commemorating a mathematical centenary! Back home, the fifteen edited their
individual contributions, which were then amalgamated. A second retreat in the
same rural setting one year later was devoted to intensive collective rewriting,
from which there emerged a single work in manuscript form. After multiple fur-
ther rewriting sessions, this time in small subsets of the fifteen, the present book
ultimately materialized.

We are grateful for the financial support provided by the grant ANR Symplexe
BLANO6-3-137237, which made the absorbing work of producing this book fea-
sible.
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General introduction:
The uniformization theorem

The study of plane curves is one of the chief preoccupations of mathematicians.
The ancient Greeks investigated in detail straight lines, circles, as well as the
conic sections and certain more exotic curves such as Archimedean spirals. A
systematic study of general curves became possible only with the introduction of
Cartesian coordinates by Fermat and Descartes during the first half of the 17th
century [Fer1636, Desc1637], marking the beginning of algebraic geometry. For
the prehistory of algebraic geometry the reader may consult [BrKn1981, Chal837,
Die1974, Weil1981].

Two ways of representing a curve

A plane curve can be modelled mathematically in two — in some sense dual —
ways:

— by an implicit equation F(x,y) = 0, where F : R?> — R is a real function of
two real variables;

— as a parametrized curve, that is, as the image of amap y : R — R?.

We shall see that the uniformization theorem allows one to pass from the first
of these representations to the second. If F is a polynomial, the curve is said
to be algebraic (formerly such curves were called “geometric”), otherwise tran-
scendental (formerly “mechanical”). A significant part of this book is concerned
with algebraic curves but, as we shall see, the uniformization theorem in its final
version provides an entrée into the investigation of (almost) all curves.
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Among transcendental curves we find various kinds of spirals and catenaries,
the brachistochrone and other tautochrones, which played a fundamental role in
the development of mathematics in the 17th century.

N

Figure 1: Some transcendental curves

Formerly the study of algebraic curves consisted in a case-by-case examina-
tion of a large number of examples of curves with complicated names (lemnis-
cates, cardioids, folia, strophoids, cissoids, etc.) which used to be found among
the exercises in undergraduate textbooks and which continue to give pleasure to
amateur mathematicians!.

Q=K o<

Figure 2: Some algebraic curves

The first invariant that suggests itself for an algebraic curve is the degree of the
polynomial F, readily seen to be independent of the system of plane (Cartesian)
coordinates to which the curve is referred. It is clear that straight lines are pre-
cisely the curves of degree 1, and it is not difficult to show that the venerable conic
sections of the ancient Greeks are just the curves of degree 2. In a celebrated work
[New1704] Newton took up the task of producing a “qualitative” classification of

ISee e.g. http://www.mathcurve.com/ or http://www.2dcurves.com/.
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the curves of degree 3, concluding that there are 72 different types2. Evidently it
would be difficult if not impossible to continue in this fashion since the number
of possible “types” increases very rapidly with the degree and the situation soon
becomes impenetrable.

Three innovations

Three major mathematical innovations led to significant clarification of the situa-
tion. First came the understanding that the projection from a point in 3-dimensional
space of one plane onto another, both situated in that space and neither contain-
ing the point of projection, transforms an algebraic curve in one plane into an
algebraic curve on the other, moreover of the same degree, said to be projectively
equivalent to the first. For example, every non-degenerate conic section is the im-
age of a circle under a suitable such projection; hence from the projective point of
view the distinction between ellipses, parabolas, and hyperbolas disappears: there
now exists just a single equivalence class of non-degenerate conic sections. Simi-
larly, after having defined a diverging parabola to be a curve given by an equation
of the form y? = ax? + bx? + cx + d, Newton states that:

Just as the circle lit by a point-source of light yields by its shadow all curves
of the second degree, so also do the shadows of diverging parabolas give all
curves of the third degree.

Here we are at the beginning of projective geometry, initiated by Girard De-
sargues [Desal639]. Rather than considering a curve F(x,y) = 0 in the plane
coordinatized by pairs (x,y), one considers it in the projective plane, coordina-
tized by means of homogeneous coordinates [X : Y : Z], where now the curve
is given by a homogeneous polynomial F(X,Y,Z) = 0. Each set of points of the
projective plane with Z # 0 and fixed values for the ratios X/Z and Y/Z corre-
sponds to the point of the affine plane with coordinates x = X/Z and y = Y/Z,
so that the projective plane is in effect the ordinary affine plane with a line at
infinity adjoined, each of whose points corresponds to a line through [0 : 0 : 0]
in XY Z-space with Z = 0 and with [0 : O : O] omitted. It follows that the two
branches of a hyperbola in the affine plane join up at two points on the line at
infinity, namely the points of that line determined by its two asymptotes, while a
parabola is actually tangential to the line at infinity. Thus utilization of projective

2Note however that he “missed” 6, his definition of “type” in this context was criticized by Euler,
and Pliicker, using a different criterion, distinguished 219 types.
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geometry simplifies the geometrical picture in a significant way, reducing appar-
ently distinct cases down to an examination of the relative positions of a projective
algebraic curve and a (projective) line. The adjunction of the line at infinity has
other advantages: for instance, every pair of distinct projective lines intersects in
a point, which will be at infinity precisely when the corresponding affine lines are
parallel.

The second major innovation, dating back to the turn of the 19th century, was
the systematic use of complex numbers in geometry, leading to the need to con-
sider the complex points of the algebraic curve under investigation, that is, the
complex solutions of the equation F(x,y) = 0, where furthermore the polyno-
mial F(x,y) is, naturally, now allowed to have complex coefficients. The fact
that the field of complex numbers is algebraically closed — awareness of which
grew gradually until it was finally established in the 19th century — entails a sub-
stantial consolidation of geometrical statements. Clearly projective geometry and
complex geometry represent natural enlargements of the original context of the
study of plane curves, and indeed until relatively recently were together taken as
providing the most natural framework for algebraic geometry.

To take a simple example, the straight line y = 0 now meets every “parabola”
y = ax? + bx + ¢ (with not all of a,b,c zero) in two points. The sign of the
discriminant is no longer of any importance — indeed it no longer really has a
sign! — but if it vanishes then the two roots merge into one. If a = 0,56 # 0 one of
the points is at infinity and if a = b = 0,¢ # 0 there is a “double root at infinity”3.
(The case @ = b = ¢ = 0 is exceptional.) Thus does one see the unifying power
of complex projective algebraic geometry. An even more compelling example
concerns the cyclic points, which are both imaginary and on the line at infinity.
These are just the points [1 : i : O] and [1 : —i : 0]. It is not difficult to see that a
conic section in the Euclidean plane is a circle if and only if, considered as a conic
in the complex projective plane, it passes through the cyclic points. From this fact
many of the properties of circles can be inferred, since they in fact reduce to the
question of the position of a conic relative to two points.

Even if we study complex algebraic curves only up to projective coordinate
changes, a systematic classification still eludes us except in small degrees. To
see this it suffices to note, as Cramer did in 1750, that the vector space of alge-
braic curves of degree d has dimension d(d + 3)/2, while the group of projective
transformations has “only” dimension 8 [Cral750].

The third major innovation, due to Poncelet, Pliicker, and Steiner [Ponc1822,
Plii1831, Ste1832] among others, rested on the discovery that one can investigate
curves by means of non-linear coordinate changes. Among such coordinate trans-

3To see this rewrite the equation in terms of homogeneous coordinates.



General introduction Xvil

formations inversion plays an important role. (Up until the 1960s many chapters
of high school geometry textbooks used to be devoted to inversion.) One very sim-
ple algebraic version is the transformation (to which the name De Jonquigres is
attached) sending each point with affine coordinates (x, y) to the point (1/x,1/y),
or, in its “homogenized” variant, mapping the point with projective coordinates
[X:Y:Z]to[YZ : XZ: XY]. This prompts two remarks. First, this “transfor-
mation” o is not everywhere defined. When two of the homogeneous coordinates
are zero — the three such points forming the vertices of a triangle with one side
on the line at infinity — the image is not defined (since [0 : 0 : 0] does not
correspond to a point of the projective plane). Secondly, the transformation is
not injective: the line at infinity Z = 0 is sent entirely to the point x = y = 0.
However, apart from such “details”, which hardly bothered our predecessors, this
transformation may be regarded as a legitimate change of variables. It is “almost”
bijective in view of the fact that it is involutory: if ¢ is defined both at a point p
and its image o (p), then (0 o 0)(p) = p. On transforming an algebraic curve
via o we obtain another algebraic curve but of different degree. For example, the
image of the straight line x + y = 1 is the conic 1/x + 1/y = 1, or, to be precise, a
conic with certain points removed.

The non-linear transformations we have in mind form a group (named after
Cremona) which is much larger that the projective group, so that one can hope
for a precise and at the same time tractable classification of algebraic curves
up to such a non-linear transformation. Here we have the beginnings of bi-
rational geometry, one of Riemann’s great ideas. We say that two projective
algebraic curves F(X,Y,Z) = 0 and G(X,Y,Z) = O are birationally equiva-
lent if there is a (possibly non-linear) transformation of the form (X,Y,Z) —
(p(X,Y,2),q(X,Y,Z),r(X,Y,Z)) where the coordinates p,q,r are homogeneous
polynomials of the same degree, which maps the first curve “bijectively” to the
second. Here the quotation marks are meant to indicate that, as in the above ex-
ample, the transformation may not be defined everywhere. One insists only that
each of the two curves has a finite set of points such that the transformation sends
the complement of the finite subset of the first curve bijectively to the complement
of the subset of the second.

A signal virtue of birational transformations is that they allow us to avoid the
problem of singular points. Early geometers were soon confronted with the need
to study double points, cusp points, etc. In the real domain the theory of such
points is relatively simple, at least in its topological aspects. Every point of a real
algebraic curve has a neighbourhood in which the curve is made up of an even
number of arcs. Such a curve cannot have an end-point, for instance.
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On the other hand for complex algebraic curves, local analysis of their singu-
lar points has established that they can have an extraordinarily intricate structure:
investigations begun by Newton and continued by Puiseux [New1671, Puil850,
Puil851] show that their topological structure is connected with the theory of
knots, which theory does not, however, come within the compass of the present
book. For us it suffices to know that every algebraic curve is birationally equiva-
lent to a curve possessing only especially simple singular points, namely ordinary
double points (Noether, Bertini [Noel873, Bert1882]) — in other words, points
in a neighbourhood of which the curve consists of two smooth arcs with distinct
tangents.

» {8 KS

Figure 3: Some types of singular points

To summarize, geometers have progressively reduced the study of algebraic
plane curves to that of algebraic curves which, to within a birational transforma-
tion, have only ordinary double points.

Rational curves

The introduction of complex numbers had consequences far beyond projective
geometry: the beginning of the 19th century also witnessed the advent of the geo-
metric theory of holomorphic functions, which are at one and the same time func-
tions of a single complex variable and of two real variables. Gauss not only knew
that it is useful to coordinatize the plane with the complex numbers, but under-
stood equally well that any surface in space can be coordinatized by the complex
numbers conformally (see Chapter I). Thus a surface is locally determined by a
single number. The step had been taken: a real surface can be considered a com-
plex curve. Some thirty years later Riemann understood that there is, reciprocally,
some advantage in regarding a complex curve as a real surface (see Chapter II).



General introduction X1X

We are now in a position to address the question of parametrized curves. A
curve is called rational if it is birationally equivalent to a straight line. (Formerly
such curves were called unicursal, meaning that they could be “traced out with a
single stroke of the pen”.) More concretely, a curve F(x,Yy) is rational if it can be
parametrized by means of rational functions

Lo PO a0
r0 YT @)

where p, g and r are polynomials in a single (complex) variable ¢, and the parametr-
ization is a bijection outside a finite subset of values of ¢. Here are some simple
examples.

Non-degenerate conics are rational. To see this it suffices to take a point m on the
conic C and a projective line D not passing through m (see Figure 4). Then for
each point  on D, the line determined by m and ¢ meets the conic in two points,
of which one is of course m. Denoting the other point by y(#), one readily checks
that the map y : D — C is a birational equivalence.

Figure 4: Parametrization of a conic and a singular cubic

A cubic curve with a double point is also a rational curve. For this it suffices to
choose a straight line not passing through the singular point, and consider for each
point p of that line the line through p and the singular point (see Figure 4). Each
such line meets the conic in three points, two of which coincide with the double
point of the cubic. The third point of intersection then determines a birational
equivalence between the initially chosen line and the given cubic. For example,
the origin is a double point of the curve y* = x*(1 — x). We choose x = 2 as
our parametrizing line. The line passing through the origin and the point (2,7) has
equation y = tx/2, so intersects the given cubic where ?x%/4 = x*(1 — x), which
has the expected double root x = 0 and the third solution x = 1 — r?/4, yielding
the desired rational parametrization y = #(1 — 12/4)/2 of the curve.
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Although rational curves are of considerable interest, they represent just a
small proportion of all algebraic curves. We do not know exactly when math-
ematicians became fully aware of this, that is, of the fact that most algebraic
curves are not rational. There are several elementary means of convincing one-
self of it, and later on we shall give a topological argument rendering it “obvi-
ous”. Or one can argue as follows. Note first that a curve given in the form
x = p@)/r@t),y = q(t)/r(t) is of degree d where d is the largest of the degrees
of the polynomials p,q,r: one can see this by counting the number of points of
intersection with a generic straight line, which points will be given as the solu-
tions of an equation of degree d. The vector space of triples of polynomials of
degree d has dimension 3(d + 1). However multiples of p,q,r by any non-zero
scalar yield the same curve, and replacement of ¢ by a suitable rational function
of ¢ (depending on at least three parameters) will also leave the curve unchanged.
Thus the space of rational curves of degree d depends on at most 3d — 1 param-
eters. As noted earlier, a count of the number of coefficients of a polynomial of
degree d in two variables yields d(d + 3)/2 for the number of parameters. Since
d(d+3)/2 >3d - 1ford > 3, we conclude that in general algebraic curves of
degree at least three are not rational curves.

SN S (3 Q0

Figure 5: Some rational curves

Elliptic curves

It is completely natural that effort should first be concentrated on the cubics. As
we have seen, Newton himself produced an initial classification which was neither
projective nor complex, even though he found hints of certain features of projec-
tivity and the complex numbers. His aim was to understand in some fashion the
possible topological dispositions of cubic curves in the plane: the positions of
asymptotes, singular points, etc. We saw above that singular cubics are rational.
However non-singular cubics are never rational; we recommend that the reader
attempt to prove this by elementary means.
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We limit ourselves here to a brief overview of the principal results. First,
every smooth cubic curve is projectively equivalent to a curve with equation in
the following normal form (named for Weierstrass although it should properly be
attributed to Newton):

v=x+ax+b,

where a,b are complex numbers. If 4a® + 27b* # 0, this cubic is smooth. From
the inception of the theory mathematicians struggled to evaluate integrals of the
form

R e
y Vi3 tax+b

They called such integrals “elliptic” since evaluation of the length of an arc of an
ellipse leads to such a formula. Difficulties arise when one tries to make sense of
such integrals with x and y allowed to be complex. The first problem is that the
value of the integral depends on which square root one chooses for the denomi-
nator of the integrand. The second, linked to the first, consists in the dependence
of the integral on the path of integration. Faced with these difficulties, one is
forced to the conclusion that one must resign oneself to regarding f as a “many-
valued* function”, that is, that each point x may have several images, all denoted
by f(x) however — a situation somewhat distasteful to present-day mathemati-
cians, brought up as they are on the modern set-theoretic definition of a function.

Gauss, Abel, and Jacobi conceived the ingenious idea (to be expounded in
Chapter I) that it is not so much the function f that is of interest but its inverse.
They were perhaps led to this by the analogy with the circle

(which is certainly a rational curve) and the integral

f dx f dx .
— = ——— = arcsin x.
y V1 —x2

The “function’ arcsin as so defined is multivalued, but it is the inverse function of
sin, a function in the strict sense of the word — each point x has a uniquely defined
image sin x. The many-valuedness of arcsin arises from the periodicity of the
sine function, and in like manner the inverse g of f is a “genuine” meromorphic

4The French term is “multiforme”.



Xxil General introduction

function (to emphasize that the modern interpretation of the word “function” is the
one intended, the adjective single-valueds is sometimes used), and the fact that f
is many-valued is explained by the periodicity of the single-valued function g.

It is important to stress this periodicity. While the sine function is periodic of
period 2m, the periodicity of the meromorphic function ¢ is much richer: it has
two linearly independent periods. In more precise terms, there is a subgroup A
of C of rank 2 (depending on a and b) such that

Yw e A, p(z) = p(z +w).

(In fact the elements of A are just the integrals of dx/y around closed curves in the
x-plane.) It follows that we may regard g as defined on the quotient of C by the
lattice A. Topologically, the quotient space C/A is a 2-dimensional torus. Locally,
each point of the torus is associated with a complex number in such a way that
it inherits the structure of a holomorphic manifold of complex dimension 1, an
example of a Riemann surface (see Chapter II).

Since g is periodic, its derivative ¢’ = dg/dz is also, and we then obtain a
map (g, ¢’) from the Riemann surface C/A with the poles of g and g’ removed,
to C2. It is not difficult to proves that this map extends from C/A to the original cu-
bic curve in the complex projective plane (with the three excluded points restored,
now sent to three points at infinity). In this way one obtains an identification of
the projective cubic curve and the torus C/A.

A few remarks are apropos. First, it now becomes topologically clear why
such cubics are not rational: a complex projective line is homeomorphic to a
sphere (the Riemann sphere) and the removal of finitely many points will not
make it homeomorphic to a torus.

We also see from the above that every smooth cubic, considered as a real sur-
face (in the complex projective plane), is homeomorphic to the torus. On the other
hand, considered as Riemann surfaces, these tori are not holomorphically equiva-
lent to one another: given two distinct lattices A1, Ay in C, there is in general no
holomorphic bijection between C/A| and C/A;. (There is such a bijection if and
only if A, = kA for some non-zero k.) Hence in contrast with rational curves,
which are all parametrized by the complex projective line (the Riemann sphere),
smooth cubics are not all parametrized by the same complex torus C/A: each of
them is parametrized by a complex parameter (determined by a lattice in C defined
to within a homothety?), called a modulus.

5The French term is “uniforme”. “Uniformization” is thus the process of representing many-
valued functions by single-valued ones. Translator

6Using the fact that (p’)2 = ¢ + ap + b. Trans

"That is, defined to within a similarity.
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The reader may now take the measure of the progress achieved since Newton’s
attempt at classification: the birational equivalence classes of smooth cubic curves
also depend on a single complex parameter.

j

Figure 6: Uniformization of an elliptic curve

Even though the domain C/A of the parametrization of a smooth cubic de-
pends on the cubic, it should be noted that the universal cover of C/A, the complex
line C considered as a Riemann surface, is in fact independent of the cubic. We
shall now elaborate on this point — at the expense of perpetrating an anachronism
since the concept of the universal cover evolved only gradually in the course of
the 19th century, and reached final form only in the 20th. (In this connection one
should also mention that some of the motivation for the development of topology
came from the study of curves.) A topological space X is said to be simply con-
nected if every loop ¢ : R/Z — X can be contracted to a point, that is, if there is
a continuous family of loops ¢;,t € [0, 1], with ¢y = ¢ and ¢; a constant loop. It
can be shown that provided X is a “reasonably well-behaved space” — which is
certainly the case for manifolds — there exists a simply-connected space X and a
projection map 7 : X — X whose fibres are the orbits of a discrete group I' acting
on X (fixed point) freely and properlys. The space X is then called the universal
covering space of X, and I the fundamental group of X. In the case where X is
the torus C/A, it is obvious from its very construction that its universal cover is C
and its fundamental group is A, which is isomorphic to the group Z>. When X
is endowed with the additional structure of a Riemann surface, such a structure

8That is, with the map I' x X — X x X given by (g,x) — (gx, x) proper, meaning that complete
inverse images of compact sets are compact.
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is naturally induced on its universal cover, most often non-compact, so from the
above it follows that the universal cover of every non-singular cubic curve is iso-
morphic to the complex line C. Thus even though the isomorphism classes of
smooth cubic curves depend on a modulus, their universal covers are all isomor-
phic. We summarize this, bringing in for the first time the term “uniformization”:

Every smooth cubic curve C in the complex projective plane has a holomor-
phic uniformization n : C — C which parametrizes the curve in the sense that two
points of C have the same image under n if and only if their difference belongs to
a certain lattice A of C.

And the converse rounds off the theory into a harmonious whole: correspond-
ing to each lattice A of C, there exists a smooth cubic curve that is holomorphically
isomorphic to C/A.

Beyond elliptic curves

Our Chapter II constitutes an invitation to read the papers of Riemann devoted
to algebraic functions and their integrals. These texts, so important for the his-
tory of mathematics, are difficult of access, and it took a considerable time for
them to be finally assimilated. Although there are historical articles commenting
on these, our approach is quite different, in particular in not at all attempting to
be exhaustive. Riemann’s great contribution was to turn Gauss’ idea on its head:
although it is useful to think of real surfaces as complex curves, it turns out to
be more fruitful to think of a complex curve — with equation P(x,y) = 0, say
— as a real surface. It is on this that Riemann bases his theory of surfaces, in
which one-dimensional and two-dimensional notions become associated with one
another. For example, he makes no bones about cutting a surface along a real
curve, thereby introducing topological methods into algebraic geometry. Regard-
ing an algebraic curve — that is, an object of one complex dimension situated
in the complex projective plane — as a real two-dimensional surface presents no
difficulties if the given curve is smooth, since then the real surface is also smooth.
However, as we have already seen, this is far from representing the general sit-
uation since singular points arise frequently. In this case, however, one can to
within a birational equivalence assume that the singularities are ordinary double
points, and then it is not difficult to make the surface smooth: for this it suffices
to regard the double point as actually two distinct points, on separate branches,
and one constructs in this way a smooth surface associated with the original al-
gebraic curve. This is how Riemann associates with each given algebraic curve
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a Riemann surface, that is, a holomorphic manifold of dimension 1, or, to put it
another way, a real manifold of dimension 2 endowed with a complex structure.
(We shall revisit this theme throughout the book.) Riemann went on to (almost)
prove the following two statements:

— Two algebraic curves are birationally equivalent if and only if their associ-
ated Riemann surfaces are holomorphically isomorphic.

— Every “abstract” compact Riemann surface is holomorphically isomorphic
to the Riemann surface of some algebraic curve.

Thus the algebraic problem of describing algebraic curves is transformed into
the transcendental one of describing Riemann surfaces. The first invariant derived
by Riemann was a purely topological one (and had a major impact on the devel-
opment of topology since, among other things, it was in attempting to generalize
it that Poincaré was led to the modern form of that discipline). It is well known
that every compact orientable surface is homeomorphic to a sphere with a cer-
tain number of handles attached, which number is nowadays termed the genus of
the surface. It follows that every algebraic curve has a specific associated genus
which is invariant with respect to birational equivalence and so of much greater
significance than the degree.

i
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Figure 7: Topological surfaces of genus 1, 2, and 3
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Here are some of the results concerning the genus that we shall encounter
later on.

Having genus zero means that the curve’s associated Riemann surface is home-
omorphic to the 2-sphere. It does not then follow immediately that it is holomor-
phically isomorphic to the Riemann sphere. This fact was established in two dif-
ferent ways by Alfred Clebsch (see Chapter II) and Hermann Schwarz (see Chap-
ter IV): every Riemannian metric on the sphere is globally conformally equivalent
to that of the standard sphere. In other words (closer to those of Schwarz) every
Riemann surface homeomorphic to the sphere is holomorphically equivalent to
the Riemann sphere. In yet other words:

The algebraic curves of genus zero are precisely the rational curves.

This represents a further stage on the way to general uniformization: a sin-
gle topological datum about a curve determines whether or not it has a rational
parametrization.

Having genus 1 signifies that the Riemann surface is homeomorphic to a torus
of two real dimensions. It follows, although not obviously — Clebsch proved it in
1865 — that it is holomorphically isomorphic to a quotient of the form C/A (see
Chapter II). Thus:

The algebraic curves of genus 1 are precisely those birationally equivalent to
smooth cubics (the so-called “elliptic” curves).

The case of genus greater than or equal to 2 is more complicated, and it is to
this case that the present book is devoted. Before summarizing the situation, we
clarify the connection between genus and degree: it can be shown that if C is a
curve of degree d with k singular points, all ordinary double points, the genus is
given by the formula

_(d-D(d-2)
e e——

It is then immediate that straight lines and conics have genus zero, smooth cubics
genus 1, singular cubics genus zero, and smooth quartics genus 3.

Riemann demonstrates great mastery by the manner in which he generalizes
from the case of elliptic curves. For instance, for each fixed value g > 2 of the
genus, he seeks to describe the space of moduli of the curves of that genus —
that is, the space of algebraic curves of genus g considered to within a birational
transformation — showing it has complex dimension 3g — 3. Among other re-
sults of Riemann, we should also mention the celebrated one asserting that every
non-empty simply connected open subset of C is biholomorphically equivalent
to the open unit disc — a result of fundamental importance, although Riemann’s
proposed proof leaves a little to be desired (see Chapter II). It sometimes happens
that this result, albeit an important special case, is confused with the “great” uni-

k.
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formization theorem forming the theme of the present book, which has to do not
just with open sets of C but, much more impressively, with all Riemann surfaces.

Riemann’s work in this field exerted a considerable influence on his immediate
successors. In Chapter IV we describe Schwarz’s attempts to establish explicitly
certain particular cases of the conformal representation theorem while skirting the
technical difficulties on which Riemann’s proof founders.

Among the best expositions of Riemann’s ideas, that of Felix Klein, another
hero of the present work, stands out. In 1881 he wrote up what he believed to be
the idea behind Riemann’s intuition, even though Riemann’s actual articles make
no mention of it. We will never know if Klein was right in this, but the resulting
new approach, via Riemannian metrics, seems to us especially illuminating. It
relies on an electrostatic or perhaps hydrodynamic interpretation, making it par-
ticularly accessible to the intuition. We describe this way of looking at the subject
and its modern developments in Chapter III.

Uniformizing algebraic curves of genus greater than 2

The question of parametrizing curves of general genus g remained open, or, more
precisely, no one suspected that every algebraic curve might be parametrizable
by single-valued holomorphic functions. However, following Riemann’s work,
evidence for this began to accumulate from the examination of certain remarkable
examples.

In a marvellous article Klein studied the curve C given by the homogeneous
equation x’y + y>x + z3x = 0 as a Riemann surface, showing that it is isomor-
phic to the quotient of the upper half-plane by an explicit group of holomorphic
transformations. In other words, he constructed a (single-valued) holomorphic
function 7 with domain the upper half-plane H and with fibres the orbits of a
group I of holomorphic transformations acting freely and properly. The analogy
with the situation of elliptic curves was striking: the half-plane replaces the com-
plex line and the group I' of M&bius transformations replaces the group A acting
via translations. Thus is Klein’s quartic uniformized by .

Even though this remarkable specimen was actually the first example of uni-
formization in higher genus, it was nonetheless taken at the time for an unparal-
leled gem, as it were, incapable of generalization like the regular polyhedra. As
such it marked an interlude prior to attempts at establishing general uniformiza-
tion. We shall expound Klein’s example in Chapter V.

Motivated by quite different considerations arising in the theory of linear dif-
ferential equations, Poincaré was led to the systematic investigation of the dis-
crete subgroups I' of the group PSL(2,R), which he called Fuchsian, and the



XXViii General introduction

quotients H/I" obtained from them. He saw that among such quotients there are
compact Riemann surfaces of genus at least 2. He showed that there is some lati-
tude in the choice of the group, depending on certain parameters (see Chapter VI).

In light of Poincaré’s results, Klein realized that the algebraic curves uni-
formized by H are in fact not isolated examples as he had thought, but form con-
tinuous families depending on parameters to be determined. Almost simultane-
ously Klein and Poincaré saw that the latter’s constructions might be of sufficient
flexibility for all compact Riemann surfaces to be uniformizable by H. A di-
mensional count quickly showed that the space of Poincaré’s Fuchsian groups,
considered up to conjugation, yielding a surface of genus g depends on 6g — 6 real
parameters — highly suggestive given Riemann’s result that Riemann surfaces
of genus g depend on 3g — 3 complex moduli. The race was on between Klein
and Poincaré to prove the theorem. We encourage the reader to read the impas-
sioned correspondence on this topic between our two heros reproduced at the end
of the book. Here Klein and Poincaré introduce a new method of proof, namely
by continuity.

N7
v} > d
~

Wﬂmﬂm

f
L

!

Figure 8: Klein’s Fuchsian group (shown here as a group of automorphisms of the
unit disc rather than the upper half-plane).

To us neither Klein’s proof nor Poincaré’s is totally convincing. In Chap-
ter VII we try to resurrect Klein’s proof?; to obtain a rigorous proof we had to use
modern tools derived from quasiconformal techniques, which Klein and Poincaré
certainly did not have at their disposal. Then in Chapter VIII we make an attempt
to resuscitate — at least in part — Poincaré’s approach, which was not motivated

9The matter is actually more complex; in fact some parts of the proof given in Chapter VII are
closer to certain of Poincaré’s arguments than to those of Klein.
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by uniformization but rather by the desire to solve linear differential equations.
The reader will observe there the emergence for the first time of a great number of
concepts familiar to modern mathematicians. Chapter IX is devoted to the explicit
investigation of some examples of uniformization of surfaces of higher genus.

By 1882 Klein and Poincaré had become fully convinced of the truth of the
following uniformization theorem:

Theorem. Let X be any compact Riemann surface of genus > 2. There exists
a discrete subgroup T of PSL(2,R) acting freely and properly on H such that X
is isomorphic to the quotient H/I'. In other words, the universal cover of X is
holomorphically isomorphic to H.

To summarize, Klein and Poincaré had now effectively solved one of the main
problems handed down by the founders of algebraic geometry: to parametrise an
algebraic curve F(x,y) = 0 (of genus at least 2) by single-valued meromorphic
functions x,y : H — C. This magnificent result rounded out the theory deal-
ing with the particular cases of rational and elliptic curves. Thus Fuchsian func-
tions were now seen to be the appropriate generalizations of elliptic functions.
Of course, as in the case of the elliptic functions, it was now necessary to admit
new transcendental functions into the menagerie of basic mathematical objects,
find their (convergent) series representations, etc. In fact Poincaré subsequently
devoted a number of papers to such questions.

Beyond algebraic curves

But why should we confine ourselves to algebraic curves? What is the situa-
tion with “transcendental” curves? Spurred by his success with algebraic curves,
Poincaré went on to address the problem of non-compact Riemann surfaces, which
a priori have no relation to algebraic geometry. Although the method of continuity
could no longer be applied, nonetheless already by 1883 Poincaré had managed to
show that every Riemann surface admitting a non-constant meromorphic function
can be uniformized in a certain weakened sense of the word “uniformize”: one has
now to allow parametrisations that may not be locally injective, that is, with ram-
ification points. This result is the subject of Chapter XI. The question of the uni-
formization of non-algebraic surfaces seems to have stagnated for a while there-
after, until, in 1900, Hilbert stressed the incomplete nature of Poincaré’s result,
and encouraged mathematicians to re-apply themselves to it; this was Hilbert’s
twenty-second problem. At last, in 1907, Poincaré and Koebe arrived indepen-
dently at the general uniformization theorem:

Theorem. Every simply connected Riemann surface is holomorphically isomor-
phic to the Riemann sphere C, the complex plane C, or the upper half-plane H.
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Koebe’s and Poincaré’s approaches to this theorem are described in Chap-
ters XII and XIII.

Of course, this classification of simply connected Riemann surfaces yields im-
mediately a characterisation of all Riemann surfaces, since every Riemann surface
is a quotient of its universal cover by a group acting holomorphically, freely, and
properly. Thus by the theorem of Koebe and Poincaré every Riemann surface is
identical with either the Riemann sphere or a quotient of C by a discrete group
of translations, or a quotient of the half-plane H by a Fuchsian group. The work
of Poincaré and Koebe, occupying Part C, allowed a new page to be turned in
potential theory, and represents the end of an important epoch in the history of
mathematics.

Meanwhile, over the decade 1890-1900, Picard and Poincaré worked out
a new proof of the uniformization theorem based on a suggestion by Schwarz,
valid in the compact case at least, and depending of the solution of the equation
Au = e*. We present this in Chapter X.

The uniformization theorem was at the centre of the evolution of mathematics
in the 19th century. In the diversity of its algebraic, geometric, analytic, topo-
logical, and even number-theoretic aspects it is in some sense symbolic of the
mathematics of that century.

Our book ends in 1907, even though the story of the uniformization theorem
continues. Among later developments, one might mention Teichmiiller’s work on
moduli spaces, or those of Ahlfors and Bers in the 1960s relating to the concept of
quasiconformal mappings (see for example [Hub2006]). There is also the progress
in higher dimensions, in particular Kodaira’s classification of complex surfaces,
that is, of 2 complex dimensions. But that’s another story!
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Chapter I

Antecedent works

Any account of the evolution of the uniformization theorem must begin with a
description of the methods of Riemann and his immediate successors!. The aim
of this first part is to provide such a description.

Of all mathematicians of the middle of the 19th century, it was without doubt
Riemann who left the deepest imprint on the theory of algebraic curves. Here, for
example, are the first few sentences of Hermite’s preface to Riemann’s complete
works:

Bernhard Riemann’s oeuvre is the greatest and the most beautiful of our era:
it has received unanimous acclaim and will have a permanent influence on
scientific development. The work of present-day geometers is inspired by
his ideas whose significance and fruitfulness are reconfirmed every day in
their discoveries.

In this preliminary chapter we give a succinct exposition of two topics which
in Riemann’s time (around 1851) had emerged quite recently and which may well
have served as “detonators” for his work on algebraic curves:

— Gauss’ application of complex numbers to cartography, and the “local”
uniformization theorem allowing local parametrization of any surface by a
“conformal map”.

— the rise of the theory of elliptic functions, initiated by Euler and reaching
maturity with the work of Abel and Jacobi just prior to Riemann’s thesis.

However before discussing cartography and elliptic functions, we consider
very briefly the birth of the geometric interpretation of the complex numbers as
points of the plane.

1Even though the correspondence between Klein and Poincaré reproduced at the end of the
present book shows clearly that when Poincaré began his investigations of Fuchsian functions he
had not read Riemann!
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L.1. On the development of the complex numbers

The story of the complex numbers is a rather involved one and there are many
detailed histories devoted to them, such as, for instance [Mar1996, Neuel981].
Our present aim is certainly not to recount their history, but rather to recall just a
few of the more important stages in their development in order for the reader to
appreciate more fully the innovatory character of the works of Gauss, Abel, and
Jacobi described below. (For additional details we refer the reader to [Mar1996],
pp. 121-132))

Although in 1777 Euler had indeed coordinatized the points of the plane with
complex numbers x + iy, this geometric interpretation received its full formaliza-
tion only at the turn of the 19th century (by Wessel in 1799, and Argand and Buée
in 1806), and it took some time before the geometric point of view was taken for
granted.

Of course, Gauss understood many things before anyone else... His first
“proof” of the Fundamental Theorem of Algebra, in 1799, cannot be understood
without an appreciation of the geometric and topological way of viewing the com-
plex numbers2. According to [Mar1996] it was only following the publication of
Gauss’s 1831 article “Theoria residuorum biquadraticorum” that the notion of a
complex number as a point of the plane gained universal recognition.

The theory of analytic, or holomorphic, functions also took a long time to
crystallize out, at least in its geometric aspect. Here the great instigator in the
development of the theory was Cauchy. According to [Mar 1996], the path he
followed was long and tortuous. In 1821 he was still talking of imaginary expres-
sions: “An imaginary equation is merely a symbolic representation of two equa-
tions in two variables.” It took till 1847 for him to largely shed such terminology,
speaking instead of “geometric quantities”, and reach the point of conceiving a
function visually as we do today, that is, as transforming a variable point in the
input plane to another variable point in the output plane.

The concept of the complex integral f f(z)dz along a path, the dependence
of the integral on the path, and residue theory: all of these familiar results also
underwent a long period of gestation, primarily at the hands of Cauchy. His first
paper on these questions appeared in 1814 but the theory of residues dates from
1826-1829.

Here also Gauss was ahead of his time, but refrained from publishing his ideas.
A letter from him to Bessel dating from 1811 shows that he had a clear idea of the
integral along a path and that he had already grasped the concept of the residues
at the poles of the functions being integrated.

2In order to show that a non-constant polynomial P vanishes somewhere in the complex plane,
he studies the behavior towards infinity of the curves Re P = 0 and Im P = 0, deducing that they
must of necessity cross.
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In sum, in 1851 Riemann has at his disposal a geometric theory of holomor-
phic functions just recently created. By introducing the concept of a Riemann
surface, he will now liberate holomorphic functions from the coordinates x and y,
and the theory will assume a fundamentally geometric form. By contrast, twenty-
five years earlier, Abel and Jacobi had none of the basic concepts of complex
function theory — such as for example Cauchy’s residue formula — at their dis-
posal.

L.2. Cartography

The pursuit of the science of cartography, both terrestrial and celestial, led schol-
ars of antiquity to pose the question as to how a portion of a sphere might be
represented by a planar map. Ptolemy’s Geography contains several possible so-
lutions. It soon became clear that distortions are inevitable, whether of shapes,
distances, areas, etc.

In 1569 Mercator proposed a projection which he used to produce a map of the
world with properties especially convenient for navigation. Although his method
of drawing the map was empirical, the underlying idea nonetheless paved the way
for the application of mathematical analysis to cartography. It was in the 18th
century that these two disciplines came together in a series of works by Johann
Heinrich Lambert, Leonhard Euler, and Joseph Louis Lagrange. Lambert’s work,
published in 1772, heralded the birth of modern mathematical cartography. Ac-
cording to Lagrange, Lambert was the first to formulate the basic problems as-
sociated with the representation of a region of the sphere on a plane in terms of
certain partial differential equations.

In 1822, inspired by cartographical problems and methods, the Royal Society
of Copenhagen set as the subject of a prize essay the problem of “representing
parts of a given surface on another surface in such a way that the representation
be similar to the original in infinitely small regions”. This was a prime oppor-
tunity for Gauss, greatly interested as he was in both the theory and practice of
cartography, to prove the existence of a locally conformal representation of any
real analytic surface on the Euclidean plane, the first step towards uniformization.
The main goal of the present section is to expound this theorem.

I.2.1. From practice to theory

First constructions. — Written by Ptolemy in the 2nd century AD, the famous
geographical treatise Geography maintained its authority till the Renaissance. It
describes (and applies) several methods of representing the then known world as
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precisely as possible on a planar map. Of course, the geometers and astronomers
of antiquity were aware that it is impossible to represent a part of a sphere on a flat
surface so as to preserve all pertinent geometrical information (distances, angles,
areas, etc.) — that is, isometrically.

This impossibility is due to the curvature of the sphere, in modern terminology
— that is, in the precise sense of “curvature of a surface” as defined by Gauss. Of
course, ancient astronomers had no such sophisticated mathematical artillery at
their disposal, but they must surely have been aware of simple manifestations of
that curvature. For example, a geodesic triangle forming an exact eighth part of
the sphere, with its angles all right angles, readily occurs to the imagination, and
shows clearly that not all spherical triangles can be faithfully represented on a
plane (see Figure I.1).

Figure I.1: A spherical triangle

We might also mention that although Ptolemy and his forerunners (Eratos-
thenes in the 3rd century BC, Hipparchus in the following one) did indeed take
the Earth to be spherical in their model of the world, the attempt to obtain a useful
planar representation of the celestial sphere of fixed stars presents in any case the
same difficulty independently of the question of the shape of the Earth.

Of course, constraints on the planar representation of large parts of a sphere
will depend on the intended use of the map. A sovereign exacting taxes propor-
tional to areas of land under cultivation, a sailor navigating with compass and
astrolabe, or an astronomer observing the heavens — these all have different re-
quirements. Leaving aside (important) questions of aesthetics, it would seem rel-
evant to demand, for example, one or more of the following:

— that areas be preserved (or, rather, be in a fixed proportion to the originals);
in this case one calls the map equivalent;
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— that angles be preserved (a conformal map);

— that the distances from a particular reference point be preserved (an equidis-
tant map;

— that certain distinguished curves be mapped onto straight line segments. In
this connection it is natural to think of geodesics ( geodesic maps), but a
sailor would naturally tend to give priority to routes of constant heading
(loxodromic maps).

There are obviously many other constraints that one might impose on the pla-
nar map, yielding as many different problems to solve or to be shown incapable of
solution. The book [Sny1993] is a good introduction to such aspects of the history
of cartography.

Box I.1: Conformal mappings

In this book we shall often have occasion to revisit the concept of conformal
maps so it may be appropriate to give the precise terminology. For a linear
operator L on a Euclidean vector space (E,|| - ||) the following properties are
equivalent:

— L preserves angles;

— L is a similarity, that is, there exists a positive constant ¢ such that

[|IL(v)|| = cl|v]|| for every vector v of E.
The word “similarity” conveys preservation of shape; in German one finds the
adjective winkeltreu, directly conveying the preservation of angles.

A diffeomorphism between two open sets of the Euclidean plane is said
to be conformal if its differential map has the above two properties at every
point. The expression “similar in infinitesimally small regions” also used to
be current in both French and German. Later on we shall see that once the
plane has been made over into the complex plane C, one is in a position to
speak of a given diffeomorphism as being holomorphic or not holomorphic.
Note also the analogous meanings of the Greek and Latin roots morph and
form, and likewise how the prefixes holo- and con- both convey the sense of
preservation.

Even before Ptolemy various projections had been used by ancient Greek
scholars. An intermediate step, crucial both theoretically and practically, was the
introduction of the idea of latitude and longitude, already familiar to Hipparchus.
This provided in effect a means of pinpointing the positions of two distant towns,
say, using a single system of coordinates. Astronomical criteria — most notably
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observations of the stars — could be used to ascertain position. A fairly typical
example: if two towns A and B in the northern hemisphere are such that a partic-
ular star is visible the whole night through by an observer at A, while an observer
at B sees it rise and set, one can infer that the town A is more northerly than B.

One method of drawing a map is therefore to impose constraints on the im-
ages on the map of the circles of constant latitude — called parallels — and the
great half-circles of fixed longitudes — the meridians. Cartographers call the
network of images of lines of latitude and longitude a graticule. Thus rectangu-
lar maps are those where the parallels and meridians are represented by horizontal
and vertical straight lines respectively: here the graticule is made up of rectangles.
Among these we find the equirectangular map (often known also by the French
name plate carrée (squared flat [projection]), dating from before Ptolemy’s Geog-
raphy, generally signifying a constant spacing of the equal jumps in latitude and
longitude. In this case, therefore, the graticule is a grid of squares of fixed size
(Figure 1.2).
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Figure 1.2: The plate carrée

Another natural method of producing maps is to apply certain simple geo-
metric operations to the space in which the sphere is situated in order to obtain
a planar image: one might apply an orthogonal projection onto a suitably posi-
tioned plane, or a projection from some point, or indeed map the sphere onto a
surface such as a cone or cylinder, and then develop the resultant image onto a
flat surface. One very old such method is stereographic projection, known to Hip-
parchus and probably earlier. This involves projecting the Earth’s surface onto the
tangent plane to one of its points (the South Pole, for instance) from the antipo-
dal point (Figure 1.3). This procedure yields a planar map representing the whole



I Antecedent works 9

of the Earth’s surface except for the point of projection. Clearly, the distortion
occasioned by this method increases with the distance from the point of tangency.

An essential property of this map is its conformality: angles drawn on the
sphere remain the same on the map. This property, as important for celestial maps
as for terrestrial or maritime ones, seems to have been noticed and proved for the
first time by the famous English astronomer Edmond Halley towards the close of
the 17th century [Hal1695]. The book [HiC01932] contains an elegant proof of
this fact.

Figure 1.3: The stereographic projection

Although the stereographic and equirectangular projections are still in use
(the first in producing maps of the celestial sphere and the second as affording the
simplest means of sketching a map by computer from knowledge of the latitude
and longitude of certain towns), they have largely yielded in importance to other
projections. The most familiar projection is that invented by Mercator in 1569.

Mercator’s aim was to produce a rectangular map, like the plate carrée, with
the difference that now routes of constant heading? on the sphere are represented
on the map by straight lines, making the map suitable for maritime navigation.
However, this constraint entails a wider and wider spacing of the images of the
parallels of latitude as one approaches the poles, resulting in the familiar distor-
tion of areas. Mercator actually constructed a model of his map, probably by
calculating graphically the necessary spacing between pairs of parallels differing

3That is, constant bearing relative to true north.
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by ten degrees latitude. Mercator’s is the second conformal projection after the
stereographic projection.
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Figure 1.4: Mercator’s projection

Introduction of the differential calculus. From a mathematical point of view the
18th century marked a renascence in both the conception and study of geograph-
ical map-making through the application of the differential calculus. The pioneer
in this development was Johann Heinrich Lambert.

Equally well known for his work in the physical sciences (the Law of Beer—
Lambert describes the absorption of light by a chemical solution as a function
of its concentration) and especially for giving the first proof of the irrationality
of n, in his work Beytriige zum Gebrauche der Mathematik und deren Anwen-
dung*, and especially Anmerken und Zusctze zur Entwerfung der Land und Him-
melscharten® [Lam1772], written between 1765 and 1772, Lambert described nu-
merous methods of obtaining cartographical representations and opened the way
to a systematic analytic study of the various constraints, notably equivalence and
conformality. On the practical side, it is to him that we are indebted for Lam-
bert’s conformal conical projection., the present-day official projection used for
the maps of France, but he also gave the first analytic proofs of the conformal-
ity of the stereographic and Mercator projections, re-proved by Euler in 1777 in
[Eul1777].

Inspired by Lambert’s translation of cartographical questions into mathemat-
ical language, Lagrange [Lagl779] saw that the subject suggests more general

4Contributions to the utilization of mathematics and its application.
SNotes and comments on the construction of terrestrial and celestial maps.
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questions than just those associated with the production of conformal maps and
the verification of their properties. The problem occurred to him of determining
all conformal maps that one can make of the Earth’s surface, but with a refinement
of the model of the Earth commonly used: he assumed a “spheroidal” shape for
the Earth — more precisely, that it is a surface “generated by the revolution of
some curve about a fixed axis”.

In summarizing the history of cartography, Lagrange observes, without citing
Mercator explicitly, that the possibility of producing conformal maps other than
by direct projection of the terrestrial sphere onto a tangential cone or cylinder
leads one to a more general and fruitful perspective on the problem, allowing its
transformation from a purely practical question into a mathematical one:

This investigation [of conformal maps], as interesting for the analytical
techniques it requires as for its potential application to the drawing of geo-
graphical maps, seems to me a topic worthy of the attention of geometers
and appropriate subject-matter for a memoir.

Thus he proposes determining all conformal planar representations of a sur-
face of revolution. His idea is to imitate Mercator’s projection in the sense of
identifying the constraints on the spacing of parallels ensuring conformality.

We first introduce appropriate notation: the surface in question is obtained by
revolving a planar arc about the axis joining its end-points, the poles of the surface.
Each point of the surface is then naturally coordinatized by the longitude ¢ and the
length s of the arc of the generating curve from the point to one of the poles. (In
the case of a sphere of radius 1, the coordinate s is /2 minus the latitude.) Each
point (¢, s) of the surface lies on a horizontal circle (representing a parallel) of
radius g(s), say. (In the case of the unit sphere this radius is sin s, or, equivalently,
the cosine of the latitude.)

In this notation the Riemannian metric® — also called “the first fundamental
form” — of the surface is easily seen to be ds? + ¢(s)>dg>.” Representing the
surface conformally on the plane then comes down to expressing the rectangular
Cartesian coordinates x and y as functions of s and ¢ in such a way that the
elements of distance computed in terms of x,y on the one hand and ¢, s on the
other satisfy the proportionality relation

dx® + dy* = n(e,s)*(ds* + q(s)2d¢?),

We don’t hesitate to call this metric “Riemannian” even though it considerably predates Rie-
mann.

7This is the square of an infinitesimal element of length on the surface, considered em-
bedded in Euclidean space. Thus the length of a smooth arc (¢(t),s(t)), a < t < b, is

[\ dsgan? + q(s0)2(dg/dn?ar. Trans
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where n is a non-vanishing function representing the dilation factor of distances
at each point.

Figure 1.5: A surface of revolution

Lagrange finds a system of coordinates u, v solving this equation for x and y,
and representing a generalization, within the limits of his investigation, of Merca-
tor’s projection. The functions u, v in question are given by

S do
M(S)=f(; m, V=0,

which satisfy

ds? 1
di® + dv? = o dg* = I (ds” + q(s)°dg®),

and therefore define (locally, away from the poles) a conformal coordinate system
for the surface of revolution.

Having found one conformal coordinate system, Lagrange goes on in his
memoir to consider the problem of determining the other possible such systems,
in particular, for practical reasons in the case where the graticule — the network
of images of the parallels and meridians — is made up of circles. In the evolution
of cartography this theoretical result represents the first occasion where conformal
coordinates are found for a relatively general class of surfaces.
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L.2.2. Gauss’s view of conformal representation

In 1822 the Royal Danish Academy of Sciences and Letters in Copenhagen pro-
posed as a prize problem that of representing portions of a given surface on an-
other in such a way that the representation be “similar to the original in infinites-
imally small regions.” In 1825 Gauss published in Schumacher’s Astronomische
Abhandlungen his famous memoir on the topic [Gaul825], also to be found in his
collected works [Gaul863].

The term “conformal representation” was introduced by Gauss only in 1844
in Section I of the first part of his memoir on higher geodesy. This work largely
bypasses the particular theme of geographical maps, playing in the theory of func-
tions a role analogous to that of his Disquisitiones generales circa superficies cur-
vas in the theory of surfaces.

To return to Gauss’s result of 1825: he shows that every (analytic) surface
is locally conformally equivalent to the Euclidean plane (whence it is immediate
that any two analytic surfaces are locally conformally equivalent)®. A local system
of coordinates (x,y) € R? on a surface is called conformal if in terms of x, y the
metric has the form m(x, y)(dx2 + dyz). Gauss’s theorem then states that:

Theorem 1.2.1 (Gauss). Let g be a real analytic Riemannian metric defined in a
neighborhood of a point p of an analytic surface. Then there exists a conformal
map V — R? from some open neighborhood V of p to the Euclidean plane.

We shall now sketch Gauss’s marvellous proof of this theorem.

We first choose coordinates in some neighborhood of p; expressed in terms
of these coordinates the metric on the surface may be considered as defining an
analytic metric g in an open neighborhood U of the origin in R

To ease understanding we first prove the exact analogue of Gauss’s theorem in
the case where the open set U is endowed with a Lorentzian metric g. This means
that at each point of U there is given a quadratic form of signature (+,—), and we
wish to show that this Lorentzian metric is conformal to the standard Lorentzian
metric dx> — dy* on R? — in the sense of the obvious extension of conformal-
ity to the Lorentzian situation. One proceeds as follows. At each point of U the
metric g determines two directions where it vanishes — the two “isotropic” di-
rections of the metric. Hence locally one obtains two non-singular vector fields
determined by these directions, and on integrating them one obtains two fami-
lies of isotropic curves intersecting transversely. For example, in the case of the
standard Lorentzian metric dx? — dy? these curves will clearly be just the lines of
slopes +1.

8Note that for Gauss the surfaces in question are embedded in Euclidean space, from which they
inherit their metric.
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We now choose the origin O as base point in U and denote by Py any par-
ticular point of R2. Denote by C; and C, the two isotropic curves through O of
the Lorentzian metric g and by 9; and D, the isotropic lines through Py of the
standard Lorentzian metric on R2. Let f; : U — R? be any diffeomorphism send-
ing C; onto D, and f; a diffeomorphism sending C, onto 9,. Now let m be an
arbitrary point of U close to the origin, and let C; and C, be the two isotropic
curves of the metric g passing through it. By replacing U by a smaller open set V
if necessary, we may assume that C; intersects C; in a single point p; and likewise
that G, intersects Cj in just one point p,.

The map ¢ that we seek is then that sending each such point m of V? to the
point of intersection M = y(m) € R? of the isotropic lines of R? through the
points Py = fi(p1) and P, = f(p2). The map ¢ so defined sends g-isotropic
directions in V to those of the standard Lorentzian metric on R?.

We now appeal to the crucial, and easily seen, fact that two quadratic forms of
signature (+,—) on a real vector space of dimension 2 are proportional
if and only if they have the same isotropic directions. We must therefore have
W.g = m(x,y)(dx* — dy?) for some non-vanishing function m(x,y). In other
words, ¢ is a conformal map, and Gauss’s theorem is thus established in the
Lorentzian case — and moreover without the assumption of analyticity.

Figure 1.6: The Lorentzian version of Gauss’s theorem

In the case where g is a real analytic Riemannian metric, although certainly
one no longer has isotropic directions to play with, nevertheless the same under-
lying idea can be made to work given sufficient imagination.

Where now V is an open subset contained in U all of whose points have the property pertaining
to the point m. Trans
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We first express the basic ideas of the argument in modern terminology. That
argument begins with the complexification of the open set U into an open set
U c C2; this is just an open neighborhood of U considered as a subset of C2. We
write gg = dx?* + dy? for the standard “complex Riemannian” metric on C2, with x
and y now the standard (complex) coordinates of C2. (Strictly speaking this is
not a Riemannian metric since the underlying quadratic form takes on complex
values.) Since by assumption the coefficients of the metric g are real analytic
functions we can, by restricting U if need be, extend g uniquely to a complex ana-
lytic — that is, holomorphic — metric g on the open set U. Furthermore, since the
coeflicients of g are real the metric § will be invariant under complex conjugation
(x,y) — (%7%). Now in C? one does have two transverse families of isotropic
complex lines of the metric &g, with equations of the form y = +ix + const., while
on U the metric g likewise gives rise to two families of holomorphic vector fields,
which one integrates to obtain two families of holomorphic curves intersecting
transversely. (Note that these holomorphic complex curves in C? correspond to
surfaces in R%.)

Next one maps the origin O of U to an arbitrary real point Py of R> ¢ C2.
Through O there passes a complex isotropic curve C; and the complex curve C,
obtained by complex conjugation of the curve C;. By means of these curves
one defines, exactly as in the Lorentzian situation, a mapping ¢ of a suitable
neighborhood V of O contained in U, with image in C2. The diffeomorphism
has the additional property of being invariant under complex conjugation, so that it
induces a diffeomorphism y from V = VNR? to its image ¢ (V) NR2. The fact that
the complexification of the diffeomorphism  preserves the isotropic directions of
the complexification of the metric g means precisely that the map is conformal.
This completes the proof of Gauss’s theorem. O

Gauss does not set out his proof exactly as above, although his method is
essentially the same.
First he writes g out as

g = a(x,y)dx* + 2b(x,y)dxdy + c(x,y)dy*, ac > b*.

Then he factors the quadratic form as a product of two conjugate linear forms
(defining the isotropic directions):

é (adx +(b+i m)dy) (adx +(bh-ivac- bz)dy)

I
—Wa@.
a

8

Here w is what is now called a “holomorphic 1-form” in the complex variables x, y.
The equation w = 0 may be regarded as a differential equation whose solutions
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are locally of the form f(x,y) = const. where f is defined in some neighbor-
hood of the origin — in other words, w has the form idf for some function 4.0
Resolving f into its real and imaginary parts, we have

w = h(du + idv) (whence also @ = h(du —idv)),
whence, finally,
hh
g = —(du® + dv?).
a

Here the coordinates u,v are real by construction and the similarity coefficient
m:= ha—h is obviously a real analytic function of x, y, so Theorem I.2.1 is proved. O
Conformal maps ¢ are certainly not unique, but of course any two of them differ
by a conformal self-map of the Euclidean plane. Thus in order to classify all
locally conformal maps one needs to ascertain those coordinate transformations
(x,y) — (X,Y) between open sets of R? that are conformal, that is, for which
dX?+dY? = m(x,y)(dx? + dy?) for an appropriate function m — in other words,
it is necessary and sufficient that the differential map determine a similarity at
each point. If one assumes in addition that orientation is preserved — that the
similarity is “direct” — then the condition is expressed by the formulae

ox 9y X oY

ax  dy dy  ox
familiar as the so-called “Cauchy-Riemann” equations expressing the holomor-
phicity of X + iY as a function of x + iy. In fact this way of expressing the

conformality of a map in terms of dx + idy was known to Euler as long ago as
1777!

Here then in modern terminology is what Gauss showed:

Every (oriented and analytic) surface can be represented by a map to the
Euclidean plane (identified with the complex plane) that is locally conformal and
orientation-preserving. Any two such maps differ by a holomorphic change of
coordinates.

It follows from this theorem that any surface endowed with a (real analytic)
Riemannian metric is a “Riemann surface”, as defined in Chapter II below.

Gauss’s theorem, established here only in the situation of a real analytic met-
ric, remains true under the weaker assumption that the metric is C* or even just
measurable, but the proof is then much more difficult. The C* case was proved
by Korn in 1914 and Lichtenstein in 1916, and, finally, in 1960, Ahlfors and Bers
established the theorem in the measurable case (see [Ahl2006]).

0This is because w and df both vanish exactly on vectors tangent to the curves f(x,y) = const.,
thus must be proportional. Trans
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Gauss does not rest content with merely proving his theorem, but illustrates
it with many examples: he begins by showing how to represent the surface of a
certain solid on the plane, and then a cone and a sphere. He does not lose sight of
the particular question prompting the Danish Academy’s choice of problem, and
ends his memoir with a treatment of the case of an ellipsoid of revolution. The
determination of conformal maps of a more general ellipsoid requires the use of
elliptic integrals, which form the theme of the next section.

L.3. Overview of the development of elliptic functions

By the end of the 19th century elliptic functions were at the center of mathematics.
They turned up everywhere: in geometry, algebra, number theory, analysis, and
even mechanics, and assumed the status of an indispensable accessory of mathe-
matical culture.

Elliptic functions proved useful in allowing certain algebraic curves (those of
genus 1) to be uniformized, and they are therefore important in relation to the
theme of this book. However, they played a more important role in providing a
source of inspiration for Riemann, Klein, and Poincaré — among others — in
their investigations of general algebraic curves. Poincaré, for example, presented
his theory of Fuchsian functions as a “simple” generalization of that of elliptic
functions, and for this reason we now describe the latter theory and its develop-
ment.

There are many excellent books on elliptic functions, including those taking
a historical tack. Among those we prefer, the reader may consult for example
[McKMo01997, Bos1992, Houl978]. In view of the treatments in such works as
these, rather than going into the detailed history we shall confine ourselves here
to describing just the main developments, concentrating on just those aspects we
shall be needing in the sequel.

At the beginning of the 19th century analysts had essentially just a small num-
ber of types of elementary functions at their disposall: polynomials and rational
functions, of course, algebraic functions y(x), that is, satisfying a polynomial
equation F(x,y) = 0 (even if many-valued), and also the exponential and trigono-
metric functions. Early attempts to “find new transcendental functions with which
to enrich analysis” consisted in studying the anti-derivatives of functions already
at hand. This method had already proven itself in connection with the “discovery”

Although in the 18th century Euler had introduced the zeta and gamma functions, for instance,
as well as the idea of a general function as being defined by a power series. Trans
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of the natural logarithm
dx
logx= | —.
Euler, Gauss, Legendre, Abel, and Jacobi, among others, began the general in-
vestigation of Abelian integrals, as Jacobi called them, that is, integrals of the

form
f R(x,y)dx,

where R is a rational function of x and y with y an algebraic function of x. We
present here their respective contributions to this subject.

1.3.1. Euler

The first step consisted in a somewhat “magical” calculation performed by Euler
in commenting on an article by Fagnano. This concerned one of the very simplest
of anti-derivatives not expressible in terms of the known elementary functions,
namely

X
f VI-x*
which conforms to the preceding definition of an Abelian integral with y* = 1 —x*
and R(x,y) = 1/y. This integral arises in the attempt to evaluate the length of an
arc of the lemniscate with equation, in polar coordinates, 7> = cos 26 (the last of
the curves depicted in Figure 2 in the General Introduction).?
In 1752 Euler proved the following “addition theorem”:

X d fy f‘Z
_ 4 - = _
fo V1-¢4 0 V1-r4 0 V1-r4

where

_xyl-y? —i-y\/l—x4
B 1+ x2y?

He was doubtless led to this by the analogy with the integral

fx dt .
——— = arcsinx,
0 V1-1¢2

2Arc length in polar coordinates is calculated by means of the integral f v (dr/de)? + r2de,
which reduces to f «/7‘19 for the lemniscate (so that the length of a loop of the lemniscate is

obtained by evaluating this integral from 6 = —x/4 to 8 = n/4). The substitution x := tan 6 then
yields the above indefinite integral. Trans



I Antecedent works 19

for which the formula
sin(a + b) = sinacosb + sinbcosa

yields the addition formula

fx dt +fy dt _fz dt
0 V1-¢2 0o V1-¢2 o Vi-22
where

z=x4/1=y2+yV1-x%

It should be observed that at this stage in the development these identities are
considered as holding for x,y in the interval [0, 1]. For values of x and y outside
this interval the problem of choice of square root arises. Note also that Euler
makes no explicit use of complex variables in this work.

1.3.2. Gauss

Although during his lifetime Gauss published nothing on this topic, his letters
show that he had a clear understanding of the issue as early as 1796. His first idea
was to invert the function

a_fx dt
0 V1-¢*

and consider x as a function of a, which he denotes by x = sinlemn a. The
analogy with the circular functions doubtless again played a role: the sine and
cosine are convenient for parametrizing the circle by arc length. He translates
Euler’s addition formula into an addition formula for sinlemn (a + b), but does
not stop there. Even though he is still, at that early stage of the game, hesitant
about letting x be complex in the above integral, he is tempted to choose x purely
imaginary, of the form iy, and to consider the integral

f Yo idt

o Vi-t

This leads him to conclude that sinlemn (i) = isinlemn b, and this in turn,
in view of the addition formula, allows him to define sinlemn (a + ib) in terms

of sinlemn a and sinlemn b. Thus is the elliptic function sinlemn of a complex
variable a + ib born.
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Gauss continues his investigation of this function using the analogy with the
sine function. Starting from the addition formula, now conveniently extended to
all of R, he shows that the function sin lemn is periodic of period

1
dt
2w:4f _—
0 V1-—¢*

By the same means he finds a second period equal to 2iw.® Thus the function
sin lemn has fwo linearly independent periods, subsequently the defining property
of elliptic functions. The adjective “elliptic” originates from the fact that these
new transcendental functions arise not only in attempting to calculate arc length
of a lemniscate but also that of an ellipse.

Although the rest of Gauss’s work on this theme is of equal significance, it
would take us too far out of our way to discuss it. However, we cannot but mention
such marvellous expressions for sin lemn z involving doubly infinite products, as

[T (1= 55)
(1= 5"

sinlemn z = z

where []’ denotes the product over all pairs (m,n) € Z>\ {(0,0)}, @mn =
(m+in)w,and By, = (2m —1) +i(2n — 1))w /2. Note here the appearance of
the famous “Gaussian integers”.

1.3.3. Abel and Jacobi

We mentioned above that Gauss never published his discoveries on this theme.
Twenty-five years later Abel and Jacobi, in ignorance of Gauss’s work, retraced
his steps, until around 1827 they began to go well beyond him, in part indepen-
dently and in part mutually stimulated by a relatively protracted rivalry. On this
subject there has survived a lively correspondence between the young Jacobi and
an aging Legendre sometimes assuming the role of intermediary [LeJal875].
The mention of Legendre’s name affords an opportunity to note that he also
must be considered one of the precursors of the theory, having dedicated forty
years of his life to it, beginning in 1786. His labors culminated in the publication
in 1830 of the three volumes of his Traité des fonctions elliptiques. In this connec-
tion one should mention, however, that Legendre’s elliptic functions are functions

3The notation is explained by the fact that the quantity 2w is the length of the lemniscate in
question.
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of a single real variable, and that one of his chief motivations was to establish
numerical tables, with a view to applications. And moreover he never penetrated
to the double periodicity of the inverse of the anti-derivative of 1/ V1 — 4,

We remind the reader that anti-derivatives of the form f p(x)/+/qg(x)dx,
where p is a polynomial of any degree and ¢ one of degree at most 2, can be
explicitly evaluated in terms of logarithms and rational functions. Geometrically,
this comes down to the fact that the curve defined by the equation y> = g(x) is
a conic, which therefore admits a rational parametrization, by means of which
the problem is reduced to that of anti-differentiating a rational function, and for
these there is the well known standard procedure involving logarithms arising as
integrals of expressions cognate to 1/x.14

One of Legendre’s contributions was a systematic classification of integrals of
the form f (p(x)/ \/q(x)) dx when the degree of g is 3 or 4. He shows that in
this case the calculation reduces to three precise types of anti-derivative playing
in some sense a logarithm-like role, whose values he tabulates.

Be that as it may, Abel and Jacobi investigated integrals of the form

. fx dt
0o VaA-AIA-)

in connection with which both hit on the good idea of considering x as a function
of u — unaware that Gauss had had the same idea earlier. The parameter k is
called the “modulus”, and since it is a parameter not varying within the integral,
they denoted the inverse function simply by x = sinam u. They “showed”, more
or less, that x is a single-valued meromorphic doubly-periodic function of u sat-
isfying a certain addition formula, and they went on to obtain a great number of
series expansions of such functions.

A central theme of their investigations concerned certain “transformations” —
rather magical-seeming formulae relating values of sin am u for different values of
the parameter k, some of which had been found earlier by Euler. This marked the
début of the theory of modular equations, which, however, we shall not broach
here, even though they will turn up in the course of our discussion of Klein’s
quartic.

1.3.4. Jacobi and the J-functions

In 1835-36 Jacobi developed extremely powerful tools for constructing elliptic
functions as ratios of holomorphic functions. These are the so-called “#-functions”.

14And also trigonometric functions. Trans
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They are relatively simply defined: taking w to be a complex parameter, and writ-
ing p := exp(inz), q := exp(inw), we may define them as follows:

91(2) = 0 (zlw) = i_i (=1 plgnm1er,
92(2) = a(zlw) = i i pg
93(2) = 93(zlw) = i i P,
94(2) = 94(zlw) = ii(—l)"ﬁ"q"z.

For Im w > 0 these series converge and define 1-periodic functions of z. Although
they themselves are not elliptic functions — having only the single basic period 1
— all the same ¢;(z + w) can be expressed very simply in terms of ¢;(z). For
example,

91(z+w) = -p7q" 91 (2).

The point is then that ratios of two ¥-functions may be doubly periodic. Thus
¥1/04 is an elliptic function with periods 1 and w. The J-functions satisfy a
tremendous number of identities each more astonishing than the one before, and
their applications — notably in number theory — continue to prove their worth.

To learn much more on this theme, one may consult for example [McKMo1997,
Mum1983, Mum1999].

1.3.5. Bringing the theory into final form: Eisenstein, Liouville, and Weier-
strass

From 1840 onwards the theory of elliptic functions stabilized, taking on the form
familiar to us today. From that time on an elliptic function is defined as any
meromorphic function f of the complex plane admitting two independent periods
w1, Wy

fz+mw +nwy) = f(2)

for all z € C and all integers m, n.

The functions obtained by Abel and Jacobi as inverses of anti-derivatives of
1/4/(1 = £2)(1 — k2¢2) are examples of such functions, but are there any others?
Is there an elliptic function for every choice of the two periods? Here again we
must limit ourselves to merely stating the main results, obtained independently by
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Eisenstein, Liouville, and Weierstrass — results one may consider known when
Riemann began working on his thesis.

Given two complex numbers w; and w», linearly independent over R, the
lattice A they generate is the set of points of the form mw; + nw, € C, m,n € Z.
These form a discrete subgroup of C, and the fact that a function has periods w;
and w; means that it is in fact defined on the quotient torus C/A, which is, as we
shall soon see, a basic example of a Riemann surface.

The Weierstrass p-functions are elliptic functions with prescribed periods, de-
fined by

1

1 1
W(Z) = Z_2 + we;\:{o} ((Z——(u)z - E) .

It can be shown that each such series converges where defined and defines a mero-
morphic function with lattice of periods precisely A. It has a pole of order 2 at the
origin of C/A and is holomorphic everywhere else.!

His next step was to show that this function satisfies a differential equation,
namely

(©)* =49 — 920 - g3,

where g and g3 are the Eisenstein series

) = 60 Y W
weA\{0}

@A) = 140 w™®.
w€eA\{0}

He establishes this equation using a method due to Liouville: the difference be-

tween the two sides represents a (meromorphic) elliptic function, and one then

chooses the coefficients in such a way as to eliminate the pole, thus obtaining a

holomorphic function. Since the only holomorphic elliptic functions are constants

(in view of the compactness of C/A and Liouville’s theorem), we have the result.
It follows that the projective algebraic curve C with affine equation

¥ =4x - gx — g3

is uniformized by the torus C/A via the parametrization

z€C/A - (p(2),9'(2)) € C.

5]t can be shown that every meromorphic doubly periodic function with basic periods w; and
wy is a rational expression in g, o’ with coeflicients in C, so that the totality of such functions is the
algebraic function field C(gp, ¢’). Trans



24 I Antecedent works

It remains to show that, conversely, for any g» and g3 such that the curve C is
non-singular, that is, satisfying gg - 27g32 # 0, there is a lattice A with Eisenstein
invariants equal to g, and g3. This can be achieved in several ways, the simplest
of which is to consider the integral

f dz
423 — gz — g3

and imitate Gauss, Abel, and Jacobi by inverting it. The periods of the elliptic
function thus obtained are then the required ones.

Furthermore, one can also show that every smooth curve of degree 3 in the
complex projective plane is projectively equivalent to a curve of the above form
(named after Weierstrass, although it was Newton who originally discovered this):
this is done effectively by projecting to infinity a tangent line at a point of inflec-
tion of the given cubic curve.

The upshot of our discussion is thus that:

Every smooth curve of degree 3 in the complex projective plane is isomor-
phic to a torus of the form C/A, and furthermore by means of an isomorphism
determined by an elliptic function.

A final point to end this preliminary chapter: since C/A is an Abelian group,
the same group structure is induced on the smooth cubic curve it parametrizes.
The addition formula discovered by Euler reflects this. It turns out that the rule of
addition on the cubic is extremely simple. First one chooses a point of inflection to
represent the identity (or zero) element, and then one declares that the three points
of intersection of the curve with any straight line have sum zero. This defines
the rule of addition completely. The proof that this geometric construction does
indeed yield an addition defining a group is an interesting exercise in projective
geometry (see for example [McKMo01997]).

It may be of interest to remark that the simple projective definition of this
group structure appears to have been unknown to the heroes of this chapter. From
[Cat2004, Schal991] it appears that perhaps even Poincaré had no clear idea that
the rational points of a cubic curve defined over Q form an Abelian group (even
though he spoke of it as having “finite rank™).



Chapter I1

Riemann

In this chapter we examine two of Riemann’s memoirs: his doctoral thesis [Rie1851]
defended in Goéttingen in 1851, where he develops the theory of holomorphic
functions and proves the “Riemann mapping theorem”, and his article on Abelian
functions [Riel1857] published in Crelle’s journal six years later. In the latter
work Riemann applies the techniques developed in his thesis to the construction
of a general theory of algebraic functions and their associated Abelian integrals.
Recall that a function s(z) is called algebraic if it satisfies a polynomial equation
P(s(z),z) = 0, and that an Abelian integral is one of the form f F(s(2),2)dz
where F is a rational function of two variables.

Subsequently the paper [Rie1857] came to be considered as initiating major
directions of mathematical research, including the topology and analytical ge-
ometry of compact Riemann surfaces, their moduli spaces, the Riemann—Roch
theorem, birational geometry, the theory of general theta-functions and Abelian
varieties, the Dirichlet problem, Hodge theory, etc. Over just the 25 years follow-
ing the publication of this article, we see its results geometrized by Clebsch, and
then by Brill and Noether, then arithmetized by Dedekind and Weber — and a
start made by Clebsch and Noether on extending the results to algebraic surfaces.

It has been an absorbing task to bring to light the seeds of all of these devel-
opments contained in this single article.

II.1. Preliminaries: holomorphic functions and Riemann surfaces

I1.1.1. Holomorphic functions

We begin by explicating Riemann’s work on the uniformization of simply con-
nected open sets of the plane, contained in his thesis [Rie1851] published in 1851.
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We describe first of all how Riemann defines the concept of a holomorphic
function in the very first section of this memoir. He considers a complex-valued
function w(z) = u(z) + iv(z) of a quantity z = x + iy varying over an open set U
of the complex plane, and studies the differential quotient:

aw _ w(z) —w(z")

= lim
dz 7>z z—7

observing that:

When the dependence of the magnitude w on z is chosen arbitrarily, the

quotient ‘ézi—m’ will generally vary with the values of dx and dy.

This may be unpacked as follows: if we denote by
dw, :C~R?* > C ~R?

the differential map at a point z of the function w considered as a real differentiable
function R — R2, and consider an infinitesimal increment dz = ge'¥ of the
variable z, then we have!

—dwz(gei‘p)—l %4_@ +17 @_@
et 2\\dx  ay "\ox dy

2 \\ox dy dx Oy '

(3_u_8_v +1 @4_@
ox Jdy ox dy

. . . i . . ;
does not vanish at the point z, the quantity % will vary with e'¢. However,

as Riemann observes, for all functions w obtained from z by means of “elementary

ip .
dw=ee™) 4oes not depend on dz = gei¥.
ce'¥

If the term

computational operations”, the quantity

IThis can be seen as follows. Suppose for simplicity that z = 0 and w(z) = w(0) = 0. The
differentiability of w(z) considered as a function of the two real variables x,y means that there
exist numbers a, 8 — in fact these are just dw/dx and dw/dy at z = 0 — such that w(z) =

ax+ By+n(z)z where n(z) — 0 as z — 0. Rewriting this as w(z) = (—a_ziﬁ) z+ ((Hziﬁ) z+n(2)z,

it follows th?.t @ = (#) + (#) % + 17(z). Taking the limit as z — 0, that is, setting
7 = dz = ge'¥ (and noting that d7/dz = e~2%) we obtain the formula that follows. Trans
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He therefore proposes taking the vanishing of this term as the defining condition
of what he calls a function of a complex variable:

A variable complex quantity w is called a function of another variable com-

plex quantity z when it varies with z in such a way that the value of the

dw

derivative v
Z

is independent of the value of the differential dz.

In other words, for Riemann the term “function of a complex variable” always
means a holomorphic function. Thus such functions are by definition just those
satisfying the Cauchy—Riemann equations

ou 0Ov ou av
U _ T g Y 1.1
dx Ay an dy ox’ (L1

which is equivalent to the closure of the complex differential 1-form

w(z)dz = (u +iv)(dx + idy).

It can be shown that then the function w’(z) := ”fi—vzv is well-defined and again

holomorphic, so that w is in fact infinitely differentiable.?

If a function w = u + iv is holomorphic, it follows from the Cauchy—Riemann
equations and the fact that it is twice differentiable that the functions u and v
satisfy

Au=Av =0,

2 2 . . . . .
where A := % + 86_)72 is the Laplacian associated with the complex coordinate z.

Functions of two variables annihilated by the Laplacian are said to be harmonic.
Thus the real and imaginary parts of a holomorphic function are harmonic.

Conversely, given a function u defined and harmonic on a simply connected
open set U c C, there exists a holomorphic function f;, : U — C, uniquely
defined to within a purely imaginary additive constant, such that u = Re(f,). The
function f, is in fact simply a primitive of the holomorphic 1-form

du—iduoi.

The function u* = Im(f,,), defined only up to an additive constant, is called the
conjugate function of u.

This close affinity between holomorphic and harmonic functions is central
to the methods used in [Riel851, Riel857], since his proofs of the conformal

2Even more, a function holomorphic in a neighborhood of a point z is analytic, that is, equal to
its Taylor series expansion, in some neighborhood of zy. Trans
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representation theorem (or “Riemann mapping theorem”) and the existence of
certain Abelian integrals are based on a close study of harmonic functions, and
especially “Dirichlet’s principle”.

We recall also the following “mean-value” property of harmonic functions. If
D(zo,r) = {z € C||z — z0| < r}is adisc contained in U, then

1 2 )
u(zo + re'?)do

u(zo) ﬁ
0

1
— u(x,y)dxdy.
re JD(zo,r)

In fact this property characterizes harmonic functions: a continuous (or even just
measurable) function is harmonic if and only if it has the above mean value prop-
erty on closed discs in U. It follows that harmonic functions satisfy the maximum
principle: if a harmonic function u has a local extremum at a point zg of U, then
it must be constant in some neighborhood of zp. Another consequence is that a
function v : U — R that is a uniform limit of harmonic functions defined on
compact subsets of U is itself harmonic.

It is noteworthy that, in contrast with Abel, whose approach is essentially
algebraic, consisting of manipulations of functions of several variables and of
algebraic and differential equations, Riemann works with functions independently
of specific formulae, basing his argumentation on their defining properties, as he
explains in the introduction to [Riel1857]:

I shall consider as a function of x + yi any quantity w that varies with the
first quantity in such a way as to satisfy the equation

Cow Ow
= =—,
ox  dy
without resorting to an expression for w in terms of x and y.3

This desire to avoid starting out with particular expressions for his functions
is taken up again a little further on:

By a known theorem, mentioned earlier, the property of a function of being
single-valued comes down to the possibility of developing it by means of
positive or negative integer powers of increments of the variables, while
the many-valuedness of a function reduces to the impossibility of doing so.
However it does not appear to be useful to express properties independent
of the mode of representation by means of symbols based on an explicit and
determinate form of expression for the function.

3The reader will recognize here an alternative formulation of the Cauchy—Riemann equations.
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In order to read Riemann’s article the following must be kept in mind: by a
“function of x and y” he means a function without implicitly understood proper-
ties; but by a “function of x +iy” he means a holomorphic function, in both cases
allowing the function to be many-valued or even discontinuous. The following
excerpt from his thesis [Rie1851, §5] clarifies the type of discontinuities he had
in mind, and is also interesting for the light it sheds on the meaning he gives the
phrase “in a general manner”:

A variable quantity which, in a general manner, that is, without excluding
exceptional isolated points or lines, at every point O of a surface T takes on a
definite value varying in a continuous way with the position of the point, can
clearly be regarded as a function of x,y, and henceforth whenever functions
of x,y are being discussed, this definition is to be understood.

II.1.2. Riemann surfaces

The modern definition. — Nowadays a Riemann surface is defined as a complex
manifold of dimension 1:

Definition II.1.1 (Riemann surface). A Riemann surface is a (connected, Haus-
dorff) topological space X endowed with an atlas {(Ua,$ 1)} 1ea Where (Up)en
is an open cover of X and the maps ¢, : Uy — V, are homeomorphisms to open
sets of C (the charts of the atlas), such that the composite maps*

$a06," ¢ (UaNUy) = ¢a(Us NU)

are biholomorphic transformations (that is, holomorphic bijections).

Furnished with this definition one can immediately extend local properties and
objects from C to any Riemann surface; in particular the concepts of a holomor-
phic or meromorphic® function or form on a Riemann surface, and holomorphic
and biholomorphic mappings (isomorphisms) between such surfaces now acquire
meaning.

Gauss’s theorem of Chapter I now provides us with a plentiful supply of ex-
amples: we can re-interpret that theorem as asserting that every analytic real Rie-
mannian metric on an analytic surface furnishes it with the structure of a Riemann
surface. The interplay between this structure and the geometry arising from the
metric will play a leading role in the work of Klein considered in the next chapter.

4Coordinate changes. Trans
5A meromorphic function is a function that is locally the quotient of two holomorphic functions.
It can be interpreted as a holomorphic function taking its values in C. Trans
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The Riemann sphere. — Apart from C and its open subsets the first examples of
Riemann surfaces that come to mind are the tori C/A met with in the introduction,
and the Riemann sphere: indeed, one can cover the unit sphere

S ={(X.Y,2) e R’ | X2 +Y* + Z* = 1)

by the two open sets S2\ N and S?\ S (where S = (0,0,—1) and N = (0,0, 1) are
the south and north poles), on which one defines the stereographic projections

on :  S*\N - RI=C
P=(XY,2) » Xdf
and
o5 SZ\ S - R2=~C
— X-iY

For a point P of the sphere other than the poles, one checks that ¢n(P) =
1/¢s(P); since z — 1/z is a holomorphic function on C*, this furnishes the sphere
with the structure of a Riemann surface, denoted by C, which can be thought of
as the natural compactification of C by a point at infinity, or, equivalently, as the
complex projective line CP!. These two notations for the Riemann sphere will
recur throughout the book.

As recounted in [Cho2007, p. 98], the construction of the Riemann sphere by
means of stereographic projections appeared first in print in [Neum1865], the first
textbook devoted to the theory of Riemann surfaces. In the introduction to his
book Neumann mentions that Riemann taught the above construction, which was
then handed down only orally.

The disc, the plane, the sphere, and their automorphisms. — It follows from
the uniformization theorem that the disc D, the plane C, and, lastly, the Riemann
sphere C are, up to isomorphism, the only simply connected Riemann surfaces.
We now describe the automorphism groups of these three surfaces.

Firstly, taking
D:={zeC]lz] <1},

the map

e w=i (11.2)

1-z
is a holomorphic isomorphism from D onto the upper half-plane

H:={weC|Imw > 0}.
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It follows that the automorphism groups of D and H are isomorphic. Thus by
means of conjugation by the transformation (II.2) one can pass from the action
of an automorphism on D to that of the corresponding automorphism on H. The
model H has the advantage that one can easily see that its group of automorphisms
is isomorphic to PSL(2,R) := SL(2,R)/{+x1}. The precise action is as follows: an

b ) € SL(2,R) acts on H on the left according to the rule

element ¢
c d

a b aw + b
cw+d’

c d -
The automorphism group of C is simply the group Aff(C) of complex affine

transformations of C:
(a,b)-z=az+ b,

where a € C* and b € C.
In the case of C, the automorphism group is PSL(2,C), acting on the left by
the rule

c d _cz+d'

The latter transformations are called homographies.®
These three automorphism groups are variously transitive:

(a b) az+b

1. Aut(D) is 1-transitive and each of its elements is completely determined by
its action on an arbitrary point of D and an arbitrary point of the boundary
0D (to which the group action extends by continuity).

2. Aut(C) is 2-transitive and each of its elements is completely determined by
its action on any two distinct points of C.

3. Aut(C) is 3-transitive and each of its elements is completely determined by
its action on any three distinct points of C.

Many-valued functions and Riemann surfaces. — Our definition (above) of a
Riemann surface is anachronistic: for Riemann these surfaces arose as a means for
handling many-valued functions. Starting from a holomorphic function defined on
an open subset of the plane, he sought to extend its domain of definition by means
of analytic continuation. The first sentence of the following quotation announces
the procedure of analytic continuation and the second explains how one may by
such means be confronted with the problem of many-valuedness. It is precisely
this situation that justifies the introduction of the term “many-valued function”,
which is really not a function at all in the modern set-theoretic sense.

6QOr “Mobius transformations” or “linear-fractional transformations”. Trans
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A function of x + yi given on a part of the (x,y)-plane can be extended
continuously beyond [that region] in just one way. [...] Now, depending on
the nature of the function being extended, either it will or will not always
take on the same value at a single z-value independently of the path along
which the continuation was performed.

In the first case I call the function single-valued: such a function is then
precisely determined for each value of z and it never becomes discontinuous
along any line. In the second case, where we call the function many-valued,
one must first of all, in order to grasp how it develops, pay attention to
certain points of the z-plane around which the function extends onto another
[plane]. Such a point is, for example, the point a for the function log(z — a).

The points at which the value of the function varies with the path along which
analytic continuation is carried out are so important in the sequel that Riemann
gives them a name:

We will call the various extensions of a single function over the same region
of the z-plane the branches? of the function, and a point near which one
branch extends onto another a branch point of the function. Wherever there
is no branching the function is to be called monodrome or single-valued.

After explaining the types of functions he will be considering, he introduces
the surfaces now bearing his name, repeating a construction appearing in his the-
sis [Rie1851]. What’s novel here are the intuitive pictures he proposes, of an
“infinitely thin body” and of a *“ helicoid” of “infinitely narrow thread”:

Imagine a surface extended above the (x, y)-plane and coincident with it (or
if one likes a body infinitesimally thin [spread] over the plane), which ex-
tends exactly as far as the function is given. When the function is extended,
this surface is to be continued equally far. In a region of the plane where
the function has two or several continuations this surface will be double or
multiple. It is thus made up of two or more sheets each of which corre-
sponds to a branch of the function. Near a branch point of the function one
sheet of the surface extends onto another in such a way that in a neighbor-
hood of this point the surface can be considered as a helicoid with infinitely
narrow thread and with axis perpendicular to the (x,y)-plane at that point.
However, if the function, after z has traced several turns about the branch
point, should again take on its initial value (just as, for example, (z — a) ™,
m,n relatively prime, does after z has executed n turns about a), one must
assume that the uppermost sheet reconnects with the bottom sheet, passing
through the others.

70r “ramifications”. Trans
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The last few lines show that Riemann did indeed picture the surface situated
in the 3-dimensional space of common intuition. Or did he use such language
merely to facilitate the understanding of his readers, while himself conceiving the
surface as an abstract manifold? Whatever the case may be, as is mentioned in
[Cho2007, p. 59], Hensel and Landsberg [HeLa1902, p. 91] continue describing
the situation in a manner close to that of Riemann:

Imagine n coordinate planes placed one above the other at an infinitesimally
small distance [...] in such a way that their origins and axes are superim-
posed [...]

Riemann’s description of the surface as situated in a space of dimension 3
forces him to talk of sheets which cross each other, which has historically been a
source of difficulty for those trying to learn his theory. The fact that these intersec-
tions need not and should not be considered is implied by the following property
of such a surface:

A many-valued function admits at each point of a surface which so repre-
sents its mode of branching, a single determinate value, and can therefore
be regarded as a function uniquely determined at the place (of a point) on
that surface.

From this it is clear that the surface associated with a many-valued function is
considered as a means of resolving the problem of its many-valuedness.

Box II.1: The Riemann surface of a germ of a function

We explain here how one nowadays constructs a Riemann surface as-
sociated with a germ of a holomorphic function f : (C,x) — C.* Let
G = { germs of holomorphic functions (C,x) — C | X € C}. We first define a
Hausdorft topology on this set. For each open set U of C and each holomorphic
function f : U — C, we define

UWU,[) = {germs fx: (Cx) —> C|x € U}

and we endow G with the topology generated by the U (U, f).

“That is, the set (equivalence class) of all holomorphic functions g agreeing with f on some
open neighborhood (depending on g) of x. Trans
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It is then immediate that the map

. G - C
T (£ (Cx) > C) > x

is continuous and that its restriction to each open set U (U, f) defines a local
homeomorphism. These local homeomorphisms then allow us to endow G
with the structure of a one-dimensional complex manifold (leaving aside for
the moment the requirement of a countable open basis).

This topology is Hausdorff. To see this, note first that two germs based at
distinct points are already separated by the continuous function 7. Consider
two germs f, : (C,x) - Cand g, : (C,x) — Cat x, and let U be a connected
open set of C containing x such that f, and g, are the germs of f,g : U — C.
If there were a germ hy, : (C,y) — C in the intersection U (U, f) N U(U, g),
the functions f and g would coincide on an open set contained in the domain
of h, whence fy = gx. Thus if f, # g, the open sets U (U, f) and U (U, g)
must be disjoint, and so serve to separate the two germs.

Now let fy : (C,x) — C be a germ of a holomorphic function. The Rie-
mann surface of fy is then defined to be the connected component S(f,) of G
containing fy. The germs g, : (C,y) — Cin S(f) are obtained by analytic
continuation of (f, : (C,x) — C) along a path joining x to y. In particular, if
fx : (C,x) — Cis a germ of a function f that is many-valued in a neighbor-
hood of x, the surface S(f,) will contain a point “above” x (that is, in ax})
for each value of f at x. Thus the surface S(fy) comes with a (single-valued)
holomorphic map f : S(f) — C determining f.

The Poincaré—Volterra theorem guarantees that the surface S(f) has a
countable open basis (see Box XI.1).

One can imitate the above construction of S(f) for other regularity classes
of germs. For example, one may construct in the same way the maximal mero-
morphic continuation. More generally, this procedure can be extended to a
sheaf on a topological space” and what was called around 1950 the associated
“¢tale space” of the sheaf.

%A “sheaf” on a topological space X is a structure associating with each open set U of X an
Abelian group or ring (usually of functions defined on U), equipped with a restriction operation
satisfying certain conditions. Trans

The Riemann surface associated with an algebraic function. — In this section we
consider the Riemann surface associated with an algebraic function s(z). The
graph of s, in C, x Cy, is determined by an irreducible polynomial equation
F(z,s) = 0; such an equation defines an irreducible algebraic curve in @z x Cg.
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Although Riemann never used such geometrical terminology in his article,
he must have been aware of the geometric interpretation, as Klein explains in
[Kle1928].

From the beginning Riemann recognized the importance of his theory for
algebraic geometry. However, in his courses he went into detail only in the
case of quartics. This came out only much later from an examination of his
lecture notes. It required a much more extroverted nature to establish his
results on a broader basis and introduce them to a wider readership. It was
Clebsch who understood this.

Riemann proposed “determining the mode of branching of the function s or
of the surface T representing it”. Initially 7 is the Riemann surface of the regular
part of the function, that is, the maximal analytic continuation of any of its regular
(single-valued and holomorphic) germs. Next he shows that there exists a unique
smooth compactification of 7 obtained as follows. He first defines the simplest
possible branch points on the surface 7"

A point of the surface T where just two branches of a function join in such
a way that near this point the first branch continues into the second and the
second into the first, [ will call a simple branch point.

(We recognize here a branching like that of the two-valued function /7 at the
origin.) Every other branch point is regarded as the limit of simple branch points:

A point around which the surface turns about itself (u+ 1) times can then be
considered as consisting of y coincident (or infinitely close) simple branch
points.

He then introduces local parameters (or, as we also call them nowadays, local
uniformizing parameters) in a neighborhood of every point of the closed surface 7',
choosing them explicitly as functions of z. Thus in a neighborhood of a point
z = a where the surface T does not branch, he chooses z — a, and then:

For a point where the surface T turns about itself u times, when z is equal to
1 1

a finite value a, [we choose] (z —a)# [...]; butat z = oo, it is (é)i, which

becomes infinitely small to the first order.

He next explains how to use such a local parameter to develop in series “the
Sfunctions we shall be dealing with here”, which is to say meromorphic functions
and their integrals.
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Here we see that Riemann desingularizes the curve defined by the equation
F(z,s) = 0 using only local monodromy?® of the values taken on by s as z varies
around each branch point a: a set of u branches around a are given simultane-

1
ously by one and the same meromorphic function of (z — a)#. Each irreducible
local component of the curve is thus parametrized by a disc, namely the image

of {|z — a| < &} under the map (z - a)%. Of course, a point has been added to T’
above a in order to compactify the irreducible local component. In this way Rie-
mann by-passes the so-called algorithm of Newton—Puiseux (which, moreover, he
does not refer to). The uniqueness of the resulting compactification is immedi-
ate from another theorem of Riemann, namely that on removable singularities,
according to which a holomorphic function bounded on a punctured disc can be
extended holomorphically to the missing point.

From all this it follows that the Riemann surfaces associated with two bira-
tionally equivalent algebraic curves (see Subsection I1.3.1) are isomorphic: after
the removal of a finite number of points on each of them, the given birational map
will define an isomorphism between the punctured surfaces, which then extends
automatically to an isomorphism between compact surfaces.

Thus does Riemann open the way to the modern abstract notion of a Riemann
surface, with all local parameters obtained from each other by means of biholo-
morphisms considered equivalent.

Algebraicity of compact Riemann surfaces. — We saw in Box IL.1 that every
germ of a holomorphic function f can be associated in a natural way with a Rie-
mann surface S(f). When the function is algebraic, this surface compactifies
into a compact Riemann surface — its maximal meromorphic analytic continua-
tion. We now wish to consider the converse: if the maximal meromorphic analytic
continuation of f is compact, then f is algebraic.

In anticipation of the Riemann—Roch theorem (see Section 11.2.4, Coro-
llary 11.2.13) we remark that every (abstract) Riemann surface carries enough
meromorphic functions to separate its points. This allows one to prove the fol-
lowing theorem.

Theorem I1.1.2. — Every compact Riemann surface T is isomorphic to the Rie-
mann surface of an algebraic function.

Proof. — Let f1 be a non-constant meromorphic function on 7', and consider f;
as defining a branched covering of C of degree d.° Let {P,...,P4} be a generic
fiber of the covering, and f, a meromorphic function separating these d points.

8“Monodromy” is a general term for the change in an appropriate mathematical object with
variation around a singularity. Trans

9This is a consequence of the compactness of T', which allows one to trace the various branches
of the inverse. Trans
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The image of S under ( fi, f>) is an analytic curve C in 62 xC,,. We wish to show
that this curve is algebraic.

Since the non-constant function f; : T — @z defines a branched covering,
the fiber f| I(2) over z always consists of the same number d of points of T ex-
cept for a finite number of points zy,...,zx of @Z. For z € @Z —{z1,..., 2k},
we write ffl(z) = {P1(2),...,P4(z)}. Itis important to observe that the P;(z)
are many-valued: the set {P(z),...,P4(z)} is well-defined but it is not possible
to arrange the preimages so as to obtain d holomorphic functions globally de-

fined on @Z —{z1,...,zx}. The ordinates of the d points where the line {z} X @W
meets C are w;(z) = f2(P;i(z)), Lvarying from 1 to d. Once again we obtain d
“functions” w;, many-valued on C,; — {z;,...,zx}. We now consider the basic

symmetric expressions in the w; (z):

Si(z) = wi(z) + -+ wq(2),
S(z) = wi(2)w2(2) + -+ + wa1(D)wa(z),
Sa(z) = wi(z) - wq(2).

These functions are meromorphic on C., whence they are rational functions'® of the
variable z. The polynomial F(z,w) obtained from wé=S1 (2w 4+ (=1)9S4(2)
by multiplying by a suitable polynomial in z to cancel the denominators, vanishes
precisely on the curve C. The Riemann surface T is then just the Riemann sur-
face of any germ at which the above polynomial vanishes: these surfaces are both
compact and coincide except for a finite number of points. O

Observe that we have shown here that the field C(fj, f2) has degree pre-
cisely d over the subfield C(f;). The same argument shows that for every mero-
morphic function g, the field C(f1, g) has degree at most d over the same subfield.
It follows by the primitive-element theorem!, that the field generated by fi, f>
and g is the same as that generated by f; and f>. We conclude, finally, that the
field of meromorphic functions on 7' is precisely C( f, f2).

One infers from this that if we choose two other functions f| and f] as in
the above proof, then the resulting curve C’ is birationally equivalent to C —
effectively since f| and f; can be expressed as rational functions of f; and f>. We
conclude that two isomorphic compact Riemann surfaces give rise to birationally

VA meromorphic function from the Riemann sphere to itself is a holomorphic function with a
finite number of poles, possibly including oo, and so, by an easy extension of Liouville’s theorem
that a bounded holomorphic function is constant, must be a rational function. Trans

IAsserting that if K 2 F is a finite field extension and (in particular) the characteristic is zero
then there is an element a € K such that K = F(a)(= F[al]). Trans
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equivalent algebraic curves. It is this that Riemann expounds in Sections XI and
XII of [Riel857], the point of departure for his investigation of moduli.

Theorem II.1.2 can be made more precise:

Theorem I1.1.3. — Every compact Riemann surface S can be immersed?2in CP?,
injectively apart from a finite number of points, and with image an algebraic
curve C having as singularities only double points at which the two tangents are
distinct.

To see this one first embeds the given Riemann surface in some projective
space CP". Such an embedding is given, in projective coordinates, by

z (1 fi(@) 2 f2(2) o fu(2))

where we have supplemented the earlier functions f; and f, with further mero-
morphic functions f; on § in order to ensure injectivity:

— if all of the f; have the same value at some two points of S, one adds another
function taking distinct values at those points;

— if all the f; have a common critical point on S, one adds a function regular
at that point.

One may construct such functions directly from f; and f> (working in the
field they generate), or, better yet, by appealing to the Riemann—Roch theorem.
This achieved, a suitable projection CP" — CP? affords us the desired immersion.

In fact the Riemann—Roch theorem provides a privileged representation of a
compact Riemann surface as an algebraic curve in a projective space. In genus
p = 2, the dimension of this space is p — 1 for all non-hyperelliptic curves (com-
pare for example [GrHa1978]).

II.1.3. Theorems of ‘“‘Analysis Situs”

There remains the major problem of actually defining meromorphic functions and
forms on a given Riemann surface. This will be the main goal of Section II.2
below.

Riemann bases his construction of meromorphic functions and forms on what
he calls “Dirichlet’s principle”, which plays a role also in his thesis [Rie1851].
To that end he needs to integrate a closed form Xdx + Ydy (that is, for which
g—’y( = %), the integration to be carried out along paths on a surface above the
(x,y)-plane. He begins this section by declaring that he will be needing results
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from Analysis Situs (that is, topology). What is at issue here is nothing less than a
major conceptual leap: to investigate the construction of an algebraic function on
a surface using topological methods in relation to the surface. We now expound
these ideas.

By means of a special case of Stokes’ theorem, Riemann first of all shows
that:

[...] the integral f (Xdx+Ydy),evaluated along two different paths joining
two fixed points, yields the same value when the the union of these two
paths forms the complete boundary of part of the surface 7.

In modern terminology, the integral of a closed form along a path with fixed
end-points depends only on the homology class of the path.

Riemann next introduces a measure of the connectivity of a surface, giving the
extent of its departure from simple-connectedness. His definition is the forerunner
of that of the Betti numbers with integer coefficients. Here he implicitly assumes
his surfaces are compact and connected with non-empty boundary. Faced with a
surface without boundary, he begins by removing a disc.

Figure II.1: “Riemann surfaces” (pp. 99, 100 of [Rie1857])

For him a simply connected surface (homeomorphic to a disc) is one with
degree of connectivity 1. When a surface is not simply-connected, he performs
cuts along sections of it until it becomes simply connected:

2An immersion of a manifold M in a manifold N is a differentiable map f : M — N such that
the induced map between tangent spaces (the derivative as linear transformation) is injective at each
point. Such a map f is an embedding if it is also injective. Trans
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A multiply connected surface can be transformed, by means of cuts, into a
simply connected surface. [...]

When one can trace n closed curves aj,as, ...,a, on a surface F which,
whether one considers them separately or united, do not form the complete
boundary of a portion of the surface, but which, when supplemented by
any other closed curve do form the complete boundary of a portion of the
surface, the surface is said to be (n + 1) times connected.

Riemann provides four diagrams intended to aid comprehension of the notions
of a multiply connected surface and its degree of connectivity. These are the only
diagrams in the article [Rie1857]!

How does all this apply to the integration of a closed form of degree 1?7 Af-
ter having cut along certain curves of section!® he obtains a surface representing
a simply connected region of the original, so that the closed form is now exact
on that region, that is, is the differential of a single-valued function. In passing
across each curve of section this function undergoes constant jumps of disconti-
nuity, which Riemann calls moduli of periodicity. Nowadays one talks rather of
periods as the integrals of the closed form around loops, representing, therefore, a
concept dual to Riemann’s moduli of periodicity. Thus in Figure I1.2 the modulus
of periodicity corresponding to the transverse section X X’ is equal to the period
taken along the dual loop Ix (X = A, B).

Box I1.2: Simple connectedness

Note how the terminology has evolved: today a surface is called simply
connected if every loop on the surface is homotopic to a constant loop. How-
ever the definition Riemann used is different:

This gives rise to a distinction among surfaces into simply connected
ones, where every closed curve completely bounds a portion of the sur-
face [...] and multiply connected ones, where this is not the case.

A modern reader will see here a homological definition: a surface is sim-
ply connected if every loop bounds a subsurface. In higher dimensions this
definition (which is just that H(X,Z) = 0) is weaker than that given above
(equivalent to 7 (X) = 0 — weaker since we know that H;(X,Z) is always
the Abelianization of 7;(X)). However for a surface the two definitions are
equivalent.

BThat is, simple closed paths on the surface. Trans
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An important consequence of simple connectedness is the vanishing of the
first homology group: every closed 1-form on a connected and simply con-
nected surface is exact.

To conclude this parenthetical terminological discussion, we note that in
1905 Poincaré was still not using the term “simply connected” in its modern
sense. For him a compact manifold of dimension 3 is “simply connected”
if it is homeomorphic to a ball. Thus, as he stated it, the famous Poincaré
conjecture sounds rather odd to a modern ear:

Is it possible for the fundamental group of V to reduce to the identity
substitution, and yet V not be simply connected?

Here is what Riemann says:

When the surface T [...] is n-connected, one can decompose it into a simply
connected surface 7’ by means of n transverse sections. [...] one obtains a
function of x, y, z = f (Xdx + Ydy) completely determined at every point
of T” and varying continuously throughout the interior of 7”, but which in
crossing one of the transverse sections varies in general by a finite amount
all along the line leading from one vertex of the network of sections to the
next.

Figure I1.2: Moduli/periods

Here we are confronted with a second method (the first being that described
above of constructing the associated Riemann surface) for passing from a many-
valued function to a single-valued one, namely, just that of making a choice of a
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particular value of the function on each sub-region of the full domain of definition.
Both methods are used throughout the article, the first in dealing with an algebraic
function and the second in dealing with an Abelian integral.

One might well ask what prevents Riemann from applying the first method
in the context of Abelian integrals. In this case he would have had to describe
a branched covering of the complex plane of infinite degree, which situation he
might have illustrated with the example of log(z—a), used in Section 2.1 to explain
the phenomenon of many-valuedness. However when he explains how one should
think about branched coverings, his illustrative examples are just the coverings of
finite degree associated with expressions of the form (z — a)%. Was he in some
sense wary of infinite-degree coverings?

Note also that in the same section he considers differentials Xdx + Ydy as
real objects, while never throughout the article talking of the analogous complex
objects (that is, of holomorphic or meromorphic forms). Further on, when he
turns to Abelian integrals, the problem is, in modern language, that of finding
(many-valued) primitives of meromorphic forms on the surface in question.

For the particular case of a closed surface — that is, compact, connected and
without boundary — Riemann introduces the topological invariant that today we
call the genus.

Let us imagine [...] we have decomposed that surface into a simply con-
nected surface 7”. Since the boundary curve of a simply connected surface
is uniquely determined, whereas a closed surface has, as the result of an odd
number of sections, an even number of bounded regions, and as a result of
an even number of sections an odd number of bounded regions, in order to
effect this decomposition of the surface it is necessary to execute an even
number of sections. Let 2p be the number of such transverse sections.

Box IL1.3: Degree of connectivity, genus, and Euler characteristic

For any compact, connected, orientable (topological) surface S there are
two particular topological invariants available: the Euler characteristic x(S)
and the genus g(S) > 0.

When S is without boundary these two invariants are linked by the formula

X(8) =2-2g(S).

The genus g(S) has the following interpretations:
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e asequal to %rankZH 1(8);¢

e as the largest number of homologically independent, pairwise disjoint,
simple closed curves that can be drawn on S.

If the boundary of S is non-empty, the genus g(S) is defined as the lat-
ter number after S has been modified as follows: for each component of the
boundary dS of S, attach a disc with boundary identified with that component.
One then has the formula

X(S) =2-2g(8) = b(9),

where b(S) denotes the number of components of 9S.
Using this formula one can show that, if ¢(S) denotes the degree of con-
nectivity of S introduced by Riemann, then

c(S) =2+ 2g(S) - b(S).

Figure I1.3 shows the c¢(S) — 1 steps of the surgery yielding a disc in Rie-
mann’s fourth example (in Figure II.1 above), whence one sees via the latter
formula that S is a surface of genus 1.

Many details on the evolution of the notion of genus may be found in
[Pop2012].

%The rank of the Abelian group H, (S). Trans

Here Riemann is tacitly assuming that the surfaces he considers are all ori-
entable. In fact in the case of a non-orientable surface, if one cuts along a sim-
ple closed curve along which the orientation reverses, one obtains just one “part
bounded by the curve”. Such a curve has a neighborhood that is a Mobius band,
which surface was described explicitly only many years later, in [M6b1886] (see
also [Pont1974, p. 108]). In Riemann’s article the opposition orientable/non-
orientable (or two-sided/one-sided as it came to be called for a certain time) is
never mentioned.

Note the use of the letter p, still largely in use nowadays to denote various
notions of genus arising in geometry and algebraic geometry (mainly in the form
of arithmetic and geometric genera of curves and surfaces). Riemann himself does
not name this invariant; it seems to have been Clebsch who introduced the term
“genus” in [Cle1865a].

We now return to the surface T associated with an algebraic function w(z) de-
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fined by an irreducible polynomial equation F'(z,w) = 0. Riemann now proposes
calculating its genus g, to which end he establishes the special case of what we
now call the Riemann—Hurwitz theorem (see Box I1.4) where the target surface
of the function is the Riemann sphere. He shows that if the irreducible algebraic
curve of bi-degree m,n defined by F(z,w) = 0 in C, x C,, has as singularities
only r double points with distinct tangents, then T has genus g = (n—1)(m—1)—r.

Figure I1.3: “Cuts” (or “sections”)

It follows in much the same way that a curve in CP? defined by a polynomial of
degree n having as its only singularities r double points at which the two tangents
are distinct, has genus

_(n-1)(n-2) .

> (11.3)

Box I1.4: The Riemann-Hurwitz theorem

Let S and S’ be two compact, connected Riemann surfaces and f a holo-
morphic mapping from S to S’. A point s € S at which df = 0 is called a
critical point of f, and the image of such a point under f a branch point of f.

With each point s € S we associate its ramification index v(s) > 1, de-
fined as the local degree” of f in a neighborhood of s. There then exist local
coordinates z in some neighborhood of s and w in some neighborhood of f(s),

“That is, the number of preimages of individual points in f(U), U some small neighborhood
of s. Trans
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where f takes the form w = z”®). The critical points of S are then just those
points of ramification index at least 2.

If f has no critical points (in which case the covering defined by f is un-
ramified) the genera g of S and g’ of S’ and the global degree d of f are linked
by the simple formula 2 — 2g = d(2 — 2g’).

The Riemann—Hurwitz theorem generalizes this to the situation where there
are critical points (finite in number in view of the compactness of S):

2-2¢=d(2-2g") - ) (v(s) - D).

seS

A straightforward proof starts from a triangulation of S” whose vertices include
all the ramification points of f. One then lifts this to a triangulation of S, and
shows that the Euler characteristic of the latter triangulation equals the right-
hand side of the above formula. We have already seen that it coincides with
the left-hand side expression.

I1.2. Dirichlet’s principle and its consequences

I1.2.1. Dirichlet’s problem

Given an open set U c C and a function u : 9U — R — continuous, for example
— the Dirichlet problem is that of finding a harmonic function u : U — R defined
throughout U and continuously extending u.

We begin with a basic construction using the fact that the imaginary part Im w
of a holomorphic function w is harmonic and identically zero on the real axis. By
means of the biholomorphismH — D; w - z = x: , which maps the upper half-
plane H = {z € C|Im z > 0} onto the unit disc D = D(0, 1), we obtain a harmonic
function defined on the disc, namely z — :1_ _'2 :z , which is thus automatically
harmonic and extends onto dD \ {1} as the zero function there. By the mean-value

property of harmonic functions we must have, for any disc D(0,7), 0 <r < 1,

% f=r0) =1

r Jap(o,r)

Our function f is thus harmonic on the open unit disc and seems to extend contin-
uously to the zero function on the boundary with the point 1 deleted, while at the
same time having integral 1 over that boundary. We have here a “point charge” or
“Dirac mass” at 1.
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This observation together with the linearity of the Dirichlet problem allows us
to retrieve Poisson’s formula, providing the solution to the Dirichlet problem for
the unit disc.”* Indeed, given a continuous function ¥ : D — R, an harmonic
extension u of u to the whole of D is:

1 2 1— |Z|2 0
= — —_— deé. 11.4
u(z2) 27Tf0 ) (IL4)

And when the boundary function u is not continuous but merely integrable, the
extension u will still satisfy, for radial limits,
lim u(re'?) = u(e')
r—l1 -
for almost all angles 6 (in the sense of Lebesgue measure).

Our present aim is to solve the Dirichlet problem for a simply connected open
set U of the plane with boundary AU a smooth Jordan curve, and for any continu-
ous function u : U — C.

We begin by remarking that there exists at most one solution. For if u; and u;
are two solutions, the function u; — uy : U — R is bounded and harmonic on U.
Let zo be a point of U satisfying:

lu1(z0) — u2(zo)| = max |u; — uz|.
U

If zo € U, u; — up must be constant by the maximum principle for harmonic
functions (see earlier), so equal to zero since it vanishes on the boundary of U.
If zg is on the boundary of U, then u;(z9) = uz(z0), and it is immediate from the
maximality property of |u;(zo) — ua2(zo)| that u; = up on U.

From Section 16 to Section 18 of [Riel851], Riemann explains how to solve
Dirichlet’s problem by minimizing a certain functional. He starts with a smooth
function @ : U — C satisfying @ = u on the boundary of U. Then he adds a
function A vanishing on the boundary and seeks to arrange that a + A be harmonic.
Such a function A4 will minimize the integral

da  0A\> [da 91\
Qe+ 1) = =422 =+ 22 dxdy.
@+d) L(6X+3X) +(8y+<9y) e

Thus the problem arises as to whether the functional 4 — Q(a + A) has a mini-
mum. Write L = fU (‘Z,—;Cl)2 + (g—;)zdxdy. We quote from Riemann’s text where

4Poisson’s formula seems to have been unknown to Riemann and his immediate successors.
Schwarz presents the formula as if new in [Schw1870a]. According to [Diel1978], Green was the
first to show, in 1828, that a continuous function of the points of any (simple, closed) curve extends
to a harmonic function in the interior. In the case of a sphere Poisson gave an explicit formula “in
1820”. Prym, in his 1871 commentary on Riemann’s works mentions that the only known method
of extending a function harmonically into the interior of a circle is by developing it in a Fourier
series, even though the convergence of the series is not guaranteed by continuity alone [Pry1871].
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he justifies the existence of such a minimum of the functional Q:

For each function A, Q takes on a finite value tending to infinity with L and
varying in a continuous manner with the form of A, but is bounded below
by 0; hence for at least one value of the function @ + A, the integral Q attains
a minimum value.

It is the purported existence of a function realizing this minimum that Rie-
mann calls the “Dirichlet principle”. We must stress here the conceptual leap
that this form of the principle represents: a function is considered implicitly as a
particular point of an infinite-dimensional space.

Riemann next shows that for every function dp minimizing the integral
Q(a + A), the function @’ = @ + Ay is harmonic. He thinks he has thus solved the
Dirichlet problem.

Riemann’s argument concerning the existence of a minimum is, however, not
rigorous — and not only in the eyes of a 21st century reader: Weierstrass criticized
the argument already in [Weie1870]. The reader may also consult Volume II of the
Traité d’analyse [Pic1893d, p. 38] where Picard revisits Weierstrass’s criticisms,
as well as giving the counter-example appearing in [Weiel870] of a functional
which does not attain its greatest lower bound. As Picard says ([Pic1893d], p. 39):

One cannot be certain a priori that there exists a function u satisfying conti-
nuity conditions, at which the integral actually attains its lower limit. This is
a serious objection and M. Weierstrass has shown by means of a very simple
example the danger of this kind of reasoning.

Here is Weierstrass’s counter-example. He considers the space of func-
tions y(x) of class C ! on the interval [—1, 1] with values at the end-points equal to
a and b (with a # b), and introduces the functional defined by

1 2
s = [ 22 ax
~1 dx

It is not difficult to check that, for the family of functions

a+b (b—a)arctan (f)
2 " 2arctan(1) ’

&

ys(x) =

one has that J(y.) tends to O with €. The greatest lower bound of J is thus 0,
which is not attained at any function in the given space since a # b. This is made
possible by the fact that the space C'([~1, 1]) is not complete. Note that the space



48 II Riemann

of functions with which Riemann is working here — consisting of the functions
continuous on U and smooth in the interior — is likewise not complete.

The modern method of skirting this obstacle, conceived in a famous 1900
paper of Hilbert [Hil1900a], is to work in a larger space of functions which is
complete; see for example [Jos2002].

I1.2.2. The Riemann mapping theorem (or conformal representation theo-
rem)

We first quote Riemann’s own statement of the conformal representation theorem:

Any two given simply connected, planar surfaces can always be mapped
one to the other in such a way that to each point of one there corresponds a
unique point of the other whose position varies in a continuous manner with
that of the first, and such that the smallest corresponding portions of the
surfaces are similar; furthermore, for a point of the interior and for a point
of the boundary of one surface, the corresponding points of the other surface
may be given arbitrarily; but then this determines the correspondence for all
points.

The modern statement of this theorem is more general since it incorporates
regularity conditions on the boundaries. Recall that a Jordan curve is any contin-
uous embedding of the circle in the plane.

Theorem I1.2.1. — Let U be any simply connected open set in the plane, not
equal to the whole plane. Then there exists a biholomorphic mapping f : U — D.
Furthermore if the boundary of U is a Jordan curve, then f extends to a homeo-
morphism from the closure of U onto the closed unit disc.

Note that Riemann implicitly assumes that the boundary — which he calls
the “frame” of the surface — is a Jordan curve since he defines the images of
the boundary points. In the present subsection we give a proof of the confor-
mal representation theorem (or “Riemann mapping theorem”) directly inspired by
Riemann’s ideas. We shall always assume the boundaries to be Jordan curves —
in fact even smooth Jordan curves. (The methods of proof when the boundary is
not a Jordan curve are different; see for example [Rud1987, Chapter 4].)

Proof of the first statement of the Riemann mapping theorem (assuming we know
how to solve the Dirichlet problem): Let U C C be open and simply connected
and let zo be any particular point of U. We begin with a definition.
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Definition I1.2.2.15 — A Green’s function for U relative to the point z is a func-
tionu : U \ {20} — R with the following properties:

1. u is harmonic on the open set U \ {zo};

2. the function z € U\ {zp} — u(z)+log|z—zo| extends to a function harmonic
at zo;

3. u(z) tends to O as z approaches the boundary of U.

Note that there exists at most one such function: this follows in much the same
way as the uniqueness of a solution of Dirichlet’s problem. A similar argument
shows also that a Green’s function u must be strictly positive on U. Indeed, if u
assumed a non-positive value at a point z; of U, then by invoking the facts that
lim,_,,, u(z) = +o0 and lim,_,sy u(z) = 0, we could infer that u attained its
minimum on U \ {zp}, whence, by virtue of its harmonicity # would be constant,
which is absurd in view of the fact that it has a logarithmic pole at zg.

We now show how to construct a Green’s function relative to a point zg € U
under the assumption that we know how to solve the Dirichlet problem.

Consider the function v : U — R defined by v(z) = log|z — z¢|. Since
the Dirichlet problem is assumed to have a solution on U, we have an harmonic
extension v : U — R. Write uy (z,z0) = v(z) —log |z — zo| for z in U \ {zo}. Then
since v is continuous on U, the function u (-, o) approaches 0 on the boundary
of U. Hence uy (-, zp) is the Green’s function of U relative to the point z.

Example I1.2.3. — For the unit disc D = {z € C||z| < 1}, the Green’s function
relative to the point zo = 0 is

up(z,0) = —log|z|.

Resuming our proof, we denote by v* a harmonic conjugate!¢ of v, and con-
sider the holomorphic function on U defined by

$(2) = (z = zo)e” "DV,
Since (z — z9) = el?~0l+1are(z=20) ' this may be rewritten “formally” as

#(z) = e~ (U (z,20)+iuy (2,20)")

where uy (z,z0)* = v* — arg(z — z9). Since, as we have already observed, the
Green’s function is strictly positive, the function ¢ takes its values in the unit disc.
It can be inferred from the condition

uy(z,z0) — 0as z —» 9U,

150ne may find in [Taz2001] many details on the historical development of this notion.
16That is, such that v + iv* is holomorphic. See earlier. Trans
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that ¢ is proper.”” Hence it is surjective (its image being both open and closed)
and the cardinality (including multiplicities) of its fibres is constant. Since the
fibre above 0 is just {z¢}, of cardinality 1, the map ¢ is injective, and we have the
desired biholomorphism between U and D.

Remark I1.2.4. — The second part of the theorem was proved by Carathéodory
in 1916 (see [Coh1967] for example). It is interesting that his proof yields the
solution of the Dirichlet problem in the case where the boundary of U is a Jor-
dan curve. The Riemann mapping theorem and Carathéodory’s theorem are thus
equivalent to the solvability of the Dirichlet problem on U. O

I1.2.3. Abelian integrals

Recall that our aim is to construct meromorphic functions on a given surface.
Riemann seeks such functions as primitives of meromorphic forms.

We have seen above how to associate a given Riemann surface 7" with an
algebraic function.

A similar system of algebraic functions with the same ramifications and
integrals of the functions will be first of all the object of our study.

In other words, once the surface 7" has been constructed, one investigates the
space of meromorphic forms on T (having the same ramifications as the equation
used to construct 7') and their primitives.

Here is the title chosen by Riemann to present his vision of the construction
of such functions:

Determination of a function of a variable complex quantity by the conditions
it satisfies relative to the boundary and discontinuities.

Thus the functions in question should be determined by their values on the
boundary and by their behavior in the neighborhood of discontinuities. The holo-
morphicity of the function being sought renders all other data superfluous. And it
is once again the “Dirichlet principle” which allows one to construct the desired
functions starting from a “system of independent conditions among them”.

"That is, that the preimage of every compact set in D is compact in U. It follows that ¢ is a
closed mapi; it is also open since holomorphic. Trans
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Here is the theorem on which Riemann bases the whole of his theory of func-
tions of a complex variable — a theorem already present in his thesis [Rie1851]:

If on a connected surface 7, decomposed by means of transverse sections

into a simply connected surface 7', one gives a complex function « + Si of
x,y for which the integral

da 0B\ [(da 0B\
S |(Ge-22) s (e )

evaluated over the whole surface, has a finite value, this function can always,

drT, (IL5)

and in a unique manner, be transformed into a function of x + yi by the
subtraction of a function u + vi of x,y satisfying the following conditions:

1. On the contour u = 0, or at least differs from zero only at isolated
points; at one point v is given arbitrarily.

2. The variation of ¢ on T and of v on T” is discontinuous only at isolated
points, and then only in such a way that the integrals

S1Ge) (o 1052 (5)

over the whole surface, remain finite; furthermore the variations of v

dT  (IL6)

along a transverse section should be equal on the two sides.

The steps in the proof sketched by Riemann have been explicated in intrin-
sically modern terminology by Ahlfors in [Ahl1953]. These involve harmonic
analysis, and we shall return to them in Section III.1. We now explain briefly the
above passage.

To ease our explanation of Riemann’s text we denote by the lower-case Ro-
man letters a, b, m,n the differentials (closed but not exact) of the discontinuous
functions «, 3, i, v introduced by Riemann.

If T is a Riemann surface (ultimately with boundary), its real tangent bun-
dle is furnished with an operator J of square —1: multiplication by i. If a is
a real differential form of degree 1 on 7, its conjugate differential is defined by
xa = —a o J. A form is said to be co-closed if its conjugate is closed. We write
also Dla] = fT a A *a, the norm (also called the Dirichlet energy) of a. One
then sees that the three integrals in the above excerpt from Riemann’s paper are
respectively D[a + *b], D[m], D[n].

Given a real closed differential form a on T with its periods, (isolated) singu-
larities, and prescribed values on the boundary, we assume there exists a closed
differential form b such that the energy D[a + #b] is finite. One then chooses an
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exact form m whose restriction to the boundary is zero and whose distance from
a + b in terms of the norm is least.

Here one encounters difficulties in proving the existence of such a form m
analogous to those we described in Section I1.2.1 in connection with the “proof”
of Dirichlet’s principle via minimization. As there, so also here in order to cir-
cumvent these difficulties one needs to work in a more appropriate function space
not available to Riemann.

The existence of m is equivalent to the existence of an orthogonal decom-
position a + *b = m + *n with m exact and n closed, whence it follows that
a — m = *n — xb is both closed and co-closed, therefore harmonic.

From this the existence of a holomorphic form on 7T follows: the harmonic
form a — m has the prescribed periods, singularities, and values on the boundary
(those of a), and writing u := a —m and v := b — n, we see that u + iv is a holo-
morphic form whose integrals yield the “functions of x + yi” on T in Riemann’s
statement.

Riemann now uses his result on the existence of harmonic forms on a given
surface to construct meromorphic forms. Starting with a closed Riemann sur-
face T he takes a finite number of points Py,..., P, of T and in a neighborhood
of each of these he takes as principal part a finite sum expressed in terms of local
parameters z;:

Az + Biz 2+ Gz + - )dz (IL.7)

He chooses 2g cuts (not passing through any of the P;) yielding a simply con-
nected surface, and then establishes the existence theorem, which, in modern ter-
minology, is as follows:

Theorem II.2.5 (The existence of meromorphic 1-forms on a surface). —
Assuming the sum of the residues A; is zero, for each choice of 2g real numbers
there exists a unique meromorphic form on T with poles at just the points P; and
the given principal parts, and with periods evaluated along the 2g cuts having as
real parts those prescribed 2g numbers.

The importance of this theorem was recognized well before a perfectly rig-
orous proof was given. It had a great influence on Riemann’s successors, in the
forefront of whom were Hermann Schwarz and Felix Klein, whose work will be
considered in the following chapters. A modern proof in the spirit of Riemann
may be found in [Coh1967], and we shall give another (inspired by [Spr1957]) in
Subsection II1.2.1.

Certain of the forms figuring in this theorem were destined to play a special
role, the so-called forms of the first, second, and third kind. Nowadays a form is
said to be of the first kind if it is holomorphic, of the second kind if it is mero-
morphic with all residues zero, and, finally, of the third kind if it is meromorphic
and has only simple poles. The simplest forms of the second kind are then those
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with just one pole P on T': their many-valued primitives are what Riemann called
integrals of the second kind, denoted by tp. The simplest forms of the third kind
are those with just two simple poles P;, P;, and in this case Riemann called their
primitives integrals of the third kind @wp, p,. His motivation in using such terms
derives from their use by Legendre in his classification of elliptic integrals.

We now turn to Riemann’s proof. He first shows using Theorem I1.2.5 that the
complex vector space of integrals of the first kind has dimension g+1 (1 more than
that of the space of holomorphic forms on account of the constant of integration).
This affords an analytic interpretation of the genus g, originally defined topolog-
ically. He also shows that such an integral is uniquely determined to within an
additive constant by the real parts of the moduli of periodicity relative to a system
of transverse sections rendering the surface simply connected.

Similarly, an integral of the third kind is uniquely determined to within an
additive constant by the data of the poles, the residues of its differential at these
poles, and the real parts of its moduli of periodicity relative to the transverse
sections (chosen so as to avoid the poles).

The existence of meromorphic I-forms on an algebraic curve. — It took until the
beginning of the 20th century before Dirichlet’s principle and the “proof” imag-
ined by Riemann of the existence of meromorphic 1-forms with prescribed poles
on the surfaces bearing his name were given a rigorous foundation. However,
then the question had become that of defining such forms on abstract Riemann
surfaces. In actuality, following on the work of Abel and Jacobi, 19th century
mathematicians knew how to construct meromorphic 1-forms explicitly (or rather
their many-valued integrals — Abelian integrals) on Riemann surfaces defined as
algebraic curves; we will now explain how they did this.

We begin with a compact Riemann surface 7. By Theorem I1.1.3, T can be
immersed in CP? as an algebraic curve C with all of its singular points double
with distinct tangents. For a suitable choice of affine coordinates we may arrange
that the curve C is transverse to the line at infinity, and that in a neighborhood of
each double point the first projection x : C — CP! is a coordinate on each branch
of the curve.

First we construct holomorphic 1-forms on 7. Denote by E the vector space
of polynomials P € C[x,y] of degree at most d — 3'® which vanish at the double
points of C. For each point P € E we write wp for the lift onto T of the Abelian

differential
dx
Fy' ’

P(x,y) (IL.8)

r — OF 19
Wherer =9

BWhere d is the degree of C. Trans
YHere F(x,y) = 01is the polynomial equation (of degree d) defining the algebraic curve C. Trans
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Proposition 11.2.6. — 1. For every polynomial P in E, the form wp is holomor-
phiconT.

2. The map P — wp from E to the space Q' (T) of holomorphic 1-forms on T
is linear and injective.

3. The dimension of E is greater than or equal to g, the genus of T.

Proof. — 1. The formula (I1.8) defines a priori a holomorphic 1-form on C from
which have been removed:

— the points where the first projection x : C — CP! does not define a holo-
morphic local coordinate, that is, the points of intersection of C with the
line at infinity, and the branch points of x : C — CP!;

— the points where Fy vanishes, that is, the double points of C and the branch
points of x : C — CP';

— the points where F'(x,y) becomes infinite, that is, the points of intersection
of C with the line at infinity.

Figure I1.4: A symplectic basis for the homology

Next observe that the 1-form given by (II.8) extends holomorphically to the
ramification points of x : C — CP!; indeed it follows from the identity F/dx +
Fdy = 0 that (IL.8) can be rewritten as

P(x,
o= — (x’y)dy
Fy
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(where this makes sense), and this expression defines a holomorphic 1-form in the
neighborhood of every ramification point of x. Then since at each double point
of C the polynomial Fy has a zero of order 1 and the polynomial P(x,y) also
vanishes, the lift of the 1-form defined by (I1.8) extends to the double points of 7.
Finally, by means of the change of variables X = % and Y = %, one sees that the
1-form defined by (II.8) extends holomorphically to the points of intersection of C
with the line at infinity since the polynomial P has degree at most d — 3 (using
here the fact that C is transverse to the line at infinity).
2. This statement is immediate.

3. We count dimensions. The polynomials in x,y of degree at most d — 3 form
a vector space of dimension (d_])zﬁ’ In order for such a polynomial to vanish at
all of the r, say, double points of C, its coefficients must satisfy r linear equations.
Hence the dimension of the space E is at least

d-2)d-1)
- =
2
which by (I1.3) is equal to the genus of T'. O

We shall now show that in fact the dimension of E is precisely g. As does
Riemann, we fix on 2g simple closed paths on T and cut along them so as to obtain
a simply connected surface. These are loops representing homology classes on 7.

Reverting to modern terminology, we consider the intersection product de-
fined by these loops:

H\(T,2) x H(T,Z) — Z.

Being bilinear and antisymmetric, it defines a symplectic form. Moreover
H\(T,Z) has a basis which is symplectic relative to the intersection product, that
is, a basis (ay,...,ag,b1,...,bg) such thatfori,j =1,...,g:

ai-ajzo, bi'bjzo, di‘b]‘:(sij

(see Figure I1.4). Each such basis corresponds to a dissection of 7" into a 4g-sided
polygon. Riemann next shows — with the aid of Stokes’s theorem — that for
every symplectic basis (ay,...,ag,b1,...,bg) of H{(T,Z) and two given closed
1-forms n and 7’ on T, one has

ﬁnMEZ(Lnfin’—fain’ fin)- (IL.9)

It follows from this that the linear map

. — < I1.10
w — (faiw)i=1...g ( )
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is injective. It follows in particular from (I1.9) that a non-zero holomorphic

1-form w satisfies
i f wAw > 0.
T

That is essentially the proof given by Riemann in Section 20 of [Rie1857]; and
it is also the first half of the proof establishing the bilinear relations of Riemann
(see [Bos1992] for further details).

Instead of ¥ we might have considered the linear map

{Ql(T) — (R xR)&
Q) .

o = (Re([,@).Re(f,0))_ -

The injectivity of this map follows in much the same way, giving the uniqueness
assertion of Theorem I1.2.5. As far as holomorphic forms are concerned, the exis-
tence claim — problematic for Riemann — is made good by Proposition 11.2.6 and
its proof. The linear map ¥ is thus an isomorphism and we have Theorem 11.2.5
in the case of holomorphic forms:

Proposition IL.2.7. — For each g-tuple n = (ny,...,ng) of complex numbers,
there exists a unique holomorphic I-form wy on T whose integral along the
loop «; is equal to n; fori =1,...,g.

Furthermore the 1-form wy depends linearly (so certainly holomorphically)
on the g-tuplen = (ny,...,ng).

It remains to construct meromorphic forms on 7. We choose fixed loops
@y,...,ag representing the classes ay,...,aq, and denote their union by A. We
shall now prove Theorem I1.2.5 for forms of the second and third kind.

We first consider the case of meromorphic 1-forms having only simple poles.
Such a form can always be expressed as a linear combination of meromorphic 1-
forms each with precisely two simple poles at which the residues are +1 and —1.
Moreover by adding suitable holomorphic 1-forms if necessary, in view of Propo-
sition I.2.7 we can assume without loss of generality that the integrals of these
I-forms around the loops «ai,...,a, are all zero. We are thus left to prove the
following result:

Proposition I1.2.8 — Corresponding to any two distinct points p,q € T \ A, there
exists a unique meromorphic 1-form wp, 4 on T, having simple poles at p and q
with residues respectively +1 and —1, and without any other poles, and such that
the integral around each of the loops a1y, . . .,ag is zero.

Proof. — Consider the vector space Q,, , of meromorphic 1-forms on 7" with
simple poles at p and g and no other poles. Write ©® : Q, , — C¢ 1 for the
linear map associating with each element of Q,, , its integrals around the loops
ay,...,ag and its residue at p (the residue at g being the negative of that at p).
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Proving the above proposition is then equivalent to showing that ® is bijective. We
know it’s injective since any two elements in the kernel differ by a holomorphic
1-form whose integral around each of the loops a1, . . .,ay is zero. It thus suffices
to prove that the dimension of the vector space €2, , is at least g + 1.

The proof of this is similar to that of Proposition I1.2.6: as in the proof of
that proposition one constructs the desired forms on the curve C of degree d of
Theorem II.1.3 — the image under an immersion of 7 in CP?. We may assume
that the images of the points p and ¢ in C do not coincide with any singular point
and do not lie on the line at infinity; we continue denoting them by p and g.

Let D denote the line of CP? determined by p and g. We choose an equation
(ax + by + ¢ = 0) for D and consider those elements of Q, , expressible in the
form

w = P(x,y) ..
(ax + by + o)F;

(IL11)

for some polynomial P(x,y). The line D intersects the curve C in d points,
counted according to their multiplicities; to simplify the argument we shall as-
sume these points pairwise distinct and off the line at infinity. The formula (IL.11)
defines a priori a holomorphic 1-form on the curve C from which the ramification
points of the map x : C — CP!, the points of intersection of C with the line at
infinity, the double points of C, and the points of intersection of C with the line D
have been removed. The same reasoning as in the proof of Proposition I1.2.6 then
shows that the formula (II.11) lifts to an element of Q,, , if and only if:

— the polynomial P has degree at most d — 2;
— the polynomial P vanishes at each double point of C; and

— the polynomial P vanishes at each of the d — 2 points of intersection of C
with D distinct from p and q.

The polynomials in the variables x,y of degree at most d — 2 form a vector space
of dimension @. The vanishing of a polynomial at the  double points of C
and the d — 2 points of C N D distinct from p and ¢, yields r + (d — 2) linear
equations in its coefficients. Hence the dimension of the space Q,, , is greater
than or equal to

M_r_(d_z)zw_r

+1,
2 2

which by (I1.3) is equal to g + 1.
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A similar (but trickier to expound) count of dimensions yields the same out-
come in the case where D has multiple intersection points with C. O

The 1-form w), , given by Proposition I1.2.8 “depends holomorphically on the
points p,q”. A precise meaning can be given to this assertion as follows. Choose
an open set U C T on which the coordinate x defines an injective map. Then on U
the form w,, 4, can be expressed as:

1 1
= - + G¥ dx,,
Wp,q(r) PR —— p,q(r)) Xr

where x,, x4, x, are the values of the coordinate x at the points p, g, r. Then
for every pair (p,q) € (U \A)? of distinct points, the function r G;‘,’ q(r) is
holomorphic on U. In fact:

Proposition 11.2.9. — The function (p,q,r) = G, 4(r) with p # q is holomor-
phic in the three variables as a map to

{(p,q,r) € (UNA) X (UNA) X Ulp # q} .

Furthermore it extends holomorphically to the diagonal p = q.

Proof. — We first repeat the construction of the 1-form w), , in the proof of the
previous proposition: that 1-form was given in terms of the x-coordinate by

_ Pp,q(xay) »
"~ (ax + by + oOF)

Wp,q

where (ax + by + ¢ = 0) was an equation of the line determined by the points
P, q, and P, ,(x,y) was a polynomial of degree at most d — 2. The coefficients
of this polynomial satisfy a system of affine equations made up of the following:
d(d-3)/2 - (g —1) + (d - 2) linear equations deriving from the fact that w, 4
belongs to the space Q,, ,, then g linear equations expressing the condition that
the integral of w), , around each of the loops ai,...,a, is zero, and finally one
equation from the condition that the residue of w, , at p should be 1. Clearly
the coefficients in these affine equations depend holomorphically on p and ¢. It
follows via the uniqueness of w, , and therefore of the polynomial P, , that this
system has maximal rank?°, whence it follows in turn that the polynomial P, ,
itself depends holomorphically on the points p and g. The first assertion of the
proposition is then immediate.

20Since there are altogether d(d — 1)/2 equations in the same number of coefficients of Pj, 4.
Trans
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We now show that the function (p,q,r) = G, 4(r) extends holomorphically
to the diagonal p = ¢. For pairwise distinct p,q,t € U \ A, the uniqueness asser-
tion of Proposition I1.2.8 implies that

Wpg =Wpt +wrg and Gp 4(r) = Gp (1) + Gy g(r).

As the points p and ¢ are allowed to merge into a single point (different from 1),
the quantity G, ;(r) + Gy, 4 (r) extends holomorphically; hence the same is true of
Gp,q (r). O

The same sort of arguments as above allow the construction of meromorphic
1-forms with poles of orders greater than or equal to 2. Not pretending to exhaus-
tiveness, we merely state a typical result in this direction:

Proposition I1.2.10. — Given a point p € T \ A, there exists a unique meromor-

phic 1-form on T having a pole of order 2 at p, with principal part ﬁ and
a4

with no other poles, and whose integral around each of the loops ay,...,ag is

zero.

Proof. — This follows as in the proof of Proposition I1.2.8, except that the role of
the line D is now played by the tangent to the curve C at p. O

Remark I1.2.11. — In the statements of Propositions 11.2.7, 11.2.8, and I1.2.9,
one may — as in the statement of Theorem I1.2.5 — replace the condition “whose
integral around each of the loops aj,...,a, is zero” by the condition “whose
integral around each of the loops «1,...,ag, B1,. .., Bg is purely imaginary. To
see this, it suffices to consider the map @ defined earlier in place of the map V.

I1.2.4. The Riemann—-Roch theorem

In Section V of his memoir, Riemann begins his investigation of the space of
meromorphic functions on a given compact surface 7. He proposes determin-
ing the functions by means of their poles: this is the Riemann—Roch problem.
(According to Gray [Gral998], this name was bestowed by Brill and Noether in
[BrNo1874].)

Riemann first considers a given set { P1,. . ., Py, } of points, candidates for sim-
ple poles, the case of poles of greater order to be dealt with subsequently by pass-
ing to a limit where several poles merge. This procedure is used several times by
Riemann, and it is not always easy to make it work formally, even if it is clear
enough intuitively.

The set of meromorphic functions having at most simple poles at the points
Py,..., P, is obviously a complex vector space. Riemann quickly shows that it
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has finite dimension, and obtains an upper bound for the dimension by considering
such meromorphic functions as particular cases of many-valued functions of a
special kind (in the following quote we have taken the liberty of changing some
of the notation):

The general expression of a function s, which becomes infinitely large of
the first order at m points Py, P,,. .., Py, of the surface T is, by virtue of the
above,

s =ity + Pota + o+ Bl + @iwy + @aWa + -+ + @gw, + const.,

where ¢; is any function ¢p, and where the quantities @ and S are constants.

If we wish to avoid using many-valued functions on 7', we may instead couch
our argument in terms of the differentials of the functions in question: if f is
one of the functions under study, then its differential df is a linear combination
of differentials of the second kind associated with each point P; (the dt;) and of
differentials of the first kind (the dw;).

The existence of these forms and the fact that those of the first kind constitute a
space of dimension exactly g constitute a special case of Theorem I1.2.5. In taking
their (many-valued) primitives, one should not forget to add 1 to the dimension on
account of the constant of integration.

Next one needs to distinguish the differentials without periods, that is, those
that integrate to yield meromorphic functions, the object of the investigation. By
considering a basis for the first homology group, one obtains 2g conditions for
the vanishing of the periods, which one interprets as 2g linear conditions on the
space of forms in question. It follows that altogether their dimension is at most 2g,
whence the following:

Theorem I1.2.12 (Riemann’s inequality). — Let T be a compact Riemann sur-
face of genus g. The vector space of meromorphic functions having at most simple
poles at the points Py, ..., Py, has dimension at leastm — g + 1.

By varying the set of poles imposed, we infer the following corollary:

Corollary II.2.13 (Riemann). — A compact Riemann surface admits infinitely
many meromorphic functions linearly independent over C.

It was Gustav Roch, a student of Riemann — deceased, alas, very young, in
the same year as his supervisor — who subsequently succeeded, in [Roc1865], in
interpreting the difference between the dimension sought and the quantity m—g+1.

Here is the full statement, embracing also the case of multiple poles:

Theorem I1.2.14 (Riemann—-Roch). — Let T be a compact Riemann surface of
genus g, and let Py, ..., Py, be points with which are associated “multiplicities”
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ni, ..., ny from N*, and write m = Y, n;, the sum of these multiplicities. Then the
difference between the dimension of the vector space of functions having a pole
of order at most n; at the point P; and (m — g + 1) is equal to the dimension of
the vector space of holomorphic forms having a zero of order at least n; at the
point P;.

Application to the uniformization of curves of genus 0 and 1. — It is difficult
to overestimate the importance of the Riemann—Roch theorem for the modern
approach to the theory of algebraic curves. In particular, it is this theorem that is
regularly invoked in order to prove that every compact, simply connected Riemann
surface is isomorphic to the Riemann sphere.

Theorem I1.2.15. — A compact Riemann surface of genus zero is biholomorphic
to the Riemann sphere.

Proof. — 1t follows directly from the Riemann—Roch theorem that such a sur-
face S admits a meromorphic function with just one, simple, pole, that is, there
exists a holomorphic mapping S — C of degree 1. Since S has genus zero, by the
Riemann—-Hurwitz theorem this mapping can have no ramification points, so that
it is an isomorphism. O

Despite the simplicity of this proof, this result was most probably not thought
of by Riemann or Roch, whose interest, it must be recognized, was not centered
on the genus zero case. In Chapter IV we shall give an analytic proof of this
theorem due to Schwarz, and a little further on in the present section a proof due
to Clebsch using birational geometry.

In much the same way, the Riemann—Roch theorem allows one to uniformize
curves of genus 1.

Theorem I1.2.16. — A compact Riemann surface of genus 1 is biholomorphic to
a quotient of C by a lattice of translations.

Proof. — Applied to the case m = 0, g = 1, the Riemann—Roch theorem tells
us that on a surface S of genus 1 there exists a nowhere vanishing holomorphic
form w. Consider now the vector field dual to w, that is, the non-singular vector
field X such that w(X) = 1. Integration of this field affords an action of C on
the surface S. Since X is non-singular, every (complex) integral curve of X —
the orbits of the action, in other words — are open. Then since the complement
of an orbit is a union of orbits, these must also be closed. Moreover since S is
connected, the action is transitive, so S can be identified with C/A, where A is the
stabilizer of a point, a closed subgroup of C. Since S is compact and has the same
dimension as C, A must necessarily be a lattice in C. O

Once again it seems that Riemann never wrote this result down explicitly, even
if, as seems likely, he had at some time conceived it.
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Box I1.5: The Riemann—Roch theorem and Serre duality

A word on how the Riemann—Roch theorem is formulated nowadays. The
system of multiplicities n; attached to the points P; of the surface T is called
a divisor D := ), n; P;. The sum ) n; is then defined to be the degree deg(D)
of D.

The (germs of) functions having at most a pole of order n; at the point P;
form a sheaf, denoted by O(D). The two cohomology groups H %(O(D)) and
H'(O(D)) of this sheaf are naturally endowed with the structure of finite-
dimensional complex vector spaces, with dimensions denoted respectively by
h°(O(D)) and h'(O(D)). In the literature the dimension A°(O(D)) is also
often denoted by /(D).

The first vector space H 9(O(D)) can be interpreted as that consisting of the
meromorphic functions in question with poles of order at most D and defined
globally on T. The second can be interpreted globally only via the Serre duality
theorem, affirming that there is a canonical isomorphism

H'(O(D)) = (H*(Q(-D)))",

where Q(—D) is the sheaf of holomorphic forms vanishing at least to the or-
der D. If K is the divisor of a global holomorphic (or meromorphic) differen-
tial form, then the sheaf Q(—D) becomes identified with the sheaf O(K — D),
whence the following version of the Riemann—Roch theorem (for curves):

I(D) - I(K — D) = deg(D) — g + 1.

The Euler characteristic y(O(D)) of the sheaf O(D) is by definition the
difference h°(O(D)) — h' (O(D)). Thus the Riemann—Roch theorem may also
be stated in the form

Y(O(D)) = deg(D) — g + 1.

Thus, via Serre duality, one retrieves the version 11.2.14 of the theorem.
Viewed this way, the above modern version might seem to be merely a tauto-
logical reformulation. However, the significance of this reformulation derives
from the fact that it allows the statement to be extended to higher dimensions,
as was shown by Kodaira, Hirzebruch, Serre, and Grothendieck in the 1950s:
the Euler characteristic y () of a sheaf ¥ of sections of an algebraic
fibre bundle over a compact algebraic variety or of a holomorphic bundle
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over a compact analytic manifold is expressed uniquely in terms of topological
invariants of the bundle in question and the tangent bundle of the manifold; and
the vector spaces H'(F) entering into the definition of y () are naturally
isomorphic to (H"(Q(F *)))*, where n is the dimension of the variety or
manifold.

We shall now prove the preceding two results using an idea due to Clebsch
[Cle1865a, Cle1865b]. This method has the advantage of being completely alge-
braic in the sense that it uses no analysis (unlike the proof of Riemann—Roch via
the Dirichlet principle). On the other hand, it has the shortcoming that it deals
only with Riemann surfaces assumed a priori to be algebraic.

By Theorem II.1.3 the surface S can be so immersed in CP? that its image is
an algebraic curve C having as its only singularities double points with distinct
tangents.

Let n be the degree of C. Recall from the formula (IL.3) that the genus of S is
equal to W — k, where k is the number of double points.

Curves of genus zero. — Suppose S has genus zero. Then the curve C has N =
(n—1)(n —2)/2 double points x1,x7,...,xn, say. Choose any particular n — 3
other points y1,...,y,—3 on C. Recall that the projective space of curves of a given
degree d has dimension d(d + 3)/2, so that the projective space E of curves of
degree n —2 passing through the N points x; and the n—3 points y; has dimension
at least

n=-2)(n+1)

) N-n-3)=1.

Let z; and z» be any two distinct points of C. Through each of these there passes
at least one curve from E. By replacing E by the line in E determined by a curve
through z; and a curve through z; (considered as points of the projective space E),
we may suppose that E has dimension precisely 1.

By Bézout’s theorem, each curve of degree n — 2 meets C in n(n — 2) points,
counted according to their multiplicities. Thus apart from the x; and the y;, the
curves in £ meet C in

nn-2)-2N-(n-3)=1

points. This affords us a rational map from E to C. It is not constant since z;
and z; are distinct points in the image. It is even birational since the preimage of a
point is a proper projective subspace of the one-dimensional space E, so consists
of a single point.
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Curves of genus 1. — Now suppose the genus of S is 1. In this case the curve C
has N = (n — 1)(n —2)/2 -1 double points x1,x7,...,xn. Choose any particular
n — 3 other points yi,...,y,-3 on C. The space E consisting of curves of degree

n —2 passing through the N points x; and through the y; has projective dimension

at least:
(n=-2)(n+1)

2
Analogously to the case of genus 0, if £ happens to have dimension greater than 2,
we replace it by a generic subspace of dimension precisely 2. By Bézout’s theo-
rem, apart from the x; and y;, the curves from E each meet C in

nn-2)-2N-(n-3)=3

-N-(n-3)=2.

points. It follows that corresponding to each generic point x of C, there exists
exactly one curve from E tangent to C at x (and passing through the x; and y;).
This defines a rational map from the curve C to the projective plane E. We shall
now show that the image of this map is a cubic curve.

To this end we consider the pencil of curves in the projective space E deter-
mined by two of its elements, and find the condition that a curve in this pencil
be tangent to C. The condition takes the form of an equation of degree 3 since it
involves the vanishing of the discriminant of a polynomial of degree 3. The cubic
thus obtained must be non-singular since we know that a singular cubic has genus
zero. We have thus established a birational equivalence between the curve C and a
smooth cubic, which may now in turn be projectively transformed into Weierstrass
normal form.

I1.3. The Jacobi variety and moduli spaces

After having investigated his surfaces individually, Riemann seeks to comprehend
them collectively. This represents the birth of the “space” of moduli. Difficul-
ties in defining this space notwithstanding, this opens the way to a topological
approach to the uniformization theorem: the method of continuity, forming the
theme of the second part of the present book.

I1.3.1. Moduli spaces of Riemann surfaces

Birational equivalence. — At the beginning of his investigation, Riemann con-
siders the surface T to be associated with an algebraic function s(z) as a branched
covering of the sphere C, associated with the plane of the complex variable z.2!

2lMore precisely, above that plane. The use of the Riemann sphere is made explicit subsequently
in work of Neumann [Neum1865].
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However he next envisages changing the variable z employed to represent 7°:

A function z; of z, ramified like 7', which becomes infinite to the first order
at n; points of that surface [...], takes each of its values at n; points of the
surface T. Consequently, when one imagines each point of T represented by
a point of a plane representing geometrically the value of z; at that point, the
totality of these points forms a surface 77 everywhere covering the z;-plane
n; times, a surface which is, one understands, a representation, similar to
it in its smallest parts, of the surface 7. To each point of either of these
surfaces there then corresponds a unique point of the other.

Mathematicians later learned to say that T and T are isomorphic as Riemann
surfaces, and, in particular, homeomorphic. However, in order to begin using such
language, it would be necessary to come to the recognition that various sorts of
mathematical objects have internal structures defining their form, and it was to
this realization that in fact the work of Riemann contributed in no small measure.

After having represented T in a new way with the aid of a meromorphic func-
tion z1, one can go on to consider the representation one obtains by means of a
further meromorphic function:

If one denotes by s; any other function whatever of z, ramified like T [...],
then (§ V) s; and z; will be linked by an equation of the form Fj(s1,z1) = 0,
where F| is a power of an irreducible entire function of s;,z;, and when
this power is the first, one can express every function of z; ramified like T’
rationally in terms of s; and z;, and, consequently, all rational functions of
s and z (§VIII). The equation F(s,z) = 0 can thus, by means of a rational
transformation, be transformed into F;(sy,z1) = 0 and vice versa.

The equivalence relation that he introduces stemming from such considera-
tions represents the point of departure of birational geometry (see Klein [Kle1928,
Chapter VII]):

We now consider as forming part of the same class, all irreducible algebraic
equations in two variable quantities that can be transformed one to the other
by means of rational substitutions [...].

The choice of an equation F(s,z) = 0 in such a class, and of one of the two
variables s say, as representing, via this equation, an algebraic function of the
other variable z, allows us to define “a system of identically ramified algebraic
functions”, or, in modern terminology, a finite extension of the field C(z), that is,
the field of rational functions over the curve defined by the equation F(s,z) = 0
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(which may also be thought of as the field of meromorphic functions on the asso-
ciated Riemann surface). One thus arrives at the present definition: two algebraic
curves are birationally equivalent if their fields of rational functions are isomor-
phic as field extensions of C. And in fact two non-singular curves are birationally
equivalent if and only if they are biholomorphic.

Counting moduli. — At this point Riemann introduces the moduli problem for
Riemann surfaces of genus g — the problem of studying the birational equivalence
classes for each fixed topological type of Riemann surface, that is, for each fixed
value of the genus.

Riemann explains that, for g > 2:22

[...] a class of systems of functions identically ramified and (2p + 1)-
connected and the class of algebraic equations belonging to it, depend on
3p — 3 quantities varying in a continuous manner, which will be called the
moduli of the class.

Nowadays we speak of the moduli space, but here we see that Riemann refers
only to the number of parameters needed to determine the points of the space,
that is, its complex dimension, without any mention of the possibility of a global
construction of such a “space”. Nonetheless he has thought of this possibility, as is
shown by the following excerpt from his habilitation address [Riel1854, pp. 282—
283], delivered three years earlier:

Concepts of size are possible only where there exists a general concept al-
lowing different modes of determination. According to whether it is or is
not possible to pass from one of these modes of determination to another
in a continuous manner, they form a continuous or discrete manifold [...]
the occasions giving rise to concepts whose modes of determination form a
continuous manifold are so rare in everyday life that the positions of sensi-
ble objects and their colours are practically the only simple concepts whose
modes of determination form a manifold of several dimensions. It is only
in higher mathematics that occasions for the formation and development of
such concepts become more common.

Such investigations have become necessary in many areas of mathematics,
notably in the study of analytic many-valued functions, and it is primarily
on account of their imperfection that Abel’s celebrated theorem, as well as
works of Lagrange, Pfaff, and Jacobi on the general theory of differential
equations, have remained sterile for so long.

22]n the following quotations the genus is denoted by p.
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Riemann proposes two methods for calculating the number of moduli, the first
valid only for g > 1, and the second for g > 1. (We saw in the preceding chapter
that a Riemann surface of genus g = 0 is isomorphic to C, =~ CP'.)

First method. — Here for each u > 2g Riemann considers the set of meromor-
phic functions on 7" with exactly u poles (counted according to their multiplic-
ities). In other words he considers the space of holomorphic maps of degree u
from 7 to CP'. It follows from the Riemann—Roch theorem (Theorem II.2.14 and
Box I1.5) that this space has dimension 2y — g + 1.

By the Riemann—-Hurwitz theorem (see Box I1.4) a function from T to CP!
with u poles has 2(u + g — 1) ramification values, that is, the set of images of its
critical points is a finite subset of points of the Riemann sphere of this cardinality.
By allowing the function to vary (by varying the “arbitrary constants” on which it
depends), this finite set can be varied. And then:

These constants can be given values in such a way that the 2u — p + 1
ramification points take on any prescribed values provided the functions
determined by these constants are independent, which can be achieved in
only finitely many ways since the equations expressing this condition are
algebraic.

Riemann now asserts that the condition that the functions be independent is
satisfied provided g > 1. In this case, by choosing the meromorphic function
on T so that the 2y — g + 1 “ramification points take on any prescribed values”,
there remain 3g — 3 unused ramification values, which therefore afford a complete
system of parameters for the moduli of 7'.

Second method. — Rather than considering, as in the above approach, properties
of meromorphic functions on 7, the second method exploits properties of inte-
grals w of holomorphic forms (“integrals of the first kind””) — or, more precisely,
of their periodicity moduli relative to a fixed system of sections transforming T’
into a simply connected surface 7’ and their values at the zeros of the associated
holomorphic form, that is, the critical values of w|z.

The calculation yielding the desired 3g — 3 moduli of the surface 7 is then as
follows:

[...] we can, in the quantity w = ayw| + aowp + -+ + apwp + ¢, treated
as an independent variable, determine both the quantities @, where of 2p
periodicity moduli p can be given prescribed values, and the constant c,
provided p > 1, and in such a way that one of the 2p — 2 ramification
values of the periodic functions of w take on a prescribed value. In this
way w is completely determined, and consequently the remaining 3p — 3
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quantities on which depend the mode of ramification and the periodicity of
these functions of w likewise [...].

The question that suggests itself next is whether the set of isomorphism classes
of Riemann surfaces of a fixed genus g can be naturally endowed with supplemen-
tary structures. Is there, for example, a topology on that set with respect to which
the parameters considered by Riemann in the above two approaches become con-
tinuous functions? It is only when one has imposed on the set of isomorphism
classes some sort of structural concepts of a geometrical nature that one can speak
of the space of moduli. The problem of moduli, as it arose following Riemann,
is that of defining such structures reflecting the properties of the objects under
examination.

For example, if we consider compact Riemann surfaces as complex algebraic
curves, we may ask if the space of moduli can itself be regarded as a complex
algebraic variety. Contemporary research has shown that this is indeed the case
(see the book [HaMo01998]).

Proposition I1.3.1. — There exists an irreducible quasi-projective complex vari-
ety Mg (hence connected) that is a moduli space for the compact complex smooth
algebraic curves of genus g.

We now elucidate the meaning of this statement. It is easy to define the con-
cept of an algebraic family of curves of genus g: such an object is given by an

algebraic morphism X ., B with fibres 7! (b) curves of genus g. Thus we have
a family of curves “parametrized” by the base B. Our space M, is characterized
by the property that for each family of this sort, there exists a unique algebraic

map B Z, M such that for each b € B the curve a1 (b) belongs to the isomor-
phism class represented by the point y(b) € M,. In particular, therefore, there
is a canonical bijection between the points of M, and the isomorphism classes
of curves of genus g, by means of which the algebraic structure of M, induces a
geometric structure on the set of moduli.

An important point here is that M, itself is not the base of any algebraic

morphism X N M, for which for every b € M,, the fibre 7~ YD) is in the
isomorphism class represented by b. For this reason one says that M, is only a
coarse moduli space.

In the above two methods of Riemann one is in effect considering Riemann
surfaces endowed with certain supplementary structures: a meromorphic function
defined on the surface together with an enumeration of its critical values, or again
a basis for its homology. The question of the existence of moduli spaces for such
“enriched” Riemann surfaces turns out to be an important one. The advantage
of such an approach is that by enriching the additional structure sufficiently one
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obtains objects without nontrivial automorphisms, which facilitates study of the
moduli problem. For example, this allows one to show that M, is in fact the
quotient of a smooth algebraic variety by a finite group action.

I1.3.2. The “Abelian” uniformization of Jacobi and Riemann

A further important contribution of [Riel857] was the solution of the “inversion
problem” left open by Abel and Jacobi. In order to better explain Riemann’s
contribution, we go back to Abel, who — around 1829 — managed to generalize
Euler’s addition theorem to Abelian integrals. He starts with an integral

X
f ydx
X0

where y(x) is an algebraic function defined by an irreducible polynomial equa-
tion F(x,y) = 0, and he shows that there exists an integer ¢ > 0 such that for
any given u + 1 complex numbers x1,x2,...,x,41 one can find u complex num-
bers x{,...,x; — uniquely determined up to order — depending rationally on

M
X1,X2,...,Xu41 such that

’

X1 X2 Xyl x| X},
f ydx+f ydx+---+f ydxzf ydx+---+f ydx,
X0 X0 X0 X0 X0

to within a period of f y dx. One should think of this as merely a formal equality
between sums of anti-derivatives. For example, for the integral of the form of the
second kind dx/x, that is, the complex logarithm, one has

f“dx fbdx f”hdx
—+ — = —.
1 X 1 X 1 X

By applying Abel’s theorem several times one sees that it leads to an “addi-
tion” of u-tuples of points. More precisely:

For any given u-tuples (xi,...,x,) and (x;,. .. ,x;l), defined up to order,
there is a p-tuple (x',. .., x};), uniquely determined up to order, depending ratio-
nally on (x1,...,x,) and (x;,. .. ,x;l), such that

M Xi H x; H xy
Z£O ydx+2fx0 ydx:foo ydx.

Thus whereas Euler and Gauss found an addition rule for the points of a lem-
niscate (the case u = 1), Abel found such a rule for sets of size u.
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The situation remained for some time in this rather mysterious — and more-
over not quite valid — form. In particular, the significance of the integer u re-
mained hidden from view. It had to wait for the work of Jacobi and especially
Riemann before it was understood that when the Abelian integral is of the first
kind, u is equal to the genus g of the Riemann surface associated with y, and
when the integral is of the second kind — as in the case of the logarithm — y is
g + 1. We should not forget that at the time of Abel and Jacobi no one thought of
an algebraic curve as a surface endowed with a topology.

For an exposition of Abel’s theorem from his point of view, the reader may
consult [Cat2004, Kleim2004], where it will be seen that Abel considered several
rather different versions of his theorem.

Hyperelliptic functions and Jacobi’s inversion problem. — One of the first fami-
lies of Abelian integrals beyond elliptic integrals consists of those of the following

form:
u—fx (a + Bx)dx
0 VP

where P is a polynomial of degree 6. This corresponds to the curve C with equa-
tion y> = P(x), a Riemann surface S of genus 2 to which (@ + Bx) dx/y lifts as
a holomorphic differential. The integral therefore has precise meaning provided
one specifies the homotopy class of the path of integration joining the two limits
of integration. We note once again that the concepts expressed in this sentence
were not available to Jacobi.

Thus the “function” u lifts to a many-valued function on §. Recall that in the
case of a polynomial P of degree 3 or 4 the analogue of the map u (where P is
assumed to have degree 6) has a doubly periodic inverse. In the present case the
study of the inverse of u encounters two major difficulties.

The first difficulty arises from the vanishing of the form (@ + Sx) dx/y at two
points on the surface (x = —a/f corresponds to the two points of the surface
arising from the two values taken by VP at that x). Hence u has critical points,
whence its “inverse” — assuming it existed — would have branch points and so
not be single-valued! This difficulty did not arise in the elliptic case because the
form dx/ VP (with P of degree 3 or 4) does not vanish on the corresponding
elliptic curve.

The second difficulty arises from the fact that (@ + Bx) dx/y affords four
periods, given by integrals around four loops encircling pairs of roots of P. If it
existed, the inverse function would thus have four independent periods. Jacobi
established the fact, clear to a modern mathematician, that a subgroup of rank 4
of C cannot be discrete, and so cannot serve as the group of periods of a non-
constant meromorphic function.
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Following on the appearance of Abel’s article on the laws of addition of u-
tuples of points, Jacobi had two brilliant new ideas for finding a way out of the
impasse.

The first of these consisted in using two holomorphic forms simultaneously

on C. Given any loop y on C, one can integrate 3? and X \/di‘ , obtaining a pair

of periods (w1 (y),w2(y)) € C2. As v ranges over all loops on C, these pairs of
periods range over a subgroup A of rank 4 of C? and no longer of C as previously.
It is therefore possible that A is a discrete subgroup of C? and indeed this turns
out to be the case. Thus one now has available a holomorphic map — called the
“Abel-Jacobi map” — utilizing two forms, namely:

* dx * xdx
xeCws f —_, ) e C?/A.
( o VP Jo P
The complex torus C2/A is today called the Jacobian of the curve C. However,
uniformization has not been achieved here since the torus C2/A has dimension 2,

so could not possibly parametrize the curve C, of dimension 1.
Jacobi’s second idea was to use pairs of points, that is, to use the map

X1 X2 X1 X2
(t1x2) € CP 1o (f a’x dx. f xdx xdx) € C?/A.
VP

The domain and codomain of this map have the same dimension, but the map
is not bijective since it sends (x,x3) and (x7,x;) to the same image. One gets
around this by working instead with the “symmetric square” C® of C, the quo-
tient of C? by the involution switching the two factors; the elements of C® are
therefore essentially just the unordered pairs of not necessarily distinct points
of C. By means of elementary symmetric functions one then endows C® with the
structure of a smooth algebraic variety of dimension 2. Thus one now has at one’s
disposal a holomorphic map from C® to C?/A, and it is this map that Jacobi
seeks to invert. The question of its surjectivity is the “Jacobi inversion problem”,
which he himself failed to solve. This particular problem was solved around that
time by Adolph Gopel and Georg Rosenhain in the special case of hyperelliptic
curves that we have been expounding here. But it is to Riemann that we owe the
complete solution of the problem.

Riemann and the Jacobi inversion problem. — Riemann begins by generalizing
the construction to any surface S whatever, not necessarily hyperelliptic. Recall
that by Theorem I1.2.5 the space of holomorphic forms on S has dimension equal
to the genus g of S. By integrating g such forms comprising a basis for that space
over all loops on S we obtain a subgroup A of C8. Riemann proves that this
subgroup is a lattice, that is, that it is discrete with compact quotient C& /A. Much
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as above one constructs an Abel-Jacobi map from C to C&/A. By taking the sum
of the images in C& /A, one then obtains a map from the symmetric power C¢) to
C8/A. Riemann now establishes the following two fundamental theorems:

Theorem I1.3.2. — The Jacobian C8 /A of an algebraic curve is an algebraic
variety, that is, it embeds holomorphically in a projective space of sufficiently
high dimension as an algebraic subvariety.

Theorem I1.3.3. — The Abel-Jacobi map C'® — C8& /A is birational.

This does not mean that this map is an isomorphism — in fact a little topo-
logical reasoning shows that for g > 2 these two spaces are not even homeomor-
phic. However, by way of compensation we get the existence of a rational map
C8/A — C® that is inverse to the Abel-Jacobi map where defined.

To give the proofs of Theorems I1.3.2 and 11.3.3 would take us too far afield.
We limit ourselves to sketching briefly a proof of the surjectivity of the map in
Theorem I1.3.3.

Proof. — We shall show that the Abel-Jacobi map has non-zero “topological de-
gree”. Recall (see [Mil1965]) that the topological degree of a C*™ map between
two compact orientable manifolds is the sum of the signs of the Jacobian determi-
nants over the preimages of a regular value. Hence a map of non-zero topological
degree must be surjective.

The Abel-Jacobi map is holomorphic and is therefore orientation-preserving.
Thus it suffices to prove that its image contains a regular value. We shall show that
there exists a g-tuple / € C®) where the derivative is invertible; this will suffice
since then by the (local) Inverse Function Theorem the image of our map must
contain a non-trivial open set and hence at least one regular point.

Observe that the derivative of the Abel-Jacobi map fails to be invertible at a
g-tuple I = (xy,...,xg) € C®) if and only if there exists a form w of the first
kind on C that vanishes at all of the x;. It therefore suffices to find a g-tuple / at
which no form vanishes. To this end we consider the projective space PQ'(C)),
of dimension g — 1. The subset A of P(Q!(C)) x C(® consisting of all pairs (@, )
where @ is the complex line defined by a differential form w vanishing on the
g-tuple [, is an analytic subset of dimension g — 1, so that its projection on the
factor C(&) cannot be surjective. O

With a little more work it can be shown that the topological degree of this map
is exactly 1. This implies that there exist dense open sets in C‘&) and in C8 /A that
are biholomorphic to one another, so that the Abel-Jacobi map is birational.

One can find a proof of the first of Riemann’s theorems above (giving a neces-
sary and sufficient condition — in terms of the “Riemann bilinearity conditions”
— for a torus C8/A, which is automatically a holomorphic manifold, to be in
fact an algebraic variety) in [Bos1992]. This proof exploits a higher-dimensional
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generalization of the Jacobi #-functions, called since then the “Riemann theta-
function”.

While the Jacobian naturally carries the structure of an Abelian group, Theo-
rem I1.3.2 endows it besides with the structure of an algebraic variety. This can be
phrased more concisely by saying that “the Jacobian is an Abelian variety”, which
serves to join in a single statement the names of the two protagonists whose rivalry
should not be allowed to obscure the similarity of their mathematical visions?3.

These theorems afford a new global perspective on the theories of the integrals
of algebraic functions and of algebraic curves:

— the birational identification of the first theorem renders transparent Abel’s
theorem on the law of addition of g-tuples of points: a mysterious addi-
tion formula becomes a simple consequence of the group operation on the
Jacobian;

— without yielding a parametrization of the points of the curve, Riemann’s
theorems provide a simple algebraic model for g-tuples of points by refer-
ring them to a given algebraic model.

However, in the course of time, it transpired that one could do much better than
this “Abelian uniformization”. Twenty-five years later Klein and Poincaré showed
that the points of C itself (and not just of C(¢)) can be uniformized.

23n a letter addressed to Legendre which has remained famous, dated July 2, 1830, Jacobi writes:
“But M. Poisson should not have reproduced in his report the not very clever statement of the late
M. Fourier, by which the latter reproaches us, Abel and me, for not having occupied ourselves
instead with the motion of heat. It is true that M. Fourier was of the opinion that the principal aim
of mathematics is public utility and the explanation of natural phenomena; but a philosopher like
him should have known that the only aim of science is to honor the human spirit, and that under
this banner a question about numbers is worth just as much as a question about the system of the
world.”






Chapter 111

Riemann surfaces and Riemannian
surfaces

In 1881 Felix Klein gave a course [Kle1882] on Riemann’s work, in which he
tried to make the theory of Riemann surfaces more intuitive. By then, of course, a
considerable length of time had elapsed since the appearance of Riemann’s mem-
oirs of 1851 and 1857 [Riel851, Rie1857]; this reworking of Riemann’s results
was contemporaneous with the first announcements of the uniformization theo-
rem, which we shall be considering in Part B and of which Klein was one of the
major heroes.

Especially notable was his reinterpretation of Riemann’s Theorem 11.2.5 on
the existence of meromorphic forms on a Riemann surface, in terms of fluid flow
on the surface. The better to grasp his idea, we reconsider the Riemann Mapping
Theorem from this point of view. Thus consider a bounded, simply connected
(open) region of the complex plane, and imagine that its boundary is a perfectly
conducting wire. If we attach one terminal of a battery to a point inside the re-
gion and the other to a point on the boundary, we obtain a flow of charge in the
region, following the flow lines of the gradient of the potential. One sees that
this potential has a logarithmic singularity at the point in the interior to which the
battery is attached, and is constant on the boundary in view of the assumption
that the boundary wire is perfectly conducting. Thus we have a Green’s function
on the open set, and have thereby “proved” the Riemann Mapping Theorem by
experimental means.

In his course, Klein aimed at illustrating Riemann’s theory by extending this
physical intuition to an arbitrary compact surface.

In order to describe Klein’s physical illustration in mathematical terms, one
needs to introduce a Riemannian metric on the surface under consideration. Even
though this is far removed from Klein’s actual preoccupations and techniques, it
will show how this new structure allows one to look at Riemann’s theory from a
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more modern point of view. In particular, it sheds new light on Theorem II1.2.5
on the existence of meromorphic forms on a given surface and also on the moduli
problem.

III.1. Felix Klein and his illustration of Riemann’s theory

As was explained in the preceding chapter, with each algebraic function of a com-
plex variable z Riemann associates a surface covering the z-plane several times.
For most of his exposition of the theory, Riemann uses the parameter z of the
plane to describe objects that today we would consider as living on the surface.
Getting to the point of rendering unto the surface that which belongs to it has been
a long and difficult process. Here, for instance, is how Klein talks of the matter in
the preface to his course [Kle1882c], taught in 1881:

I am not sure if I’d have been able to develop a coherent conception of the
current subject as a whole if, many years ago now (1874), during an oppor-
tune conversation, M. Prym had not said something to me that has assumed
more and more importance in the course of my subsequent reflections. He
said that “Riemann’s surfaces are, fundamentally, not necessarily surfaces
of several sheets above the plane, but on the contrary, complex-valued func-
tions of position that can be studied on arbitrarily given curved surfaces in
exactly the same way as on surfaces above the plane”.

In [Kle1882c] Klein proposes expounding the theory of meromorphic forms
and functions living on a compact Riemann surface in an intrinsic language no
longer employing projections on the plane. And, even more important, he wants
to teach his students to think in physical terms, since:

[...] there are certain physical considerations that have been developed sub-
sequently [...]. I have not hesitated in taking these physical conceptions as
my point of departure. As we know, Riemann used Dirichlet’s principle in-
stead. However, I have no doubt that he started from precisely these physical
problems and then, in order to lend the support of mathematical reasoning
to what was obvious from a physical point of view, he replaced them with
Dirichlet’s principle.

The path from the “physically obvious” to mathematical rigour is thus strewn
with pitfalls. And in progressing towards rigour, one risks losing all intuition. Ac-
cording to Klein that is what happened in this particular case, and what motivated
him to to design his course:
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We are familiar with all the tortuous and difficult considerations by means of
which, over the last several years, some, at least, of the theorems of Riemann
that we deal with here have been given reliable proofs. Such considerations
play a completely negligible part in what follows and I thus renounce the
use of anything except intuitive foundations for the theorems stated. These
proofs should not in any way be subsequently mixed up with the ideas that
I have tried to preserve [...]. However they should obviously follow them

[...]1

We are unable to resist quoting the following excerpt from the review by
Young [You1924] of the third volume of Klein’s collected works:

A topic that will interest the reader of Volume III is Klein’s attitude to Rie-
mann. Although Klein never saw Riemann, they can be freely compared to
Plato and Socrates. Many philologists maintain that the Platonic Socrates
is unhistoric. I would put this otherwise. What Plato tells us of Socrates is
what he thought he saw in his master, and in order to see [what he did see] a
“formidable mind” such as Plato’s was necessary. What Klein tells us about
Riemann is what he thought he saw of the master in his writings, and, I dare
say, this intuition gave Klein access to points of view of Riemann that none
of the latter’s disciples had suspected. One has only to look at Riemann’s
portrait to see that he was modest. [ am prepared to believe that he had many
latent ideas of which he himself was not conscious.

One should read what Klein relates on p. 479 on the subject of his paper
“Algebraische Funktionen und ihre Integrale” (1882), where he claims to
have revealed the actual basis of the ideas underlying Riemann’s concep-
tion of his theory of functions, an essentially concrete and physical basis
for abstract and metaphysical notions. Just as the real values of an algebraic
function were then represented by points on a curve, so Riemann introduced
flat surfaces consisting of several superimposed sheets meeting only at their
branch points, in order to separate the complex values of an algebraic func-
tion f(x +iy). Klein claimed that it was only by reflecting on physical
phenomena that Riemann arrived at this idea, and that Riemann’s original
surface was not so very abstract and complicated but a completely natural
curved surface realizable in space, such as the torus.

On such a surface the phenomena of stable flow of heat or electricity is
represented mathematically by a function, the potential, satisfying the fun-
damental differential equation 9° f/0x*> + 0> f/dy* = 0 of the theory of
complex functions f(x + iy). In his paper Klein develops this idea in a
very satisfying way, and shows that from this point of view most of the the-
orems of function theory become intuitive. According to Klein, Riemann
must have introduced the surfaces bearing his name only later on, in order
to elucidate his arithmetized exposition. In this connection Klein cites the
statement of Prym, a student of Riemann, that “the surfaces of Riemann
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were originally not necessarily surfaces of several sheets superimposed on
the plane. One can study complex functions of position on any curved sur-
face just as well as on planar ones”.

However, Klein realized that he had interpreted Prym’s thought incorrectly.
The latter issued a formal denial (April 8, 1882) of having said that Riemann
had conceived the idea of separating the values of a complex function on a
curved surface as Klein does in his paper.

The above remarks are a response to the reproach made against Klein of
lacking mathematical rigour in the notions forming the basis of his paper,
as also, incidentally, in other places in his writings. Klein defends himself
with the principle of intuitive methods that he makes use of.

“I seek™, he says, “to arrive by means of reflections on physical nature at
a true understanding of the fundamental ideas of the Riemannian theory. I
would wish for like procedures be used more often, since the usual style of
mathematical publication involves a habitual relegation to the background
of the important question as to the means by which one was led to formulate
certain problems or to make certain deductions. I am of the opinion that
the fact that most mathematicians pass over in total silence their intuitive
reflections, publishing only proofs (certainly necessary) in rigorous form
and for the most part mathematized, is a fault. They seem to be held back
by a certain fear of not appearing scientific enough to their colleagues. Or
is the reason, in some cases, that of not wishing to reveal the source of their
own ideas to the competition?”” He also says: “It is as physician that I wrote
my note on Riemann, and furthermore in this I met with the approval of
several other physicians.”

In the following sections we first of all explain the intuitions developed by
Klein about meromorphic forms and functions on a Riemann surface. Then we
give a modern proof of Theorem I1.2.5 on the existence of meromorphic forms
on a given surface: being much less physically intuitive, this nicely illustrates the
above statements of Klein.

Klein’s physical explanations are based on the idea of considering on the given
Riemann surface a Riemannian metric compatible with its complex structure.
Such a metric allows us to regard, via duality, real forms as vector fields. When
a real form is the real part of a meromorphic 1-form, the associated dual field in-
herits particular dynamical properties which can be formulated in the terminology
of Riemannian geometry and interpreted in hydrodynamic or electrostatic terms.
(The very name “‘electric current” bears witness to the analogies between different
branches of physics observed in the 19th century.)

Further details of these physical interpretations and their history may be found
in [Coh1967].
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IIL.1.1. Compatible metrics on a Riemann surface

Klein uses the following fact. Given a Riemann surface S, there is always a Rie-
mannian metric g = (-,-) on S that is compatible with the complex structure,
meaning that it determines the same angle measure. Such a metric has the follow-
ing form, expressed in terms of a holomorphic local coordinate system z = x +1iy:
g = "™ \/dx? + dy?, where u is a smooth function. It is very easy to construct
such a metric by modern means. It is enough to cover S by open sets U; en-
dowed with holomorphic maps z; : U; — C, and consider a partition of unity (o;)
subordinate to the open cover by the (U;).! One may then use the metric

g = Z pi - 7 ({Jdx? + dy?).
i

Remark III.1.1. — If we assume the Riemann surface S embedded in some pro-
jective space CPV, we can construct globally a real analytic Riemannian metric
compatible with the complex structure on S; it suffices to restrict to S the Fubini—
Study metric on the projective Fubini—Study space (see for example [GrHa1978]
for the definition of this metric).

The complex structure on § also induces an orientation of S, determined via
the holomorphic charts by the standard orientation of C. Indeed the coordinate
changes on the overlaps of charts are biholomorphisms between open subsets of C,
so preserve the standard orientation.

It can be shown that, conversely, a given oriented surface (S, g) endowed with
a smooth Riemannian metric admits a unique compatible Riemann-surface struc-
ture (see Section 1.2.2). This local uniformization theorem is much more difficult
to prove than Gauss’s theorem 1.2.1 (which is the particular case of this local uni-
formization theorem for real analytic metrics).

In summary: defining the structure of a Riemann surface on a given differ-
entiable surface S is the same thing as choosing an orientation and a conformal
class of Riemannian metrics.

The unique Riemann-surface structure on S allows us to define an associated
almost complex operator? J : TS — TS, which, from a geometric point of view,
is just rotation through the angle 7/2 in the positive sense. In fact the existence
of such an operator (satisfying the equation J?> = —I) is equivalent to the spec-
ification of an orientation and a conformal class of metrics, and therefore of a

IThus each p; is a continuous map S — [0, 1] with support contained in U;, and for each s € S
all but finitely many of the p; vanish in some neighborhood of s and }}; p;(s) = 1. Trans
2Here T'S denotes the tangent bundle over S. Trans
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Riemann-surface structure on S. By means of J one can rotate both tangent vec-
tors and real differential forms3:

xw = J), forv e TS,

*q¢ = -—aol, foraeT*S. (L.1)

Once we have fixed on a metric g compatible with the complex structure, we

can associate with each real-valued differential 1-form « on § the vector field v,
dual to it relative to g:

a() = (Va, ).

This then allows us to define pointwise a scalar product of two 1-forms as that of
the respective dual vector fields. Denoting by vol the area form determined by g
and the fixed orientation of S, we have the following formulae:

{V01(*V1,V2) —(i,v2),  Yvi,meTs (1.2)

{(ai,az)vol = a1 Axaz, Yaj,ar € T*S,

easily proved by calculating in terms of an orthonormal basis.
With the aid of the duality between forms and vectors one can also define the
concepts of the curl (or rotation) and divergence of a vector field (see Box IIL.1).

Box III.1: The curl and divergence

Let (S,g) be an oriented surface endowed with a smooth Riemannian met-
ric. Denote by vol the associated area form. Let V be a smooth vector field
on § and @ = (V,-) the form dual to ¥. The 2-form da is then the product of
the area form by a smooth function called the curl of v:

da = curly - vol.

By Stokes’ theorem, for every region U of S with smooth boundary U, one

has
f (\Zf}dlzfcurlﬁ-vol,
oU U

where 7 is the unit tangent vector field to AU and dI the element of length
on 0U. The left-hand side of this equation is called the circulation of the
field v around the curve dU. The field v is said to be irrotational if its curl is
identically zero, or, equivalently, if the 1-form « is closed.

3Note the (usual) sign convention here.
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Now consider the 1-form #@. The 2-form d(*a) is the product of the area
form vol by a smooth function called the divergence of v:

d(xa) = divy - vol.

By means of Stokes’ theorem this equality translates into the following stan-
dard form: for every region U of S with smooth boundary,

W,nydl = f divv - vol,
U U

where 7 is the vector field normal to the boundary AU. The left-hand side
quantity here is called the flux of the field ¥ across the curve dU. If ¥ mod-
els a fluid flow, this measures the infinitesimal change in the amount of fluid
contained in U. The flow is called incompressible if the divergence of v is
everywhere zero, or, equivalently, if the form *« is closed.

II1.1.2. Meromorphic forms and vector fields

Suppose now that the field V is irrotational. The dual 1-form « is then closed, and
therefore locally exact. Thus in a neighborhood of each point of S there exists a
function u such that du = (¥,-); in other words V is the gradient of the function
u : v = gradu. This is often expressed the other way around by saying that the
function u is a potential from which V is derived.

If ¥ is both incompressible and irrotational, then u is a harmonic function.
This follows from the relation

Au := div gradu.

(Note that even though the definition of the Laplacian depends on the metric, the
concept of a harmonic function depends only on the associated conformal struc-
ture.) It follows in particular that the function « and the field v are automatically
analytic. Conversely, every harmonic function defines via its gradient an incom-
pressible and irrotational flow.

Consider next the field V. The following equations hold:

curl(xv) = divy  and div(*V) = —curlv.

Hence if V is incompressible then ¥ is irrotational, and vice versa. It follows that
if the field v is both incompressible and irrotational, then so is the field =V, whence,



82 IIT Riemann surfaces and Riemannian surfaces

in particular, it is the derivative of a potential function u*. Like u, the function u*
is only defined locally and up to an additive constant. The complex-valued 1-form
n = du + idu* is, however, well-defined on the whole surface S.

Lemma II1.1.2. — The I-form n is holomorphic.

Proof. — Consider an open set U of S on which the field ¥ does not vanish. Since
the gradients of u and u* are orthogonal and of the same norm, the map u + iu* :
U — C is holomorphic. Observe that, since this map is a local diffeomorphism,
the functions # and u* give conformal local coordinates on U. Another way of
saying this is that the 1-form 7 is holomorphic on the set consisting of S with the
zeros of v removed. However, since that form is defined on the whole of S (and
the zeros of V are isolated), n must then in fact be a holomorphic 1-form on S. O

Conversely, given a holomorphic 1-form i on S, the dual field of the real part
of 7, that is, the field v defined by

Ren = (¥,

is both incompressible and irrotational. This allows us to gain an understand-
ing of the local properties of the critical points of incompressible and irrotational
vector fields. In a neighborhood of such a point we have n = df for some
holomorphic function f. Hence there exists a local holomorphic coordinate z
and a non-negative integer n such that f(z) = z", whence n = nz""'dz and
(¥,-) = Re (nz""'dz). In the case n = 3 the field lines are as in Figure II1.1.

Figure II1.1: A figure taken from Klein’s book [Kle1882c]: the neighborhood of
a critical point
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In his course Klein also considered the case where the form 7 has poles. The
field ¥ is then defined only on the surface with the poles of n removed, which are,
of course, finite in number. We shall now examine qualitatively the behaviour of
the flow lines of ¥ in the vicinity of the poles. In a neighborhood of a pole of n
one can always find (see Box II1.2) a holomorphic local coordinate w such that

A 1
n= (—+ —) dw,
w  w

where 4 € C. Hence the field vV dual to the real form Re 1 decomposes as a
superposition of the fields dual to the forms Adw/w and dw/w”. Consider first
the case v = 1, where we have n = udw/w, with u = A4 + 1. We now further
decompose the field dual to Re (udw/w) as the superposition of a field with u
real and another with u purely imaginary. For real y one finds that the potential
of ¥ is, to within an additive constant, the function u = ulogr, where w = re'®.
In this case the field lines are orthogonal to the concentric circles about the point
w = 0, which is then either a positive source or a negative sink, depending on the

sign of u (see Figure I11.2).

Figure II1.2: Taken from Klein’s book [Kle1882c]: sink/source and vortices

When p is purely imaginary the potential is, to within an additive constant,
the function u = i, and the flow lines are then concentric circles about w = 0,
traced out with speed |u|. We have here the case of a vortex (see Figure I11.2).

The case of the field dual to the 1-form dw/w? is dealt with by first observing
that

1 dw dw dw
— — —ase — 0.
2¢e 2

w-—-£& w+ e w

For real ¢ this represents the superposition of a source “of flow £” and a sink “of
flow —&” positioned at points p and p’ a distance 2¢ apart (see Figure I11.3).
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Figure II1.3: Taken from Klein’s book [Kle1882c]: a dipole

The same procedure can be used to investigate the fields dual to the form
Re (dw/wY), v any integer > 2. Thus one arranges for v points representing
sources, sinks, or vortices to approach the same limit.

We next consider how to interpret the periods of the holomorphic 1-form 7 in
terms of the vector field V. Let a € H,(S,Z) be any particular homology class.
The real part of the period of 7 on the class a is then by definition

[Re n](a) := Re (fn) ,
Y

where 7y is an oriented (multi-)curve representing a. As in Box III.1, we denote
by 7 the unit vector field tangent to this curve and by 7 the unit normal vector
field to the curve, chosen so that (7,7) furnishes an indirect basis for the tangent
space* at each point of the curve. As before, v denotes the field dual to Re 7;
thus Re 57 = (¥,-). Observing then that (¥,7) = —(+¥, ), we deduce the following
equality (where d! is the element of length along y):

[Re n(a) = f (—(si), iyl
Y

Thus the period [Re n](a) is equal to the flux of the field —(*V) across the curve 7.
Furthermore, by means of the first of the relations (III.2) we may rewrite the
equality Re = (V,-) in the form Re = —vol(xV, -), whence

[Re nl(a) = —fvol(*ﬁ,-).
y

4That is, one not agreeing with the chosen orientation of the surface. Trans
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The period [Re n](a) is therefore also equal to the surface area of the infinitesimal
cylinder obtained by displacing the curve y by the flow of — (V).

Box III.2: The local normal form of a meromorphic form

Consider a meromorphic form 7 in a neighborhood of one of its poles.
We explain here how one finds a local coordinate w in such a neighborhood in
terms of which 7 assumes the normal form n = (% + %) dw.

In terms of an arbitrary fixed holomorphic local coordinate z, the form 7

can be written as A \
7= —dz+d( (Z)),

z v—1

z
where 4 is a holomorphic function, A € C is the residue of the form 7 at 0, and
v > 2 is an integer. We seek a coordinate change of the form w(z) = z - u(z)
where u is holomorphic and u#(0) = 1, such that

A (