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A HOMOGENEOUS space of a (connected) Lie group G is a manifold on which G acts 
transitively; these manifolds have been studied for many years. A particularly interesting 
family of non transitive actions is that of actions whose orbits are the leaves of a foliation. If 
one tries to describe them, one naturally restricts to the codimension 1 case. Here we study 
foliations defined by locally free actions of nilpotent Lie groups on compact manifolds: the 
so-called nilfoliations. 

Our aim is to generalize both 

(i) Malcev’s structure theorem for nilmanifolds (i.e. homogeneous spaces of connected 
nilpotent Lie groups) which states that any nilmanifold is diffeomorphic to the product of a 
compact nilmanifold with an Euclidean space (see Theorem B below); 

(ii) results of Rosenberg-Roussarie-Weil-Chatelet stating that manifolds foliated by 
actions of ‘Iw” or Heisenberg groups are trivial cobordisms or fiber over S’ (see Theorem C). 

Indeed a nilfoliation is almost without holonomy (see 4.1) and as for the study of these 
foliations in general, one can restrict to the simpler situation of models ofnilfoliations (see 1.4 
and 1.5). The most important models (M, 5 ) are those of type 

(0) for which B is without holonomy; 
(1) for which 8M # @ and any compact leaf is a connected component of aM. 

Consider (M, F ) a model of type 0 or 1, defined by a locally free action 4: G x M + M. 
For any XE M, the leaf L, through x is isomorphic to G/G, (where G, is the isotropy 
subgroup of G at x), and we denote with Ix c G, the kernel of the holonomy representation 
of L,. The invariance of the Malcev completion f, of Ix (i.e. the unique closed connected 
subgroup of G such that I, is uniform in p,) is a crucial point in the paper. Our results can 
be summarized as follows: 

THEOREM A. Zf ( M, F ) is a model of type 0 or 1, the group px is a normal subgroup of G 
which does not depend on x and such that f, 3 [G, G]. 

THEOREM B. Let (M, 9 ) be any nilfoliation. There exists a closed subgroup H of G 
containing [G, G] whose action on M dejnes a locally trivialfibration: 

(*): A -+ M : M’ such that: 

(i) A is a compact nilmanifold; 
(ii) 9 = rr* ( 9 ’ ) where 9 ’ is the foliation de$ned by the induced action I#I’ of the abelian 

group G’ = G/H. 
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THEOREM C. Let (M, % ) be a nilfoliation, 

(i) If (M, % j is a type 1 model, M is a trivial cobordism; 
(ii) Zf M is closed, M fibers over S1, the fiber F being diffeomorphic to the compact 

nilmanifold of G if % has non-trivial holonomy. 

In any case, M has the homotopy type of a (non-compact) solvmanifold. 
In fact we will prove more precise versions of Theorems B and C for models of type 0 

and 1 in sections 2 and 3 respectively. The general case will be discussed in $4. The proof of 
Theorem A for nilfoliations without holonomy requires some preliminary results on nilpo- 
tent Lie groups; they will be discussed in Appendix A. For the proof of the “cobordism 
theorem” (see 3.7.) which is an important step in the proof of Theorem C, we use the 
corresponding result for W-actions due to Chatelet-Rosenberg; we give a new and short 
proof of the latter for great dimensions in Appendix B. 

Results contained in an earlier version of this paper were announced in 163. Later the 
paper could be deeply improved and simplified by proving the invariance of f, in case of 
type 1 models. Finally the former weaker results concerning type 0 models were strength- 
ened due to the contribution of the two last authors. 

Although all results are valid in class C’, r > 2, we will assume for the sake of simplicity 
that all structures considered in the paper are of class C”. 

1. PRELIMINARIES: MODELS OF NILFOLIATIONS 

Let 4: G x M -+ M be a smooth action of a connected Lie group G on a manifold M. As 
usual we write g(x) instead of &(g, x) for (g, X)E G x M and we denote with G(x) [resp. 
G,] the orbit of x under 4 [resp. the isotropy group of G at x]. If 4 is locally free i.e. 
dim G, = 0 for any x, the orbits of 4 are the leaves of a foliation % which is defined by 4. 
The leaf L, of % through x is diffeomorphic to G/G,; without loss of generality, we can 
assume that G is simply connected. 

1.1. Definition. A foliation % defined by a locally free action of a connected nilpotent 
Lie group is a nilfoliation and all its leaves are nilmanifolds. 

A Riemannian manifold (L, 9) has polynomial growth of degree m if given x E L there 
exists CI > 0 such that: 

vol B(x, r) < urm 

for any r E R+ (where vol B(x, r) is the volume of the closed ball of radius r). One shows that 
this definition depends neither on x E L nor on the Riemannian metric if L is a leaf in a 
compact foliated manifold M endowed with the Riemannian metric induced by some metric 
on M (see [7] t. B for more details). 

1.2. PROPOSITION. Let (M, % ) be a codimension 1, transversely orientable nilfoliation on 
a compact manifold. Then any leaf of % has polynomial growth and 

-either % is without holonomy. 
-or the closure of any leaf of % contains a compact leaf: 

Proof: Suppose that % is defined by 4: G x M --+ M. Using a right invariant Rieman- 
nian metric ac on G, one constructs a (not unique) Riemannian metric 9, on M which 
coincides on L, = G/G, with the metric induced by a,. Thus the growth function of L, is 
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dominated by that of G (with respect to a,). As any nilpotent Lie group has polynomial 
growth with respect to any right-invariant metric (see [lo]), the growth assertion follows. 

Now recall that, M being compact, the closure L of any leaf L of 9 contains at least one 
minimal set K and that any such set is of one of the following types: 

(i) a compact leaf; 
(ii) the manifold M (and then all leaves are dense in M); 
(iii) an exceptional minimal set. 

But it is well known that if some leaf in K has polynomial growth then either 9 is without 
holonomy and K = M or K is a compact leaf (see [7]). The proof is complete. n 

Not every nilpotent Lie group admits a discrete uniform subgroup (see [ 12]), therefore 
we get: 

1.3. COROLLARY. Let (M, 9 ) be a transversely orientable codimension 1 nilfoliation on a 
compact manifold dejned by a locally free action of G. If the Lie algebra of G does not admit a 
rational basis, then 9 is without holonomy. 

Next we reduce the description of nilfoliations to that of a nice family of “models”. 

1.4. Models of nilfoliations. A codimension 1, transversely orientable niljoliation (M, 9) 
tangent to the boundary, on a compact manifold is a model (of nil$oliations) of type (i) if the 
corresponding condition is fulfilled: 

(0) 9 is without holonomy; 
(1) 8M # @ and all leaves in &I are non compact; 
(2) M is a trivial cobordism and F being a component of aM, there exists a diffeomor- 

phism J/: F x I + M such that $,(a/&) is transverse to 9. 

Examples of the three types of models already exist for IW”-actions. A two-dimensional 
Reeb component on the annulus A = S1 x I is a model of type 1 which is not of type 2 (for 
R-actions). The following result is analogous to Theorem 1 in [S]: 

1.5. PROPOSITION. For any codimension 1, transversely orientable nilfoliation (M, 9 ) on 
a compact manifold, there exist jinirely many models ( Mi, 9i)ictl, , 4, such that (M, 9 ) is 
obtained by gluing these models along boundary components. 

Notice that if all models ( Mi, Fi ) are of type 2, then M fibers over S’ with fiber a 
compact nilmanifold. One of our main results indeed is that this holds also in the case where 
some models are of type 1 (see Theorem C). 

2. NILFOLIATIONS WITHOUT HOLONOMY 

As for codimension 1 foliations in general, there are two kinds of nilfoliations without 
holonomy: 

(i) either all leaves are compact and the foliation is a fibration over S1, 
(ii) or all leaves are dense and the foliation is minimal. 

We will call them niljbrations and minimal nilfoliations respectively. 
The following nice family provides examples of nilfoliations of both types: 

2.1. Homogeneous niljioliations. Take an extension of connected, simply connected Lie 
groups 

O+G+G+F!-+O 
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where G is nilpotent, c” is solvable and admits a uniform discrete subgroup A. Then G acts 
on the left on the right-homogeneous compact solvmanifold M = G/A and the foliation F 
defined by this action is a homogeneous nilfoliation. It is a nilfibration or a minimal 
nilfoliation depending on the fact that G n A is uniform in G or not. 

In case of nilfoliations without holonomy, the kernel rX of the holonomy representation 
of the leaf L, coincides with G,. Therefore, in order to prove Theorem A, we start describing 
the isotropy groups G, and their Malcev completions 6,. 

The first step will be used also in $3, therefore we consider any transversely orientable 
nilfoliation 9 defined by a locally free action 4: G x A4 + M. Without loss of generality we 
may assume that G is simply connected, thus 4 lifts to a locally free action 4 of G on the 
universal covering @ of M providing a commutative diagram: 

- T - 
GxM-M 

(id. 4) I I 4 

G x MAM. 

The lifted action 3 defines 9 = q* 9. Furthermore as any vanishing cycle of a foliation 
defined by a group action is trivial, it follows that # has no closed transversal, and all its 
leaves are planes; in particular 6 is free (see [7] t. B. chap VII). Next let 8: IF4 + M be an 
integral curve of some vectorfield Y transverse to f and 6 a lift of 8 to a. 

2.2. LEMMA. The map &: G x 08 + ti defined by &(g, t) = $(g, e”(t)) is a d@omor- 
phism of G x R onto an open saturated set m of (8,4 ) such that 8;: 9 is the horizontal 
foliation of G x 08. 

Proof: Because @ has no closed transversal, 6 is injective and any pair of leaves of 
9 and P = q* Y cut in at most one point. Thus if (gl, tl) and ( g2, tz) are such that 
&(g,, tl) = &(g,, tz) we get t, = t, and because 6 is free g1 = g2; that is & is in- 
jective. But &, is obviously a local diffeomorphism and its image is saturated under 6, thus 
under @. n 

In the case where .9 is without holonomy we get a “continuous variation” for the 
groups c^,. 

2.3. Isotropy groups in nilfoliations without holonomy. Foliations without holonomy are 
studied in detail in ([7] t. B. chap. VIII). 

(i) They are transversely orientabie and the universal covering A 5 M is trivialized by 

the lifts # and B of 9 and Y; thus &cuts any leaf of @ in exactly one point and &, is a 
diffeomorphism of G x R onto h?. 

(ii) The group of automorphisms Aut (q) preserves & and the action of Aut (4) on fi 
induces a homomorphism 

$: Aut(q) + Diff(R) 

whose image is topologically conjugate to a finitely generated group of translations. All 
isotropy groups G, are isomorphic as well as their completions 6, and the corresponding 
subalgebras ‘9, of the Lie algebra ‘9 of G. Further all leaves of F are diffeomorphic to the 
same nilmanifold. 
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(iii) Identify a with G x IL! by means of &,. For any y E Ker $ and any z = 

(g, t) E G x R, we write y(z) = (yi (g, t), t) and the map 

#+G 

defined by Y”(z) = y1 (9, r)g - 1 is smooth and has values in G4(=). Furthermore if k = dim 9x 

and if {y(l), . . . , yck)} is a set of generators of Ker $, the family { exp- ’ (y(i)(z)} is a smooth 

family of linearly independent elements in 9Jqtr). It generates ?JqtsJ and the map 

j:ti+Glk(%) 

z -+ g&1 

(where GP( Y ) is the Grassmann manifold of k-planes in Q ), factorizes through 4 inducing a 

triangle of smooth maps: 

The next lemma is trivial for nilfibrations. 

2.4. LEMMA. If .F is a nilfoliation without holonomy, 3x is independent of x. In particular 
9x is an ideal of 3 and c?, is a Jixed normal subgroup of G. 

Proof With the notations of Appendix A, we get a commutative diagram 

4 
GxM -M 

(id, x) I _I x 

G x Grk(Q)AdGrk(B) 

and any minimal set of C#J is mapped onto a minimal set of Ad. By Theorem 1.1 of 

Appendix A, x is constant for minimal nilfoliations and 9, as well as 6, does not depend on 

XEM. 
Next, notice that the inner conjugate of 6, by g equals GsCX) for any g; as 6, is 

independent of x, G, is normal and SX is an ideal of Y. n 

To derive the main theorems, we will have to deal with the restriction of the action 4 to 

several normal subgroups H of G such that G, is uniform in H. Next we describe the 

situation defined by such an action. 

2.5. Induced actions. Let H be a connected closed subgroup of G. The restriction of 4 to 

H x M is a locally free action with isotropy group H, = G, n H in x E M. If G, is uniform in 

H, it defines a locally trivial fibration 

(*) A+M”-M’ 

where A is the well defined compact nilmanifold H/H,. 
Furthermore, assuming H is a normal subgroup of G, C$ induces also a locally free action 

4’: G’ x M’ + M’ 
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of the nilpotent Lie group G’ = G/H which defines a nilfoliations %‘. It is easy to see that 

% = 7c*( %‘). 

Theorems A and B for foliations without holonomy will be immediate consequences of 

the following: 

2.6. FIBRATION THEOREM. If( M, % ) is a nilfoliation without holonomy, 6, 3 [G, G] for 
any x E M. Moreover the action of 6, defines a locally trivial fibration 

(*): A-tM- ’ M’ such that: 

(i) A is the compact nilmanifold GJG,; 

(ii) % = n* % ’ where % ’ is the foliation by planes defined by the induced action 4’ of 

the abelian group G’ = G/G,. 

Proof Take H = G, in 2.5. The action 4’ of G’ = G/G, on M’ is free, %’ is a foliation by 

planes and the manifold M’ is homeomorphic to T” + ‘, s = dim G’ (see [16] and [ll]). By 

classical arguments any leaf of %’ has exactly polynomial growth of degree s (see [7] chap. 

IX, 2.1.9). This implies that G’ too has exactly polynomial growth of degree s. From 

Theorem 2.1. of Appendix A, we see that G’ is abelian, that is G, 1 [G, G]. The proof is 

complete. n 

2.7. THEOREM. Any closed manifold M which supports a nilfoliation without holonomy % 
has the homotopy type of a solvmanifold. Moreover M fibers over S’. 

Proof Because % is without holonomy, any integral curve of a transverse vector field Y 

cuts any leaf of 9; therefore the map &: G x !R -+ @ introduced in 2.2 is a diffeomorphism 

and M is an Eilenberg-McLane space. 

Now the exact homotopy sequence of the fibration ( *) (see 2.6): 

O+G,+nl(M,x)+ZS+l+O 

shows that rrl (M, x) is strongly polycyclic and that its nilradical “x1 (M, x) is as follows: 

Cq(M,x),n,(M,x)l = G, = “nl(M,x). 

Thus x1 (M, x) fulfills condition C of Ragunathan (see [lS] p. 70) and n, (M, x) is a discrete 

subgroup of a connected, simply connected, solvable Lie group; that is M is a solvmanifold. 

Finally, if % is minimal, M fibers over S1 by Tischler’s theorem (see [19]). n 

3. TYPE 1 MODELS OF NILFOLIATIONS 

Let (M,%) be a type 1 model of nilfoliations defined by a locally free action 

#J: G x M + M and transversely oriented by a vectorfield Y. Let F be a connected 

component of CIM on which Y points inwards; the fibration we are looking for in this section 

(see 3.6.), will be an extension of the “holonomy fibration” of F which we describe first. 

3.1. The holonomy fibration of F,. By definition of type 1 models, F is an isolated 

compact leaf thus has a non-trivial right-holonomy group hoi+(F). Moreover, if 

O-+I,+G,+hol+(F)+O 
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is the right-holonomy representation of F at x with kernel r,, then hoi+(F) is abelian 

according to Lemma LI-Al of [2] and topologically conjugate to a non-trivial linear 

representation by Lemma 1 of [ 133. 

Let s be the rank of hoi+ (F). From the Malcev extension theorem, we get the following 

commutative diagram 

o- I-, 
hol+ (F) - G, -Z”----+o 

1 1 
0- 1-, - G - R”-0 

1 1 1 
fxp-,---+ G/G, - T= 

where pX is the Malcev completion of r,. The bottom line is a locally trivial fibration of F 

over T” with fiber A = fX,/rX. We call it the holonomy jbration of F. 
Exactly as in 2.2, we construct a map &: G x R + + $ by taking 6: Iw+ -+ M the 

positive orbit of Y through the base point x E F. It is a diffeomorphism of G x Rf onto an 

open @-saturated set w c 16 whose image by q: iI? + M is an open saturated neighbor- 

hood W of F in M. The foliation 4: @ is the horizontal foliation of G x R + and it follows 

easily that @ is a connected component of the saturated set q- ’ (IV). Thus we have the 

diagram: 

and q : @ + W is the universal 

3.2. Holonomy maps for F. 

W 

covering of W. 

(i) Take g E G, = 7c1 (F, x) represented by a loop c in F at the point x. There exist E > 0 

and a well defined map 

8:[0,1] x [0,&]--r WC M 

such that for any u E [0, l] and any t E [0, E], we get: 

(a) &(u, 0) = 0(u) 

(b) 6(0, t) = O(t) 

(c) the restriction Ct of 5 to [0, l] x {t} is the unique vertical lift of (T to the leaf L,(,, at the 

point O(t). 

Then the holonomy element hoi+(g) is the germ of the local “holonomy map” 

hol,:R+-R + 

t _K’C(l,t). 

(ii) Let 5 be the lift of 6 to G x R N @ at the point (0,O). If gr is the horizontal 

component of C(1, t), we have the following properties: 

(a) go = g and ho&(t) = 8-l [g,. O(t)] for t E [O, E]; 

(b) gel-, if and only if gtE GBCtJ for small t; 

(c) if k is any other element of G;, then (gk), = gholrll). k, for small t. 
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No~considerG=G~~G~~...~G’~G’+‘=OwithG~+’=[G,G~]thecentral 

series of the nilpotent group G with length I(G) = 1. The subgroup G’ is the center Z of G. 

The following lemma is crucial. 

3.3. LEMMA. If g belongs to r, n Z then gt = go = g for small t. 

Proof: As the holonomy group of F is conjugate to a non-trivial group of linear 

transformations, there exists k E G, = n, (F, x) such that hol, is a contraction on a neighbor- 

hood of 0. Further, for g E IX n Z, gk = kg and hoi,(t) = t for small t. Thus applying (c) 

above we get: 

gh& (2). k, = (sk), = (ks)t = kho,,(t) . St = k. St; 

ghol,(t)= kt~gt~(k)-‘, 

where the right hand side is a product in the group G. 

Let m be the biggest integer for which there exists a neighborhood V,,, of 0 in R + such that 

g1 E G” for any t E V,. Then Cm/G m+ ’ is the center of the nilpotent Lie group G/Cm+ ‘, the 

classes k, and i, commute in G/G”+ ’ and we get: 

S, = gholrCt) for any t small enough. 

Because hol, is a contraction, the continuous function & is locally constant and 

S, = go = 8 for small t. 

Our next claim is that m = 1 and thus gt E Z for small t. Indeed for m < I, g would belong to 

Cm+ ’ and so would gt contradicting the definition of m. 

Finally notice that if m = I, Cm+ ’ = {0} and the previous argument shows that gt = g for 

small t. w 

We reach to global results: 

3.4. PROPOSITION. For any y E M, the group Z, = G, n Z is a discrete subgroup of Z 
which does not depend on y E M. 

Furthermore, if G is not abelian, Z, is uniform in Z. 

Proof First notice that Z, is the same for all points y of a fixed leaf L E 9; we denote it 

with Z,. Next suppose that F is a compact leaf contained in the closure i of L; by 

continuity, we get Z, c Z, and from 3.3, it follows that Z, = Z,. Now Z, is constant on the 

open neighborhood V(F) of F defined by the union of all leaves whose closure contains F. 
Because the only minimal sets are the boundary leaves F, , F,, . . . , F, it follows that the 

open sets V(F, ), . . . , V(F,) cover M; by connectedness they intersect and Z, is constant on 

M. Finally as the holonomy group of any compact leaf F is abelian, Z, is uniform in Z for 

x E F; this proves the proposition. n 

As in section 2, we use “induced actions” in the sense of 2.5. for the proof of the main 

theorems: 

3.5. THEOREM. Let (M, 9) be a type 1 model of transversely orientable nilfoliations. Then 

(i) 9 is almost without holonomy; 
(ii) for any y, rY is untform in [G, G], and fY is a normal subgroup of G which does not 

depend on YE M. 
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Proof The proof goes by induction on the length I(G) of the central series of G. 

If I(G) = 0, G is abelian, (i) is proved in [3] and (ii) reduces to 3.4. So assume the 

assertions are true for any nilfoliation defined by a nilpotent Lie group whose central series 

has length less than or equal to I - 1 and consider 9 defined by an action 4 of a group G 

such that 1(G) = 1. 

By 3.4., Z, = Z for any y, so take H = Z in 2.5. The group G’ = G/Z is such that 

l(G’) = I - 1 and F’ is almost without holonomy by the induction hypothesis. Furthermore 

7t is a principal torus bundle with group T = Z/Z,; 5 is almost without holonomy and for 

any leaf L, we have a principal fibration: 

T + L, -, Cc,,, 

with homotopy exact sequence: 

0 --. Z, -+ G, --+ G;,,, + 0. 

The holonomy representation of L, factorizes through rr providing an exact sequence of 

kernels: 

By 3.4 and the induction hypothesis, Z, and l-bob are uniform in Z and [G’, G’] respectively; 

thus IY is uniform in [G, G] and fhu,, containing [G, G] is a normal subgroup of G which 

does not depend on y. The proof is complete. n 

Theorem B is again proved by restricting 4 to H = fY. It provides a fibration of M which 

extends the various holonomy fibrations of its boundary components: 

3.6. FIBRATION THEOREM. Let (M, 9) be a type 1 model of transversely orientable nilfoli- 
ations. The action of H = t,, defines a locally trivial fibration: 

(*): A+M AM’ such that 

(i) A is a compact nilmantfold; 
(ii) B = x*(5’) where 9’ is the foliation defined by the induced action 4 of Iw” = G/fY, 

all of whose non compact leaves are planes. 
(iii) (*) reduces to the holonomyjbration on each connected component of aM. 

Recall that the manifold M’ in 3.6., is a trivial cobordism T” x [0, l] according to 

Chatelet-Rosenberg (see [3]). Thus we get the following version of Theorem C: 

3.7. COBORDISM THEOREM. Let (M, 9) be a type 1 model of transversely orientable 
nilfoliations. Then aM has exactly two components F, F’ and (F, M, F’) is a smooth trivial 
cobordism. 

Proof Consider the fibration (*) of 3.6 and choose an adapted bundle metric on M. Let 

X’ be a vectorifield on M’ which trivializes M’; if X is the unique lift of X’ orthogonal to the 

fibres of (*), then X trivializes M. W 
In Appendix B we will give a new proof of 3.7 in the abelian case for great dimensions. 

3.8. Remark. As noticed in 0.1, it is not always possible to choose X transverse to B (see 

for example the two-dimensional Reeb component). 

TOP 28:2-F 
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4. GENERAL NILFOLIATIONS 

For a general nilfoliation, it is no longer true that FX is independent of x. Indeed for a 
compact isolated leaf F it may happen that the two holonomy representations of F (on the 
right and on the left) do not agree. Nevertheless the following weak version of Theorem A 
holds: 

4.1. THEOREM. Let (M, 9) be a transversely orientable nilfoliation on a compact manifold. 
Then 

(i) 9 is almost without holonomy; 
(ii) f, 1 [G, G] for any x E M and r, is uniform in [G, G] if 9 has non trivial holonomy. 

Proof: It is well known that the union K of all compact ‘leaves of 9 is closed (see [7] 
chap. V). Thus if the leaf L, of 9 through x is non-compact, the connected component C, of 
x in M - K is an open saturated subset of M which contains L,. Its closure cX is saturated; 
thus cutting along the compact leaves contained in the interior of cX, we obtain a 
nilfoliation & on a compact manifold &? all of whose compact leaves are contained in the 
boundary of ,+?. Then (G, @) is a type 1 model (resp. a type 0 model if K = a), we apply 
2.6 and 3.5. n 

As a consequence, we prove Theorem B in the remaining case of general nilfoliations 
with non trivial holonomy by considering the induced action of H = [G, G] in the sense of 
2.5. Next we get Theorem C in this same case. 

4.2. Proof of Theorem C. According to 2.7 and 3.7, it remains only to consider the case 
where F is not a nilfibration but has at least one compact leaf F. Then by 1.5, there are 
finitely many models (Mi, 9i)iE(I,, , 4j of type 1 or 2 such that M is obtained by gluing the 
Mi’s along boundary components. Moreover each M, is a trivial cobordism; by definition 
for models of type 2 and by 3.7 for models of type 1. Thus all boundary components 
are isomorphic to F and M fibers over S’ with fiber isomorphic to F. We conclude as 
in 2.7. n 
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APPENDIX A: SOME PROPERTIES OF NILPOTENT LIE GROUPS. 

(I) The adjoint action of a nilpotent Lie group G on the Grassmann manifold Gr’(8). 

Let 9 be the Lie algebra of a connected Lie group G and let Grk(B) be the Grassmann manifold of 
k-planes in 9. The adjoint representation Ad of G extends to a smooth action 

Ad: G x Grk(9) -+ Grk(Q) 

by Ad (g, W) = Ad(g)( IV) for any k-dimensional subspace W of 3. 

- 
1.1. THEOREM. Any minimal set wz of Ad is a Jixed point. 

First consider a nilpotent linear mapf: V + V of a finite dimensional oriented vector space V and 
define a flow 

GI:IW x Grk(V)-+Grk(V) 

by r(t, W) = e’/(w) on the Grassmann manifold of V. One has the following preliminary result: 

1.2. LEMMA, The o-limit set of any orbit of u is a fixed point. 

Proof: (a) First suppose that k = 1. For any non-zero element u of V there exists a non-negative 
integer r such thatf’+ l (u) = 0 andf’(u) # 0. If [u] denotes the equivalence class of II in the projective 
space of V, we have: 

thus 
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and 

which is fixed by a. 

lim a(r, [VI)= Cf’(v)l 
t-1 + m 

(b) For k > 1, we consider the canonical embedding 

I(/: Grk(V)-Gr’(jj V) 

k 

Wt--+[e,Ae,A . . Ae,] 

where A V is the kth-exterior power of V and (ei, e2, . . . , ek) is a positive frame in V. Then + (Gti (V)) 

is closed in Gr’ (A V); the map j A ’ V + A ’ V defined by 

f(U, A . . . A Ok) = i VI A . . A f(Vi) A . . A vk) 
i=* 

is nilpotent and $ conjugates CI with the flow defined by e’/^ on +(Gf(V)). The lemma follows 

applying (a). n 

1.3. Proofofthe Theorem. Let G = Go I> G’ I> . . . 3 G’ 3 G’+’ = 0 with Gj+’ = [G, Gj] be the 
central series of G; we will prove by induction that Gj acts trivially on wz for any j. This assertion being 
trivial for G’+ ‘, assume it holds for Gq+ ’ and let g E Gq. If X = exp- ’ (g), Ad(g) is the time 1 map of the 
flow u on GI*(Y) generated byf= ad X. Of course m is invariant by this flow and it follows from 1.2 
that there is a point UEWZ which is fixed by a(g). Then h being any element of G the commutator 
[g, h] E Gq and from the induction hypothesis we get: 

- 
Ad (gh) (u) = Ad (W Ad ( Cg> hl)M = Ad (kd (4 
- -- - 
Ad (gh)(u)= Ad (h)Ad (g)(u) = Ad (h)(u). 

This means that Ad(g) is the identity on the G-orbit of u which is dense in m. Therefore g acts trivially 
on ll~. n 

(2) A remurk on growth of nilpotent Lie groups. 

Let G be a connected simply connected nilpotent Lie group of dimension II and let 9 be a 
fixed right invariant Riemannian metric on G. It is well known that G has polynomial growth with 
respect to W (see [lo]). i.e. there exist C(E Iw+ and mo’N such that the growth function of G verifies 
gro(r) = vol B(O,r) < cLr” for any rE Iw+ (see 1.1). 

In particular grG(r) = ar” if G is abelian (see [21]) and we get the following lower bound for the 
growth of non-abelian nilpotent groups: 

2.1. THEOREM. 7’he nilpotent simply connected Lie group G has polynomial growth of degree 
n = dim G if and only if G is abelian. 

This result will be an immediate consequence of the following lemmas: 

2.2 LEMMA. Let Y be a nilpotent Lie algebra of dim n 2 4. If Q is not abelian, it admits a 
codimension 1, non-abelian ideal Jlr. 

Proof: If Q l = [ $9, S] is not abelian or if dim (Y/Y 1 ) > 3, the kernel of any non trivial Lie algebra 
homomorphism JI: Y -+ B! is a codimension 1 non-abelian ideal. 

The result holds also if Y’ is abelian and codim 9’ = 2. Indeed if, in this case, any codimension 1 
ideal would be abelian, any XE Y would act trivially on Y’ and therefore ~9’ would be l-dimensional. 
But this is impossible because dim B > 4. 

Finally we claim that if Y’ is abelian then codim 9’ is indeed bigger than or equal to 2. For if 
codim 9’ = 1, any X E Y, X # Y’, would act on Y1 as an (n - 1)-matrix both nilpotent and regular: this 
is impossible. n 



CODIMENSION ONE NILFOLIATIONS 

2.3. LEMMA. Let G be a connected, simply connected nilpotent non-abelian Lie group of dimension n. 
There exists 01 > 0 such that: 

gro(r) > a?+ ’ for any r. 

Proof: First recall that there exists exactly one such group of dimension < 3: the Heisenberg 
group H which is of dimension 3 and admits a uniform discrete subgroup H,. It is well known that H 
and H, have the same growth type (see [7]) and according to theorem 3.2 of [21] the latter dominates 
a polynomial of degree 4. 

Now we argue by induction on n. We assume that the proposition is true for n = k and take G of 
dim (k + 1). We fix a subalgebra Jlr of the Lie algebra of G as in 2.2 and an element X E Q orthonormal 
to J. A right invariant Riemannian metric W on G is bundle-like with respect to the trivial fibration 

where N is the Lie subgroup corresponding to ,Ir. The flow (cpt) generated by X trivializes x and if 

B,(O, r) [resp. B,(O, r)] is the ball of radius r in N [resp. G], we get: 

C(r) = U cp,VMO,r)) c B,(0,2r) for any rElR+. 
ts[-r. +I] 

Furthermore there is a decomposition u = w A L of the Riemannian volume element on G, where w is 
a volume element on N and 1 E A’ 9 is dual to X with respect to 8. Then w, 1 and u are invariant by 
(rp,) and from Fubini’s theorem it follows easily that 

grGP) 2 u A w=2r*volB,(0,r)=2r~grN(r). 

The result follows. n 

APPENDIX B: THE COBORDISM THEOREM FOR TYPE 1 MODELS OF R-ACTIONS. 

Here we give an alternative proof of the cobordism theorem for IV-actions which was used in the 
proof of 3.7. Our proof does not work for n = 4, but it extends to “foliations by planes” (not necessarily 
defined by actions). 

(1) THEOREM. Let M”+ ’ be a compact manifold with boundary and 9 a transversely orientable 
foliation on M, tangent to dM and such that any leaf in fi is diffeomorphic to [w”. 

Then aM has exactly two components F, F’ and (F, M, F’) is a s-cobordism. 

We proceed in two steps: 

(2) LEMMA. Let F be a connected component of aM, the natural embedding j of F in M is a homotopy 
equivalence. 

Proof: Any connected component of dM is a torus T” and it is not difficult to put it transverse to 
9. Cutting along these transverse tori, we obtain on M a foliation 3 without holonomy, transverse to 
aM with simply connected leaves. We can assume, up to topological conjugacy, that 3 is defined by a 
closed form w and therefore n,(M) is free abelian, isomorphic to the group Per(w) of periods of w(see 
[7]). Using a transverse flow preserving aM, one shows that .@ lifts to the universal covering of M as a 
trivial product foliation. This implies that Per(w) coincides with the group of periods of the restriction 
of o to any boundary component. Then the homomorphism 

j,:ni(F)+ni(M) 

is-onto and because any vanishing cycle of 9 is trivial, j, is an isomorphism. 
On the other hand, the universal covering of k is homeomorphic to R”+ 1 therefore zi(M) = 0 for 

i > 0 and j is a homotopy equivalence. n 
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(3) Proof of Theorem 1. Consider the exact homology sequence with real coefficients of the pair 
(M, aM): 

+ H, (dM)A H, (M) -+ H, (M, aM) + H,(aM) + H,(M) -+ 0. 

According to Lemma 2, j* is onto and we obtain a short exact sequence: 

0 -+ H, (M, aM) + H,(aM) + H,(M) + 0. 

By PoincarkLefschetz duality and 52, H, (M, aM) 1 H”(M) z H”(F) E R, thus H,(aM) E R 0 R 
and dM has exactly two components F, F’. The Whitehead group of a free abelian group is zero 
according to [l] and (F, M, F’) is a s-cobordism. n 

Then by the s-cobordism theorem of Barden-Mazur-Stallings (see [14]), we get 

(4) THEOREM. Let (M, 9) be as in $1. For n > 4, the triple (F, M, F’) is a smooth trivial cobordism. 

Further using Stallings’ fibration theorem and some results of Hatcher (see [4]), one could easily 
extend theorem 4 to the case n < 3. 


