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HOLOMORPHIC DYNAMICAL SYSTEMS

Etienne Ghys

This volume contains four articles dealing with holomorphic dynamics. In this
introduction we describe some historical roots of the theory. But the point is
not to give a detailed historical analysis of the evolution of holomorphic dynamical
systems. Our only goal is to present a point of view and help the reader understand
the unity of the subject.

The contribution of the nineteenth century: monodromy.

After the invention of the integral calculus, the problem that con-
fronted mathematicians was the integration of differential equations
(of one or several independent variables). The goal of the first efforts
was to represent the integral by means of known elementary functions
and symbols. Once mathematicians realized that such a representa-
tion was impossible in general, they resigned themselves to studying
the properties of the integral directly, from the differential equation
itself.

The natural development of this research soon led geometers to
consider imaginary as well as real values of the variable. The theory
of the Taylor series, elliptic function theory, and the vast doctrine
of Cauchy made the fruitfulness of this generalization obvious. It
became clear that between two truths in the real domain, the shortest
and easiest path often leads through the complexr domain.

Painlevé wrote this at the end of the nineteenth century [8]. He was right! Al-
though it is impossible to give a precise analysis here of the contribution of complex
variables in mathematics, we can nonetheless emphasize a fundamental discovery
that is “invisible” from a real point of view: the phenomenon of monodromy, which
lies at the heart of holomorphic dynamics.

The study of algebraic functions, that is, “multivalued” functions y(z) of one
variable x satisfying a polynomial relation P(z,y) = 0, led Riemann to his brilliant
insight of “Riemann surfaces lying over the z-plane”, on which the algebraic func-
tions become single-valued. If one considers a point (zg,¥o), draws a loop 7 in the
z-plane starting at zo and avoiding the “singular points”, and follows the value of
y(z) “by continuity”, then the value attained by y when z “returns” to its starting
point xg is in general not yo. Thus, for each path, one obtains a permutation of the
set of solutions of P(zg,yo); this is a “monodromy group” (finite in this case). A
great deal of time and work went into giving a precise meaning to all these terms
in quotation marks ...

From the point of view of differential equations, the most innocuous examples
can lead to multivalued solutions: the solutions of the linear differential equation
xzdy = A\ydx are y = const -z, and are not single-valued functions of the variable
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when A is not an integer. When x makes “one circuit” around the “singular point”
0, a solution is multiplied by exp(2iwA). In this case, the “monodromy group”
acting on the solution space is the cyclic group generated by exp(2iw\), which is
infinite in general. Of course, this example is too elementary. Consider a Riccati
equation:
P(m)j—z = A(z) + B(z)y + C(z)y°.

Here P, A, B, and C' are polynomials in one complex variable x. Let us start with an
initial condition (o, yo) for which xg is not a singular point (that is, P(xzo) # 0).
There exists a local solution of the equation, defined in a neighborhood of .
Choosing a path starting at x¢ and not passing through any singular point, one can
show that it is possible to extend this solution along the path as a meromorphic
solution. If v is a loop starting at zg, then the value y; of the solution y when ~
returns to x is in general not yo. The transformation assigning this new value y; to
the initial value yg is a linear fractional transformation y1 = (ayo+b)/(cyo +d) that
depends only on the homotopy class of the loop v (which avoids the singular points).
This defines a homomorphism from the fundamental group of the complex plane
minus the singular points to the group of linear fractional transformations acting
on the Riemann sphere CU {oco}. But this fundamental group is a nonabelian free
group (if P has at least three roots), so the monodromy group, the image of this
homomorphism, can be extremely complicated; for instance, it may be dense in the
group of linear fractional transformations. The “solutions” of the Riccati equation
are thus “very multivalued”, which intimidated many of our predecessors ...

If we consider an equation of the preceding type but replace the polynomial
A(z) + B(z)y + C(z)y? by A(z) + B(z)y + C(z)y* + D(z)y?, a new phenomenon
appears: when we continue a solution analytically along a path ~, in general we run
into (branch-type) singularities at points that are not singular for the equation. For
example, the equation —2dy/dx = y> has solutions y = 1/1/z — const, which exhibit
a “movable singularity” at the point z = const. In other words, the monodromy
group cannot even be defined because the values of a solution can no longer be
followed along a path that avoids the singular points of the equation. How can we
analyze the “solutions” of such an equation if we cannot measure their failure to
be single-valued by a group? When we consider equations in which dy/dz appears
implicitly, or equations of higher order, other (even worse) phenomena appear,
such as the existence of movable transcendental singular points: for instance, the
equation y2y" + 2yy’> + 1 = 0 has solutions y = 1/(const + In(z — const’)).

The reaction of nineteenth-century mathematicians to this “excess of mon-
odromy” of the solutions of algebraic differential equations was to try to classify
differential equations that have little monodromy, in the hope that such equations
would be sufficiently rich to produce “new transcendentals that would enrich anal-
ysis”. The choice was clear: to neglect the study of “generic” differential equations,
which were too complicated, in order to concentrate on the rare examples where the
monodromy is controlled. Here are some examples. Briot-Bouquet, and later Fuchs
and Poincaré, looked among polynomial equations of the form P(y’,y,x) for those
whose solutions are single-valued or, at worst, assume only finitely many values.
They showed that aside from the algebraic functions, only the elliptic functions
can satisfy this criterion. Schwarz described the hypergeometric equations whose
monodromy group is finite, that is, whose solutions are algebraic functions. In the
same spirit, Painlevé studied second-order equations with single-valued solutions:
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he discovered the famous “Painlevé transcendents”. For a historical study of these
questions, the reader will do well to consult the remarkable book by Gray [3].

Thus, at the turn of the century, the vast majority of differential equations
were still unexplored.

Concurrently with this rich theory of differential equations in the complex do-
main, a more modest theory of iteration of holomorphic functions—especially of
rational functions—emerged toward the end of the nineteenth century. A fascinat-
ing book by Alexander tells this story [1]. Here one learns, among other things,
that the motivations of the forerunners (such as Schroder, Koenigs, and Leau) were
far removed from differential equations; the analogy between iterations in discrete
and continuous time (in a differential equation, for instance) was not clear to them.
Instead, the object of study was the “theory of functional equations”. One example
is Abel’s equation: given an analytic function ¢(z), can one find another analytic
function f such that f(¢(z)) = f(z) + 1? This is an opportunity not only to de-
velop ideas such as conjugacy between two dynamical systems, but also to sketch a
qualitative description of iteration in a neighborhood of a fixed point. One common
feature with differential equations should, however, be pointed out. The basic goal
is not to study dynamics (of a differential equation or an analytic function) but
rather to search for new and interesting transcendentals that can be defined by the
process. As was true for differential equations at the beginning of the century, no
general study was attempted: at best, a few nice examples were analyzed. How-
ever, this primitive theory of iteration of rational functions cannot be compared
in volume with that of differential equations, which already had a long tradition:
there were as yet few important results.

The beginning of the twentieth century: Poincaré, Painlevé, Fatou,
and Julia. It’s time to move on to the twentieth century! Let’s cheat a bit and
consider Poincaré’s work on Fuchsian and Kleinian groups as dating from the twen-
tieth century (they’re so revolutionary!). Here are at least three new fundamental
ideas.

Poincaré plunged into a systematic study of (discrete but infinite) groups of
linear fractional transformations of the Riemann sphere: the Kleinian groups. He
recognized their dynamical richness and the complicated limit sets they generate,
and showed their fundamental advantage: Fuchsian and Kleinian functions can be
used to “resolve” and “uniformize” the solutions® of linear algebraic differential
equations (or, which is almost the same thing, Riccati equations). The important
thing is that here one is studying general equations. Fuchsian groups proved to
be remarkably powerful: the Koebe-Poincaré uniformization theorem shows, for
example, that every connected Riemann surface is isomorphic to either the Riemann
sphere, a quotient of C by a discrete group of translations, or a quotient of the unit
disk by a Fuchsian group (the “generic” case).

For nonlinear differential equations, Poincaré understood the importance of
local analysis in a neighborhood of a singular point. His theorem on linearization
of the equation (az+by+- - )dz = (cx+dy+-- - )dy in a neighborhood of the origin,
under a generic condition on the linear part, is a good example of the importance
he assigned to the most general equations.

IThat is, make them explicit and single-valued; the French words for multivalued and single-
valued are multiforme and uniforme. [Translator]
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In the field of real dynamics—in his work on celestial mechanics, for instance—
he revealed the phenomena that are now called chaotic. For a generic system, there
is no longer any point in trying to “integrate” the equation, which would usually
be impossible; instead, one must try to describe the behavior qualitatively.

Still in the field of real dynamics, he defined the concept of first return map
on a Poincaré section. This trick can (sometimes) be used to replace the study
of a differential equation by that of the iteration of a transformation. But it does
not seem to have given him an inkling of any connection between the dynamics of
complex differential equations and the theory of iteration of rational maps, which
was still in its infancy (and seems not to have interested him). Of course, the first
return maps introduced by Poincaré are injective by definition, while a rational
map is not!

Painlevé, whom we quoted above, began research into the nature of the singu-
larities of solutions of general differential equations. He had the intuition of the idea
of foliation structures and recognized the advantages of considering the solutions
as nonparametrized Riemann surfaces, which are nonsingular in general but whose
projections on the coordinate axes exhibit singularities. The door was opened for
a global study of their qualitative behavior, independent of the coordinates used.

As far as the iteration of polynomials and rational maps is concerned, between
1917 and 1923 Fatou and Julia developed a remarkably interesting theory. They
analyzed the dynamics both locally, in a neighborhood of a periodic point, for ex-
ample, and globally, by bringing out the dichotomy between the (“chaotic”) Julia
set and its complement. They also recognized the necessity of understanding the
dynamics of a generic rational map and discovered the unbelievable wealth of pos-
sibilities. We can imagine this dynamics becoming the primary object of study and
pushing functional equations into the background in the minds of Fatou and Julia.

After Fatou and Julia, the theory of iteration of rational maps seems to have
dozed off ... There is, however, one notable exception: in 1942, Siegel proved his
famous theorem on the linearization of a germ of a holomorphic transformation in
the neighborhood of a fixed point, when the derivative at the origin has modulus 1
and satisfies a diophantine equation. The existence of Siegel disks in the dynamics
of polynomials had been discussed by Fatou and Julia; the positive answer supplied
by Siegel added to the richness of the theory. The difficulty presented by small
divisors had been revealed by Poincaré in his work on celestial mechanics.

In the same way, Poincaré’s work on Kleinian groups and the qualitative study
of complex differential equations had few repercussions among his immediate suc-
cessors. To a lesser degree, this is also true of his work in real dynamics, with
significant exceptions such as Birkhoff and Denjoy.

Thus the field of holomorphic dynamical systems, which was not yet unified,
entered a rather long period without significant activity. As we know, mathemati-
cians were not idle for all that. This was the period of development of topology,
algebraic geometry, the theory of functions of one and several complex variables,
and ergodic theory, which are quite useful for the holomorphic dynamical systems
of the present ...

The years 1960-1980. The situation would change in the sixties. Reeb, in
the line of descent of Painlevé, began the systematic study of foliations. He was
dealing with dynamical objects where the leaves, replacing the trajectories, are not
assumed a priori to be parametrized by (real or complex) time. The basic example
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could be the integral curves of a differential form P(z,y)dz + Q(z,y)dy = 0, where
one gives up thinking of the solutions as functions y(z) and thinks of them instead
as Riemann surfaces in some space (projective space, for instance). But the theory
of foliations is not intended only for the complex case. Among the fundamental
contributions of this theory, we must emphasize the notion of holonomy, a more
highly developed version of monodromy. Given a path in the leaves, one tries
to follow it in nearby leaves. At first, still because of the “fear of monodromy”,
mathematicians tried to understand the cases where there is little holonomy: during
this period they studied foliations without holonomy, or almost without holonomy,
or where all the leaves are compact, etc.

It is to Haefliger that we owe the idea that studying a foliation reduces in large
part to studying its holonomy pseudogroup. This is a collection of homeomorphisms
between open sets in R™; compositions are considered where they are defined. This
is a natural setting that is ideally suited to the problems of monodromy that we
encountered above. The tools were finally available for a general study of holo-
morphic, or even simply differentiable, foliations. A whole school began to develop
around this body of ideas. But we should point out that this extremely active and
productive group of mathematicians had no (or few) connections with the work of
Poincaré on Kleinian groups. The history of exceptional minimal sets illustrates
this fact. For over ten years this group tried to understand whether a (sufficiently
differentiable) foliation of real codimension 1 on a compact manifold can be of only
one of two types: either all the leaves are dense, or there exists a compact leaf. It
would have sufficed to observe, as Raymond did in 1972, that Poincaré’s papers on
Fuchsian groups are overflowing with counterexamples!

The local study of singularities was not forgotten. The advance of algebraic
geometry made possible a successful approach to the desingularization of singular
points of holomorphic differential equations in dimension 2 (Seidenberg’s theorem).
This was also the beginning of a rich theory of local dynamics. After desingulariza-
tion, the singular point becomes a divisor, in a neighborhood of which one tries to
understand the germ of the dynamics, in particular via the holonomy of the divisor,
which may be quite complicated.

During this period and more or less independently, real dynamics made fantas-
tic progress, especially through the impetus of Smale, who proposed the ambitious
program of understanding the dynamics of a generic diffeomorphism (or, since the
analogy is now familiar to everyone, of a generic vector field). This was the glorious
period that saw the emergence of such important concepts as structural stability
and the hyperbolicity of diffeomorphisms. A diffeomorphism is structurally stable
if every sufficiently close diffeomorphism is topologically conjugate to it (i.e. has
the same topological dynamics). To simplify, a diffeomorphism is hyperbolic if the
tangent bundle of the ambient manifold splits, at least over the nonwandering part,
as a direct sum of a subbundle on which the differential of the diffeomorphism is ex-
panding and a subbundle on which it is contracting. Such a hyperbolicity property
(almost) implies structural stability. A great deal of activity developed around this
type of diffeomorphism: topological analysis, ergodic analysis, etc. The hope that
a generic diffeomorphism would be hyperbolic and structurally stable was unfortu-
nately frustrated ... It is nonetheless true that these hyperbolic diffeomorphisms
occur frequently, and that their study was a preliminary to the study of partially
hyperbolic diffeomorphisms, which is now underway.
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Among the examples of diffeomorphisms that are not hyperbolic but whose
dynamics deserve thorough study, we must mention Hénon’s example: a polynomial
bijection of the real plane, of the form (z,y) € R? ~ (y + 2% + ¢,ax). Restricted
to certain values of the real numbers a, ¢, these examples exhibit a non-hyperbolic
attractor, that is, an invariant compact set A (which does not reduce to a periodic
orbit) such that every trajectory starting at a point near A accumulates on A.
Moreover, even if these dynamics are unstable, the existence of the attractor is
persistent: it remains in “many” small perturbations, even if one leaves the family
of Hénon maps.

As far as the iteration of rational maps is concerned, this period was very quiet
... We must, however, point out the work of Brolin, which established a connection
with potential theory that would be very fruitful after 1980.

The theory of Kleinian groups developed in the setting of complex analysis
and its connections with Riemann surfaces. In particular, the deep study of their
deformation spaces was undertaken. We must mention the remarkable Ahlfors
finiteness theorem, which dates from this period: if a Kleinian group has a finite
generating set, and if we consider the quotient of the domain of discontinuity in
the Riemann sphere by the action of the group, we obtain a Riemann surface of
finite type: one that is isomorphic to a compact Riemann surface with finitely many
points removed.

Since 1980, unification? The principal architect of this unification is Sulli-
van. As early as the beginning of the 1980s, he proposed a “dictionary” relating sev-
eral theories: Kleinian groups, the iteration of rational maps, algebraic differential
equations, and, more generally, transversely holomorphic foliations. The common
point is a pseudogroup of holomorphic transformations. For a rational map, a non-
invertible transformation of the Riemann sphere, one considers the pseudogroup
generated by all the branches of the “inverse”. For Kleinian groups, this pseu-
dogroup is a global group: there is no longer a critical point, hence no branching
for the inverse; but in place of a single transformation, one has to consider the orbits
of a group that is very “large” in general. For algebraic foliations, the issue is the
Reeb-Haefliger holonomy pseudogroup; here the difficulties are twofold because not
only is one dealing with compositions of several transformations, but the transfor-
mations in question are not globally defined. The dictionary contains, for instance,
the analogy (clearly established at last) between the limit set of a Kleinian group
and the Julia set of a rational map. These analogies would prove to be fruitful. The
most famous example is Sullivan’s theorem on the nonwandering components of the
complement of the Julia set of a rational map, which is analogous to the Ahlfors
finiteness theorem. The comparative study of rational maps/Kleinian groups is now
natural for the experts. The contribution was immense; each theory had something
to offer the other. The use of quasiconformal maps passed from Kleinian groups to
rational maps, where it had remarkable success with holomorphic surgery on ratio-
nal maps. Conversely, the problems surrounding structural stability/hyperbolicity
passed from rational maps to Kleinian groups. Maifié, Sad, and Sullivan proved
that structural stability is generic among rational maps, but the problem of the
genericity of hyperbolicity is still central to current research.

Unfortunately, Sullivan’s dictionary seems to have had little influence on the
theory of differential equations. This is regrettable, but we are convinced that the
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techniques of Kleinian groups/rational maps will soon become useful in the context
of algebraic differential equations ...

Actually, the dictionary goes further and proposes an analogy with real dynam-
ics in dimension 1. The keyword is conformal pseudogroup: a local diffeomorphism
of R is clearly conformal because its differential at each point is a similarity (in
real dimension 1!). Koebe’s distortion lemmas, which are so useful in the study of
rational maps, find their real analogues here, and one obtains a series of remark-
able results on the dynamics of differentiable maps from an interval to itself. For
example, one obtains precise analogues of the Ahlfors finiteness theorem for real
dynamics in dimension 1. Similar techniques had in fact already been developed in
the 1970s by specialists in foliations of real codimension 1, such as Sacksteder, in the
context of exceptional minimal sets referred to above, for instance. One may regret
that these new points of view coming from Kleinian groups and rational maps have
not yet led to a rethinking of this theory of exceptional minimal sets; the “theory
of levels” is well developed, but many essential problems in the real dynamics of
codimension-one foliations are still unexplored (perhaps simply because of a lack of
communication between the specialists in these subjects ... ).

This comparative study of real/complex dynamics in dimension 1 is responsible
to a large extent for the successes obtained in understanding “phenomena of renor-
malization and universality” that were first discovered experimentally and whose
final justification is obtained by a clever mix of dynamics, Teichmiiller theory, and
holomorphic surgery ...

Another recent development should be mentioned. It has long been known
that the study of Hénon attractors is more complicated than but related to that
of real quadratic polynomials. It was tempting to complexify Hénon’s polynomial
diffeomorphism and study the dynamics of the resulting polynomial automorphism
of C2. In doing this, one tries as far as possible to mimic the results of Fatou
and Julia, but a number of surprises appear—which will not surprise the reader
familiar with the theory of several complex variables. In particular, one can use the
beautiful theory of currents on complex manifolds, as well as pluripotential theory,
to obtain analogues of the ergodic theory of polynomials. This recent theory of
holomorphic dynamics in several complex variables seems very promising, and will
probably not fail to have repercussions in real dynamics.

Now, at the end of the twentieth century, there is thus reason to be optimistic
about the future of holomorphic dynamical systems. On the one hand, the ob-
ject of study has been considerably broadened because our present ambition is to
understand generic dynamical systems, not just a few very special examples. On
the other hand, the objects studied and the techniques used have been generalized,
thus consolidating the “classical” study of differential equations, holomorphic foli-
ations, Kleinian groups, and even iterations of polynomials or rational maps in one
or several complex—or even reall—variables.

We hope we have convinced the reader of the coherence of the four articles that
comprise this volume.

A few useful references on the history of holomorphic dynamics are suggested
below.
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CODIMENSION-ONE HOLOMORPHIC FOLIATIONS,
REDUCTION OF SINGULARITIES IN LOW DIMENSIONS, AND
APPLICATIONS

by

Dominique Cerveau

Abstract: This article is an introduction to the resolution of singularities of
codimension-one holomorphic foliations. After some discussion and examples
of the desingularization of curves and hypersurfaces, we state the theorem on
reduction of singularities for foliations in dimensions 2 and 3, with a precise
description of the terminal singularities. We then apply this tool to such classical
problems as the singular Frobenius theorem and the construction of invariant
hypersurfaces.

Introduction

Let X be a smooth complex analytic variety of dimension n. As usual, we let
0% denote the sheaf of holomorphic p-forms on X, and Ox = Q%. A codimension-
one holomorphic foliation F on X is defined by giving a covering U = (U;)ier
by open sets U;, and holomorphic 1-forms w; € Q!(U;) satisfying the following
conditions:

(i) w; Adw; = 0 (integrability).

(ii) Singw; := {m € U; : w;(m) = 0} has codimension > 2.
(i) On U; NUj, w; = gijw;, where g;; € O*(U; N U;) = holomorphic units on
U;N Uj.

This definition can clearly be synthesized in a sheaf-theoretic way. SingF,
the singular locus of F, is defined by (SingF) N U; = Singw;; it is an analytic
set of codimension > 2. A nonsingular point is also called regular. The local
structure of F near a regular point m € U; is described by the classical Frobenius
theorem, which ensures the existence of a local submersion z; and a unit g; such
that w; = g;dx;. We then have the notion of local leaves (the level sets of ;)
and, by maximal gluing, of global leaves. On some varieties, every codimension-one
foliation F will have a nonempty singular locus; on others, all foliations will be
nonsingular. As we will see in the examples that follow, not only the topology
but also the complex structure come into the picture. It therefore seems useful to
have a reasonable description of the singularities of foliations, and we will endeavor
to show how statements about the reduction of singularities can be exploited for
this. Since this discussion is directed particularly toward nonspecialists, we have
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recalled some classical statements, a number of which are old but still indispensable
in practice. We barely skim the surface of some important themes. This is a pretext
for mentioning the bibliography—in particular, everything that touches on global
problems, whose introduction would require much heavier machinery.

1. Examples of Foliations (with and without Singularities)

1.1. On tori. Consider a complex torus T"(A) = C* /A, where A is a lattice
in C": A = ®Ze;, (e;) an R-basis of C*. If L is a linear form on C", then
the foliation given by the global form w = dL passes to the quotient and defines
a nonsingular foliation F(L,A) on T™(A). Its leaves are the projections of the
hyperplanes L = constant. If the lattice A is sufficiently general, there are no
nonconstant meromorphic functions on T"(A). A foliation F on T™(A) (with or
without singularities) lifts to a foliation F on C", which can be defined by a 1-form
w = dxy + ) ;~, a;, where the a; are meromorphic and A-periodic, hence constant.
Hence all foliations on such tori are of type F(L,A), and in particular have no
singularities. This argument breaks down on algebraic tori (products of elliptic
curves, for instance). In [22], E. Ghys gives, in particular, the classification of
foliations on tori.

1.2. On projective spaces. Through the projection p : C**1\ {0} — CP(n),
a foliation F on the projective space CP(n) induces a foliation p*F on C**1 \ {0}.
H. Cartan proved in 1938, in [14], that H'(C"™! \ {0}, 0*) = 0 for n > 2. This im-
plies, in particular, that p*F can be defined by a global 1-form w € Q(C"*1\ {0})
that extends, by the theorem of Hartogs, (here, Cauchy’s formula) to an element
w € NHC™1). Invoking the fact that the kernel of w at the point m must contain
the line [Om], one shows easily that w = ), a;dz; can be chosen to be projective,
homogeneous, and integrable (i.e. the a; are homogeneous polynomials of the same
degree, and ) z;a; = 0). This is the analogue for foliations of Chow’s theorem,
which states that an analytic subset of CP(n) is actually algebraic. Bezout’s theo-
rem or the de Rham—Saito division theorem (which we will mention again) shows
that such a foliation has a nonempty singular locus of codimension > 2. There is
currently a great deal of activity relating to foliations on projective spaces, which
are far from being understood—in particular on CP(2), which is ultimately the
most difficult case. There is surely no need to remind the reader that the study
of foliations on CP(2) can be identified with the study of differential equations
y' = R(x,y), where R € C(z,y); indeed, ift R = A/B, A, B € Clz,y], we see that
the solutions « — y(x) of our differential equation produce (local) parametrizations
of leaves of the foliation defined in affine coordinates by w = Adx — Bdy.

Here are three classical problems about foliations of CP(n).

1.2.1. The Poincaré problem ([38], vol. III, pp. 35 and 59). Let F be a foliation
of CP(2), and let I" be an algebraic curve. I is called F-invariant if I'\ Sing F is a leaf
of F. If F has infinitely many invariant algebraic curves, then F has a rational first
integral: there exist homogeneous polynomials P and @ such that the leaves of F
are precisely the curves AP 4+ u@ = 0, A\, u € C. This is a known result of Darboux;
a proof can be found in [25]. If F is defined by the homogeneous form w = > a;dz;,
the degree of F is by definition degF = dega; — 1. Geometrically, deg F is the
number of tangencies of F with a generic line L, i.e. the number of points of L
where F is not transverse to L, in an obvious sense. In the case where F does not
have a rational first integral, the Poincaré problem consists of estimating the degree
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of an invariant algebraic curve I' as a function of the degree of F. This problem has
been solved in special cases including, for example, smooth or, more generally, nodal
curves ([13] and [15]): degI" < deg F +2, and it is conjectured that this estimate is
general. But the reader should not be led to think that any foliation on CP(2) has
an invariant algebraic curve; for any n > 2, Jouanolou constructs in [25] a foliation
of degree n on CP(2) that has no invariant algebraic curve (see §5.1). Note that the
set F(2,n) of foliations of degree n on CP(2) is a Zariski open set in a projective
space because each F € F(2,n) has an associated 1-form w of degree n+ 1 (defined
up to a multiplicative scalar), w = > a;dz;, where gcd(ag, a1,a2) = 1. Jouanolou’s
result implies [13] that the subset of F(2,n) consisting of those foliations that have
no invariant algebraic curves contains a dense open set (in the ordinary topology,
that of the coefficients of the polynomials a;).

1.2.2. The “minimal set problem” [7]. This problem revolves around the fol-
lowing question: if £ is a leaf of a foliation F on CP(2), does the closure £ of £
contain a singular point of 77 For instance, if I" is an invariant algebraic curve of
F, then T' contains at least one singular point of F [25]. At this date the prob-
lem above is still open; it leads to another, which is also open: does there exist a
smooth (real) hypersurface ¥ C CP(2) that is Levi-flat? (If m € X, the tangent
space T, X C T,,,CP(2) contains a unique complex line E,,; to say that ¥ is Levi-flat
means that the plane field m — ¥,, is Frobenius integrable.) The Levi-flat hyper-
surfaces of CP(2), if they exist, are, in the view of specialists, natural candidates
for the closures of leaves.

1.2.3. The problem of components. We denote by Q'(n,d) the vector space
of 1-forms w = Y I ja;dz; on C"*! that are homogeneous of degree d + 1 and
satisfy the condition Y z;a; = 0. The integrability condition w A dw = 0 defines an
algebraic subset

Y(n,d) = {w € Q*(n,d) : w A dw = 0}
of Q(m,d); it is an intersection of quadrics. The space F(n,d) of foliations of
degree d on CP can be naturally identified with a subspace of the projectivization
PY(n,d) C PQ(n,d):

F(n,d) 2 P{we X(n,d) :w = Zaidmi, ged(ag, ..., an) =1}

To obtain a reasonable description of the space F(n,d) (in order to talk about
deformations, for instance), it would be reasonable to know the decomposition of
¥(n,d) into irreducible factors; for n = 2, ¥(2,d) = Q(2,d), and the question is
nontrivial for n > 3. This decomposition (n > 3) is known only for d = 0,1, 2. For
d = 0 there is a single component: every foliation of degree 0 is linearly conjugate
to the foliation given by zodz; — x1dzy (open book or pencil of hyperplanes). In
degree 1 there are two components, ¥g and Xj; a generic point of ¥y produces, up
to conjugation, a foliation given in affine coordinates by zodz; — Ax1dzo, A # 1.
Up to linear conjugation, a generic point of ¥ is always given in affine coordinates
by d@, where @) is the standard quadratic form ) = Eg z2. In degree 2 there are
six components, and we refer the reader to [16].

One can exhibit some kind of list of components in every degree, but this list
is incomplete; all the known components are unirational, i.e. parametrized by a
dominant morphism CV — Q!(n,d) [16].

1.3. On the affine space C". Consider a rational closed 1-form « on the
affine space C". The set Pol(a) of poles of a is a hypersurface with equation
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P{“H ...Prstl = () where the P; € C[z1,...,7,] and the n; + 1 are the mul-
tiplicities of the poles P; = 0. The (rather delicate) analogue of the theorem on
decomposition of rational functions into simple factors ensures the existence of
complex numbers \; (the residues of a;) and a polynomial H such that

dp; H H

The form « clearly has an associated foliation F(«) (chase the denominators of «),
which in general has singularities (the crossings P; = P; = 0, in particular). The
leaves of F(a) are the connected components of the level sets of the multivalued
function )" A\;log P; + H/P[" --- PI'. Even when the P; are simple—of degree 1,
for instance—the qualitative description of these leaves turns out to be relatively
complicated. This kind of example, which can be seen in CP(n), will play an
important role in what follows. Let us keep in mind that a theory of reduction of
singularities for foliations will have to contain a theorem on reduction of singularities
for meromorphic closed forms.

1.4. On Hopf manifolds. We will consider only the simplest kind of Hopf
manifolds: the quotient H(n,A) of C* by a homothety x — Az of ratio A, with
Al # 1. )

A codimension-one foliation F on H(n,\) can be lifted to a foliation F on
€ \ {0} that is equivariant under the action of . As in 1.2, F will be defined by
a global 1-form w € Q' (C™ \ {0}) that extends to w € Q(C"). The equivariance of
F under ) allows us to choose w to be homogeneous, with an isolated singularity
at 0, if F has no singularities. The description we will give later of homogeneous
forms allows us to classify the foliations on H(n, \). It is amusing to observe here
that certain singularities of a foliation permit the construction of foliations without
singularities: for n = 2, the only singularity of the homogeneous form w is the
origin, which disappears under projection to the Hopf surface.

1.5. On surfaces. The nonsingular foliations of complex surfaces have re-
cently been classified by Brunella in [3]. This classification uses the work of Ko-
daira in a deep way; tori and Hopf manifolds appear here, of course, but not the
projective plane; the projective plane blown up at a point, however (cf. 3.1), car-
ries a foliation without singularities: one considers the radial foliation at a point
0 € CP(2), whose leaves are the lines through 0, and blows up the point 0.

2. Germs of Foliations

This is the local version of the initial definition. We work at the origin in C"
and denote by O(C",0) (resp. Q?(C",0)) the ring of germs of holomorphic functions
(resp. the O(C"™,0)-module of germs of holomorphic p-forms) at the origin in C".
A germ of a foliation F at 0 is defined by giving w € QY(C",0), w = Y a;dz;,
a; € O(C™,0) satisfying

(i) wAdw =0,

(ii) Singw = {a; = -+ = a, = 0} is of codimension > 2.
Such forms w and w' define the same F if and only if w = gw' for some unit
g € O*(C™,0). This is equivalent to the condition w Aw’ = 0 by the de Rham-Saito
lemma [40]:
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LEMMA. Let a € Q(C",0) such that codimSinga > p + 1. The following
assertions are equivalent for 5 € Q4(C",0), with q¢ < p:
(i) anp=0.
(ii) There exists v € Q1 (C",0) such that S = a A~.

The set Sing F is Sing w by definition. The notion of leaves can also be localized.

2.1. The Frobenius theorem in the singular case. Proved by Malgrange
in 1976 in [28], this theorem says that if Sing F has codimension > 3, then F has
a (necessarily irreducible) holomorphic first integral f. This means that one can
define F by df, and the leaves of F are the fibers f~!(c) of f. Note that Malgrange’s
theorem is not valid in dimension 2 ... except in the regular case. Later we will
give a proof based on the reduction of singularities in dimension 2.

2.2. Homogeneous foliations of C". These are the foliations that are in-
variant under homothety; such a foliation F is given by an integrable homogeneous

1-form
Wy, = Z a;dz;,

where the a; are homogeneous polynomials of degree v and gcd(a;) = 1. Let
R =" z;0/0x; be the radial field, and let P,;; be the polynomial of degree v + 1
defined by

P, (z) = inai = ipWy.

We say that F is dicritical (F passes to CP(n — 1)) if P,y =0, and non-dicritical
otherwise. Suppose F is non-dicritical. Then the rational 1-form w/P,; is closed,

and as in 1.3 we have
Wy sz H
S5 — =D A5 +td| 55— |
= YA+t ()

where the P; and H are homogeneous, \; € C, Y v;\; = 1, v; = degP;, and
Py = Pmt...py »*1 Note that if the ambient dimension is greater than 3
and the singularities of the homogeneous foliation F are of codimension > 3, then
P, 1 is necessarily irreducible; indeed, the intersections P; = P; = 0, ¢ # j, are
singularities of F. Hence
Wy _ )\dP,,+1
PVJrl PI/+1 ’

and P, is a first integral of F: this is the homogeneous version of Malgrange’s
singular Frobenius theorem. In particular, we obtain the description of the foliations
of the Hopf manifolds H(n, \). For n > 3, they are the projections of homogeneous
foliations with a first integral—which doesn’t keep the leaves from being rather
complicated!

One of the advantages of homogeneous foliations is the following. Consider a
germ of a foliation F given by

Ww=wy t+wyrr +---,
where the w; are homogeneous of degree i. Clearly w, is integrable. We introduce

*

the homothety ¢ :  — ¢-2; we have w, = =wy, +€-wy41 + - -+, and the path

5V+1
€ — w. connects the forms w, and w through integrable forms. It turns out that

w, determines F if w, is sufficiently general. We give two examples.
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At the origin in C?, consider a dicritical w, such that codim Singw, > 2 and
Sing dw, C {0}. The last condition means that at each singular point of the foliation
of CIP(2) induced by w,, the Baum-Bott residue [1] is nonzero (this is a Zariski-dense
condition in the set of w,). Let F,, be defined at the origin of C* by w = w, +---.
Then F, and F,, are interchanged by a holomorphic diffeomorphism [5]. The proof
is relatively simple. If v = 1, then w; is of type zdy — ydz, and one considers the
field Z such that dw = iz vol; Z is nonzero at 0 and tangent to F. Straightening
Z along 0/0z, we can define F by

w = a(z,y)dz + b(z,y)dy = xdy — ydz + h.o.t.

We then invoke Poincaré’s linearization theorem ([38], these, vol. I), applied to

T T T
Ay

If v > 1, then by the de Rham—Saito theorem there exists a vector field X such
that w = ixdw; clearly X(0) = 0 and w, = ix,dw,, where X; is the 1-jet of X.
Since w, = ig/(4+1)dw, (Euler’s identity), we have ig_(,41)x,dw, = 0. If v > 3,
we have R — (v + 1)X; = 0, and to conclude the argument we apply Poincaré’s
linearization theorem to X. If v = 2, we find “by hand” a field Y in the kernel
of w such that the 1-jet of Y is R, and conclude in the same way. Note that the
foliation associated with w, is also given by the pair of vector fields R and Z, 1,
with iz, ,vol = dw,; since the Lie bracket [R, Z,_1] equals (v — 2)Z,, there is a
germ of a group action behind this (C? if v = 2, an affine group if v # 2), and we
can interpret the above as a result on finite determination for this group action.

Now consider F given at the origin of C* (or, more generally, C*, with n > 3)
by w =w, + -- -, and suppose that w, is logarithmic and non-dicritical, i.e.

v dP;
PL:+1 = ZAl?j’ Z)\ZVZ =1.

If the P; = 0 have normal crossings (in CP(n)) and some A; is not real (or is irra-

tional, badly approximated by rationals), then there are f; = P; + --- € O(C",0)

df:
such that —— = Z )\i%; i.e., F is also given by a logarithmic closed form.

1 s i
The initial proof in [17] uses the Deligne-Fulton theorem, which ensures the com-

mutativity of the fundamental group of the complement of a nodal curve in CP(2).
At the end we will give a different version, at least in a generic case.

3. Reduction of Singularities
We begin by introducing the blow-up of a point.

3.1. The blow-up of a point in C". We denote by C" the set
C* :={(z2,D) € C* x CP(n — 1) : z € D}.
This is a smooth analytic variety of dimension n; its construction produces two
projections, E : C* — C® and 7 : C* — CP(n — 1). The second projection
turns C” into a line bundle over CP(n — 1) (the tautological, or Hopf, bundle);
the first is called the blow-up of the origin. Note that E~1(0) can be identified

with the projective space CP(n —1); E~1(0) is called the exceptional divisor. Since
an element (z,D) is uniquely determined by z when z # 0, the map E is an

isomorphism between C? \ E71(0) and C" \ {0}. In practice, one uses the system



CODIMENSION-ONE HOLOMORPHIC FOLIATIONS 17

of charts on C" induced by the standard charts on CP(n — 1). More precisely, one
considers U; := {(y1,---,Yi,---,yn)} = C" and §; : U; — C* defined by

Wi Yise- s Yn) = Wiy, ¥imts LYirt, -5 Un)s (Y1 0wt g1 0 L giva 1) -
In the chart U;, the blow-up E is described by E; = E o d;, where

Ei(yr, - ¥ir - yn) = W1¥is - Yis - - Ynli)-
Thus blowing up the origin in dimension 2 consists of setting y = tx; the homo-
geneous differential equations y' = f(y/z) studied in a first-year university course
are treated by blowing up ...
The preceding discussion allows us to blow up a point in any complex manifold.

3.2. Reduction of singularities of plane curves. A germ of an irreducible
curve v C (C?,0) is given by the vanishing of a germ of an irreducible holomorphic
function f € O(C?,0):

v:={f(z,y) =0}
The curve 7 is nonsingular if and only if f is a submersion; «y is irreducible if and
only if v\ {0} is connected. By the preparation theorem, we may suppose f is a
Weierstrass polynomial:

fle,y) =y +a(@)y” "+ +ao(z), a; € Clz},

where v = v(f) = algebraic multiplicity of f. The projection (z,y) — x restricted
to v\ {0} is then a v-fold covering over a punctured disk D*. It follows easily
that there exists a holomorphic function of one variable s — ¢2(s) such that the
image of s — (s¥,¢2(s)) = ¢(s) is exactly the curve . This is Puiseux’s theorem,
which identifies the irreducible curves and the parametrized curves. It is already a
desingularization theorem because it puts a smooth curve (a disk) into one-to-one
correspondence with v. We will see that it produces an “ambient desingularization”
by a finite sequence of blow-ups. We expand ¢- in a power series:

¢2(s) = ags? +---, where a; #0.

After applying a diffeomorphism of the type (z,y) — (z,y —&(z)), we may assume
that the a; have multiplicity greater than v — ¢ + 1, and hence that ¢ > v. Blowing
up the origin, we see that in the first chart, where E(y1,y1) = (y1,¥1y2), the map
¢ : (C,0) — (C,0) lifts to a map ¢ : (C,0) — (C2,0) such that E o ¢ = ¢. More

precisely, ¢ can be written as
B(s) = (s, ag8" ™ +agprs™ T 4,

and the multiplicity of the second component has been reduced. Iterating this
procedure, we will eventually make the multiplicity of the “second component” less
than v.

We then continue if necessary, switching the roles of the components until
one of them has multiplicity one. Finally, we construct a smooth surface M (),
a morphism E obtained by composition of a finite sequence of blow-ups, and an
immersion ¢ : (C,0) — M (7) such that Eot = ¢. We have then desingularized the
curve  in an ambient way. The exceptional divisor £~'(0) is a union of “projective
lines” D; with normal crossings, and E realizes an isomorphism of M \ E~*(0) onto
C? \ {0}. The smooth curve y parametrized by 1 passes through a unique point
m € E'(0). One is more demanding in general, and requires m to be a smooth
point of £ *(0) and 7 to be transverse to £ *(0) at m. This can easily be obtained
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by taking finitely many point blow-ups, if necessary. The curve 7 is called the strict
transform of v by E, and E~!(y) is called the total transform of v; the latter is a
curve with normal crossings.

Consider the classical example of the cuspidal cubic f(z,y) = y?>—23 = 0, which
has Puiseux parametrization s — (s2,s%). The first blow-up E;(z,t) = (z,tz) gives
foE(x,t) = 22(t? — ), and the strict transform of the cuspidal cubic is a parabola
x = t2. Tt is smooth, but tangent to the divisor x = 0.

We must take two more blow-ups to obtain transversality at a smooth point of
the exceptional divisor.

3.3. Arbitrary curves. It is easy to obtain the reduction of an arbitrary
curve v = 7, U --- U, where each +; is irreducible: indeed, it suffices by 3.2 to
know how to desingularize a union of smooth curves [J(y—¢&;(x)) = 0. This presents
no difficulty: we encountered this problem in the example of the cuspidal cubic,
where, after a blow-up, one is faced with the curve z(z—t?) = 0. The final statement
is the following: There ezist a surface M () and E : M(y) — (C?,0), obtained by
composing finitely many blow-ups, such that the total transform E~'(v) is a curve
with normal crossings. We will call E : M (y) — (C2,0) a reduction of singularities
of . There is a minimal reduction: the one that “uses the fewest blow-ups”. Two
minimal reductions are isomorphic. Note that the curves for which M(y) = C?
(i-e. those for which a blow-up serves no purpose) are smooth curves and normal
crossings.

3.4. Functions of two variables. Let f € O(C2,0), let f = f{"*--- f,” be
the decomposition of f into irreducible factors, and let v = U~;, where ~; are the
curves f; = 0. Let E : M(y) — (C?,0) be the minimal reduction of v, as in 3.3. If
m € E7'(0), then there exist a coordinate system (u,v) at m and integers p and
q such that f o E(u,v) = uPv?. Since the monomials u?v? cannot be simplified by
blowing up (try it), the reduction of «y leads to that of the function and thus even
to that of the foliation associated with f, the foliation given by fi --- f, > nidfi/ fi.

d d
Thus we have to expect the 1-forms uv(p—u + a—v) to be part of the terminal

models for the reduction of singularities of foliations in dimension 2.

3.5. Arbitrary dimension: hypersurfaces and functions.

Let f € O(C",0) and X = f~1(0) C (C*,0). We denote the singular locus of
X by Sing X C X. The theorem on resolution of singularities, proved in complete
generality by H. Hironaka, can be stated in this context as follows:

There exist a smooth analytic variety M and a proper morphism E : M —
(C™,0) that realizes an isomorphism from M \ E'(Sing X) into C" \ Sing X such
that the total transform E~'(X) is a hypersurface with normal crossings. If m €
E '(Sing X), then there exist a local coordinate system (ui,...,u,) at m and in-
tegers pi, ..., pn such that fo E(uy,...,u,) = ul* - ubr.

This statement gives the resolution of singularities of the foliation by the level
sets of f in this setting as well. There is a more costly result—which, at least as far
as the theory of foliations is concerned, leads to pointless and delicate combinatorial
complications—stating that if X = UXj is the decomposition of X into irreducible

components, then one may assume the strict transforms E~"(X;) \ £~ (Sing X) to
be smooth and disjoint. We will not use it.
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3.6. Surfaces. Although the ingredients involved are relatively simple for
curves, we can already see that the degree of complexity in the case of surfaces
is another story altogether. One reason is the lack of a Puiseux-type theorem.
To desingularize curves (in an ambient way), all we did was blow up points in
the ambient space. This is no longer sufficient for surfaces, whether they are ir-
reducible or not. The (nonirreducible) example of a saddle surface and its tan-
gent plane, 0 = z(z — zy) = f(z,y, 2) is edifying. In the first chart, the blow-up
E1(y1,y2,y3) = (1, ¥192,¥1y3) transforms f into fo Ey(y1,y2,y3) = 7 f(y1, Y2, ys3)-
Thus, at the point (0,0,0), we recover a surface isomorphic to the initial surface
together with the divisor y; = 0! So we haven’t simplified anything at all! On the
other hand, if we blow up the z-axis (that is, if we think of C* as C x C? and blow
up 0 in C?), we find that we have obtained the desired reduction.

Strictly speaking, in the case of foliations, we cannot in general (in high di-
mensions) extract consistent information from a reduction theorem unless we have
a relatively simple blow-up procedure, i.e. unless we can effectively control the
topology of the various divisors. Here is an example.

3.7. An easy case: reduction of singularities of homogeneous sur-
faces. We start with the case of curves. Let X C (C3,0) be a homogeneous cone;
ie., X = (P, =0), where P, is a homogeneous polynomial of degree v. Consider
the total transform of X under the blow-up E : C3 — C3. It is given by P, o E = 0;
in the first chart, we obtain P, o Ey (y1, y2,¥y3) = y¥ (P, (1,y1,y2)). The strict trans-
form of X is the inverse image under = : C> — CP(2) of the algebraic curve C'(X)
associated with P,. It is smooth and transverse to the exceptional divisor at every
point m such that 7(m) is a regular point of C(X) (Figure 3).

Clearly the points that are not reduced are the inverse images 7! (m) of those
points m € C(X) that are not reduced for the curve C(X). It is easy to imagine
how to construct a reduction of X or P,. We just observe that the process of
reducing a germ of a plane curve v C C? leads naturally to a reduction of the
surface v x C C C?; blow-ups of points of the type E : C2 — (C2,0) are replaced
by blow-ups of lines E x Id : C2 x C — C? x C. We note in passing that a
homogeneous surface X C C* as above, such that C(X) C CP(2) is smooth or has
normal crossings, can be reduced by blowing up the origin.

4. Reduction of Singularities of Foliations in Dimension 2

In every result on reduction of singularities, one introduces terminal objects
that will model the terminal singularities. For example, for hypersurfaces these are
the normal crossings z; - - - 2, = 0 (where 25! - - - 2> = 0, counting multiplicity). We
introduce the class of simple singularities first in dimension 2. This class is invariant
under blow-ups; i.e., the blow-up of a simple singularity produces singularities
that are all simple. The theorem on reduction of singularities will say that every
holomorphic foliation on a surface can be transformed after finitely many blow-
ups into a foliation that has only simple singularities, with, moreover, a particular
transversality condition that we will make precise. One of the major difficulties in
passing from dimension 2 to dimension 3 was finding a suitable definition of the
notion of simple singularities in dimension 3; it was necessary to forget the standard
definition in dimension 2 presented in 4.1, for which no reasonable generalization
could be found. The important fact, explained in 4.7, is that a simple singularity

Figure 3
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has a “formal integrating factor” that turns out to be maximally desingularized,
i.e. conjugate to a monomial zPy?.

4.1. Simple singularities. Let F be a germ of a foliation singular at the
origin in C?, given by the 1-form w = adx + bdy. We say that F is simple if, in a
well-chosen coordinate system (z,y), the linear part wy of w is of one of the types

(¥) w1 = zdy — Aydz, X ¢ Q>o,
(%) wy = zdy (saddle node).

In particular, if f € O(C2,0), then the foliation associated with f is simple if
and only if f = 0 has normal crossings; that is, if and only if f is conjugate to a
monomial zPy? (cf. 3.4).

4.2. Separatrices; the Briot-Bouquet theorem. Let F be a germ of a
foliation, and X a hypersurface at the origin of C*; X is a separatriz (or integral
hypersurface) of F if the smooth part Xgmeoth = X \Sing X of X is a union of leaves
of F. If F is defined by w € Q}(C",0) and X = {f = 0}, where f € O(C",0), then
X is a separatrix of F if and only if f divides w A df. There is also a notion of
formal separatrix: AA’, defined by {f: 0}, where f € (5(@” ,0) = formal completion
of O(C",0), is a formal separatrix of F if fdivides w A d]? as above.

The Briot-Bouquet theorem will allow us to construct separatrices for simple
singularities by a blow-up technique. It says that the differential equation

zy' — Ny = az + ¢(z,y),

where A € C\ N, a € C, and ¢ € O(C?,0) of multiplicity > 2, has a unique holo-
morphic solution z — yo(z) such that yo(0) = 0. This is a classical exercise (Ince
[24] or Valiron [42]) in dominant series. In other words, the Briot-Bouquet theorem
ensures that the foliation F defined by zdy — (A\y + ax + ¢(z,y))dz has a unique
smooth separatrix {y = yo(z)}, which is tangent to the axis y = 0. According to
Briot and Bouquet, the existence of separatrices for simple singularities will result
from an effective blow-up that we present in the general setting.

4.3. Blow-up of F. Let F be defined by
w= Zaidzi, a; € O(C",0), codim(Singw) > 2.

We denote by v the algebraic multiplicity of w: v = infrv(a;), where v(a;) =
multiplicity of a;, and by In,a; the initial segments (jets of order v) of the a;. We
introduce the homogeneous polynomial P,y; = > z; - In,a;; as in 2.2 we say that
w is dicritical if P,;1 = 0, and non-dicritical otherwise. Thus w, or F, is dicritical
if and only if the initial segment w, of w is dicritical in the sense of 2.2.

4.3.1. The non-dicritical case. Carrying out the computation in the chart Uy,
where the blow-up is written E1(y1,-.-,%n) = (Y1,¥19Y2,- - -, Y1Yn), we have

Ejw = {al W1, Y12, > Y1Yn) + 01 Y ai(y1, y1ye, - - ,ylyn)] dy,
i>2

+y1 Z ai(y1, Y192, - -, Y1yn)dy;
i>2
=yy [Pyﬂ(l,yz, yn)dyn 1Y Ingai(1,y, . ,yn)dyi] +yy o
i>2

— VS
= YW1,
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where wj and @; are holomorphic 1-forms in a neighborhood of y; = 0. The
1-form @, is called the strict blow-up of w and defines E~'F, the strict blow-up
of F, in the chart U;. The singularities of E~1F contained in the exceptional
divisor E~1(0) = {y1 = 0} coincide with the projective hypersurface of the equation
(Py41 = 0). This is the tangent cone of w. Note that the exceptional divisor is a
separatrix of E~!F.

The reader should check that the blow-up of a simple singularity in dimension
2 produces a foliation with two simple singularities.

4.3.2. The non-dicritical case. This is the same computation, but Ejw is divis-
ible by y¥*! since P,;; = 0. The exceptional divisor here is not a separatrix; the
singularities of E~1(F) on E~1(0) are given by {In,(a;) =0, In,1 (> z;a;) = 0}.
For example, the blow-up of the radial foliation zdy — ydz produces a nonsingu-
lar foliation whose leaves are the fibers of the Hopf fibration: y/z = constant.
We observe immediately that a dicritical foliation in dimension two has infinitely
many separatrices. Indeed, if m € E~1(0) is nonsingular for E~!(F), then the leaf
through m is an analytic curve (distinct from E~!(0)), and its projection under E
gives a separatrix of F.

4.4. Briot-Bouquet for separatrices. Let F be a simple singularity at the
origin of C?, given by w = wy +- - -, with w of type (%) or (**). We use the traditional
notation in dimension 2, x = y; and ¢ = y5. Then, up to a multiplicative unit,

. B
W= Eiw) = ((1 = Nt + zA)dz + zdt,
x
where A is holomorphic in a neighborhood of z = 0. We associate with & the
differential equation

(B.B.) at' — (A= 1)t = zA(x, t),

which is of Briot-Bouquet type because A ¢ Q. Let to(z) be the holomorphic solu-
tion of (B.B.) such that t,(0) = 0; then z — Ey(z,t9(z)) = (z,zto(x)) parametrizes
a smooth separatrix of F tangent to the z-axis. Furthermore, in both (x) and (%)

it is the unique one with this property. In case (*), another separatrix, tangent to
the y-axis, can be constructed in the same way.

4.5. Divergence. In the saddle-node case, a direct formal calculation gives a
smooth formal separatrix transverse to the convergent separatrix. It is divergent
in general, as is shown by the famous example of Euler’s equation

22dy — (y — x)dz,

which has the formal curve y = Y nlz"*! as a separatrix.

4.6. Exercise. Simple singularities have only two separatrices (smooth or not,
formal or not).

4.7. Integrating factors and formal normal forms [29]. Let F be defined
by w = adz + bdy, with a simple singularity at the origin in C*. By Briot and
Bouquet, F has two smooth, transverse separatrices—at least formal ones. Thus,
up to formal diffeomorphism and a formal multiplicative unit, we will assume that
w is of type

ady —y(\+ B)dz, ¢ Qsg, Bem-O(C2,0),

where m is the maximal ideal of O(C?,0).
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The vector field X = mg + A+ B)y2 has linear part mg + )\yg, and
Oz Oy oz dy

generates the kernel of wj; this is the condition gecd(a,b) = 1. Considering X as a
derivation of the ring m - O(C?,0) = F and noting that X (m*) C m*, we recover,
for every integer k, a factorization

E 2~ . E

I

Ey L}Ek

where Ey = E/m*tl; clearly X = limj, X;. Since dim Ey < oo, we can talk
about the Jordan decomposition X = X5+ XN into commuting semisimple and
nilpotent operators. Passing to the limit [29], we obtain

X =Xs + Xn,

where Xg and Xy are commuting formal vector fields (derivations of (5((C2 ,0)); by
construction, Xg is semisimple, i.e. formally linearizable (more precisely, formally
conjugate to the linear vector field z0/0x + Ayd/dy), and Xy is nilpotent [29].
Obviously we choose coordinates in which Xg = 20/0z+Ayd/dy, and try to exploit
the commutation relation [Xg, Xn] = 0. When A ¢ Q, the direct formal calculation
shows that Xy = 0; in this case, of course, the foliation F is (formally) conjugate
to the linear foliation given by w; = zdy — \ydx = my(@ - )\d?a:) The monomial
xy is then an integrating factor for wy, i.e. the meromorphic form wy /zy is closed.
Going back through our calculations, we observe that the form w that we started
with has a formal integrating factor f € m - O(C2,0), ie. w/f is closed. It turns
out that we are dealing with a general fact, as we will see. Consider the “resonant
case”, where A = —r/s, r,s € N, ged(r,s) = 1. Note that the monomial z"y* is
annihilated by Xg, and in fact generates the kernel of Xg: Ker Xg = C[z"y®]. The
commutation relation [Xg, Xn] = 0 immediately gives

0 0
Xn = aala"y") 5 + b6 )

where a and 3 are formal series in the “resonant variable” z"y*, a(0) = 3(0) = 0.
The foliation F is then (formally) defined by

r
(g + 3 (ﬂfrys))
1+ a(@y?)

which we write as follows when h is nonzero:
dy/y+ (r/s)dx/x dx
zyh(x"y® —.
yhla"y") [ h(z"y*®) T
Clearly we recover a linearizable case when A = 0. Once again, noting that the
expression in brackets defines a closed meromorphic form, we find an integrating
factor. Just by using the implicit function theorem, we can improve the reasoning

above and unify all the formal models of simple singularities in the same expression.
To be precise, if F is simple, then F is formally conjugate to a foliation given by

gPtlyrtt [d_a: - )\@ +d ! ] ,
€T Y mpyq

xdy +y de = zdy +y (g + h(a:’"ys)) dz,
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where p and ¢ are positive integers and A is a complex number (which will be
positive and irrational when p = ¢ = 0).

4.8. Linearization. When F is formally linearizable, we actually have holo-
morphic linearization in the following instances of case (x):

(i) A € C\ R : Poincaré’s theorem applies to the field X in 4.7 ([38], these,
vol. I);
(ii) A is a negative irrational that is badly approximated by rationals (Siegel-
Brjuno) [2];
(iii) A € Q<o (this follows from a result of Malgrange-Mattei-Moussu but also
from a linearization of the action of a compact group near a fixed point,
which we will discuss in §8).

4.9. Classification of simple singularities. The holomorphic classification
of simple resonant singularities and saddle-node singularities is due to Jean Ecalle
[21] and Martinet-Ramis [30, 31]. Ecalle is more interested in the classification
of vector fields, and Martinet-Ramis in foliations. The two approaches are diffi-
cult. When the invariant A is a negative irrational that is well approximated by
rationals, there are still plenty of mysteries; but the concept of holonomy, which
will be introduced later and creates a correspondence between the study of simple
singularities and that of germs of diffeomorphisms in one variable (cf. §8), allows
us to derive important results via the work of Pérez Marco and Yoccoz [37].

4.10. Noether’s formulas. Let a € Q' (M, m) be a germ of a 1-form at the
point m of the smooth surface M. If F is a germ of a foliation defined by «, we
write v, (F) for the algebraic multiplicity of F and p, (F) for the Milnor number of
F at m. If (z,y) is a local coordinate system at m, where we write o« = Adx + Bdy,
then

U (F) := inf(v(A),v(B)) and pn,(F) = dimc

The Milnor number can be interpreted as the number of singular points near m in
a generic deformation of F. Let E : M — M be the blow-up with center m and F
the strict blow-up of F. Setting v = v,,(F), we have Noether’s formulas:

pn(F) =" =+ 1+ > pp(F)

pEE~1(m)

in the non-dicritical case and

pn(F) = +1° = w+2)+ Y pp(F)

pEE~(m)

in the dicritical case.

For instance, if F is non-dicritical and can be desingularized by one blow-up,
with singularities that are all of type (x), then F has (v + 1) singular points p;,
with gy, (F) = 1; we find that p,,(F) = v2, which can also be checked by using
Bezout’s theorem.

We see (whether we are in the dicritical cases or not) that if v, (F) > 1, then
all the Milnor numbers ,up(J;E ) are less than u,,(F). Hence, after finitely many
blow-ups, we reduce to singularities that each have algebraic multiplicity one.
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4.11. Theorem on reduction of singularities. Let M be a complex ana-
lytic manifold of dimension 2, F a foliation on M, and 0 a singular point of F.
Then there exists a morphism E : M' — M consisting of a finite sequence of point
blow-ups such that

(1) all the singularities of E~*(F) are simple;
(2) if m € E 1(0), then the set (E*(0),m)UT,,, where L'y, denotes the union
of the formal separatrices of E™' at m, is a divisor with normal crossings.

For example, (2) indicates that if m is nonsingular for £~"(F), then the leaf
L, through m is either contained in or transverse to (E~"(0), m).

Here is a sketch of the reduction of singularities of the foliation given by the
level sets of (y> + x3) /22, showing all the possible configurations. The strategy is
the same as in the resolution of the cuspidal cubic v (3.2).

To pass from the discussion of 4.10 to the proof of 4.11, it suffices to treat the
case of foliations F such that v,,(F) = 1. When the linear part a; of the 1-form «
defining F is diagonizable or of maximal rank, this is easy. The hard but edifying
case is the one where oy is nilpotent, i.e. of type ydy. We refer the reader to [32].

4.12. The Camacho-Sad theorem [8]. This states that every holomorphic
foliation at the origin in C* has a convergent separatriz.

When the singularity is simple, this is the Briot-Bouquet theorem. To fix our
ideas, we examine the foliations F that are reduced after one blow-up. It suffices
to study the non-dicritical case because the appearance of a dicritical case in a
reduction process ensures the existence of infinitely many separatrices. Let w define
F,v=vy(F), In,w = a,dz+b,dy, P,y1 = za, + yb,. Choose coordinates z and y
such that P,41(0,1) # 0. The strict blow-up @ of w is given (in the chart y = tz)
by

W= P,p1(1,t)dx + xb, (1, t)dt + = - ',

and the singularities of & are m; = (0,¢;), where the ¢; are the roots of P,41. At
a point m;, the linear part of &, which is given by

[P 1 (1,t5)(t — t;) + a]dx + xb, (1, t;)dt,

must be of type (%) or (x%). Suppose F does not have a convergent separatrix. Then
each singular point must be of type (*x) and, more precisely (Briot-Bouquet), we
must have b,(1,¢;) = 0 and P, ,(1,t;) # 0. Thus P,41(1,t) has v + 1 distinct
roots. This implies that b, = 0 and a, = 0, which is stupid.

The preceding discussion conceals a deep global argument. For each irreducible
component C' of the divisor E~*(0) associated with a resolution of a foliation F,
Camacho and Sad prove an index formula linking the Chern class of C' (a negative
integer that describes how C' = CP(1) is embedded in the manifold M') with a sum
of numerical invariants (essentially the \) at the singular points of E~'(F) on C,
invariants whose nonvanishing marks, in particular, the existence of a convergent
separatrix. A subtle combinatorial argument shows that there is a smooth point of
E '(0) at which this invariant is nonzero.
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4.12.1. Application. Consider a differential equation of type y" = f(y,y'),
where f is holomorphic or, more generally, meromorphic at (0,0); this type of
object is traditionally studied by introducing the variable z = y'. We obtain the
system

z
= f(y,2)

- 0 o . . .
describing the flow of the vector field Za_y + f(y, z)a, with which we associate the
foliation of the equation zdz — f(y, z)dy. If v = {P(y,z) = 0} is a separatrix given
by the Camacho-Sad theorem at the point under consideration, then the solutions
x + y(z) with initial condition (y(zo),z(xo)) on v satisfy P(y(x),y’'(z)) = 0.
This type of problem was a major concern in the work at the beginning of the
twentieth century on second-order equations (Painlevé, Gambier, Boutroux, et. al.
... ): knowing whether certain solutions are also solutions of first-order equations.
For example, Painlevé showed that no solution of the equation (I of Painlevé)
y" = 6y + x satisfies an equation P(y,y’) = 0, where P is any polynomial in
(y, z) (with coefficients that are analytic in the variable z). The study of equations
zdz — f(y, z)dy associated with second-order equations, where f is holomorphic,
was outlined in [19] and recently completed by R. Méziani in his thesis (Kenitra
1998).

4.12.2. Application to Hopf surfaces. A holomorphic foliation F of a Hopf sur-
face M always has a compact leaf. This can be done by hand, by listing the
Hopf surfaces and their foliations, but can be obtained by a direct application of
Camacho-Sad to the foliation 7#=1F at 0 € C?, where m : C* \ {0} — M is the
canonical projection and 7—1F is the extension of 7~'F to C2.

'
)
o

4.13. Dicritical foliations in the general sense (dimension 2). These
are the foliations that have infinitely many separatrices, which is equivalent, in
the notation of 4.11, to the fact that at least one branch of E~"(0) is transverse
to Eil(]:). The typical example of a dicritical foliation in the general sense is
given by the foliations associated with meromorphic functions f/g = constant,
ged(f,g) = 1. Dicritical foliations have hardly been studied; the reader may con-
sult M. Klughertz’s nice work [26], which describes foliations whose “reduction
tree” has the same properties as that of a foliation given by the level sets of a mero-
morphic function. Although they do not always have such a first integral, they are
topologically conjugate to a foliation that does.

4.14. Generalized curves [6]. By definition, these are the foliations F at
the origin in C? that are non-dicritical in the sense of 4.13 and such that all their
singularities, after reduction, are of type (x). These foliations are a priori very
reassuring; if f = fi--- fp is a reduced equation of the set of separatrices of F
(all separatrices are convergent in this case), then the reduction of singularities
of {f = 0} is a reduction for F. Moreover, the numerical invariants of f and F
coincide: po(F) = po(f) and vo(df) = vo(f) — 1 = vo(F). But one shouldn’t think
that the study of generalized curves is limited to a description of their separatrices.
We will return to this.

4.15. A typical approach. Henri Dulac proves in [20] that a foliation F at
the origin in C? of multiplicity v(F) that has at least v(F) + 2 separatrices has
infinitely many, i.e. is dicritical in the sense of 4.13. Following [17], we prove this
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result by induction on the integer N(F) = number of minimal blow-ups necessary
to reduce F. If N(F) = 0, there is nothing to prove because a simple foliation is
of order 1 and has at most two separatrices. Suppose the result has been proved
for those F' such that N(F') < N, and let F be such that N(F) = N; blow up F
by E: C? — C2. If F is dicritical, i.e. E~1(0) is generically transverse to E~!(F),
we immediately obtain infinitely many separatrices. Otherwise, let ¢;, i =1,...,p,
denote the singular points of E~!(F) on E~1(0), and let n; + 1, n; € NU {0},
denote the “number” of separatrices of E~!(F) at the point ¢; (there is at least
one: (E~1(0),t)).
The formulas 4.3.1 give the estimate
Vi (E"YF) + -+ v, (BEHF)) <v(F) + 1.

On the other hand,

Z n; > v(F)+2
by hypothesis. Hence there is a point ¢; for which

#{separatrices of (E~"(F,t;)} > v, (B~ (F)) + 2.

But clearly N(E~1(F,t;)) < N at t;, and we argue by induction.

5. Reduction of Singularities in Dimension 3
We would like to explain (without proof) the following statement [9]:

Let F be a germ of a foliation that is non-dicritical at the origin in C*. There
exist a smooth manifold M (F) and a proper morphism

E:M(F)— (C,0)

that induces an isomorphism from M(F)\ E *(Sing F) onto Sing F such that the
singularities of the strict blow-up E~'F are all simple. If m € E~"(Sing F), then
the set (E~'(Sing F),m) N T,,, where T,,, denotes the set of (formal) separatrices
of ET*(F) at m, is a divisor with normal crossings.

In particular, we have to make precise what we mean by dicritical and simple
singularities.

5.1. Dicriticality in dimension 3. There are several equivalent definitions.
It may be a good idea to return to dimension 2; a foliation F on (C?, 0) is dicritical in
the general sense if, for every sufficiently small polydisk B in which one represents F,
the set of leaves whose closure is an analytic curve passing through 0 has nonempty
interior. We adapt this definition to arbitrary dimension. Let the foliation F be
defined by w. An integral curve of F is a holomorphic curve I" such that I is
not contained in SingF and T' N Sing F # 0; if v : (C,0) — T parametrizes T’
(a curve in (C",0) can in fact be expanded in a Puiseux series), this means that
v*w = 0 and y(0) € Sing F. We will say that F is dicritical if the set covered by
the integral curves in a small polydisk in which our objects are represented has
nonempty interior.

For example, consider the foliation F given by

d d d
Wy = 1Yz (A—x+—y——z>, where A ¢ Q.
x Y z
The singular locus Sing F is the union of the three coordinate axes. The lines

t — (zo,t,at), a € C, xg € C, are integral curves and fill an open set. In contrast,
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the integral curves that pass only through 0 must lie in zyz = 0; thus, by themselves,
they do not fill an open set.

Dicriticality can be properly interpreted in terms of blow-ups; in dimension 3,
this says that F is dicritical if there exists a finite sequence

XOZ(C3,0)(F—1X1(—...(W—NXN,

where each 7; is either a point blow-up or the blow-up of a smooth curve contained
in the singular locus of F;_; = (m;_1 o -+ o)~ 'F and such that the exceptional
divisor of the last morphism is not a separatrix of Fy.

In the example of wy above, we blow up the z-axis; the exceptional divisor is
isomorphic to CP(1) x C and the blown-up foliation is transverse to it.

Although the Camacho-Sad theorem ensures the existence of separatrices in
dimension 2, we know that they need not exist in dimension 3 or higher. It is
customary to cite the following example, due to Jouanolou [25], which has no
separatrix:

w=(y"zr — 2" Ndy + (z™y — 2™ )dz + ("2 — y™)da.

This example is “projective”, i.e. it is the cone over a foliation of CP(2), and the
fact that it has no separatrix implies that “many” dicritical foliations in dimension
3 will not have separatrices.

5.2. Study of an example, or how to predict the terminal models
in a reduction of singularities. Let F be a foliation at the origin in C*, and
suppose we know that F has two smooth, transverse separatrices. This situation,
which occurs during a reduction, is produced, for instance, by two successive blow-
ups (where one comes up with two components of divisors), or as a consequence
of a result like that of Briot-Bouquet. Choose coordinates z,y,z such that the
separatrices are given by z = 0 and y = 0. Let F be given by w € Q'(C?,0), of
type

w = yadx + zbdy + rycdz, where a,b,c € O(C3,0).
An important invariant (the adapted order of F to the divisor zy = 0) is
r = inf(v(a),v(b),v(c)).

We assume it is zero and examine the different cases that can occur. If a(0) or b(0)
is nonzero, we can find a and 8 in O(C?,0) such that zyc = aya + Bzb; the vector

field
0 0 0

0z a&r Jy

is tangent to F (it annihilates w) and trivializes it. We say that F is of 2-dimensional
type; we view the reduction of singularities of such a foliation of 2-dimensional type
as being modeled on that of the foliation of C? given by Fy = F|.=o- The interesting
case occurs when a(0) = b(0) = 0 and ¢(0) # 0; we may assume that ¢ = 1. Consider
the vector fields

0 0
X =g "%
0 0

Since they are tangent to F, so is their Lie bracket. But [X,Y7], which is clearly
collinear with 9/0z, must annihilate w; thus [X,Y] = 0. Hence, returning to the
idea of 4.7 and considering X and Y as derivations of the ring O(C?), we can put
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the vector fields X and Y simultaneously into Jordan form. This means, grosso
modo, that we can write X = Xg + Xy, Y = Y5 + Yy, where Xg and Ys are
formal vector fields that can be chosen to be linear in an ad hoc formal coordinate
system, X and Yy are nilpotent, and all these vector fields commute pairwise.
Suppose, for instance, that the nilpotent fields Xy, Yn are zero (which happens
when the 1-jets of X and Y have no common “resonances”); we can then find formal
coordinates, denoted by x1, x2, z3, such that

X:XSZZAmai and Y =Ys=> pimip—

Li

0
Ox;’

Note that F is given in these coordinates by x;z2x3 E?Zl a;dzx;[z;, a logarithmic
1-form.

Now consider the situation where the eigenvalues \; and pu; of the Xg and Yg
satisfy a common, and essentially a single, resonance. What we mean by this is
that the monoid {(my,m2,m3) € N* : S-m;\; = > m;u; = 0} is generated by an
element (p},p5,p5). Now we can write

XS:ZAiwiaimi: YS:ZNimiai

i

0
XN = ZA xfla:gzx?)xia—xi

where the 4; and B; are in O(C,0).
Doing manipulations as in 4.7, we find a formal coordinate system in which F
is defined by a 1-form of type

p1+1_po+1 p3+1 dwl 1
€T €T X g ; +d| ———= a; € C
! 2 3 < by x’l’lx’2’2m§3 ’ ¢ ’

(2

0
, YN—ZB mflxgzm?) 5.0
(3

where (p1,p2,p3) is an integer multiple of (pf, ph, p}).

The complete treatment of this type of examples leads one to think that simple
singularities in dimension 3 (in fact, arbitrary dimension) are natural generaliza-
tions of the normal forms given in 4.7. Here is the description.

5.3. Simple singularities in dimension 3 and higher. We say that F has
a simple singularity at the origin in C" if, up to formal diffeomorphism, F is defined

by a 1-form of type
N
. dz; 1
i1
L (205 ()
i=1 1 T

where (z1,...,,) is a coordinate system for C* and p; e N, \; e C, i =1,...,r
satisfy the following relations:

(1) |Nil +ps #0fori=1,...,1;

(2) if p; =pj =0and i # j, then A\;/\; ¢ Qo.
Asin dimension 2, the problem of analytic classification of simple singularities arises
naturally. It is essentially a question of understanding whether the conjugating dif-
feomorphism above can be taken to be convergent and, if not, of understanding the
nature of the divergence. There are grounds here for small divisors and large resur-
gences. Although, to my knowledge, the details are not written down anywhere,
one knows how to go about this classification in almost all cases (cf. some examples
later on).
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5.4. Dimension 3; simple singularities of 2-dimensional type. This is
the case where the integer r is 2. We recover (formal) models of simple singularities
in dimension 2. The singular locus is smooth, and the foliation has a product
structure in the sense that a nonsingular vector field is tangent to it (by Artin or
by flatness, we may assume that this field is convergent). Thus we get the properties
of simple singularities in dimension 2; in particular, there are one (case of a saddle
node xC) or two smooth, transverse separatrices.

5.5. Dimension 3; simple singularities of 3-dimensional type. This is
the case where r = 3; the singular locus of a formal model is the three coordinate
axes, and the separatrices are the three coordinate planes. Thus, for a simple
singularity F of this type (r = 3), Sing F is holomorphically diffeomorphic to the
three coordinate axes, and we will in fact assume that it is equal to these three axes.
At a smooth point of Sing F, i.e. away from 0, we see that F is of 2-dimensional
type. We do not necessarily get three holomorphic separatrices for F; we will study
the zoology of the different cases.

5.5.1. Logarithmic simple singularities of formal type.

T1T2%3 (Z /\zx—> CN ¢ Qo.
i i

At each smooth point of Sing F there are two transverse, smooth separatrices
(Briot-Bouquet + product structure). These separatrices (defined away from the
big singular point 0) merge in a reasonable way at 0, and at the origin F has
three smooth, transverse separatrices that are holomorphically diffeomorphic to
the planes zyz = 0.

As in 5.2, the foliation is given by a local holomorphic action of C2 on C? that
is formally linearizable (often—depending on the values of A—holomorphically).

5.5.2. (Resonant) simple singularities of formal type.

dx; 1
+1_patl_pa+l i
Pl gpetlyps (Z i +d (a:pl o >> ,

Li 1

where py -p2-p3 # 0. Here, at each smooth point of the singular locus, the singularity
is resonant and of 2-dimensional type, and again there are two separatrices; as in
5.5.1, they merge to give rise to three separatrices diffeomorphic to zyz = 0.

5.5.3. (Resonant saddle-node) simple singularities of formal type.

dz 1
m§)1+1 ;D2+1 <Z/\ _Z+d<W>> , )\3.p1.p2#0_
1 +2

Here the three branches of the singular locus do not play the same role. Along the
x3-axis, away from 0, we have a resonant singularity of 2-dimensional type; along
the other two axes, we have a saddle-node singularity of 2-dimensional type. The
two holomorphic local separatrices along the xs-axis “pass through” the origin to
give rise to two smooth separatrices diffeomorphic to 1 - z2 = 0. In contrast, along
the other two axes we can have a transverse divergent formal separatrix that merges
with the formal separatrix given by the normal form.

Figure 5
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5.5.4. (Logarithmic saddle-node) simple singularities of formal type.
dz; 1
m€1+1$2[]}3 (Z >\Z xiz + d <1-T>> 5 p # 0, )\2 . )\3 # 0

1
As always, the singular locus is holomorphically diffeomorphic to the three axes; at
a point # 0 on the x;-axis, we have a logarithmic singularity of 2-dimensional type
with, in particular, two convergent separatrices. Along the other two axes, we again
have a saddle-node singularity of 2-dimensional type, with the same conclusion as
in 5.5.3.

5.6. What to remember. Every simple foliation is defined by a holomorphic
action of C?; indeed, the reader can check that we are in the situation studied in 5.2.
Moreover, we note the following phenomenon. Let m be a singular point near the
singularity 0; let v be an integral curve of F passing through m and not contained
in Sing F. Then 7 is in exactly one smooth, convergent separatrix of F at 0.

6. Application to the Existence of Separatrices

Let F be a non-dicritical foliation at the origin in C*>. Then there exists a
surface S C (C3,0) that is a separatriz.

The idea of the proof is as follows (cf. [9]). We consider a reduction of singu-
larities E : M (F) — (C?,0) of F, then a general plane section i : (C?,0) — (C?,0).
The Camacho-Sad theorem guarantees the existence of at least one separatrix for
i~1F. This produces an integral curve v for F; the strict transform 5 of v by E
cuts the exceptional divisor associated with E in a singular point of F = E~!(F).
All the singularities are simple, so according to 5.6 the “saturation” of F under ¥
produces a hypersurface S C M (F) that is a global separatrix of F. Since E is
proper, S = E(S) is a suitable holomorphic surface.

In fact, it has been proved that a foliation F that is non-dicritical at the origin
in C has the following property: every integral curve v of F is contained in a
separatrix (and there are finitely many separatrices).

REMARK 1. One can also “extend” the formal integral curves to formal sepa-
ratrices by proceeding more or less as above (but with unwieldy formalism). This
is also true for a formal foliation.

REMARK 2. It is not easy to predict whether a foliation is dicritical or not, and
the results above should be understood as a dichotomy: either there are separatri-
ces, or there is an abundance of holomorphic integral curves that go to the singular
locus.

7. Dimension > 3

The statement of §6 remains true in dimension > 3: a foliation F that is
non-dicritical at the origin in C* has a hypersurface that is a separatriz. But the
strategy of the proof in [12] is conceptually different from that above: the theorem
in dimension 3 is actually used in a deep way. One proceeds by first cutting C* by
a generic C?, in which the statement of §6 produces a separatrix S, then studying
F in a neighborhood of an annulus A x {0}, A C C?, and showing that there is
a generic equireduction property over A. This makes it possible to “push” S onto
the thickening A x B, where B C C* 2 is a small polydisk, to obtain a separatrix
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XiaxB of Flaxp. Then HY(A x B,0*) = 0 because n > 3; hence X|axp is defined
by an equation F' = 0, F' € O(A x B). One extends F' to a neighborhood of 0 € C"
by Cauchy’s formula, which finally produces a separatrix X for F. Note that this
argument cannot be used to pass directly from dimension 2 to dimension 3 because
if n = 3, A will be an annulus in C?, and here H'(A x B, 0*) will be nontrivial!

8. What Can We Do with the Reduction of Singularities?

Although the reduction of singularities contains practically all the interesting
information about a function f € O(C",0), at least the topological information (for
instance, in dimension 2, for a family f; we have the equivalences pu(f) constant <
equireducibility < constant topological type), nothing of the kind is true for general
foliations. Here, reduction of singularities is only the skeleton around which the
leaves will be organized. In what follows, we introduce some classical notions that
will let us describe part of this organization.

8.1. Holonomy of a foliation in a neighborhood of an invariant hy-
persurface: case of a component of the exceptional divisor. Consider the
following situation: F is a nonsingular foliation on the complex manifold V', and
X C V is a closed, smooth hypersurface that is invariant under F. Suppose V is a
locally trivial fibration (with disk fibers) over X. Since X is a leaf of F, the other
leaves of F are transverse to the fibers, at least near X. In particular, if ¥ is a
fiber, to = X NX, a a loop in X with base point ¢y, and z a point in X sufficiently
near ty, we can lift the loop « into the leaf through z, to a path with endpoints z
and h,(z) that lies in ¥. The transformation h, : X¢, = Xt,, 2 = ha(2), defines a
germ of a diffeomorphism ¥;, = (C,0) that depends only on the homotopy class of
«; thus we have a representation (called the holonomy representation)

Hol : m (X, to) — lef(z,to) = lef((C, 0)
that contains all “the structure of F in a neighborhood of X”.

8.2. A word on the classification of simple singularities. Let F be a
singularity at the origin in C?, which we will assume to be of type (). By Briot
and Bouquet, F has two separatrices, which we take to be the coordinate axes. We
can define F by a vector field

0 0

where
B € O(C%,0), B(0)=0
and
A=XF) ¢ Qxo-
After fiddling with a homothety, we may assume that B € O(U), where U is a
neighborhood of a polydisk D(0,71) x D(0,rz), with 71 > 1. The flow ¢; of X can
be written as
be(z,y) = (etz, eMyW (z,y, 1)), with W (z,y,0) = 1.

The holonomy of the separatrix y = 0, i.e. the generator of Hol(m ({y = 0}\ {0}, %)),
computed relative to the vertical fibration on the transversal x = 1, is precisely the
second component of

¢2i7r(may) = (1,62i7r)‘yW(1,y,2’L.7T)) = (lvh]:(y))'
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The diffeomorphism hr(y) = e*™y + --- is well defined for sufficiently small y.
Mattei-Moussu [32] and Martinet-Ramis [31] have proved that if F and F', as
above, have holonomies hx and hz that are conjugate, then F and F' are holo-
morphically conjugate if the linear invariants A(F) and A(F') coincide. The idea
is to push a conjugating map defined along the transversal z = 1 along the leaves
while preserving the vertical fibration. From another point of view, the work of
Ecalle, Martinet, Ramis, Pérez Marco, and Yoccoz shows that every diffeomor-
phism h € Diff(C,0) can be realized as a holonomy diffeomorphism h = h(F) of a
foliation F as above [37]. Thus the classification of foliations F of type (x) reduces
to that of diffeomorphisms of (C,0). The classification of foliations of type (xx) is
more complex.

A special case is the one where J has a formal first integral f € O(C?,0); this
cannot occur unless A = —p/q € Q<o. From f o = f, it follows in particular that
f ((bgmq) = f . An elementary calculation shows that ¢s;ry = Idce; hence the real
flow s = ¢2ir¢s factors through an action of S, which can be linearized by averaging
(Bochner-Cartan theorem). In particular, the foliation F can be linearized; i.e., in

0 0
ad hoc coordinates one can choose X (F) to be of type — — Bya—. But this linear
q

or

vector field has first integral 2Py?, and thus F has a convergent first integral. Note
that the periodicity of the flow, ¢2irq = Idc2, is equivalent to that of the holonomy,

h(F)? = Idc. Note also that every formal first integral f of the linear foliation
Frie gy% factors through zPy?: f= Z(:rpyq), = @((C, 0),

provided that p and ¢ have been chosen to be relatively prime.

associated with z

8.3. Simple singularities in dimension 3 (or higher). Simple singular-
ities of 3-dimensional type are confluences of singularities of 2-dimensional type
along the axes of singularity. The confluence occurs with constraints (relations
among the three types of singularity, due to the integrability that rigidifies the
situation). For instance, the classification of resonant singularities of type 5.5.2 is
often more elementary than in dimension 2 [31] and, when it is not, it is a byprod-
uct of that in dimension 2. More precisely, let F be a foliation at the origin in
(C?,0) that is formally conjugate to the foliation F, \ given by

Qp,)\ — x§)1+1m1202+1 p3+1 |:Z>\

e +d<ﬁ>} , MEC PeN.
Ty Ty T3
We may assume that the planes x; = 0 are separatrices of the foliation F and that
its singularities are exactly the coordinate axes. We can compute the holonomy
of {z3 = 0} \ Sing F, whose Poincaré group is Z x Z. The group G C Diff(C, 0),
the image of this holonomy representation, is an abelian group (f,g) with two
generators, and it is not too hard to determine that it is formally conjugate to the
holonomy group G, x of {z3 = 0} for Fp »; since Gp, can be explicitly computed,
we note that if the A;/\; are not all rational, then Gp, » is isomorphic to Z X Z.
It turns out (Ecalle-Valiron, cf. [19]) that a subgroup of Diff(C,0) containing a
noncyclic subgroup of elements tangent to the identity (h'(0) = 1) is rigid [19];
this is the case here, and it means that G is in fact holomorphically conjugate to
Gp r. Asin dimension 2, the conjugation at the level of holonomy implies that F is
conjugate to Fp . This generic rigidity phenomenon does not appear in dimension
2; it can be interpreted in terms of “confluence”. When the A;/\; are rational
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(phenomenon of double resonance), one can show that the moduli space of
Fpr :={F formally conjugate to F, x, modulo holomorphic conjugacy}

factors in a canonical way through a moduli space of resonant foliations in dimension
2. These results, worked out by Ecalle and myself in a correspondence that is
already old, have now been written up by J. Mozo of the University of Valladolid.
In principle, the classification of all simple singularities (at least in dimension 3)
can be found there.

8.4. Frobenius; the formal step. At present, all proofs of the theorem
of Malgrange that was stated in 2.1 ([28], [32]) pass through a formal step (the
Godbillon-Vey algorithm), which we briefly describe. The starting point is a folia-
tion F defined by wp such that codim Sing F > 3. Integrability (wo A dwo = 0) and
the de Rham-Saito lemma produce a 1-form w; € Q'(C",0) such that dwy = woAw;.
Differentiating this gives wo Adw; = 0. Repeating the process, we construct wy such
that dw; = wy A ws; by induction, we find w; € Q(C",0) such that

k
dwj = Wo A Wi41 + Z < ) Wi AN Wj—k41-
1<k<j

Following an idea of J. Martinet, we add a variable ¢ and consider the 1-form
W=dt+Y ;0 t'w;/il on C* x C. By construction, dw = A dw/dt; hence w is inte-
grable and nonsingular at the origin. By the ordinary Frobenius theorem, we find a
submersion F(z,t) and a unit G(z,t) such that w = GdF; setting Go(x) = G(z,0)
and Fy(z) = F(z,0), we obtain wg = GodFp by restriction to ¢ = 0. The catch is
that there is no guarantee that @ is convergent (and one can produce some really
divergent @’s), so F' and G, hence Fy and Gg are only formal! Malgrange’s approach
consists of showing via analysis the existence of an @ as above that converges.

8.5. The singular Frobenius theorem by restriction, reduction of sin-
gularities, and extension. With the notation of 8.4, note that the hypothe-
sis codim Sing F > 3 implies that the series Fy is irreducible; if it were not, say
Fy = F - F, then the intersection {F; = F> = 0} would be a branch of Sing F of
codimension exactly 2. Consider a general embedding 7 : (C?,0) — (C",0), and
let w = 7*wp, F = Fy or. This time, F' may not be irreducible, but it is certainly
reduced: F = fy--- fp, with ged(f1,..., fp) = 1. We proceed to the reduction of
singularities of F defined by w; it is also that of F. We will find a point m in
the exceptional divisor E~'(0) (notation of 4.11) at which E~'(0) is smooth and
E~'(F) is singular: m is the point through which there is a branch of the separatrix
{F = 0} (note that it is necessarily convergent). At m we can apply the argument
of 8.2 to E~'(F): because there is a formal first integral, we can linearize E~"(F)
at m and find a first integral of monomial type zPy?, with {z =0} = (E '(0),m).

By the remark at the end of §8.2, (FoE, m) factors through the monomial zPy?:
(FoE,m)= A(a:pyq), where 7 € @((C, 0); since F' is reduced, it must be true that
¢ =1 and 0 is a formal diffeomorphism. The formal series Z_I(E) is a first integral
of F and coincides somewhere in the reduction of singularities with the convergent
series zPy. An innocuous upper bound argument shows that 1 (Fo) converges [32];
the same argument shows that Z_l(FO) is actually convergent. This is certainly a
convergent first integral of the initial foliation F in C". Note particularly that the
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approach above does not recover the statements of Mattei-Moussu, which are more
general than those of Malgrange.

We can see in this sketch of a proof that an argument using general plane
sections allows us to reduce to dimension 2; it turns out that all we need is the
reduction of singularities in dimension 2. This is true in most problems about
codimension-one foliations, at least in essentially algebraic or analytic problems.
In contrast, as has already been pointed out, the construction of separatrices in
dimensions greater than 3 requires a way of resolving singularities that does not
reduce to dimension 2.

8.6. General philosophy. Let F be a foliation at the origin in C*, n < 3,
that has a reduction of singularities E : M (F) — (C",0). Let D; be a non-dicritical
component of the exceptional divisor associated with E. When the divisor D;
appears in the reduction process, it is accompanied by the construction of a fibration
(one blows up a point or a smooth curve). These data can be modified because one
blows up points or curves in D; but will keep a fibered neighborhood U; of D;, minus
a neighborhood of Singﬂfl(]:) N D;, and can apply the preceding construction.
Thus we construct the holonomy of the component D;, which describes the local
organization of E~'(F) near the smooth part of D;. Clearly, we must glue this
information together. This is done via the singular locus. The local description of
the singularities is not always sufficient. In dimension 3, we can take advantage
of the fact that, after reduction along the smooth part of the singular locus, the
foliation is locally a product. If we draw a loop a with base point m in the smooth
part of Sing E™'(F), we can follow the local trivializations over a to construct a
singular holonomy: this time we are dealing with a diffeomorphism ¢, € Diff(T,m),
where T is a smooth surface transverse to £~ ' (F) at m that preserves the restriction
E! (F)r- This leads naturally to studying the group of diffeomorphisms of (C2,0)
that preserves a reduced foliation of (C?,0); this work is in progress (Berthier,
Cerveau, Méziani, preprint Rennes 1998).

8.7. The case of dimension 2. We will (as always) be satisfied with studying

those generalized curves that are reduced after one blow-up E : C2 — C2. Each
singular point m; € E~!(0) contributes a transverse separatrix to the divisor.
Consider small disks A; C E~1(0) centered at the m;’s, and let V be the open set
V =71(E~1(0)\UA;), where 7 is the projection defined in 3.1. Working with V" as
in 8.1, we define the projective holonomy Hol : 7 (E~'(0)\V (m;), mo) — Diff(C, 0).
Let v be the algebraic multiplicity of F; we assume implicitly that v > 2 because a
generalized curve of multiplicity 1 is desingularized either in zero blow-ups or after
at least two blow-ups (exercise). We have the following results:

— If v = 2, then F is completely determined, up to diffeomorphism, by the
representation Hol and the data of the 1-jet wsy of the defining form w for F.

— If v = 3, the same statement as above, adding “and the cross ratios of the
mi”.

— If v > 4, then the projective holonomy gives the topological type of F.

In the first two cases, one exploits the fact that the separatrices, which are
smooth and transverse to the divisor E~1(0) after blow-up, can be “put” in the
fibers of w. Thus the arguments used in the reduced case (conjugacy of the
holonomies implies conjugacy of the foliations) can be globalized here.
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A great deal of other qualitative information about such F can be obtained by
using our knowledge of the subgroups of Diff(C,0). For instance, Nakai’s theorem
[34], which describes the pseudo-orbits of a nonsolvable subgroup G C Diff(C, 0)
allows us to show the density (generic in the Krull topology) of the distinct leaves
of the separatrices.

8.8. First integrals. Still in the setting of generalized curves F that are
reduced after one blow-up in C?, we can derive the following facts from the results
in [32] and [17]:

— If the projective holonomy group of F is finite, then F has a holomorphic

first integral f € O(C?,0).
— If it is linearizable, then F has a first integral of type > A;log fi, fi €
O(C?,0).

IDEA OF THE PROOF. We choose a transversal (C,0) (a Hopf fiber), based at
a nonsingular point, to the exceptional divisor; we may, and do, suppose that the
image of Hol is a linear group (finite in the first case) (uiz,... , unz); such a group
leaves the logarithmic form dz/z = 7 invariant. This allows us to push 7o along
the leaves to define a meromorphic closed form 77 away from the separatrices of
E~1(F) such that F is given by 7; it remains to extend 77 meromorphically along
the separatrices, which is innocuous. One can check that the form 7 such that
E*n =1 is of type > A\df;/ fi, and is suitable. O

Clearly, one can also work in dimension 2 with foliations whose desingulariza-
tions require more than one blow-up, but this is rather hard: [17], [32], [36], [41],
[27], [33], ...

8.9. Dimension > 3; extension. In constructing first integrals, one often
goes by way of dimension 2, as in 8.5; for example, we have [18]:

— If F is a holomorphic foliation at the origin in C" and i : (C%,0) — (C",0)
is a generic embedding, then F has an integrating factor if and only if i ~1F
does.

One direction is obvious. The other is not hard: if w defines F and fy is such
that d(dwo/ fo) = 0, wp = i*w, then fy can be extended to an integrating factor fof
w defined on A x B, where A is an annulus in C? and B is a polydisk in C*2 (we
have identified i here with the embedding C2 — C2 x C*~2) such that f oi = fo;
this is a consequence of the classical Frobenius theorem applied to the points of
A x {0}. Then f can be extended to a neighborhood of 0 by Cauchy’s formula.

8.10. Dimension > 3; a brief return to 2.2. Let F be defined on (C?,0)
by w = w,u + - -+, where

Wy _ s dpl ) N
Py _;Al?f ZAW(R)_L

and the P; have normal crossings; by Deligne-Fulton, the holonomy of the divisor
D = E~1(0) is abelian (finite if s = 1). If one of the ); is not real, for instance,
then it will be linearizable. This will be preserved if we cut by a plane section
i:(C?,0) — (C?,0); by conjugating 8.8 and 8.9 we obtain the result stated in 2.2:
F is defined by a logarithmic form fy --- fs > Nidfi/ fi-
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9. Foliations of C* That Are Reduced by Point Blow-ups; Foliations
with Very Connected Singular Locus

We say that a foliation JF that is non-dicritical at the origin in C? is reduced by
point blow-up if, as in dimension 2, we can construct a reduction E : M (F) — C?
by a finite composition of point blow-ups:

C =X &8 Xy — - &5 Xy = M(F).

Let m be a smooth point of Sing Fn; we know that, at m, Fn has a product
structure “G,, x C’, where G,, is a reduced 2-dimensional foliation. We will say that
F (or Fn) is of generalized Poincaré type if each G, is given by Ay zdy + Aaydz+- - -,

The following statement (cf. [10]) generalizes the one presented in 8.10:

If F can be desingularized by point blow-ups into Fn, which is of generalized
Poincaré type, then F is given by a logarithmic form fi--- fp > Nidfi/ fi.

The proof is by induction on N; the statement is true for N = 0 (description
of simple singularities). Note that the foliation F; = Efl]: satisfies the hypothesis
at each of its singular points, which are reduced after fewer than N blow-ups; in
particular, at each 1m; we can construct f,,, € O(E;'(C?), m;) such that Efw/ fo,
is closed, where w defines F. By the Poincaré hypothesis, f,, is unique up to
scalar multiplication, and the df.,,/fm, are well defined and glue together into a
meromorphic closed form 7j, defined in a neighborhood of E;'(0) N Sing F; (the
tangent cone to F); a little topological argument lets us extend 7jp to 7], which is
meromorphic in a neighborhood of Efl(O). We then verify that Efn = 7 is of type
n = df/f, where f € O(C?,0) and w/f. The rest of the proof is easy. Note that
we have made no direct use of holonomy arguments.

The foliations that can be reduced by point blow-ups are part of a more general
class that consists of foliations with very connected singular locus. These are the
foliations for which there exists a reduction

G =Xo <& Xy +— ... &5 Xnv = M(F)

such that, at each singular point m; of F; = (m; 0---om ) 1(F), the singular locus
of (mn o+ omiy1) L(Fi,m;) is connected. This notion can depend on the choice
of blow-up strategy. For instance, we can consider the foliation associated in C?
with f(z,y,2) = zy(z —y). We can reduce this by blowing up the z-axis, and
the singular locus consists of three disjoint lines. But we can also reduce it by
following the procedure sketched in 3.7, which produces a connected singular locus.
An interesting example is that of the foliations F with separatrix a homogeneous
cone P(z,y,z) = 0. Now we reduce P = 0 by following the procedure of 3.7, and
require that F also be reduced; this almost always occurs for those F that are
the natural extension of generalized curves (no saddle node “transversely”). If we
impose a generalized Poincaré-type condition, then F will again be defined by a
logarithmic form fi --- f, > \idfi/ fi; if we relax this condition by requiring only
that, along the terminal singular locus, there be no holomorphic first integrals at
the smooth points, then we will construct a formal integrating factor for 7. These
hypotheses are not innocuous, and at present there is no generic description (in the
Krull topology) of the singular holomorphic foliations in dimension 3.
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10. Other Applications

The results described above in the complex setting can of course be applied
elsewhere. The reader may consult the work of Cano-Lion-Moussu, for instance,
which describes the boundaries of Pfaffian hypersurfaces. Here is a problem that
one should be able to attack by resolution of singularities. It is known that a formal
series in n real variables is the infinite jet of a C'*° function at the origin in R™; this
is a theorem of Borel. This result extends to ideals (Tougeron): an ideal T of the
ring of formal series is the infinite jet of a closed ideal of the ring of C'*° functions
at the origin in R®. The question is the following: Is an integrable 1-form & the
infinite jet of an integrable C*° 1-form? Since the reduction of singularities can be
applied to formal foliations, at least in dimension 3, and the desired result is clear
for (real) simple singularities, we can in fact think about constructing, by gluing, a
C foliation that is defined on the reduction manifold of & and whose infinite jet
at each point is prescribed by the pullback of @. We mention a related question: Is
a Lie algebra of formal vector fields the infinite jet of a C™ field?

Blow-up techniques and the study of holonomy groups allow us, in the general
setting, to approach problems of computing relative cohomology (a la Malgrange),
the description of periodic solutions of (real) differential equations, etc. I mentioned
in 4.12 an application to second-order differential equations. This perspective does
not seem to me to have been sufficiently exploited, and I would like to expand on
it a bit.

In general, singular vector fields—except in dimension 2 (Camacho-Sad)—have
no invariant hypersurfaces, or even invariant analytic curves passing through the
singularity. Such an example is constructed in dimension 3 by Gomez-Mont and
Luengo in [23]. Nor is there any global reduction strategy for singularities of vector
fields in dimension 3 (cf. [12] for a local strategy and [4] for a special case). Let
X be a holomorphic vector field with an isolated singularity at the origin in C3. I
claim that if X has no invariant analytic curve passing through 0, then it is not
tangent to a codimension-one holomorphic foliation F. If it were, we would have
Sing F = {0} (because if v were a one-dimensional branch of Sing F, it would have
to be invariant under X). Let w = 23 a;dz; define F, and let X = 3 X;0/0x;; the
relation 0 = w(X) = )" X;a; and the fact that X has an isolated singularity allow us
to use de Rham-Saito to write w = i xi,(volume), where Y is a holomorphic vector
field (for this, we identify X with a 1-form and w with a 2-form, a manipulation
peculiar to dimension 3). But an argument with minors shows that Singw must
have codimension exactly 2. However, certain special vector fields that appear
in specific problems are naturally tangent to a codimension-one foliation. As an
example (still in dimension 3), we consider a holomorphic vector field X with Jordan
decomposition X = Xg + Xy, where Xg is semisimple, Xy is nilpotent, and
[Xs,Xn] = 0. When both Xg and Xy are nonzero and noncollinear, we recover
a foliation defined by w = ix,ix, (volume), which, admittedly is only formal in
general. Of course, pairs of commuting vector fields generalize this example, and
the existence of invariant hypersurfaces (the non-dicritical case) will be useful in
classifying them.

Now consider a non-dicritical foliation F given by the meromorphic 1-form
w = adz + bdy + dz. If F is the meromorphic function defined by F(z,y,z) =
—(a(z,y,2) + zb(x,y, 2)), consider the differential equation

y' = F(z,y,y").



38 DOMINIQUE CERVEAU

(This is singular when F' is truly meromorphic.)

There exists a surface S with equation H(z,y, z) = 0 such that, if (zo, yo, yy =
20) is an initial condition on S, then the solution & — y(z) realizing this initial
condition stays on S: H (z,y(x),y’(z)) = 0. Indeed, the vector field

0 0 0
Z = — +z—+ F 'Y a0
ox Zay (2,9 Z)c’)z
which is naturally associated with our second-order equation y” = F by setting

y' = z, is tangent to the foliation JF, which has a separatrix S.

Of course, we’ve cheated a bit here because, given an equation y"" = F, there
is no reasonable procedure for deciding whether or not it can be “embedded” in a
non-dicritical foliation F, though the discussion above seems to suggest otherwise.
But when one consults the classic books (Ince [24], for example), one is surprised
to encounter this phenomenon abnormally often. Along these lines, consider, for
instance, the second-order equation z-y"” = A(x,y,y’), where A is holomorphic and
not divisible by x in a neighborhood of the origin in C?, and vanishes there. As
before, we associate with it the meromorphic vector field

0 o AJd

or oy T w0z

which is collinear with

0 0 0
X—m% —l—xza—y +A£'

X has nontrivial Jordan decomposition X = Xg+ Xy (i-e., X5 and X are nonzero
and noncollinear), which produces a (formal) foliation w = ix.ix, (volume), the
situation encountered above. It seems to me that it would be worthwhile to carry
out a systematic study, local as well as global, of the vector fields contained in a
codimension-one holomorphic foliation. On the subject of second-order equations,
the reader may consult the monograph of Georges Reeb, one of the fathers of the
theory of foliations, whose “wishes” were realised by Okamoto in [35], and Ince’s
book [24], which, of all the references, is still ... the most modern.
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RIEMANN SURFACE LAMINATIONS

by

Etienne Ghys

Abstract: The theory of foliations has its main roots in the qualitative study
of ordinary differential equations in the complex domain. In recent years the
concept of Riemann surface laminations has seemed to be central to the theory
of holomorphic dynamical systems. These laminations are generalized foliations,
in the sense that the ambient space is not necessarily a manifold. The leaves are
(typically noncompact) Riemann surfaces. In this article we describe this type of
object, emphasizing the analogy with compact Riemann surfaces. In particular,
we study the conformal type of the leaves and the existence of meromorphic
functions.

1. Introduction

Riemann surface laminations are foliated generalizations of the classical Rie-
mann surfaces one encounters in many geometric or dynamical situations. The
goal of this article is to describe some general results concerning these laminations,
centering the discussion around some fundamental theorems on Riemann surfaces:

Topological classification. A compact Riemann surface is determined up to
homeomorphism by its genus.

Uniformization theorem. Every simply connected Riemann surface is biholo-
morphically equivalent to the complex projective line CP', the complex affine line
C, or the unit disk .

Riemann’s theorem. Every Riemann surface has nonconstant meromorphic func-
tions.

To what extent do these basic theorems generalize to Riemann surface lamina-
tions? We will see that there are some encouraging positive results but the general
situation is not so simple ...

This article contains few proofs and, except in Section 7, no new results. We
draw our inspiration from many papers, which we will cite as we go along, and we
have not hesitated to copy from our own work, adapting parts of [23]. This text
does not differ much from that distributed to participants in the session “Etat de la
recherche” of January 1997; we have added 6.4, following an idea of Rick Kenyon,
and corrected some statements that were sometimes a bit “optimistic” in the first
version.
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2. Examples

We begin with the definition of Riemann surface laminations. Consider a com-
pact metric space M, covered by open sets U; (which we will call distinguished open
sets) and equipped with homeomorphisms h; from U; onto D x T;, where D is the
unit disk in C and 7; is some topological space. We say that these open sets define
an atlas of the structure of a Riemann surface lamination on M if the transition
functions hij = hj o h;l, on their domain of definition, have the form

hij(z,t) = (fij(2,),7i(t)),

where f;;(2,t) depends holomorphically on the variable z and continuously on the
variable t. Two atlases are equivalent if their union is an atlas. A Riemann surface
lamination is a compact space M equipped with an equivalence class £ of atlases.

We call a set of the form h; ' (Dx {t}) a plaque. The leaves of L are the smallest
connected sets such that any plaque that intersects one of them lies completely
inside it.

We sometimes write just “lamination” instead of “Riemann surface lamina-
tion”.

A subset F' of M is called saturated if it is a union of leaves. If F is closed,
then the restriction of the lamination to F' defines a lamination structure on F.

A closed set F' contained in M is called a minimal set if it is saturated,
nonempty, and minimal among all closed sets with these properties. This amounts
to saying that every leaf contained in F' is dense in F. By Zorn’s lemma, the closure
of each leaf contains a minimal set. A lamination is called minimal if all its leaves
are dense; that is, if the whole ambient space M is a minimal set.

We will now give a series of examples. We begin by observing that a connected
compact Riemann surface is a lamination that has an atlas for which all the trans-
verse spaces T; reduce to points and that has only one leaf. The problem discussed
in this article is whether this “trivial example” is sufficiently general.

2.1. Two-dimensional foliations. In this case, M is a compact differen-
tiable manifold, and the leaves are given by the integral surfaces of an orientable,
completely integrable, two-dimensional plane field. We will explain how the choice
of a Riemannian metric on M allows us to consider this foliation as a Riemann
surface lamination.

To do this, we recall a local theorem first proved by Gauss in the real-analytic
case, then progressively improved up to relatively weak regularity hypotheses. Let
g be a Riemannian metric on a connected oriented surface S. In a neighborhood
of each point p of S we can introduce a system of isothermal coordinates; that is,
a conformal diffeomorphism ¢ from a neighborhood of p onto an open set in the
Euclidean plane. Of course, two such diffeomorphisms ¢ differ by a holomorphic
diffeomorphism of an open set in the Euclidean plane; that is, by a holomorphic
diffeomorphism of an open subset of C (if ¢ is required to preserve orientation). In
other words, every Riemannian metric on an oriented surface determines a Riemann
surface structure in a natural way. This theorem depends continuously on the
metric; that is, if we have a family of Riemannian metrics on a surface that depend
continuously on a parameter, then the isothermal coordinates depend continuously
on this parameter [3]. Hence, from a Riemannian metric on the tangent bundle
to the leaves of an oriented two-dimensional foliation, one naturally defines the
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structure of a Riemann surface lamination on this foliation: it suffices to apply the
theorem cited above to the distinguished open sets for the foliation.

There are many methods of constructing foliations. We refer the reader to
[24, 30] for examples and will be satisfied here with a few constructions, in order
to illustrate the complexity of the situation.

Among the simplest examples are linear foliations on tori. Starting with the
foliation of R?® whose leaves are planes parallel to a given plane II, we pass to
the quotient by integer translations (the quotient by Z3), which clearly preserve
this foliation. On the quotient torus, we obtain a foliation whose leaves are all
homeomorphic to planes if I is “totally irrational”.

A very general method of constructing examples is suspension. Let S be a
manifold (which will be a compact Riemann surface in our case), and let T be a
compact manifold. Consider a homomorphism A from the fundamental group I' of
S to the group of homeomorphisms of 7. The group I' operates diagonally on the
product S x T of the universal cover of S and T, and preserves the trivial foliation
whose leaves are the sets S x {x}. Passing to the quotient, we obtain a manifold
M that fibers over S with fibers homeomorphic to T', equipped with a foliation F
transverse to this fibration. The leaves of this foliation are covers of the base space
S and intersect the fibers T' in the orbits of the group h(T).

For example, choose S to be a compact Riemann surface of genus 2, and let
7 be a surjection from its fundamental group onto a free group on two generators,
L(a, 8). By choosing two homeomorphisms a and b of T, one defines a homomor-
phism from L(a, ) to the group of homeomorphisms of T' that sends « to a and
B to b. Composing with 7 gives a homomorphism h from I' to the group of home-
omorphisms of 7', and hence a foliation on a bundle over S. We make this more
specific by choosing T' to be the projective line CP' and « and 8 to be two linear
fractional transformations that generate a Kleinian group G C PSL(2,C) whose
limit set A C CP! is a Cantor set. In this case the suspension is a complex surface
M that fibers over S with fibers CP!, and whose structure group reduces to G. It
follows from Kodaira’s embedding theorem that M is an algebraic surface; that is, it
can be holomorphically embedded in CPY (see [27]). Moreover, to the G-invariant
subset A of CP! there corresponds a compact set X C M that is saturated by the
foliation and intersects each fiber in a Cantor set. This compact set X, equipped
with the restriction £ of F, is a typical example of a minimal Riemann surface
lamination on a space that is not a manifold. (Minimality follows from the fact
that all the orbits of the limit set of a Kleinian group are dense in the limit set.)
There exists an embedding of X in CP?V that is continuous and holomorphic when
restricted to the leaves. By choosing a generic projection, one can even show that
X can be embedded in CP?. To summarize: there exist minimal laminations that
do not reduce to a Riemann surface and are holomorphically embedded in CP3.

Of course, if we project this last example generically to a projective plane
CP?, the leaves will not necessarily be embedded; they will only be immersed,
and we do not obtain a lamination in CP2. We do not know whether there exist
minimal laminations that are holomorphically embedded in CP? and do not reduce
to a compact Riemann surface. This question is a strong version of the question
of existence of an “exceptional minimal set” for polynomial differential equations
in C?, which we recall here because it is one of the motivations for the systematic
study of laminations. Let P and @ be relatively prime polynomials in two complex
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variables, and consider the following ordinary differential equation in C?:

dx dy

Away from the common zeros of P and (@, this equation defines a holomorphic
foliation whose leaves are the complex solutions. When we compactify C? to obtain
CP?, it is not hard to see that this foliation extends to a holomorphic foliation of
CP? away from finitely many singularities. The question (called the “exceptional
minimal set problem”) is whether the closure of every leaf contains a singular point.
This problem has been studied extensively and seems to be difficult (see [6, 8, 9]); a
positive answer would give a complex analogue of the classical Poincaré-Bendixson
theorem, which describes the limit sets of vector fields on the real 2-sphere. If
a leaf of a polynomial foliation of CP? did not accumulate at any singularity, its
closure would be an embedded lamination, and one could consider a minimal sub-
lamination £ contained in this closure. It is easy to check that £ cannot reduce
to a compact Riemann surface: indeed, the normal bundle of a leaf of a foliation
has a flat connection given by the holonomy, and it follows that if a foliation of
the preceding type in CP? had a compact leaf, then that leaf would be a Riemann
surface embedded in CP? and with zero self-intersection. But of course this contra-
dicts Bezout’s theorem. Thus, the question of the existence of a nontrivial minimal
lamination embedded in CP? is stronger than that of an “exceptional minimal set”.

Here is another example of a two-dimensional foliation, due to M. Hirsch. In
a solid torus D x S', we remove the interior of a solid torus, a neighborhood of a
two-strand braid, for instance (see the figure). We thus obtain a three-dimensional
manifold whose boundary consists of two tori. This manifold is naturally foliated
by “pairs of pants”, that is, spheres minus three disks. This foliation is transverse
to the boundary and, on each boundary component, induces a trivial foliation,
that is, a foliation of the torus whose leaves are circles. Gluing together the two
connected components of the boundary by a suitable diffeomorphism, we obtain
a closed 3-manifold equipped with a two-dimensional foliation. The leaves of this
foliation are all homeomorphic to a sphere minus a Cantor set, except for those
leaves that correspond to the “periodic points” of the gluing, which have nonzero
genus.

2.2. One-dimensional dynamical systems. Here we describe a method,
due to D. Sullivan, that allows us to associate laminations with certain dynamical
systems in such a way that the dynamics are conjugate if and only if the associated
laminations are isomorphic [44].

This idea of encoding dynamics by a geometric object is not new, and we start
with an elementary example. Let f : (C,0) — (C,0) be a germ of a contracting
holomorphic diffeomorphism. We assign to it the elliptic curve E that is the quotient
of a sufficiently small deleted neighborhood of the origin by the action of f. This
complex curve F is marked, in the sense that it has a distinguished homotopy
class (the one that corresponds to f). It is very easy to check that two germs are
holomorphically conjugate if and only if the marked elliptic curves are isomorphic.
One can proceed in the same way in higher dimensions; thus one can show that
studying the dynamics of germs of contracting biholomorphisms is equivalent to
studying the geometry of Hopf manifolds [29]. Along these lines, the reader may



RIEMANN SURFACE LAMINATIONS 45

consult [32, 33], which study certain local holomorphic dynamical systems by way
of naturally associated complex manifolds.

To explain D. Sullivan’s construction, we begin by observing that the oriented
affine line R can be regarded in a natural way as the boundary of the Poincaré upper
half-plane H = {z € C: Sz > 0}; that is, every affine map x € R — az + b € R,
with a > 0, extends to a biholomorphism z € H — az + b € H. Another way
of expressing the same thing is to say that the set of nonzero, positively oriented
vectors on an oriented affine line can be naturally identified with the Poincaré upper
half-plane.

Now suppose we have a diffeomorphism f of a compact manifold V' that pre-
serves an oriented foliation F of real dimension 1, with the following properties:

(1) f expands the leaves of F.
This means that if V is equipped with a suitable Riemannian metric, the
differential of f expands the tangent vectors to F.

(2) f acts affinely on the leaves of F.
This means that we assume the leaves are identified with affine lines and
these affine structures are preserved by f. We will discuss this condition
later and will see that it actually follows from condition (1).

We can consider the space V' consisting of those tangent vectors to F that are
nonzero and positively oriented. This is a noncompact manifold, equipped with
a foliation F' by copies of the half-plane H and on which the differential f acts
holomorphically (and isometrically) on the leaves. Condition (1) implies that the
action of f on V' is free and proper, so the quotient of V' by f is a compact manifold
V equipped with a foliation (and hence a lamination) F whose leaves are quotients
of H. More precisely, we consider two cases. If a leaf of F is not preserved by any
power of f, then the corresponding leaf of F is isomorphic to H. On the other
hand, if a leaf of F is preserved by f™ (and by no f¢ with 0 < i < n), then f™ acts
on this leaf as a homothety of ratio A > 1, and the corresponding leaf of F is the
quotient of H by this homothety: it is a cylinder that is isomorphic, as a Riemann
surface, to the annulus of modulus log(\) defined by {w € C: 1 < |Jw| < A}

We will not show in detail how condition (1) implies condition (2). A Riemann-
ian metric on V' lets us parametrize the leaves of F by arc length; in particular, this
defines an affine structure on the leaves of F. Of course, this structure does not
satisfy condition (2) because f does not necessarily multiply the lengths of tangent
vectors to F by a constant. The idea is to iterate the affine structure by powers of
f and show that this sequence of structures converges to an affine structure satis-
fying (2). Concretely, defining an affine structure on a one-dimensional manifold is
essentially equivalent to giving a definition of barycenter, for instance of the mid-
point of two points. If a and b are two points on the same leaf of F, consider the
points f™(c,), where ¢, is the midpoint of the segment joining f~"(a) to f~"(b),
calculated with the auxiliary Riemannian metric. One shows that ¢, converges,
then defines the midpoint of the segment [a, b] to be the limit of this sequence; this
defines the desired invariant affine structure. The expansion condition clearly plays
a significant role in the proof of convergence. For the precise proof and the required
differentiability hypotheses, we refer the reader to [34].

We still have to describe the situations where such diffeomorphisms that expand
a one-dimensional foliation arise. The most obvious case, and the most studied, is



46 ETIENNE GHYS

that of an Anosov diffeomorphism with a one-dimensional invariant foliation. Many
examples can be obtained in this way.

The case studied by D. Sullivan, however, is different. Consider an expanding
map ¢ : S' = S! from the circle to itself; that is, a map with derivative greater
than 1 everywhere. Of course, such a map cannot be a diffeomorphism; it is a
covering of the circle. To turn the non-invertible dynamics of g into invertible
dynamics, we consider its natural extension, which is defined as follows. Let V'
be the set of sequences (z,)nez of points on the circle that are orbits of g; that
is, such that g(z,) = xps+1. This space, equipped with the topology induced by
the product topology, is a compact space that has a natural bijection f defined
by f((zn)) = ((zn+1)) and a projection 7 : (z,) € V +— zo € St. The fibers
of m are Cantor sets, and clearly g om = m o f. There exists a “one-dimensional
foliation” on V that is invariant and expanded by f. Indeed, being given a point
in V amounts to being given a point zy on the circle and choosing a sequence of
successive preimages under g. If the point o moves continuously on the circle, we
can follow these choices of preimages by continuity and thus describe a curve in V.
These curves are the leaves of the foliation F. We can also define these leaves as
the unstable manifolds of f: two points a, b in V are in the same leaf of F if and
only if the distance between f~"(a) and f~"(b) approaches 0 as n approaches +oo.

We are in exactly the same situation as before except that V' is not a manifold.
But we can carry out the same construction: we produce an invariant affine struc-
ture on the leaves of F, then construct a Riemann surface lamination as before. In
summary, we have associated a Riemann surface lamination with every expanding
map g of the circle.

To each periodic point x of g with period n, there corresponds a leaf of this
lamination, which is an annulus with modulus log((¢g™)'(z)). Since the modulus
of an annulus is a holomorphic invariant, we see that if two expanding maps of
the circle define isomorphic laminations, then the derivatives of these two maps
are the same at their periodic points. This observation underlies D. Sullivan’s
theorem, according to which two expanding maps of the circle of class C" (r > 2) are
conjugate by a diffeomorphism of class C" if and only if their associated laminations
are holomorphically equivalent.

We can also proceed in a similar way with polynomial maps of one complex
variable. More generally, let U be a simply connected open set in C, and let
F : U — F(U) be a proper holomorphic map such that U C F(U). For such
polynomial-like maps (see [16]), the filled Julia set K is defined to be the intersection
of the F~™(U) for n > 0. It is a compact set, which we will assume to be connected.
We then consider the set V' of sequences of points (z,)n>0 € U \ K such that
F(zp) = zp—1 for all n > 0. We agree to call two sequences z, and z| equivalent
if there exists an integer k such that z, = 2, for all sufficiently large n. The
quotient V' of V' by this equivalence relation is a compact set equipped with a
Riemann surface lamination. The leaves of this lamination are obtained by moving
zp in F(U) \ K and following the choices of the preimages z, by continuity. This
allows us to associate a Riemann surface lamination with every polynomial-like
map.

In fact, these last two constructions are related. We can send the complement
of K to the complement of the unit disk in C by conformal representation. The
map F' conjugated by this conformal representation is then defined in an annulus
of the form {w € C:1 < |w| < 1+¢} (¢ > 0) and extends by Schwarz’s reflection
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principle to the unit circle. It can be shown that this extension is an expanding
map of the circle and that the lamination associated with the latter is isomorphic
to the lamination associated with F. For details and a great deal of supplementary
information, see [34].

2.3. Polygonal tilings, Tits buildings. Here we describe other examples of
laminations that arise naturally as abstract objects, not embedded in manifolds—in
other words, for which the transverse spaces T; are not manifolds.

Consider finitely many polygons P;, P, ..., Py in the Euclidean plane R?. Sup-
pose these polygons tile the plane by translation; that is, R? can be covered by tiles
that are translates of the P;, in such a way that two of these translates that are not
disjoint intersect along a union of sides. Let P be the set of tilings of this type. We
emphasize that two tilings that differ by a translation of R? are a priori different:
two tilings are considered to be identical only if they have the same tiles. We will
turn P into a compact metric space equipped with a natural lamination. To illus-
trate the situation, we begin with the trivial case, where there is only one polygon:
the unit square in R?. Up to translation, there is only one possible tiling, which is
preserved by integer translations. Thus the space P is identified in this case with
R? /Z?; that is, with the two-dimensional torus corresponding to the position of the
origin with respect to the grid of the tiling.

More generally, if II; and IIy denote two tilings in P, we denote by R(II;,1I5)
the largest nonnegative real number R (possibly infinite) such that the two tilings
IT; and II, coincide when restricted to the disk centered at the origin and with
radius R. If v € R? and II € P, we denote by II + v the tiling obtained by starting
with IT and translating by the vector v. Let €, &’ be (small) positive real numbers, N
a (large) positive real number, and II a tiling in P. We denote by U, .- 4(II) C P
the set of II' in P such that there exist vectors v,v’ with ||v|| < e, ||V'|| < €,
and R(IT 4+ v,II' + v") > N. These sets form a basis for a topology that turns
P into a (metrizable) compact space. Two tilings are close if, by translations by
small vectors, they can be made to coincide on a large disk centered at the origin.
Compactness follows from a classical diagonal argument and the fact that in a disk
of given radius there are only finitely many possibilities for a tiling of which one
of the vertices is a prescribed point. Details are left to the reader. Of course, R?
acts by translations on the compact set P. The orbits define a lamination structure
on P. The leaves are Euclidean planes, cylinders, or tori; they are in one-to-one
correspondence with the types of tilings, where we now identify two tilings if they
differ by a translation. The compact orbits correspond to periodic tilings and, in
general, the stabilizer of a point in P is the symmetry group of this tiling; that is,
the group of translations that preserve it. Thus we have associated with the family
of polygons P, ..., Py a lamination whose dynamical structure precisely describes
the space of tilings considered.

There are now many examples of games with polygons P; that tile the plane
by translations but do not tile it periodically. The most famous examples are those
of Penrose; we refer the reader to [28] for a description of these tilings. Here is
an example (taken from [37]) of three “polyominoes” that tile the plane but not
periodically. They thus provide examples of laminations without compact leaves.
(To be precise, we would have to add to these three polygons their images under
the isometries (z,y) — (tz, ty) or (ty, £z).)

Figure 2
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We can proceed in a similar way if we are interested in tilings whose tiles are
not translates of P; but where rigid motions of the Euclidean plane R? are also
permitted. The definition of distance between tilings will then have to be modified:
two tilings will be close if they can be made to coincide on a large disk centered at
the origin by moving them by isometries close to the identity. The corresponding
space P is again compact, and equipped with an action by the group of motions:
the orbits of the translation group then define a lamination on P.

We can also modify the construction by starting with polygons P; in the
Poincaré disk D equipped with its hyperbolic metric. We then use the group of
orientation-preserving isometries of I, which is isomorphic to PSL(2,R) (since
the stabilizer of a point is isomorphic to SO(2)). We obtain a compact space
P, equipped with an action of PSL(2, R) whose orbits are three-dimensional. The
action of the subgroup SO(2) is free except in the very special case where certain
tilings are invariant under certain rotations. In the quotient space by this SO(2) ac-
tion, we obtain a lamination with three-dimensional leaves; the leaf passing through
a tiling II is the quotient of I by the group of isometries of D that preserve the
tiling. The situation where the SO(2) action is not free is similar to that of the
quotient, of a Riemann surface by a finite group, which leads, as is well known, to
“orbifolds”; their theory is very similar to that of classical Riemann surfaces.

In the same vein, one can construct interesting examples of laminations by
starting with certain Tits buildings. We refer the reader to [7] for an excellent
exposition of the general theory, and will be satisfied here with an example. A Tits
building of type Eg is a special two-dimensional simplicial complex; its faces are
triangles called chambers, which are equipped with a flat metric that turns them
into equilateral triangles with sides of length 1. We consider (the geometric realiza-
tion of) this complex as a metric space for which the distance between two points is
the length of the shortest path joining them. Moreover, certain subcomplexes are
distinguished and called apartments; each is isomorphic to a Euclidean plane tiled
with equilateral triangles. The conditions imposed on these apartments and cham-
bers are as follows: First, any two chambers lie in a common apartment. Moreover,
if two apartments have nonempty intersection, there must exist an isomorphism of
the union that permutes the two apartments and is the identity on the intersec-
tion. One of the main justifications for the study of these objects is that they play
the role of symmetric spaces for p-adic Lie groups: for every prime number p, for
instance, there exists a building I, of type A, on which the group SL(3,Q,) acts
naturally. Every edge is incident to p + 1 chambers, and the local situation in a
neighborhood of a vertex is described as follows: there is an edge issuing from a
vertex for each point and each line of the projective plane on the finite field F,,
and two such edges are in the same chamber if they correspond to a point and a
line that are incident. Every subgroup I' of SL(3,Q,) acts on I,, and there are
many interesting arithmetic examples of groups I' for which the action is free and
the quotient I,/T" is a finite polyhedron P. The study of these finite quotients is
similar to that of quotients of the Poincaré disk by arithmetic Fuchsian groups.
Here is a very concrete example of such a quotient P for p = 2, taken from [5]. In
Figure 3, edges with the same number are to be identified in threes; the resulting
polyhedron P has one vertex, 7 faces, and 7 edges.
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We show how to associate a lamination with such a situation. Let E be the
space of isometric embeddings of the Euclidean plane R? in I, (the image is then an
apartment), equipped with the topology of uniform convergence on compact sets.
The group I' acts naturally on E by composition in the range, and the quotient is
a compact space E. The additive group R? acts by translations in the domain; its
orbits define a lamination on E. The dynamical study of these laminations is very
interesting: it can be shown, for instance, that the union of the compact leaves is
dense in F.

In the same way, one can construct many laminations whose foliations are not
flat surfaces but surfaces with curvature —1. It suffices to consider buildings of
another type, whose apartments are now Poincaré disks tiled by hyperbolic poly-
gons. Many examples can be found in the work of M. Gromov, N. Benakli, and F.
Haglund.

Here is another example of a lamination obtained by the same sort of process.
Let S be a compact Riemann surface. One can consider the family of finite coverings
(étales) of S. This forms a natural projective system: the projective limit of this
system is a lamination £g on a compact space Mg. Concretely, a point m of Mg
is a map that assigns to each finite coverign 7 : ¥ — S a point m(n) of ¥ in such a
way that if p : £’ — ¥ is a finite covering, then p(m(7op)) = m(n). Understanding
the dynamics of such a lamination is not easy ...

We will not elaborate on these examples. Our only goal is to emphasize that
the study of laminations need not be limited to “classical” dynamical systems.

3. Transverse Measures, Harmonic Measures

3.1. Fundamental class. We fix a lamination £ on a compact space M and
an atlas h; : U; = D x T; whose transition functions are of the form h;;(z,t) =
(fij(2,1),735(t))-

With the goal of trying to generalize the theory of Riemann surfaces, we are
led to introduce differential forms on M.

In a distinguished open set of the type D x T', we say that a differential k-form
is a family of real differential k-forms (of class C*°, say) on the plaques C x {t}
that depends continuously on the transverse parameter ¢ (in the C* topology).

A differential k-form on the lamination £ is given by differential k-forms on
the distinguished open sets of an atlas that are compatible on the intersections
in an obvious sense. We denote by A¥(L) the space of k-forms on £; this is a
topological vector space. The differentiation operator along the leaves defines an
operator d : A¥(L) — A¥T1(L). Differential forms of class C", for 0 < r < oo, are
defined similarly.

The complex structure on the leaves can be exploited in exactly the same way
to define spaces AP?(L) of (complex-valued) forms of type (p, ¢) and operators 9,
0 from AP(L) to APTL4(L) and AP9+1 (L), respectively.

More generally, it is not hard to extend most of the classical definitions con-
cerning Riemann surfaces: in each situation, one considers objects that depend
continuously on the point and are smooth or holomorphic in the leaves, depending
on the cases considered. The derivatives along the leaves are always assumed to be
continuous on M.
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The situation most closely related to that of Riemann surfaces is that in which
there is a fundamental class: here one is concerned with being able to integrate a 2-
form. A 2-form is called (strictly) positive if it is (strictly) positive when restricted
to the leaves.

DEFINITION 3.1. A foliation cycle for the lamination £ is a continuous linear
operator I : A2(£) — R that is strictly positive on the strictly positive forms and
zero on the exact forms.

The most obvious example is that given by the current of integration on a
compact leaf. This concept was introduced in a more general form by D. Sullivan
in [43] and is a continuation of work of many authors, among them J. Plante
[39]. The important result is that these foliation cycles correspond to invariant
transverse measures.

DEFINITION 3.2. An invariant transverse measure p for the lamination £ is
defined by giving a positive measure u; on each transverse space T; such that, if
B C T; is a Borel set contained in the domain of definition of v;;, then p;(B) =

15 (735 (B))

It is not hard to see that being given an invariant transverse measure for an
atlas produces another such measure for any equivalent atlas.

Let p be an invariant transverse measure and f; a partition of unity subordinate
to the cover by the U; (it is easy to check the existence of such partitions of unity,
smooth on the leaves). Let w be a 2-form on £. If the support of w is contained in a
distinguished open set U;, we may consider w as a form on D x T;. Integrating over
the plaques D x {t}, we obtain a function on 7} that can in turn be integrated with
respect to the measure u;. We then write I(w) for the resulting number. When w
is not supported in an open set U;, we decompose w into », fiw and define I(w) to
be the sum Y, I(fiw). This defines a linear operator I : A?(£) — R, and it is easy
to check that this is independent of the choices made (atlas, partition of unity) and
that it is indeed a foliation cycle (i.e., it is zero on the exact forms). Thus every
invariant transverse measure gives rise to a foliation cycle. It turns out that the
converse is also true, so the two points of view are equivalent [43].

One of the major difficulties of this approach is that very many laminations
have no foliation cycles. The Hahn-Banach theorem implies:

PROPOSITION 3.3 ([43]). The following conditions are equivalent:

— The lamination L has no foliation cycle.
— There exists an exact 2-form that is strictly positive.

In practice, it is easier to check whether there exists an invariant transverse
measure. We encourage the reader to determine, among the examples we have
described, which are the laminations that have invariant transverse measures. For
a lamination defined by the suspension of a homomorphism from the fundamental
group of a surface to the group of homeomorphisms of the compact set T, the
existence of an invariant transverse measure is equivalent to the existence of a
finite measure on T that is invariant under the group action. Thus we see that in
general the existence of a foliation cycle is a very strong hypothesis.

However, there are geometric hypotheses on the leaves —related to their growth,
for instance—that imply the existence of a foliation cycle (see [26, 39]).
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A more general notion than that of foliation cycles is that of harmonic currents,
introduced by L. Garnett in a more general context [19]. Note first that /=109
is a real operator from A°(L) to A?(L) whose image is contained in the space of
exact forms.

DEFINITION 3.4. A (foliation) harmonic current is a linear operator I : A%(L) —
R that is continuous, strictly positive on strictly positive forms, and zero on forms
of the type v/—100u, for every function u that is continuous on M and smooth on
the leaves.

A foliation cycle is clearly a harmonic current. The advantage of this notion
comes from the following result:

PROPOSITION 3.5 ([19]). Every lamination has at least one harmonic current.

Proor. By the Hahn-Banach theorem, what must be shown is that a strictly
positive 2-form w cannot be a limit of forms of type v/—100u,. Thus it suffices to
show that v/—190u cannot be strictly positive. Since M is compact, v attains its
maximum at some point . The restriction of u to the leaf through z also attains its
maximum at x, and v/—190u is therefore less than or equal to zero at this point (in
local coordinates x++/—1y, we have /—100u = 1/2(0%u/0x>+0%*u/0y?)dzdy). O

A less canonical way of defining these harmonic currents consists of choosing a
Hermitian metric on the tangent bundle to £. This defines an area element along
the leaves and thus allows us to identify A?(L£) with the space of functions on M.
Hence the current I defines an element of the dual of the space of functions on
M, and the positivity condition shows that I extends to the space of continuous
functions; that is, we have a positive measure p on M. From this point of view, the
harmonicity condition on the measure p can be expressed as follows. The integral
J Audp is zero for every smooth function u on M, where A denotes the Laplacian
along the leaves for the chosen Hermitian metric. For this reason we will often speak
of a harmonic measure, even if this assumes a non-canonical choice of a Hermitian
metric along the leaves.

The local nature of harmonic currents is easy to describe [19]. Consider a
harmonic current I and its restriction to a distinguished open set U; ~ D x T;.
There exist a probability measure v; on T; and a function ¢; : D x T; — Rt that,
for v;-almost every point ¢ in T3, is defined and harmonic on the whole plaque
D x {t}, such that if w is a 2-form with support in U;, then

rw= [ | ( / » @w) avih)

This local expression for I is not unique. However, if we have two local expressions
using two systems v;, ¢; and v}, ¢!, then there exists a function ¢; : T; — Rf,
defined v;-almost everywhere, such that

vi=06" v bz, t) = 6i(t)gi(2,t).
It follows that the harmonic functions ¢;(z, t) defined on the plaques are compatible
on the intersections of the plaques, up to a multiplicative constant, and this allows
us to define positive harmonic functions (E on the universal cover of almost every
leaf (in fact, on an abelian cover).
Harmonic currents that are foliation cycles are characterized by the fact that
the functions ¢;(z,t) are independent of the variable z; in other words, q~5 is a
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constant. Since every positive harmonic function on C is constant, we obtain the
following corollary:

COROLLARY 3.6. Let p be a harmonic measure for a lamination. If the uni-
versal cover of p-almost every leaf is conformally equivalent to C, then u is in fact
a foliation cycle.

3.2. The ergodic theorem, the topological type of leaves. As an ap-
plication of the notion of harmonic measure, we briefly describe an invariant of a
lamination that is analogous to the genus of a Riemann surface. It is clear that
classifying laminations up to homeomorphism is not reasonable. For instance, a
theorem of J. Cantwell and L. Conlon states that for every connected noncompact
surface L and every compact 3-manifold, there is a two-dimensional foliation on
M one of whose leaves is homeomorphic to L [11]. Note that there exists an un-
countable family of homeomorphism types of noncompact surfaces ... On the other
hand, the more modest attempt to study the topology of almost all the leaves, with
respect to a harmonic measure, yields the following theorem:

THEOREM 3.7 ([22]). Let (M, L) be a lamination and i a harmonic measure.
Then, for p-almost every point x in M, the leaf of L that passes through x is either
a compact Riemann surface or homeomorphic to one of the following sixz surfaces:

(1) the plane,
(2) the plane with infinitely many handles attached (the “Loch Ness monster”),
(3) the cylinder,
(4) the cylinder to which are attached infinitely many handles that accumulate
at the two ends (“Jacob’s ladder”),
(5) the sphere minus a Cantor set,
(6) the sphere minus a Cantor set, to which are attached infinitely many handles
that accumulate at all the ends.

We give the idea of a special case rather than going into the details of the
proof. This will let us show how being given a harmonic measure makes possible
an ergodic study of laminations.

Let L be a Riemannian manifold, z € L a base point, and Q,(L) the set of
continuous maps «y from Rt to L such that «(0) = z. If we use the heat kernel on the
manifold L, the theory of Brownian motion lets us construct a natural probability
measure w,, called the Wiener measure, on Q,(L).

This construction can be applied, in particular, to the leaf L, of the lamination
L that passes through the point z of M. The union Q of the Q,(L,) is the space of
continuous maps from RT to M that have image contained in a leaf. Given a finite
measure p on M, we can integrate all these measures w, to produce a measure
on ). To be precise, if B is a Borel set in {2, we let

A(B) = /M we (B N Qy(Ly))dp.

The advantage of this space (Q is that it is endowed with dynamics: if 7 > 0 and
v € Q, weset S-(y)(s) = v(s+7). These transformations S; of €2 form a semigroup,
ie. Syy4r, =S 0855, and it is easy to show that S, preserves 7t if and only if p
is harmonic. To summarize: a harmonic measure for a lamination leads to a one-
parameter semigroup of transformations that preserve a finite measure to which one
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can apply the classical methods of ergodic theory—Birkhoff’s ergodic theorem, for
instance:

THEOREM 3.8. Let u be a harmonic measure for a lamination (M, L) equipped
with a Hermitian metric. Let B be a Borel subset of M. Then, for u-almost every
point x of M and w,-almost every path v of Q. (L), the limit

1
l(z,v) = lim —m{r € [0,t] : v(¢t) € B}
t—oo t
exists. Here m denotes Lebesgue measure. Moreover, there exists a measurable
function £ : M — R, constant on the leaves of (M, L), such that {(z) = €(x,~) for
p-almost every x and w,-almost every . Finally, [ ¢(z)du = u(B).

To illustrate the use of the ergodic theorem, we will show that there is no
lamination (M, L) all of whose leaves are homeomorphic to a sphere minus three
points. Of course, this is a very special case of Theorem 3.7. In fact, to simplify
the situation further, we also assume that all the leaves have constant curvature
—1. We will discuss this hypothesis in Subsection 5.2 and will see that it is in fact
innocuous.

On a surface L homeomorphic to a sphere minus three points, there are three
homotopy classes of simple closed curves that are not homotopic to a point. If a
Riemann surface with negative curvature is a leaf of a lamination, it is complete,
and each of these homotopy classes contains a unique closed geodesic. Indeed, in
a lamination, a sufficiently short closed curve contained in a leaf is contained in
a plaque; hence it is homotopic to a point in this leaf. The three geodesics of L
bound a compact domain ¢(L) C L, the “convex core” of L.

Now suppose there exists a lamination all of whose leaves are of this type, and
consider the union B of the convex cores of all the leaves. It is not hard to see that B
is a Borel set, so the ergodic theorem for some harmonic measure p can be applied
to B. The measure p(B) is certainly nonzero because, by the local description
of harmonic measures, a Borel set of measure zero intersects almost every leaf in
a Borel set of zero area (with respect to the area element of the leaves). The
ergodic theorem implies that for y-almost every point z and w,-almost every path
v : R* — L,, the average time spent by 7 in the core ¢(L,) exists and is nonzero.
It is intuitively clear, and easy to prove, that this is impossible: for w,-almost every
path v : Rt — L,, the path v instead approaches infinity in L,, and in particular
the average time spent in ¢(L;) is zero. This is the desired contradiction.

There are more elementary proofs of the fact that there is no lamination all
of whose leaves are homeomorphic to spheres minus three points. We sketched
this one, however, because it is essentially the same idea that makes the proof of
Theorem 3.7 work: one shows that an analogue of the convex core can be defined
for every surface that is not one of the six described above.

J. Cantwell and L. Conlon have very recently obtained a topological analogue of
Theorem 3.7 (see [12]). They show, in particular, that for every minimal lamination
(M, L) there exists a dense G5 set X C M that is a union of leaves that are
homeomorphic to one of the six leaves described in Theorem 3.7.

Figure 5
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4. The Gauss-Bonnet and Riemann-Roch Theorems

4.1. Some counterexamples. It is tempting to try to generalize the co-
homological formalism and theorems like those of de Rham, Gauss-Bonnet, and
Riemann-Roch to laminations. We begin by giving some examples showing that
things aren’t so simple!

First we consider the de Rham cohomology H*(L), obtained by taking the
quotient of the closed forms by the exact forms. The difficulty here is that this
space may be infinite-dimensional even in the most elementary cases.

The simplest example where this phenomenon occurs is that of a product lam-
ination S X T of a Riemann surface S by a compact space T'. A closed (resp. exact)
form on £ is just a continuous map from 7' to the space of closed (resp. exact) forms
on S. Hence the de Rham cohomology of £ is the (generally infinite-dimensional)
space of continuous maps from 7' to the de Rham cohomology of S.

This example may seem artificial because it does not correspond to a minimal
lamination. The example of linear foliations on tori is more convincing. We do no
more than sketch it because it is now well known (see also [17] for other examples
of computations). Consider the torus T? = R?/Z?, which has fundamental group
generated by two commuting elements a and b, and let h be the homomorphism
from this group to the group of diffeomorphisms of the circle R/Z that sends a and
b to rotations through angles o and 3, respectively. The foliation £ obtained by
suspension is linear on the torus T®. The circle R/Z can be regarded as embedded
in T3, transverse to the foliation. If z is a point of R/Z and we lift a loop homotopic
to a (resp. b) in the leaves, with the point x as origin, then the endpoint of the
path a, (resp. b,) thus obtained is x + « (resp.  + ). We assume that a and 3
are numbers that are linearly independent over Q, so that all the leaves of £ are
dense and homeomorphic to planes.

We evaluate the first cohomology group H'(L). Let w be a closed 1-form.
The integral of w along a, (resp. b,) defines a continuous function A (resp. B):
R/Z — R. Since w is closed,

(1) A(x) + B(z + a) = B(z) + A(z + B).

If w is the differential of a function f : T? — R, then the restriction F of f to the
fiber R/Z over the base point in T? satisfies

(2) A(z) = F(z + o) — F(x), B(z) = F(x + ) — F(x).

Conversely, it is easy to prove that H!(L) is isomorphic to the space of pairs of
functions A, B satisfying (1) modulo those of the form (2). It is then natural to
expand A, B, and F in Fourier series:

A(z) = Z an exp(2v/—1mnx), B(x) = Z by exp(2v/—1mnz)

F(z) = Z fn exp(2v/—1mnz).

Condition (1) can be written as
(3) an(1 —exp(2v/—17pn)) = by (1 — exp(2v/—1man)).
Relation (2) becomes

(4) an = (exp(2v/=1mna) — 1) fn, by = (exp(2V=17nB) — 1) f,.
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Thus, for a pair A, B to correspond to a coboundary, ag and by must be zero.
Conversely, if ag and by are zero, we can use formula (4) to compute the f,, in two
ways, which are compatible by (3).

fn = an(exp(2v/—1mna) — 1)1 = by (exp(2v/—17nB) — 1)L

However, the Fourier series with coefficients f,, may diverge even if the Fourier series
with coefficients a,, and b,, converge. This is the well-known phenomenon of small
divisors. If a (or 8) does not satisfy a diophantine condition, (exp(2y/—1mna) —1)
may be small for values of n that are not too large ... Thus we see that the space of
pairs A, B for which the Fourier series of coefficients f,, converges may have infinite
codimension.

By a suitable choice of a and 3, we can obtain examples for which H!(F)
is infinite-dimensional. Note moreover that H'(F) is not Hausdorff as a quotient
topological vector space. A priori, we could just as well have defined the cohomology
H' (L) by using less regular differential forms, which (for instance) would depend
only measurably on the point in the transverse direction. This would indeed change
the group H'(F) but would not eliminate the fact that the dimension could be
infinite.

In connection with this, the Teichmiiller space of a lamination may be infinite-
dimensional. To give some meaning to this last assertion, we make the following
definitions. A quasiconformal homeomorphism f : M — M is a homeomorphism
that preserves each leaf of £ and induces a (uniformly) quasiconformal homeo-
morphism on it [2]. The Teichmiiller space of the lamination (M, L) is the space
T(M,F) of quasiconformal homeomorphisms f, where we identify f; and fo if
fiof, ! is holomorphic on the leaves and homotopic to the identity by a homotopy
that consists of quasiconformal homeomorphisms preserving each leaf.

Consider a product lamination S x S!, where S is a Riemann surface that
is not the sphere. The Teichmiiller space of this lamination is clearly the space
of continuous maps from S! to the Teichmiiller space of S. It is thus infinite-
dimensional, but the lamination is not minimal.

A far more interesting example of such a situation is given by Sullivan’s con-
struction, which was described in 2.2. We have seen that every expanding map ¢
of the circle has a corresponding lamination £,. It is not hard to check that all
these laminations associated with maps g of the same topological degree are qua-
siconformally equivalent, and we have pointed out that they are holomorphically
equivalent only if the corresponding maps g are differentiably conjugate. But the
space of conjugacy classes of expanding maps of the circle with a given degree is
infinite-dimensional. Indeed, an expanding map of the circle has infinitely many
periodic points; if we fix finitely many of them, then we can arbitrarily prescribe
the derivatives (> 1) at these points.

4.2. The index theorem. We will state the index theorem of A. Connes for
foliations, restricting on the one hand to Riemann surface laminations and on the
other to the case where there exists a foliation cycle. For the general theory, the
reader is referred to [13, 14].

Fix a lamination (M, L) equipped with a foliation cycle u, which we will also
think of as an invariant transverse measure. Choose a Hermitian metric along the
leaves. Fix an integer £ = 0,1, or 2.
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For each point x of M, the leaf L(z) passing through z is in general a non-
compact Riemannian manifold, so the space of harmonic forms of degree £ on L(x)
is in general infinite-dimensional. Let H(L(x)) denote the Hilbert space of har-
monic square-integrable ¢-forms on L(z). One thus obtains a measurable Hilbert
space bundle over M. Of course, the fibers over two points in the same leaf are
canonically identified, so it is better to think of this fiber as lying over the “space
of leaves”, even if the latter is not Hausdorff in general.

Actually, for technical reasons we have to consider the holonomy cover L(z)
of the leaf L(z) for each point . We let H!(L(z)) denote the space of square-
integrable /-forms on L(z) (rather than L(z))—see [24], for example. It turns out
that in most cases, almost every leaf has trivial holonomy; hence L(x) = L(z) for
almost every z, so the two definitions are the same almost everywhere.

Here is another way to construct such a “fiber bundle over the space of leaves”.
Let B C M be a Borel set transverse to L£; that is, B intersects each leaf in a
finite or countably infinite set. This allows us to define the transverse measure
#(B) unambiguously. For each point z in M, we can consider the Hilbert space
(*(B N L(zx)) of square-integrable functions on this countable set. This is also a
Hilbert space bundle, “constant” on the leaves. The number u(B) is called the
Murray—von Neumann dimension of this Hilbert space bundle. This definition is
justified by the following lemma (see [13, 14]).

LEMMA 4.1. Let By and By be Borel sets transverse to L. Suppose there exists
a measurable map that assigns to p-almost every point x of M an isometry ®,
between €2(By N L(z)) and (?(Bs N L(x))) and that is constant on the leaves. Then

w(B1) = p(Bz).

We return to our Hilbert space bundle H‘(L(z)). A. Connes proved that it
is isomorphic to a bundle of the form ¢*(B N L(z)) for some transverse Borel set,
so we can define its Murray—von Neumann dimension. The (nonnegative real)
number thus obtained is called the fth Betti number of the lamination relative to
the foliation cycle p and is denoted by 8,(L, u). It is easy to check that this number
is independent, of the choice of the metric along the leaves.

Let k be the curvature of the metric; depending on one’s point of view, k can
be regarded as a 2-form on £ or as a function on M. We can now state the the
Gauss-Bonnet theorem for foliations, which evaluates [, kdpu, the integral of k on
the foliation cycle p.

THEOREM 4.2 ([13, 14]). [, kdp = Bo(L, ) — B1(L, p) + B2(L, 1)

This number, obtained by starting either with a metric along the leaves or with
the Betti numbers for foliations, is of course called the Fuler-Poincaré characteristic
for foliations and denoted by x (L, u). See [38, 44] for a concrete interpretation of
this number as the average of the Euler-Poincaré characteristics of large domains
contained in the leaves.

The numbers 8o(L, 1) and B2(L, u) are of course equal and easy to evaluate:
there can exist a nonzero, square-integrable harmonic function on L(x) only if this
manifold is compact. Although £;1(L, i) is harder to evaluate, it is nonnegative ...
The next result follows from this.

COROLLARY 4.3 ([13, 14]). If the union of the compact leaves of (M, L) has
p-measure zero, then the integral fM k du is nonpositive.
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The reader will recognize that Theorem 4.2 is valid in a much more general
situation, which includes all elliptic operators that are defined along the leaves. We
mention here only the Riemann-Roch theorem for foliations.

Consider a holomorphic line bundle E over the lamination (M, £). This is
simply a line bundle that is trivial over the distinguished open sets U; ~ D x T;
and that has transition functions of the form

(2,t,0) € D x T; x C+—— (fij(2,1),7i;(t), 9i5(2,t)¢) € D x Tj x C,

where g¢;;(z,t) € C* depends continuously on (z,t) and holomorphically on z.

Just as in the classical case, the choice of a Hermitian metric || || on the fibers of
E allows us to define a “curvature” 2-form, which can be written in local coordinates
as .

Vi = maa(log 1z, 8, D).
The fact that g;;(z,t) is holomorphic in z shows that these 2-forms are compatible
on the intersections of the U;. Hence they define a 2-form v on L.

When we change the Hermitian metric, the ratio between the two metrics is a
positive function on M of type expu, and the form ~ becomes v + 1/2y/—1700u.
In particular, 7 is well defined modulo exact forms. The class H2(£) thus defined
is of course called the Chern class of E and denoted by ¢(E).

It is important, however, to note that it is better to consider v as well defined
modulo forms of type v/—100u, which is much more precise than the simple fact
of being defined modulo exact forms. This observation, due to A. Candel, shows
in particular that the pairing (c(E), u) of the Chern class with a harmonic current
can be unambiguously defined even if the current is not a foliation cycle.

For £ = 0,1 and z a point in M, we denote by H*(L(z), E) the Hilbert space of
square-integrable holomorphic ¢-forms on L(z) (or, more precisely, on its holonomy
cover L(z)) with values in E. In the same way as before, this Hilbert-space bundle
has a Murray-von Neumann dimension, denoted by hé(E, ).

The version of the Riemann-Roch theorem proved by A. Connes becomes:

TaeoRen 4.4 ([14). (B, 1) ~ W (E, 1) = (e(E), ) + 3x(L, ).

A detailed description of this theorem, as well as interesting examples, can be
found in [31]. The following lemma will be used only in Section 7, but its proof
can serve to illustrate the ideas that we just introduced.

LeEMMA 4.5. Let E be a holomorphic line bundle over a lamination (M, L), and
let ¢(E) be its Chern class. Suppose that there ezists a foliation cycle p and that
E has a holomorphic section s that is not identically zero on any leaf of L. Then
(c(E), ) > 0. If the set of leaves that intersect the zero locus of s does not have
u-measure zero, then (¢c(E),u) > 0.

PRrROOF. Let || || be a Hermitian metric on E, and let v be its curvature form.
Observe that the function log(||s||) : M — RU {—o0} is locally integrable on each
leaf.

We must evaluate (¢(E),u) = (v,u). To do this, we choose a cover by open
sets U; that simultaneously trivialize the bundle and the lamination. Let s; be a
nonvanishing holomorphic section over U;, and let f; be the holomorphic function
on U; such that s = f;-s;. Choose a partition of unity ¢; subordinate to this cover.
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Then (y,p) = > ,(¢iv, 1), and each term of this sum can be computed in an
open set U; ~ DxT; for which we have a local description of the foliation cycle. This
involves integrating the 2-form ¢;y on each plaque P, = I x {t}, then integrating
this function of ¢ against a certain measure v; on T;.

1 _
On each plaque P; of U;, we have v = ﬁaa(log ||ss||*). Since s = f; - s;

on each plaque, it follows that

1 _
Y= maa(logHMP) + [Drp,]
in the sense of distributions, where [Dp,] denotes the sum of the Dirac measures at
those points of P; where the section s vanishes, counting multiplicities (which are
positive integers). Of course, in our one-dimensional case, this formula, called the
Poincaré-Lelong formula, is just a version of the Cauchy-Green-Stokes ... formula
(see [15], for example). In particular, applying this formula to the test function ¢;
restricted to the plaque P; gives

1 — 1 _
Y = log ||s|| - ——00¢; + MaPi(Za Z/ log||s|| - ——=——0300¢;,
[ = [ roglsll- <2080+ Yomati(ew) > [ togllsl- 2o

where the z, are the zeros of s on the plaque P;, and m, their multiplicities.
Integrating against the transverse measure v; on T}, we have

1 _
<¢rnu>2:<bgHﬂ|77§T;86¢nu>-

The right-hand side makes sense because log ||s|| is integrable. Since >, ¢; = 1,
summing over ¢ gives

(c(E), ) = (v, ) > 0.
This is the first part of the lemma. Note moreover that the inequality is strict
unless, for every U;, v;-almost every plaque does not intersect the zero locus of s.
In other words, if the set of leaves that intersect the zero locus of s does not have
p-measure zero, then (¢(E), u) > 0. O

5. Uniformization of Laminations

5.1. The conformal type of the leaves. One of the main results of the
theory of Riemann surfaces is the uniformization theorem, according to which the
universal cover of any (connected) Riemann surface is isomorphic to CP* (elliptic
type), C (parabolic type), or D (hyperbolic type). In other words, any Riemann
surface can be obtained from one of these three examples by passing to the quotient
by a discrete group I' that acts holomorphically, freely, and properly. We will say
that a Riemann surface is elliptic, parabolic, or hyperbolic according to the type
of its universal cover. This terminology does not agree with that used in potential
theory. One has to be careful—an elliptic curve, i.e. a complex torus, is of parabolic
type because its universal cover is C!

In the hyperbolic case, the automorphisms of I are also the orientation-preserv-
ing isometries of the Poincaré disk. Riemann surfaces of this type are thus obtained
by taking the quotient of I by a discrete, torsion-free subgroup of the isometry
group of this disk, which is isomorphic to PSL(2, R). Riemann surfaces of hyperbolic
type are thus naturally endowed with a complete Hermitian metric with constant
curvature —1. This metric is unique because the Poincaré metric is the unique
complete Hermitian metric with curvature —1 on the disk.
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In the parabolic case, the automorphisms of C are the complex affine trans-
formations, and only the translations act without fixed points. The Riemann sur-
faces of parabolic type are therefore, up to isomorphism, the plane C, the quotient
C/Z ~ C*, and the elliptic curves (quotients of C by lattices). Note that, in this
case, the flat, complete Hermitian metric on C is invariant, so these parabolic Rie-
mann surfaces are also flat surfaces. This flat Hermitian metric is unique up to a
constant multiplicative factor because the canonical Hermitian metric on C is the
unique flat Hermitian metric on C, up to a constant multiplicative factor.

In the elliptic case, every isomorphism of CP! is a linear fractional transforma-
tion and hence has a fixed point. It follows that CP! is the only Riemann surface of
elliptic type. Of course, CP' has a Hermitian metric with constant curvature +1.

If we consider a Riemann surface lamination (M, L), we can apply this uni-
formization theorem to each leaf. The question we will discuss in this section is
whether the uniformizations of the leaves depend continuously on the leaves. A
first, more naive, problem is to study the partition of M by this type of leaves. The
elliptic case is “easy”: it is an instance of Reeb’s stability theorem (see [24], for
example).

THEOREM 5.1. The union of the elliptic leaves of the lamination L is open. In
this open set U, the leaves of L are the fibers of a locally trivial fibration.

PROOF. Reeb’s stability theorem states that in an arbitrary foliation, the union
of the simply connected compact leaves is an open set and each of these leaves has
a neighborhood that is trivially foliated. This theorem applies to the general case
of the laminations we are considering (that is, to spaces that are not necessarily
manifolds), although, strictly speaking, we know of no reference for this general
statement ... (However, see [10].) O

It follows that removing the leaves of elliptic type from a lamination yields a
new compact space, hence a new lamination without elliptic leaves. From now on,
we assume that the lamination under consideration has no elliptic leaves.

The case of parabolic leaves is harder. We state, however, the following propo-
sition, which will be proved later.

PROPOSITION 5.2. The union of the parabolic leaves is a G5 in the sense of
Baire, that is, a countable intersection of open sets.

There exist laminations that have both parabolic and hyperbolic leaves. Start-
ing with a foliation on a 3-manifold, for instance, one can modify it by “Reeb
turbularization” (see [24], for example). This result of this is to introduce a solid
torus foliated by planes of parabolic type and bounded by a torus, also of para-
bolic type. In general, the topology of the leaves outside the solid torus is not
that of the plane, the cylinder, or the torus, so these leaves are of hyperbolic type.
These examples are clearly unsatisfactory because the types are not really mixed.
L. Mosher and U. Oertel have constructed an example of a lamination such that
the union of the parabolic leaves is not closed [36]. In this example, there exists
a unique minimal set consisting of hyperbolic leaves. In 6.4 we will describe an
example where the leaves are all dense and there is a mixture of conformal types.

We have already observed that a Riemannian metric along the leaves of a two-
dimensional foliation defines the structure of a Riemann surface lamination. Note
that the conformal types of the Riemann surfaces thus obtained are independent
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of the Riemannian metric because the disk, the plane, and the sphere are not
quasiconformally isomorphic to each other.

5.2. Uniformization of hyperbolic laminations. Here we describe the re-
sult of A. Candel, which completely settles the hyperbolic case. Recall that a
Hermitian metric on a lamination is defined by giving smooth Hermitian metrics
on the leaves that (together with their derivatives) depend continuously on the
point in M.

THEOREM 5.3 ([10]). Let (M, L) be a Riemann surface lamination. There ex-
ists a Hermitian metric on (M, L) with constant curvature —1 if and only if, for
every foliation cycle i, the Euler-Poincaré characteristic x(L, p) is negative.

The necessary condition (that is, the negativity of x (£, 1)) clearly follows from
Theorem 4.2 (the Gauss-Bonnet theorem for foliations).

Note that this theorem includes the (quite general) case where there is no
foliation cycle ...

Before sketching the proof of Theorem 5.3, we begin with some general proper-
ties. Fix a Hermitian metric g on (M, £) and let k : M — R denote the curvature
function on the leaves. Let u : M — R be a smooth function along the leaves, and
let ¢’ denote the Hermitian metric exp(2u)g. The formula giving the curvature k'
of ¢’ is well known:

(5) k' = exp(—2u)(k — Au),

where A denotes the Laplacian along the leaves.

We know that on every leaf L(z) of hyperbolic type, there exists a unique
smooth function u : L(z) — R such that the metric exp(2u)g on L(z) is complete
and has curvature —1. If the leaf L(x) is of parabolic type, we set u = —oco on this
leaf. This defines a global function M — R U {—oc} that satisfies

k = Au — exp(2u)
wherever it is finite.

PROPOSITION 5.4 ([20, 45]). For every lamination (with no leaves of elliptic

type), the function w is upper semicontinuous and its gradient along the leaves is
bounded.

SKETCH OF THE PROOF. Let x € M be such that the leaf L(z) is of hyperbolic
type, and let f : D — L(z) be a holomorphic covering such that f(0) = z. By
definition of the function w, the norm of the derivative of f at 0 is exp(—u(z)). Let
0 < r < 1, and consider the restriction of f to the disk D, with center 0 and radius
r. Since D, is simply connected and relatively compact in I, there exist a pointed
space (@, *) and a map F : D, X () — M such that

- F(Za*) = f(Z),

— F'is a local homeomorphism in a neighborhood of z;

— the restriction of F to D, x {q} is a holomorphic map into a leaf.

Now, using Schwarz’s lemma in the leaves, we see that the norm of the derivative at
z of F(z,q) is less than or equal to exp(—u(F(z,q)) when the norm is computed in
the Poincaré metric in the domain and in the metric g in the range. Thus we have
found locally defined, continuous functions that are upper bounds for the function
u. Letting r go to 1, it is not hard to see that u is the greatest lower bound of these
continuous functions; this proves semicontinuity. The proof that the gradient of u
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is bounded is elementary and reduces to Koebe’s distortion lemma: if j : D — C is
an injective holomorphic map with j(0) = 0 and j'(0) = 1, then |j"(0)] < 2. For
more details, see [20]. O

Observe in particular that this proposition shows that the set of points where
u = —o0 is a G5 in the sense of Baire: this is Proposition 5.2. It was this proposition
that also allowed us, in [20], to extend Corollary 4.3:

COROLLARY 5.5 ([20]). Let p be an arbitrary harmonic measure. Then the
integral [ kdp is nonpositive.

SKETCH OF THE PROOF. We have

[ = [ sudu~ [ expzu)an

By the definition of a harmonic measure, the first integral on the right-hand side
would vanish if v were continuous. It turns out that semicontinuity and the bound
on the gradient are enough to ensure vanishing (see [20]). The sign of the curvature
integral follows. O

See [18, 42] for other proofs of Corollary 5.5 and interesting ramifications.

We return to A. Candel’s theorem. The proof splits into two parts. The first,
in the same vein as Corollary 3.6, lets us state that if x(£, u) < 0 for every foliation
cycle u, then all the leaves are of hyperbolic type.

PROPOSITION 5.6. If a lamination (M, L) has a leaf L of parabolic type, then
there exists a foliation cycle p (supported in the closure of L) such that x (L, u) = 0.

SKETCH OF THE PROOF. Suppose, for example, that there exists a holomor-
phic diffeomorphism f : C — L; the case of the cylinder is similar (and that of the
torus is trivial). Let |df| denote the norm of the differential of f, computed with
the Euclidean metric in C and with the metric g in L. Let D, be the disk of radius
r>0in C, and L, = f(D,). The area of L, in the metric g is the integral over D,.
of |df|?, and the length of the boundary 0L, is the integral of |df| over the circle of
radius 7. Using a classical lemma due to Ahlfors (which reduces to an application
of the Cauchy-Schwarz inequality), we conclude that

lim inf % =0.

r—oo  area(L,)
This means that the L, make up an averaging sequence; that is, if ¢, is the current of
integration on the disk L., there exists a subsequence ¢, , where r,, goes to infinity,
that converges to a foliation cycle p (because the boundary of L, “disappears” as
r goes to infinity; see [26]). It remains to show that x(£, ) = 0. This is done by
using the classical Gauss-Bonnet theorem to integrate the curvature over L,, and

showing that the boundary effect disappears as r goes to infinity. O
The second part of the proof of Theorem 5.3 is the following:

PROPOSITION 5.7. If all the leaves of a lamination are of hyperbolic type, then
there exists a Hermitian metric of curvature —1.

SKETCH OF THE PROOF. What must be shown is that, if the function u does
not assume the value —oo, it is continuous. By Proposition 5.4, it suffices to
show that w is lower semicontinuous. Let I be the space of holomorphic maps
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from the disk D to (a leaf of) (M, L), equipped with the topology of uniform
convergence on compact sets. One first shows that K is compact. To do this,
one considers a sequence of holomorphic maps f, : D — M with no convergent
subsequence. Dilating their domains of definition by suitable homotheties and
taking subsequences, one constructs a nonconstant holomorphic map from C to
a leaf of £ (Brody’s lemma). This contradicts the fact that all the leaves are of
hyperbolic type. Finally, to prove the lower semicontinuity of u, it suffices to write
it as
exp(u(z)) = nf {|df(0)|~" € Kf : £(0) = }

because the function K 5 f ~ |df(0)| € R} is continuous on the compact set £. O

6. Uniformization of Parabolic Laminations

Now that we have managed to uniformize laminations all of whose leaves are
hyperbolic, we will study those laminations all of whose leaves are parabolic. The
question is now whether there exists a flat Hermitian metric along the leaves.

6.1. Approximate uniformization and a counterexample.

THEOREM 6.1 ([23]). Let (M, L) be a lamination all of whose leaves are para-
bolic. Then there exists a sequence of smooth Hermitian metrics g, on (M, L) such
that the curvature form of g, approaches 0 uniformly as n approaches infinity.

We emphasize that there would be no advantage in letting the curvature func-
tion approach 0. When a metric g is multiplied by a constant that approaches
infinity, the curvature obviously approaches 0 ... But the area element da is mul-
tiplied by the square of this constant, so that the curvature form k da is preserved!
This is why Theorem 6.1 considers the curvature form.

PRrROOF. Fix a lamination (M, £) all of whose leaves are parabolic, as well as
a Hermitian metric g. Let k: M — R be the curvature function. Another way of
writing formula (5), which gives the change of curvature under a conformal change
of metric, is as follows. If k da denotes the curvature form of g, then the curvature
form k' da' of ¢' = exp(2u)g is

k' da' = kda — 2v/=100u.

To prove the theorem, we must find a sequence of smooth functions u, such that
21/—180u,, approaches k da uniformly.

Let £ be the Banach space of 2-forms on £ that are continuous on M, and H
the subspace of forms of type v/—190u, with u smooth. By definition, the harmonic
measures are the elements of the topological dual of £ that vanish on H and assume
positive values on positive elements. A continuous linear form on £ that vanishes on
‘H is thus the difference of two harmonic measures. By the Hahn-Banach theorem,
we may conclude that an element is in the closure of # if and only if it vanishes on
all the harmonic measures.

Thus, to prove the theorem it suffices to show that [kdu is zero for every
harmonic measure. By Corollary 3.6, all the harmonic measures come from an
invariant transverse measure, and the conclusion follows from Theorem 4.2. [l

It is easy to construct laminations all of whose leaves are parabolic and for which
there is no Riemannian metric that is flat on the leaves. The simplest example is
the usual Reeb foliation of the sphere S3. If there were a metric on the sphere
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such that all the leaves were flat, the noncompact leaves would be isometric to a
Euclidean plane. Hence the growth of the areas of disks in the noncompact leaves
would be quadratic, contradicting the fact that this growth is obviously linear.
But this example is unsatisfying for two reasons. First, the leaves are not dense,
and it is more reasonable to consider minimal laminations. Moreover, we observe
in the example of the Reeb foliation that there exists a measurable Riemannian
metric that is smooth on the leaves and flat. This metric is actually continuous in
the complement of the compact leaf, and approaches infinity as one approaches this
compact leaf. In what follows, we will restrict our attention to minimal laminations
and look for measurable metrics.

THEOREM 6.2 ([23]). There exists a lamination (M, L) such that

— all the leaves of L are parabolic;

— all the leaves of L are dense;

— there is no Hermitian metric that is measurable on M and differentiable on
the leaves, and also complete and flat on the leaves.

We settle here for constructing this counterexample, and refer the reader to
[23] for the proof that it actually has all the required properties.
First, consider the three 1-complex-parameter subgroups of SL(2, C) defined as

follows:
¢ [exp(t) 0 s (1 s s (10
d = ( 0 exp(—t)> > hi = (0 1> » hZ= (s 1) :

These 1-parameter groups satisfy
dths:tdft — h?p(i%)s‘

Let F be the foliation of SL(2, C) whose leaves are the left cosets of {h3 }. Its leaves
are parametrized by C and hence equipped with a natural flat metric. The relation
above shows that left translation by d¢ globally preserves the leaves of F and acts
as a similarity on them.

Let I be a discrete subgroup of SL(2, C) such that the quotient M = SL(2,C)/T’
is compact. Of course, there are many examples of such groups associated with real-
hyperbolic 3-manifolds. Since right translations commute with left translations, the
foliation F passes to the quotient as a foliation F on M. The leaves of F are the
orbits of the natural holomorphic action of a 1-complex-parameter group, which we
continue to denote by h%, so all the leaves are equipped with a flat metric. Thus
the foliation F is not the desired counterexample!

We modify this example as follows. We know that there exist real-hyperbolic
3-manifolds with nonzero first Betti number. Hence there are examples of groups I'
that have a nontrivial homomorphism ¢ : I' — Z. Let € be a positive real number.
Consider the right action of I on SL(2,C) defined by

(z,7) € SL(2,C) x I — d= Mz~ € SL(2,C).

It turns out that if ¢ is sufficiently small, this action is free, proper, and cocompact
[21]. Let M... denote the quotient compact manifold. Note that this new action
still globally preserves the foliation F , and hence defines a holomorphic foliation £
on the manifold M.... But the flat metric on the leaves of F is no longer preserved,
and the leaves of £ are no longer a priori equipped with a flat metric. On the
other hand, the action is conformal on the leaves of F , so the leaves of L are
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naturally equipped with a conformal structure, which depends analytically on the
point in M.... In other words, there exists a real-analytic Riemannian metric g
that is defined on the tangent bundle to the leaves on M... and that, when lifted
to SL(2,C) and restricted to a leaf of F, is conformally equivalent to the natural
flat metric on this leaf.

We show that this really is a non-uniformizable foliation, in the sense that there
is mo measurable function u : M... — R that is differentiable along the leaves and
such that the metric ¢’ = exp(2u)g is complete and flat on the leaves. The proof is
not very hard, though it uses delicate results on the ergodic theory of the horocyclic
flow on compact manifolds with negative curvature—more precisely, on their cyclic
covers [23].

6.2. Continuity of the affine structure. We have seen that it is impossible
in general to construct a flat metric along the leaves of a lamination with parabolic
leaves. Note, however, that there does exist a flat affine structure along the leaves
that is continuous. Here is an explanation.

Let S be a parabolic Riemann surface. The conformal map p between the
universal cover of S and C is unique, up to an affine map, so S is naturally equipped
with a complex affine structure. For instance, if x,y, z are distinct points in S that
are near each other, one can choose lifts T, 7,z in the universal cover that are near
each other, and the ratio (p(Z) — p(¥))/p(Z) — p(2)) € C is independent of the choice
of p. We will denote this ratio by (z —y)/(z — z).

THEOREM 6.3 ([23]). Let (M, L) be a lamination all of whose leaves are of
parabolic type. Then the affine structure on the leaves is continuous, in the following
sense. Let (x;,yi,2;) (1 > 0) be a sequence of triples of distinct points contained in
the same distinguished open set and such that, for each i, the points x;,vy;, z; are in
the same plaque. Suppose that x;,y;, z; converge respectively to the distinct points
Toos Yoo» Zoo N this same distinguished open set. Then (z; — y;)/(x; — z;) converges
t0 (Too — Yoo)/ (oo — Zoo) S © approaches infinity.

We refer the reader to [23] for the proof and restrict ourselves here to indicating
the tools used. Fix a lamination (M, £) all of whose leaves are parabolic, equipped
with a smooth metric g.

Let % be a base point in M. We denote by L. the leaf through . Since
the universal cover of L, is conformally equivalent to the complex line, we have
a conformal covering ¢ : C — L, such that (0) = . Let D,, be the disk in C
with center 0 and radius n (a positive integer). Since D,, is simply connected, the
immersed disk ¥(D,,) can be lifted into neighboring leaves. This means that there
exist local homeomorphisms

U, : D, xQnp— M,
where the @, are a decreasing family of open neighborhoods of a base point ¢ in

a space (), such that

— the restriction of ¥,, to D, X {geo} coincides with the restriction of 1) to Dy;
— the image of ¥, is an open neighborhood of x;
— U, immerses each D,, x {¢q} into a leaf of L.

Let €, be a decreasing sequence of real numbers that converges to 0. Shrinking
@, if necessary, we may assume that
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— the restriction of ¥,, to each D,, x {q} is a (1+¢&,)-quasiconformal immersion
into a leaf of L (see [2]).

The proof of the theorem now uses two facts.
— The first follows easily from general theorems about quasiconformal maps [2].
Let D®, D, D¢ be (small) disjoint closed disks, contained in a closed disk D C C
with center 0. For every real number 1 > 0, there exists an ¢ > 0 such that if
f:D — Dis a (1 4 ¢)-quasiconformal homeomorphism that fixes the origin and
a,b, ¢ are points in D®, Db, D¢, respectively, then

a—=b_ fla) = f(b)
a—c  fla)=bc)
— The second is Koebe’s distortion theorem (see [41]). Recall that the theorem
implies, in particular, that if A is a univalent holomorphic function D — C and
(1, (s, (3 are three points in I with modulus less than r < 1, then

h(G) —h(G) G -G
©) ‘h((ﬁ) -hG) GG

where A(r) is a universal function that approaches 0 as r approaches 0.

By the first fact, the identifications between nearby plaques are almost affine
with respect to the affine structures given by their embedding into D,,, for large n.
By the second fact, the embeddings of D,, into the universal covers of the leaves
given by the ¥,, are almost affine when restricted to a fixed D;, for n approaching
infinity. This leads to a fairly easy proof that the affine structure on the leaves is
in fact continuous.

<n

< A(r),

6.3. A problem concerning linear foliations of tori. The simplest exam-
ple of a parabolic foliation is of course a linear foliation F of codimension one on
the three-dimensional torus T% = R3 /Z3.

Let g be a smooth Riemannian metric along the leaves of . As we have seen,
this allows us to define a structure of a Riemann surface lamination on F.

We do not know whether it is always possible to find a continuous (or even
measurable) function u : T> — R such that exp(u)g is complete and flat along the
leaves.”

The only (little) result we have in this direction is the following. A real number
« is said to satisfy a diophantine condition if there exist constants C' > 0 and € > 0
such that

for all integers (p, q) with ¢ > 0.

PROPOSITION 6.4 ([28]). Let F be the linear foliation of R® /Z> with equation
dt = aydz+asdy and g a metric of class C*°. If the subgroup of R generated by
and as contains a nonzero rational number or a number satisfying a diophantine
condition, then there exists a functionu : R3 /Z3 — R of class C* such that exp(u)g
is flat on the leaves.

The fact that this theorem holds in both the rational and the diophantine
irrational cases suggests that it may hold without any arithmetic hypothesis.

2A. A. Glutsuk has just given an affirmative answer to this question (October 1999).
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We reproduce here the proof given in [23]. Let F be the linear foliation of
the torus T? = R3/Z3 with equation dt = aydz + aady, and let g be a metric of
class C* on T3. We may regard F as the quotient of R* x R/Z, foliated by planes
R? x {x}, by the group generated by the following two commuting diffeomorphisms:

T, : (z,y,t) €ER* X R/Z +— (z + 1,y,t + ;) € R? x R/Z,

Ty : (z,y,t) ER? X R/Z +— (z,y + 1,t + ) € R? x R/Z.
For each t € R/Z, the plane R? x {t} is equipped with the metric g; obtained by
lifting g. There exists a unique conformal diffeomorphism ; from (R? x {t}, ;)
to the complex plane C that sends the points (0,0,¢) and (0,1,¢) to 0 and 1,
respectively. Since we are assuming that the metric g is of class C'°°, the metric
g depends on t in a C*° way. The version with parameters of the uniformization
theorem given in [1, 2] shows that the bijection

F:(z,y,t) € R* x R/Z — (Y¢(z,y),t) € Cx R/Z

is a diffeomorphism of class C'*°.

Since T} and T act by isometries with respect to g, their conjugates by F' must
act conformally on the C x {*}. In other words, T] = F o T} o F~! can be written
as

TI(C,t) = (a} ()¢ + b, (1), t + ay),
where the functions af,b] : R/Z — C* are of class C*°.

First we study the case where ay s zero.

Since T7 acts freely on Cx R/Z, we observe that af (¢) must be identically equal
to 1, so T| acts on each C x {t} as a nontrivial translation by b (¢). Conjugating
T{ by

G:(C,t) € CxR/Z— (b7 (t)(,t) € C x R/Z
we obtain
T/ =GoT oG ' :((,t) eCxR/Z — ((+1,t) € C x R/Z.
We now look for Ty = (G o F)o Ty o (G o F)~! in the form
T5'(¢,t) = (a3 ()¢ + b5 (1), + a2).
The condition that T|" and T3’ commute can be written as
ay(t) =1;

that is, Ty also acts by translations. This means that the metric obtained by
transporting the Euclidean metric on C x {x} by (G o F)~! is invariant under both
T, and T», and hence passes to the quotient on the torus T?. The metric on T? thus
obtained is smooth, flat on the leaves, and conformally equivalent to g. Theorem
6.4 has been proved in the special case where a; = 0.

More generally, suppose that the subgroup of R generated by ay, as, and 1 has
rank less than or equal to 2. Then the leaves of the foliation F are all cylinders or
tori. Transforming the foliation by an appropriate linear diffeomorphism of T?, we
reduce to the case just studied, where a; = 0, and Theorem 6.4 is thus proved in
this case as well.

We now tackle the more interesting case where oy satisfies a diophantine con-
dition.
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The following proposition is well known; it is the most elementary result of
the theory of small denominators (see [4], for example). It is proved by simply
evaluating the Fourier coefficients and using the diophantine estimate to find an
upper bound.

PROPOSITION 6.5. If ay satisfies a diophantine condition of the type above for
every function v : R/Z — R of class C*°, then there exist a constant T and a
function w : R/Z — R of class C*° such that

v(t) =w(t +a1) —w(t) + 0.
We return to the study of
T(C, 1) = (ay (£)C + by (2), + on).
Applying Proposition 6.5 to the function v(t) = log |a1 (t)|, we find that there exist a

function w : R/Z — R of class C* and a constant k > 0 satisfying the homological
equation

|exp(w(t + a1)) exp(—w(t))| = klai ()]
Now we can consider the diffeomorphism
G(¢,t) € Cx R/Z — (exp(—v(t))(,t) € Cx R/Z.
Setting T}’ = (Go F) o Ty o (G o F)™!, we obtain
Ty : (¢ t) € Cx R/Z = (ay ()¢ + b (t), t + o) € C x R/Z,
where
|ay (t)| = k.
We claim that & = 1. This could be deduced from Theorem 6.1, but it is elementary

in this case. Indeed, let b denote an upper bound for the modulus of b{(¢). Then
we can show by induction that the nth power (n > 0) of T satisfies

T,7(0,0) = (Guy t + na),
where
G| <BY(L+ K+ ---+ k"),

Suppose, for instance, that & < 1. Then the preceding formula shows that the
points T{'"(0,0) stay in a compact subset of C x R/Z. This is impossible because
the abelian group generated by T} and T5 acts properly on C x R/Z. Similarly, we
show that k cannot be greater than 1 by considering the backward iterates of T}’
Thus we have shown that k£ = 1.

In other words, T}" acts by isometries on the C x {*}. Set Ty = (GoF)oTyo0
(G o F)~t. We claim that Ty must also act by isometries. Writing T3 in the form

Ty : (¢,t) € Cx R/Z + (ay ()¢ + by (t),t +az) € Cx R/Z

and writing out the commutation relation between T}" and T, we obtain
ay (tay (t + 1) = ay(t)ay (t + az)

@ (t + a2)by () + b (t + az) = ay (t + a)by (#) + Uy (¢ + o).
Since a; is irrational and the modulus of af(¢) is 1, the modulus of a}(t) must be
constant. Exactly as we showed above that £ = 1, we show here that the modulus
of al(t) is in fact 1.

In summary, we have shown that if we conjugate both 77 and 7> by G o F', we

obtain diffeomorphisms that act isometrically on the C x {*}. In other words, the
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Euclidean metric on the complex lines Cx {*} is invariant under 77’ and T;'. Hence
this Euclidean metric, transported by G o F', passes to the quotient in the torus
T3. We have obtained a smooth metric that is flat on the leaves and conformally
equivalent to g, as claimed.

When the group generated by a;, as, and 1 contains a number satisfying a
diophantine condition, the situation reduces by a change of basis in the lattice Z>
to the case where «a; satisfies a diophantine condition. Since we just analyzed this
case, the proof of Theorem 6.4 is complete.

We point out a problem that would probably be worth careful study. Let (M, £)
be a compact lamination all of whose leaves are dense and parabolic (we have seen
that this is independent of the choice of metric). Does there exist a smooth (or
even measurable) Riemannian metric that is flat on the leaves? This question is
different from the one studied in this subsection because the desired metric need
not be Hermitian.

6.4. An example of a lamination where the conformal types are
mixed. During the “Etat de la recherche conference”, we mentioned the prob-
lem of the existence of a minimal lamination with some leaves of parabolic type
and others of hyperbolic type. Richard Kenyon pointed out to us a nice idea for
constructing an example, which we will describe here. We thank him for his kind
permission to include the example in this article.

THEOREM 6.6. There exists a Riemann surface lamination £ on a compact
metric space X that satisfies the following conditions.

— All the leaves of L are dense.

— Some leaf of L is conformally equivalent to a sphere minus four points (and
hence is hyperbolic). All the other leaves are conformally equivalent to either
the plane C or the parabolic cylinder C/Z ~ C*.

— All the leaves of L have trivial holonomy and polynomial growth.

The last point is not the most important: for the notions of growth and holo-
nomy, see [24].

We begin by describing a very general metric space that is analogous to those
we described in 2.3. Consider the graph G whose vertices are the integer points
Z x Z in the plane R? and whose edges are the horizontal segments [i,i + 1] x {j}
or the vertical segments {i} x [j,j + 1], where (i,j) € Z x Z. Let A be the set
of (finite or infinite) subgraphs of G that contain the origin (0,0) and are trees
(i.e. connected and with no cycles). The distance between two vertices of a tree
is the minimal length of a path that joins them in this graph. If T is a tree in A,
p = (i,7) one of its vertices, and n an integer, we will denote by T'(p,n) the ball
with center p and radius n; that is, the subtree whose vertices are those vertices
whose distance from p is less than or equal to n. We will turn A into a compact
metric space. Let 77 and T be two elements of A. By definition, the distance
between T and T» is exp(—n), where n is the largest integer (possibly +o0) such
that 77((0,0),n) = T2((0,0),n). One can show by a diagonal argument that A is
compact when equipped with this metric. The important point is of course that a
limit of trees is a tree.

There is a natural equivalence relation on A , which consists of changing the
base point. More precisely, two trees T and T» in A will be called equivalent if there
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exists an integer translation of the plane that sends T} to T5. The corresponding
equivalence classes are countable.

We will now modify the space A slightly, in order to construct a lamination.
Our goal is to construct a compact metric space A equipped with a lamination £
and containing a copy of A, in such a way that the leaves of £ intersect A in the
orbits of the equivalence relation we just defined on A.

Consider a tree T in A. There are 16 different possibilities for the ball with
center the origin and radius 1 in T'; these depend on the vertices of T' at distance
1 from the origin that can form an arbitrary subset of the set with four elements
{(£1,£1)}. Thus A is the disjoint union of 16 subsets Ap indexed by the subsets
P of {(£1,+£1)}. These Ap are open and closed subsets of A. For each subset P,
consider a compact surface with boundary ¥p that is homeomorphic to a sphere
minus a number of open disks equal to the cardinality of P. The boundary compo-
nents of ¥ p are indexed by the elements of P: we denote by J,Xp the boundary
component of ¥p indexed by p € P. We also choose Riemannian metrics on these
Y p such that all the connected boundary components have open neighborhoods
isometric to a Euclidean annulus S! x [0, 1), and fix such isometries. Finally, we
choose an arbitrary base point xp in each Y p. In Figure 6 we have indicated 4 of
the 16 possibilities.

The desired space A will be obtained by gluing the boundaries of the union of
the Ap = Ap x ¥p in a suitable way. To be precise, let T be an element of A, let P
be the subset such that 7' € Ap, and choose an element p € {(£1,+1)} of P. The
translate 7'+ p of T' by the vector p is another element of A, and the subset () such
that T'+p € Ag contains the vector —p. Both the boundaries 9,(Xp) and 0_,(X¢)
are identified with the circle R/Z ~ S* C S! x [0,1). For every § € R/Z, the point
# on one of the boundaries is identified with the point —f on the other boundary.
These gluings are done for every tree 7' € A. One can check that the space thus
obtained is compact; the important point is that, for each pair of subsets (P, Q)
such that there exists an element p € {(+1,+1)} with p € P and —p € Q, the set
of trees T' such that T' € Ap and T + p € Ag is an open and closed subset of A.
The embedding of each Ap ~ Ap X {xp} in Ap x X p gives an embedding of A in
A

The various gluings described above are clearly compatible with the trivial
laminations of Ap x Y p by the surfaces with boundary ¥p. We thus obtain a
lamination £ on A. The leaves of this lamination are equipped with a Riemannian
metric, so £ can be regarded as a Riemann surface lamination. Each leaf of £
intersects A in an equivalence class of the relation on A described above. Each
leaf L of £ corresponds to a tree T in A that is defined up to integer translations.
The tree T is in fact embedded in L as a “skeleton”; that is, every point of L is
at uniformly bounded distance from 7T'. Thus, studying the geometry of the leaves
reduces essentially to studying the geometry of the corresponding tree. The case
where P is empty is rather uninteresting; the only tree in Ay is the one that reduces
to the origin, and since Xy is a sphere, this leads to a spherical leaf that is isolated
in the lamination (A, £).

This lamination (A, £) is unsatisfying from our point of view because A contains
far too many trees, so the lamination is not minimal and contains many parabolic
leaves and many hyperbolic leaves (as well as isolated elliptic leaves, which corre-
spond to the finite trees in A). The lamination (X, £) that we are looking for will

Figure 6



Figure 7
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actually be the restriction of £ to the closure of a very special leaf L., which we
will construct. To do this, we construct a special tree T, in A.

T is constructed recursively, as an increasing union of finite trees 7, in A.
The tree Ty is indicated in Figure 7. Suppose we have constructed the tree T,
whose intersection with the vertical axis is the interval {0} x [—2",2"] and whose
intersection with the horizontal axis is the interval [-2" +1,2" — 1] x {0}. We then
construct T),4+1 as follows. First we translate T, vertically by a vector (0,2"), then
consider the union of the images of this translate under the four rotations centered
at the origin and through angles 0, £7/2, m. One can check that the graph thus
obtained is a tree. Finally, we lop off the two extreme edges on the horizontal axis
so that the tree T, finally obtained actually intersects this axis in the interval
[—27F1 + 1,27+ — 1] x {0}, as required. An induction argument shows that each
T,.+1 extends T}, in such a way that the union T, of the Tj, is a tree in A.

It can also be verified by induction that the vertices of Ty, are the points with
coordinates (4,7) such that (i,j) = (0,0) or the 2-adic valuations of i and j are
different.

Recall that the number of ends of a locally finite graph is the least upper
bound (possibly infinite) of the number of infinite connected components of the
complement of a finite subset. Note that the tree T, has exactly 4 ends; it consists
of the two coordinate axes onto which are grafted finite trees, which do not change
the ends of T,,. Hence the topology of the leaf of £ that corresponds to T, is that
of a sphere minus four points, even if, from a geometric point of view, one has to
imagine this sphere as being very “lumpy” ...

Let X be the closure of the equivalence class of T, in A. For the moment, we
assume the following two lemmas.

LEMMA 6.7. For every tree T in X, the closure of the equivalence class of T in
X is dense in X.

LEMMA 6.8. Let T be a tree in X that is not in the equivalence class of Too-
Then T has one or two ends.

To the closed subset X of A there corresponds a closed subset X of A that is
saturated by the lamination £. We will show that this lamination (X, L) satisfies
all the constraints of Theorem 6.6. _

By Lemma 6.7, all the leaves of £ are dense in X. Since the trees in A are
embedded in the lattice of integer points of R?, it is clear that the number of
vertices of a tree in A at distance n from the origin grows at most quadratically in
n. Hence all the leaves of £ have at most quadratic growth.

Consider a tree T in A with exactly two ends. There is exactly one infinite path
that joins these two ends and has no backtrackings; thus 7' can be regarded as a
line to which one attaches a collection of finite trees. The corresponding leaf L of £
is then obtained by starting with an infinite cylinder and taking the connected sum
of (lumpy!) spheres; that is, each leaf L is homeomorphic to a cylinder. We claim
that this cylinder is conformally equivalent to C/Z ~ C*. It suffices to observe that
L contains an infinite collection of disjoint open cylinders that are not homotopic to
zero and are conformally equivalent to S x (0, 1), so the modulus of L, considered as
a Riemann surface, is necessarily infinite. This implies that L is indeed conformally
isomorphic to C*.
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Similarly, if a tree T' in A has only one end, then it can be obtained by starting
with a ray and grafting finite trees onto it. To show that it is in fact conformally
isomorphic to C, we need only observe that L contains a union of nested annuli
that are all isomorphic to S x (0,1) and hence all have the same modulus.

It follows from these remarks and Lemma 6.8 that all the leaves of (X, F) except
for the leaf L, corresponding to Ty, are planes or cylinders, conformally equivalent
to C or C*. A similar argument shows that the leaf L., is conformally equivalent
to a sphere minus 4 points.

To prove Theorem 6.6, it remains to prove the two lemmas ... We begin with
two simple preliminary remarks whose proofs are left to the reader. They can easily
be verified by using the definition of T,. One can also use the description we gave
of the vertices of T, in terms of 2-adic valuations, and observe that if 7 is a nonzero
integer multiple of 2" and a is a nonzero integer with absolute value less than 2™,
then the 2-adic valuations of a and i 4+ a are the same.

REMARK 1. For every ball B = T ((i, ), 2"*!), there exists an integer trans-
lation 7 such that the image 7(T((0,0),2")) is contained in B and coincides with
the ball T (7(0,0),2").

REMARK 2. For every ball B = T ((i,7),2"), there exists a vertex (i, j') of
T with |i'| < 2™ and |j'| < 2™ such that the translation by (i' —i,j' — j) sends B
to the ball T ((i', 5'),2™).

We first prove Lemma 6.7. Consider a tree T in the closure X of the equivalence
class of T.,. It must be shown that the equivalence class of T is everywhere dense
in X. Clearly it suffices to show that T, is in the closure of the class of T'. In other
words, it must be shown that for every integer n, there exists an integer translation
(4,7) such that T ((0,0),2™) + (¢,7) is the ball T((¢, 7),2").

Since T is in the closure of the class of T, there exists an integer transla-
tion (g, jo) such that T'((0,0),2" ") + (ig,jo) is the ball Tw((i0,Jo),2"t). By
Remark 1, there exists (i1, /1) such that T ((0,0),2") + (i1,71) is contained in
T ((0,0),2"1) + (i1, 41) and is the ball T ((i1,j1),2"). It follows that the trans-
lation (i1 —14,j1 — ) sends the ball To, ((0,0),2") onto the ball T'((i1 — ¢, j1 — j),2").
This is what was to be proved.

We now prove Lemma 6.8. Let T be a tree in A that has at least three ends.
Then T contains a Y, that is, a vertex p from which issue three paths 71, 72, 73
that are infinite and disjoint, and have neither double points nor backtrackings.

Let T be a tree in X with more than two ends. We will show that T is a
translate of T,. To do this, we choose a vertex p and three paths as above.
After a translation, we may always assume that p is the origin of T. We will
analyze the nature of the intersections of these paths with 7°((0,0),2"), which thus
consists of three disjoint paths 77", v3, v& issuing from the origin and of length 2™.
By Remark 2, there is a translation (i,j) with || < 2™ and |j| < 2™ that takes
T((0,0),2™) onto Two((i,7),2"), which is contained in T ((0,0),2"*1). The finite
tree Too((0,0),2"T1) has the following structure. It is a cross consisting of four
branches on the coordinate axes, of length 2"*!, onto which are grafted trees of
diameter less than 2" (see the figure). Since the three paths v + (4, 5), v% + (4, J),
¥8+(i,7) are disjoint and have length 2", it is clear that the only possibility is that
these paths issue from the origin; that is, (i,7) = (0,0). It follows that for every n,
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the balls T'((0,0),2™) and T ((0,0),2™) coincide. We have proved that the tree T'
is actually T, and this concludes the proof of Theorem 6.6.

7. Meromorphic Functions on Laminations

On any compact Riemann surface, there exist nonconstant meromorphic func-
tions. More precisely, given two distinct points on such a surface, there exists a
meromorphic function that assumes different values at these points. This can be
used to show that all Riemann surfaces are algebraic; that is, they can be holomor-
phically embedded in a complex projective space. It is this result of Riemann, one
of the most important results in the classical theory, that we will try to generalize.

Let (M, L) be a Riemann surface lamination and U an open set in M. A
holomorphic function on U is a continuous function f : U — C that is holomorphic
on each leaf. This defines a sheaf of rings O on M.

A meromorphic function is usually defined as a function that is locally the
quotient, of two holomorphic functions. Several difficulties appear when one tries
to generalize this definition to laminations.

The first is that the ring of germs of holomorphic functions in a neighborhood
of a point in a lamination is not necessarily an integral domain. Indeed, it suffices
to observe that this ring contains the subring of germs of continuous functions that
are constant on the plaques, which is isomorphic to the ring of functions that are
continuous on a transversal, in a neighborhood of one of its points. The latter ring
is not an integral domain if the point considered is not isolated.

The second difficulty is illustrated by the following example. Consider the
trivial lamination D x [0,1], and let 21, 22 be continuous functions from [0, 1] to D
such that z;(t) = z2(¢) for t < 1/2 and 21 (t) # 22(t) for ¢t > 1/2. The function

F:(z,t) eDx[0,1] = (2 — z1(¢)) /(2 — 22(t))

is the quotient of two holomorphic functions, and should therefore be called mero-
morphic. But it is hard to define the “divisor of poles” of F'. Indeed, for ¢t < 1/2 the
function F' equals 1 and hence has no poles, whereas the curve (z2(t), t) is contained
in “the poles” of F for ¢ > 1/2. The divisor of poles thus has a “stopping point”.

Recall that we have already defined the notion of a line bundle over M. If we
denote by O* the sheaf of germs of nonzero holomorphic functions, the line bundles
over M can be identified with the elements of H!(M, O*).

If U is an open subset of M, we denote by H(U) the set of functions that are
holomorphic in U and not identically zero on any leaf of the restriction of £ to U.
This is a monoid under multiplication. The sheaf of monoids associated with this
presheaf will be denoted by #; it contains O* as a subsheaf. A global section of the
quotient H/O* will be called an effective divisor on M. In less precise terms, an
effective divisor is defined locally by a holomorphic equation that is not identically
zero on any plaque, and these local equations are well defined modulo multiplication
by a nonvanishing holomorphic function. The support of an effective divisor is the
closed subset of M where the local equations are zero.

As in the classical case, an effective divisor D naturally defines a line bundle
equipped with a holomorphic section. Conversely, a holomorphic section of a line
bundle defines an effective divisor: its “divisor of zeros”.

A meromorphic function on (M, L) is a function f : M — CP! such that there
exist a line bundle E over M and two holomorphic sections u, v of this bundle such
that f = u/v and v is not the zero function on any leaf. As the notation suggests,
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the function f is undefined at the points where v and v are zero; everywhere else, the
quotient of the two sections can actually be interpreted as an element of C U {oco}.
Of course, the line bundle F is not unique. The divisor of zeros of the section v is
called a divisor of poles of f.

Even though a meromorphic function f is undefined at the common zeros of u
and v, the restriction of f to each leaf is a meromorphic function in the usual sense
and therefore extends to a continuous function with values in CP'. Note, however,
that the function f thus defined on M is not necessarily continuous: this is the
phenomenon we have already seen of the meeting of zeros and poles.

To simplify our statements and avoid certain pathological phenomena, we will
agree that a meromorphic function is nonconstant if it is not constant on any leaf.

LEMMA 7.1. The support of a divisor of poles of a nonconstant meromorphic
function intersects all the leaves of a lamination.

PROOF. Let f : M — CP' be a nonconstant meromorphic function, and let
X be the support of a divisor of poles. We begin by observing that by Rouché’s
theorem, if a plaque of £ intersects X, then so do all nearby plaques. In other
words, the union of the leaves that intersect X is open. If the complement were
nonempty, it would be a lamination £' equipped with a continuous function on C.
One could then consider a point of £' where f attained its maximum modulus, and
this would contradict the maximum principle in the leaf containing this point. O

7.1. A counterexample. We begin by indicating a necessary condition for
the existence of nonconstant meromorphic functions and giving examples of lami-
nations that do not satisfy this condition.

By our definition, a foliation cycle is an element of the dual of A%(£) that is
zero on the exact forms. Under reasonable conditions on the ambient space M, a
foliation cycle can be considered as a homology class of dimension 2 on M that
can be homologous to zero in certain cases, as we will see later. We will not try
to find the most general setting in which this would make sense, and will restrict
our attention to the case where M is a compact differentiable manifold and £ is
a smoooth foliation. By restriction, the differential 2-forms on M give elements of
A%(L); a foliation cycle can thus be considered as a closed current on M in the
usual sense, so it has a homology class.

LEMMA 7.2. Let (M,L) be a foliation by Riemann surfaces on an oriented
manifold. Suppose L has a foliation cycle u that is homologous to zero. Then the
support of an effective divisor cannot intersect all the leaves. In particular, if a
foliation cycle is homologous to zero, then there are no nonconstant meromorphic
functions.

PRrOOF. Let E be a holomorphic line bundle over M, and let s be a global
holomorphic section of E. We will show that under the hypotheses of the lemma,
the zero locus of s cannot intersect all the leaves.

Since E is a line bundle over M, it has a Chern class ¢(E) that is an element
of the de Rham cohomology group H?(M;R). Restricting to the leaves, we have a
map H?(M;R) — H?(L), which of course sends ¢(E) to the Chern class defined in
4.2. Let v be a closed 2-form on M that represents ¢(E).

The foliation cycle x4 can be viewed as a current on M. To say that the cycle is
homologous to zero means that this current is zero on closed forms. In particular,
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(c(E),p) = {y,p) =0, and by Lemma 4.5 p-almost every leaf does not intersect
the zero locus of s. O

It is easy to construct a foliation that does not satisfy this criterion. Consider
a Hopf surface, a quotient of C? \ {(0,0)} by a homothety of ratio 2. We have a
fibration m : M — CP! that assigns to each point the complex line in C? passing
through the point. The fibers of 7 are elliptic curves, which define a lamination on
M. Since M is diffeomorphic to S3 x S, its second homology group is zero, so the
fundamental class of the leaves is zero in the homology of M. Thus, there are no
nonconstant meromorphic functions on this lamination on M. This generalizes the
well-known fact that Hopf surfaces are not algebraic.

Of course, the preceding example could be criticized for not being minimal.
We return to the notation of 6.1. The one-parameter group of left translations
h% (s € C) on the homogeneous space SL(2,C)/T" generates a lamination £ on
M = SL(2,C)/T, which is equipped with a flat Hermitian metric in which the
associated holomorphic vector field is of length 1. This lamination has a foliation
cycle (unique up to a multiplicative constant) defined as follows: if w is a 2-form on
L, it can be evaluated on the field of unit 2-vectors carried by £ to give a function
on M, for which one can compute the integral I(w) on M with respect to the Haar
measure on SL(2,C)/T. Tt is easy to check that this defines a foliation cycle. On
the other hand, the complex flow d' satisfies d'h%.d~* = h‘fp(%)s. This means that
d! preserves £ globally and expands the flat Hermitian metric along the leaves by a
constant not equal to 1. Since the flow acts trivially on homology, it follows that the
homology class of this foliation cycle is zero. Thus we have constructed a minimal
lamination with no nonconstant meromorphic functions.

Given a lamination (M, L), the question of the existence of an effective divisor
whose support intersects all the leaves clearly precedes the question of the existence
of meromorphic functions; the former is a purely topological question.

7.2. Construction of meromorphic functions. Here we describe three re-
sults on the existence of meromorphic functions for laminations all of whose leaves
are of the same type.

A total transversal for a lamination (M, £) is a closed set T C M that intersects
all the leaves of £ and whose intersection with any distinguished open set U; ~ DxT;
is the disjoint union of finitely many graphs of the form {(o(¢),t)}, where the o
are continuous and defined in open subsets of 7;. Such a transversal is clearly an
example of an effective divisor, if we agree to give it multiplicity 1.

Let (M, L) be a lamination all of whose leaves are parabolic. We say that £
satisfies the growth condition if there exist constants C,¢ > 0 with the following
property. Let ¢ : C — L be a holomorphic covering of a leaf L, and let |d¢| be the
norm of the derivative of ¢ (computed with an auxiliary metric on £). Then

CH(1+ [2]) “|dp(0)] < [dg ()] < C(1 +|2))*|de(0))-

Of course, this condition is satisfied if the lamination is uniformizable because then
|d¢| is bounded.

THEOREM 7.3. Let (M, L) be a lamination of finite topological dimension, all
of whose leaves are of elliptic type. Then the meromorphic functions on (M, L)
separate the points of M.
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THEOREM 7.4. Let (M, L) be a lamination of finite topological dimension all of
whose leaves are of parabolic type. If (M, L) has a total transversal and L satisfies

the growth condition, then the meromorphic functions on (M, L) separate the points
of M.

THEOREM 7.5. Let (M, L) be a lamination of finite topological dimension all
of whose leaves are of hyperbolic type. If (M,L) has a total transversal, then the
meromorphic functions on (M, L) separate the points of M.

Before sketching the proofs, we make a few remarks on the hypotheses.

(1) We already pointed out in the proof of Proposition 5.6 that a lamination
with parabolic leaves has an averaging sequence, but we do not know whether
such a lamination necessarily satisfies the growth condition.

(2) One can prove the same result (with essentially the same proof), assuming
only the existence of an effective divisor whose support intersects all the
leaves instead of assuming the existence of a total transversal. However,
we chose this weaker statement because we are convinced that this kind of
topological hypothesis is temporary and will soon be eliminated.

(3) For codimension one, oriented foliations on closed 3-manifolds, it is known
that there exists a total closed transversal if and only if no foliation cycle is
homologous to zero (one then says that the foliation is taut). More precisely,
there exists no total transversal if and only if the foliation contains finitely
many toroidal compact leaves whose (oriented) union bounds a submanifold
with boundary (see [43, 25]). In particular, if all the leaves of a codimension
one foliation on a 3-manifold are of hyperbolic type, then there exists a total
transversal and one can then apply Theorem 7.5.

The proof of Theorem 7.3 is of course the easiest. Let (M, L) be a lamination
all of whose leaves are elliptic. We saw in 5.1 that the leaves of £ are the fibers of
a fibration 7 : M — . One can proceed as follows. Let N be a positive integer,
and consider the line bundle over CP! that is the Nth power of the tangent bundle.
In other words, the global sections of this bundle are the holomorphic tensors that
can be written in each affine chart on CP! as

9(2) <%>N-

The space of holomorphic sections is a space Ex of complex dimension 2N + 1 on
which PGL(2,C) acts naturally; it corresponds to the functions g that are polyno-
mials of degree less than or equal to 2N. As we have seen, the “quotient” of two
nonzero elements of En can be viewed as a rational map on CP'. We can construct
the vector bundle of rank 2N + 1 over () that is associated with En. Since M is
assumed to have finite topological dimension, a vector bundle of sufficiently high
rank over M has nonvanishing sections. Thus, by choosing N sufficiently large
and considering the quotient of two nonvanishing sections, we can obtain mero-
morphic functions on (M, £). This construction is sufficiently general to produce
meromorphic functions that separate the points of M. This proves Theorem 7.3.

The proof of Theorem 7.4 consists of adapting the classical construction of
elliptic functions. We first consider a very special case: suppose that (M, L) is
a lamination with parabolic leaves such that the leaves of £ are the orbits of a
complex flow ¢* (z € C) acting holomorphically on the leaves. Let 7 C M be a
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total transversal. If z is a point in M, then the set Z(z) = {z € C: ¢*(z) € T}
is discrete in C, and there exists € > 0 (independent of z) such that the disks of
radius ¢ centered at the points of Z(z) are disjoint. It follows that for some integer
N > 2, the series

(7) fay= Y =~

2€Z(z)

converges outside 7 and defines a holomorphic function on (M, £), with values in
CP' ~ CU {oc}. Note that if s : 7 — R is a continuous function, then the image
of the map t € T + ¢*)(t) € M is another total transversal. We can use this to
show that if z and y are two distinct points, then there exists a total transversal
that contains x but not y. We can then construct meromorphic functions, with
values in CP! ~ C U {oc}, that have a pole at = and are finite at y; this proves
Theorem 7.4 in the special case of a holomorphic flow.

We now consider the general case of Theorem 7.4: a lamination with parabolic
leaves, satisfying the growth condition and with a total transversal 7. Let = be
a point in M. By hypothesis, there exists a holomorphic covering ¢ : C — L(x)
of the leaf through z. Let Z(z) be the set of z € C such that ¢(z) € T. This is
still a discrete set, and it is still true that there exists an € > 0 such that the disks
centered at the points of Z(x) and with radius ¢ are disjoint, but the disks must be
considered in the metric on C that is the pullback under ¢ of a Hermitian metric
on (M, L). For this reason, the growth condition ensures that the expression (7) is
convergent for sufficiently large V. However, the sum of this series depends on the
choice of the covering ¢, which is unique only up to an affine map. The object that
is well defined, independently of the choice of ¢, is the expression

plz) = Z 2NN,

z€Z(x)

In other words, p defines a meromorphic differential of order NV along the leaves,
which has a pole along 7. The continuity of p on M follows from the continuity
of the affine structure of the leaves, which we proved in 6.3. If we proceed in
this way with two transversals and consider the ratio of the two differentials p
thus obtained, we obtain a meromorphic function; this proves Theorem 7.4. To
be precise, we would have to say that the two differentials p constructed in this
way can be considered as holomorphic sections of a line bundle: it suffices here to
consider the product of the Nth power of the cotangent bundle to the leaves and
the Nth powers of the two bundles defined by the two transversals.

Before proving Theorem 7.5, we recall how H. Poincaré constructed Fuchsian
functions [40]. Let ' be a Fuchsian group, that is, a discrete subgroup of PSL(2, R).
Let R be a rational map of one complex variable z, and consider the quadratic
differential form p = R(z)dz2. Since I' acts on the Riemann sphere (preserving the
disk D), it acts on the quadratic differentials. We now set

oR=Y_7"p.

yer

Since I is discrete and acts properly on the disk I, this series converges in the whole
disk D (minus the orbit of the poles of R under T, of course). This follows from the
fact that if  is a point in the Poincaré disk, then there is an € > 0 such that the
hyperbolic disks of radius € with centers on the orbit ['z are pairwise disjoint, so
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the series of their Euclidean areas converges. Of course, the quadratic differential
og is invariant under I'. The quotient og, /og, of two rational maps R; and R, is
a meromorphic function on D that is invariant under the Fuchsian group T'; that
is, a meromorphic function f on the Riemann surface D/T. However, one has to
check that f is not constant. H. Poincaré did this by arranging that the poles of
R; and Ry do not lie on the same orbit of I, which ensures that f has a zero and
a pole and is therefore nonconstant.

The proof of Theorem 7.5 consists of imitating Poincaré’s construction in the
context of laminations. Let (M, L) be a lamination all of whose leaves are of
hyperbolic type. We know that there exists a Hermitian metric g such that all
the leaves have curvature —1. Let T'L be the tangent bundle to the lamination.
Considering the exponential map along the leaves with respect to the metric g, we
define a map exp : TL — M whose restriction to each tangent plane is a covering
because each leaf is negatively curved. We can thus equip each tangent plane with
the pullback metric, and from now on we consider T'L as a bundle over M whose
fibers are copies of the Poincaré disk . The map exp is holomorphic and isometric
on the fibers.

Let TT be the subset of TL that lies over the total transversal 7. We may
consider T'T as a noncompact lamination whose leaves are all Poincaré disks and
that is mapped holomorphically to £ by exp : T'T — M. This map is surjective
and has discrete fibers. To construct a quadratic differential on M, we simply take
the “pushforward” of a quadratic differential on T°7.

Let p be a quadratic differential on T77. This means that p continuously assigns
to each point z in T a quadratic differential p(x) on the corresponding tangent
plane, which is isomorphic to ID. We require that p be rational, that is, of the form
R.(z)dz?, where R,(z) depends rationally on z. Moreover, we choose p so that each
p(x) has a pole (not necessarily simple) at the origin of the corresponding disk. We
can choose R, (z) to be of the form 2=~ P, (z), where N is a sufficiently large integer
and P, is a nonzero polynomial of degree less than or equal to N. Indeed, since
M is finite-dimensional by hypothesis, a vector bundle over M of sufficiently high
dimension must have a continuous nonvanishing section.

We now set o = exp,(p), but we have to explain what we mean by this “un-
natural” pushforward ...

The universal cover L of a leaf L of £ is isomorphic to the disk . Choose an
isomorphism such that there is a holomorphic immersion ¢ : D — M with image
L. The inverse image i~'(7) is a discrete subset of I, and there is a greatest
lower bound for the Poincaré hyperbolic distance between two of its points. For
each t € i~ 1(T), there is an exponential map exp, : D — L ~ D that sends
the origin to the point ¢ and is an isometry. For each ¢ there is also a rational
quadratic differential p; on ID. Using exactly the same reasoning as H. Poincaré, we
verify that the sum 3, (exp; ')*(p;) converges away from its poles. This quadratic
differential equation on L passes naturally to the quotient on L and defines a
quadratic differential on each leaf of L; this is the meromorphic quadratic differential
we denoted earlier by o. The continuous dependence in the transverse direction
has to be checked, but this follows easily from the uniform convergence of the series
under consideration. We have indeed constructed a meromorphic differential on
(M, L) that has a pole along the transversal T.
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Note that if s is a section of the bundle 77 over 7, then the image of the map
t € T — exp(s(t)) € M is another total transversal. This allows us to show that if
x and y are distinct points, then there exists a total transversal containing x but
not y.

To construct nonconstant meromorphic functions on (M, £), it suffices to con-
sider the quotient of two of these quadratic differentials, corresponding to the choice
of two total transversals. This ratio is not constant because it has poles. Here again,
to be precise, we must consider these two meromorphic differentials as holomorphic
sections of the same line bundle. Given two distinct points in M, we have indeed
constructed a meromorphic function on M that assumes different values at these
points. This completes the proof of Theorem 7.5.
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DYNAMICS OF RATIONAL MAPS ON P*

by

Nessim Sibony

Abstract: We present the basics of a Fatou-Julia theory for rational maps on
P!. We consider primarily those aspects that use pluripotential theory.

Given a dominant rational map f : P¥ — P* we define the Julia set asso-
ciated with f. We then introduce a closed, positive current T' of bidegree (1,1)
whose properties of invariance, support, and regularity give information about
the dynamics of f.

The second chapter is devoted to the study of regular polynomial biholo-
morphisms of C*: periodic points; entropy; ergodic measure defined as an “inter-
section” of currents; stable manifolds; and Fatou-Bieberbach domains.

In the last chapter we consider the case of holomorphic endomorphisms of
Pk, The support of T coincides with the Julia set. The measure p := T* is
mixing and maximizes entropy.

Introduction

The dynamical study of rational maps of one complex variable initiated by
Fatou, Julia, and Léau has seen a significant revival of activity in the past two
decades. This is due in part to the computer visualization of Julia sets. It is now
a highly developed theory.

By comparison, the theory of iteration of rational maps of the projective space
P* is still in its infancy. The problems that motivate it are, however, quite natural.

Let F = (P,Q) be a polynomial map of C?. Suppose we want to localize the
zeros of F'; that is, to approximate the solutions of the system of equations

{oem=s

Newton’s method consists of iterating the map
(z,w) = (z,w) = (F'(2,w)) " 0 F(z,).

Passing to homogeneous coordinates in P? leads to the study of iterates of a rational
map from P? to P2. One can verify that, generically in (P,Q), one obtains a
meromorphic map from P? to P2, which has points of indeterminacy. Note that in
one variable, rational maps from P! to P! have no points of indeterminacy.

Another motivation is the study of real Hénon maps. Consider the polynomial
diffeomorphism h, . in R? defined by

(z,y) = (2* + c+ ay, x).

It has been known since Hénon’s experimental studies that, for certain values
of the parameters (a, c), the Hénon map he . exhibits new dynamical phenomena.
The existence of a “strange attractor” for certain parameter values is now well
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established through the work of Benedicks-Carleson [12]. It is tempting to view
the maps h, . as biholomorphisms of C? and study their dynamics by using the
tools of complex analysis. In fact, it is even useful to consider the Hénon maps in
homogeneous coordinates

hae: [z w:t] = [22 +ct® + awt : 2t : 7).

We see that h, . has a point of indeterminacy Iy = [0 : 1 : 0] and that h;,
considered as a meromorphic map on P2, has a point of indeterminacy I_ = [1 :
0 : 0]. The point I_ is attracting for hg ., and I} is attracting for ha_é. It is this
property, Iy N I_ = (), that distinguishes the generalized Hénon maps among the

polynomial automorphisms of C2. The elementary maps
[2:w:t] = [w? +ct® + azt : wt : 7]

satisfy I, = I_ =[1:0:0], and their dynamics are very simple (Chapter 2).

A basic tool in the iteration theory of rational maps of P! is Montel’s theorem:
a family of holomorphic maps of the unit disk with values in P!\ {0, 1, 0o} is locally
equicontinuous. The corresponding results for holomorphic maps with values in P*
minus hypersurfaces do not have the same adaptability.

These notes deal mainly with results that can be obtained by using techniques
of pluripotential theory.

Given a dominant meromorphic map f from P* to P¥ (that is, one whose image
contains an open set), we can define the Fatou set of f as the largest open set in
which the family of iterates (f™) is locally equicontinuous. The Julia set J is the
complement of the Fatou set. The point here is to introduce dynamically interesting
closed positive currents on J and analyze them.

We sketch the theory in the context of polynomials in one complex variable. In
this case, the currents considered are just positive measures. Let

fa(z) =24+ a12" - tay
be a polynomial on C of degree d, parametrized by a € C?. Set
K,={z€ C: {fI(z)} bounded}.

The Julia set J, is the boundary of K,. Let £, denote the Dirac measure at w.
Brolin [16] showed that the harmonic measure u, of K, relative to the point at
infinity has remarkable dynamical properties. On the one hand, it is mixing for f,;
on the other, except for at most one point w € C, the sequence of discrete measures

(f")ew _ 1
(1) —ar an Z Ew;
fr(wi)=w
converges vaguely to fg.
Tortrat [81] has shown that the sequence of measures

1
2) .
fr(z)=z

also converges to p.
I observed in 1981 ([74]) that one could treat some aspects of the elemen-
tary theory of dynamics of polynomials without recourse to the theorem of Montel
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mentioned above. What takes its place is a compactness theorem for subharmonic
functions that are locally bounded above (see Theorem A.1.2). Set

— 1; 1 + | £
3) G(z,0) = lim - log" |£(2)].

One shows that this limit exists and that it defines a continuous plurisubharmonic
function on C x C?. It satisfies the functional equation

(4) G(fa(z)va) = dG(z,a).
Moreover,
K, ={z:G(z,a) = 0}.
In addition, the function G is pluriharmonic (it is locally the real part of a holo-
morphic function) outside the closed set

K={(z,a) eCxC:2€ K,}.

For fixed a, G(-,a) is the Green’s function in C of the compact set K,, with pole
at infinity. If A, denotes the Laplacian with respect to z, we have

fa = Az (G(2,a)).

This is the harmonic measure considered by Brolin.

The Julia set appears as the support of p,. It is the set of boundary points of
{G, > 0}; the function G, has no harmonic extension to a neighborhood of any of
these points. Elementary results from potential theory imply that the Julia set is
perfect.

The functional equation (4) can be used to show that the function G(:,a) is in
fact locally Hoélder continuous. From this, still because J, is the support of u,, we
can derive estimates for the local Hausdorff dimension of the Julia set.

The critical points of G(-,a) carry information about the connectivity of J,.
Differentiating equation (4) in {G(z,a) > 0}, where the function G is harmonic,
yields the classical result that if the critical points of f, arein K,, then the boundary
Jo of K, is connected. For iteration theory in one complex variable, we refer the
reader to the monograph of Carleson-Gamelin [18].

The continuity of the function G(z,a) with respect to the parameter a shows
that the measure p, varies continuously, although the Julia sets J, do not vary
continuously with respect to the Hausdorff distance on compact sets.

To determine the distribution of the preimages of a point w, one is led to study
the convergence of the sequence of subharmonic functions

1
un(2) = = 0g |7 (2) — wl.
One shows that the sequence u,, converges to G,. Similarly, the approximation of
the measure p, by Dirac measures concentrated at the periodic points comes from

studying the convergence to G, of the sequence of subharmonic functions

on(z) = 7 log |£2() ~ 2!

These notions generalize to several variables. It was Hubbard [50] who had the
idea of considering the Green’s function of Hénon maps. For an Hénon map h, he
defined
+|hin(

1
G*(z,w) = 7};11;0 2—nlog z,w)|
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and showed that G* and G~ are plurisubharmonic functions in C?, pluriharmonic
outside the sets

K* = {(z,w) : {h*"(z,w)} bounded}.
The compact set
K=K"'nK~
is the set of points whose iterates h™ and h™", n > 0, are bounded.

Then Kt = {G* =0} and K~ = {G~ = 0}. The function G = sup(G*,G ")
vanishes exactly on K. The function Gt measures the rate of convergence to infinity
[50].

It was natural to consider the dynamical study of the closed positive currents

T, :=dd°G* and T_ :=dd°G~

and the measure

p = (dd)*G.
Here (dd®)? denotes the Monge-Ampere operator. The current 7', is supported on
the boundary of K, that is, on the set of points in any neighborhood of which the
function G7 is not pluriharmonic.

The basic properties of these currents and p were established in joint work with
E. Bedford. Some of them appear in [7]. The theory of complex Hénon maps was
developed in a number of papers by Bedford-Smillie [6, 7, 8, 9], Bedford-Smillie-
Lyubich [3, 4], Hubbard-Obersthe-Vorth [51], Fornaess and the author [27, 29].

Bedford-Smillie-Lyubich showed, in particular, that the invariant measure u
maximizes entropy and is the limit of Dirac measures at the hyperbolic periodic
points.

The Julia set of h has a certain rigidity. It is shown in [29] that the only closed
positive currents with support in K+ are proportional to T'y. This uniqueness
property can be understood heuristically by saying that the stable manifolds that
laminate QK force the current to equal T'y.

The study of Hénon maps in C? is certainly the most highly developed aspect
of the theory of holomorphic maps. The fact that the maps are algebraic is re-
sponsible for the rigidity of the objects constructed. Note, for instance, that for a
transcendental automorphism of C*, the set

Ky ={z€C":{f"(2)} bounded}
can be everywhere dense and not equal to C¥. For the dynamical study of tran-
scendental maps, we refer the reader to the survey by Fornaess [26].

One can ask the question: why introduce closed positive currents into the study
of the dynamics of rational maps?
Consider the very simple example of the endomorphism f of P2 defined by

flz:w:t] =22 w® : 7).

It has algebraic degree 2 and topological degree 4. It has three attracting fixed
points: the points [0 : 0 : 1], [1:0:0], and [0 : 1 : 0]. The union of their basins
of attraction is the Fatou set. Its boundary is the Julia set. We work in the chart
{t # 0}. We are in C?, and the basin of attraction at the point [0 : 0 : 1] is the
polydisk D? = {|z]| < 1, |w| < 1}. Its boundary consists of

Ay ={z=¢"jw| <1}, Ay={w=e"|z| <1}, A3={z=¢" w=¢"}.
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The open subset A; of the Julia set is foliated by the stable manifolds corre-
sponding to the points of the circle |z| = 1. The circle {w = 0,|2| = 1} is invariant.
The periodic points are dense in it, and the mixing measure that describes their
distribution is Lebesgue measure. Each point has a stable manifold that is a union
of disks z = €. Thus the current

1 o 0 c +
— [z = e”]df = dd°log™ |z|,
2 Jo
where [z = €'?] denotes the current of integration on the line z = % has a dynam-
ical interpretation. This current describes the distribution of the stable manifolds.
It is the analogue, in the setting of endomorphisms, of the dynamical currents
introduced by Ruelle-Sullivan [68].

We will show that if w is the usual Kihler form on P2, the sequence of forms
(f™)"w/d™ converges to a positive closed current T whose restriction to A; we have
described. In fact, this current T contains other information. If we define the wedge
product u := T AT appropriately, we find the Lebesgue measure on the torus As;
it is invariant under f. The torus Az contains all the repelling periodic points of
f. For this example, it is easy to check that if @ ¢ {zwt = 0}, then

1 * 1 ny*
(e and —o 3 (e o
fr(z)=2

These are the questions we will study for the endomorphisms of P*. Pluripo-
tential theory is used for the proofs in the general case.

These notes are divided into three chapters and an appendix.

In Chapter 1 we introduce the basic notions of meromorphic maps on P*. Let
f : P* — P* be a dominant meromorphic map; we define the Fatou set of f and its
complement, the Julia set. Let w be the Kéhler form on P*; we show that if f is
algebraically stable and of degree d > 2, then the sequence of forms

1 *
d_”(f ") w
converges to a closed positive current 7' that satisfies
T =dT.

When f is normal (Definition 1.5.2), the support of T' coincides with the Julia set
J (Theorem 1.6.5). We give estimates for the Hausdorff dimension of .J and for the
current 7. Finally, we prove a result on convergence to the current 7' (Theorem
1.10.1).

Chapter 2 is devoted to a generalization of Hénon maps from C?> to C*. We
introduce the notion of a regular automorphism of C¥. These are polynomial au-
tomorphisms f such that the indeterminacy sets I (associated with f) and I_
(associated with f~1) are disjoint. We restrict ourselves to this hypothesis to sim-
plify the exposition, though a number of properties are true under more general
hypotheses. The hypothesis I, N I_ = () guarantees a relation between the degree
of f and that of f—1.

Regular automorphisms are normal. The current 77 is not necessarily sup-
ported on KT, as it is in dimension 2.

If dim I_ = 0, then T, is supported on 9K T, and all the closed positive currents
supported on K are proportional to T).. In particular, the stable manifolds are
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dense in Kt (theorem of Bedford-Smillie on compositions of generalized Hénon
maps).

We then discuss some classical results on the basins of attraction of attracting
periodic point (Fatou-Bieberbach domains), as well as global properties of stable
manifolds.

Under the hypothesis dim I = £—1, we show that the measure p := T_fi ATH=¢
is invariant. It is mixing for f if dim I = 0. In particular, it is mixing for Hénon
maps on C? [9] and for every regular automorphism of C2.

In Chapter 3 we treat the case of holomorphic endomorphisms of P of algebraic
degree d > 2. We attempt to describe the most elementary properties of the
iteration theory of rational maps of P!. The Fatou components are Kobayashi
hyperbolic (a theorem of Ueda). The support of T' has some of the properties of
the Julia set in P!, In particular, it is the complement of the Fatou set, but it is not
necessarily contained in the set of nonwandering points. The support of p := T*,
denoted by Jj, is contained in the set of recurrent points. In fact, the measure p is
invariant under f, maximizes entropy, and is mixing (3.6). If U is a union of Fatou
components and satisfies f~1(U) C U, then J; C 0U.

The periodic points are dense in Ji, and the Lyapunov exponents of the measure
u are positive (a theorem of Briend-Duval).

We have collected in an appendix those properties of plurisubharmonic func-
tions and currents that are used repeatedly.

Finally, let us point out that these notes make extensive use of joint work with
J. E. Fornaess.

Julien Duval, Charles Favre, Vincent Guedj, and Monique Hakim contributed
to the completion of this article. I am very grateful to all of them.



CHAPTER 1

Iteration of Rational Maps of P*

1.1. Definitions. Dominant Maps
Let P* be the complex projective space of dimension k. We write
z=[z0:21 ... 2]

for a point z of P*¥ defined by its homogeneous coordinates. A rational map of
degree d is written as
f=[Fo:F:...: F],
where the F; are homogeneous polynomials of degree d without common factors.
We assume in what follows that d > 2.
We associate with f the map F = (Fy, Fy, ..., Fy) from CFt! to Ck+1 . If

7 CH\ {0} — P*

is the canonical projection, we have the commutation property m o F' = foxw. We
denote the Jacobian of F' by J(F).

The function f is not actually defined everywhere. There is an indeterminacy
set I = m(F~1{0}) in P*. Since the F; have no common factor, I is an analytic set
of codimension > 2.

We call a map f dominant if it is generically of rank k, that is, if the Jacobian
J(F) is not identically zero. We denote by M, the space of dominant rational
maps of degree d. When I = (), we say that f is holomorphic. We denote by H4
the semigroup of holomorphic maps of degree d from P* to P¥. We show that every
meromorphic map from P* to P* is rational. Thus every holomorphic map from P*
to P* is in some H,.

The space of all maps of degree d,

f=[Fo:Fi:...: F,
where the F; are homogeneous polynomials of the same degree, can be identified
with PV, where N = (k + 1)1 1 Thus

Hy C My C]PN.

PROPOSITION 1.1.1. Hy4 and M are Zariski open subsets of PN . In particular,
they are connected subsets of PN .

PROOF. The complement of M, is the analytic subset of functions f on PV
defined by J(F,z) = 0. We show that the complement ¥ of H,; is an analytic
subset of PV. Indeed, ¥ is the subset of functions f € PY for which there exists
z € P¥ such that F(z) = 0. It is thus the projection to PV, under the proper map
(f,s) = f, of the analytic subset ¥’ of PV x P* defined by

Y ={(f,z) € PN xP*: F(z) = 0}.

87
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O
COROLLARY 1.1.2. If f € My, then the degree of J(F,z) is (k+ 1)(d —1).

PROOF. Since the degree of J(F,z) depends continuously on f, it is constant
because My, is connected. To find its value, it suffices to compute it for the map
f=[zd:28:.. 20 O

ExAMPLES 1.1.3.

(1) Let k = 2. The map fo = [2? : w? : t] and, more generally, the maps of the
form f; = [P(z,w) : Q(z,w) : t?], where P and @) are homogeneous polynomials of
degree d such that {P = @ = 0} = {0}, are in Hgq.

The map fo = [(z — 2w)? : (z — 2t)? : 2?] is in Ha2, and the orbit of its critical
set, is algebraic.

(2) The map from C? to C? defined by f(z,w) = (p(z) + aw, z), where p is a
polynomial of degree d > 2 in one variable and a # 0, is a polynomial automorphism
of C? called an Hénon map. It is useful to consider its meromorphic extension to
P2, which we continue to denote by f by abuse of notation. Then

fz:w:t]) = [tdp (%) +awt?t 24t td} ,
and

iz :w:t]) = {wtd—l : % (th—l 4 (%)) :td]

for the inverse automorphism. The indeterminacy sets of f and f~!, respectively,
are the two points
I, =[0:1:0], I-=[1:0:0].
The points of indeterminacy are in the hyperplane at infinity, defined by ¢ = 0.
(3) We now give an example of a dynamically interesting automorphism of C3:

g([z:y:2:t]) = [ax® + By* +azt : ya® + byt : xt : 7],
where a, 3,a,7v,b € C*. We have

1 1 t—v22\?
g (x:y:z:t]) = |23 E(yt3 —v2%t%) - (wt3 —a’t’ - B (%) > :t4] .

Here I, =[0:0:1:0) and I = {[z : y : 0: 0]}. Note that the degree of g~ is 4,
while that of g is 2.

1.2. Critical Set. Blow-up

Let f € My. The Jacobian J(F) of the map F on CF*+! associated with f is a
homogeneous polynomial of degree (k + 1)(d —1). The set {J(F) = 0} defines an
analytic subset of P¥; this is the critical set Cy of f.

For f € Mg, we cannot discuss f(p) when p is a point of indeterminacy. We
introduce the blow-up B, of f at p. We denote by B(p,e) the ball with center p
and radius ¢, for a fixed metric on P*. We define

B, =) f(Bpe)\ ).
>0
B, can also be defined by considering the graph

Dy ={( f(2): € B\ I},
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which is an analytic subset of (P* \ I) x P*. Its closure '} is also an analytic set.
Then B, is the analytic subset of ff that projects to p. We sometimes write B;,“ for
the blow-up at p associated with f, and B, for the blow-up at ¢ associated with
the inverse of f.

Clearly B, is connected because (B(p,¢) \ I) is connected for every € > 0. If
the dimension of B, is 0, then f extends holomorphically to p, and p is not in I.

Recall that a map f € My is birational if there exists g € My such that
fog=1d and go f = Id outside a hypersurface C of P*. We will write g = f~!.
We will denote the indeterminacy set of f by I, and that of f~! by I . We have
the following property of blow-ups:

PROPOSITION 1.2.1. Let f be birational on P*. If p is in B, , then q is in B;.
In particular, f(B, \ 1) = q.

PrROOF. Let p € B, . There exists a sequence {2}, z, ¢ I, such that
lim,, z, = ¢, lim, f~(2,,) = p, and f~1(2,) ¢ L. It follows that f(f~'(zn)) = 2n
approaches ¢, and hence that ¢ is in B} . O

ExAMPLE 1.2.2. Let f be a polynomial automorphism of C2. Let [z : w : ]
denote the coordinates in P2, and let H be the hyperplane at infinity defined by
t = 0. Clearly B = H for every point p € I (since B, must be an analytic subset
of dimension 1, and f’l(Bq+ \ I-) = p by Proposition 1.2.1). Similarly, B, = H
for every ¢ € I_. Hence the preceding proposition asserts that F(H \ I;) = ¢ for

every q € I_. It follows that Iy and I_ each reduce to a single point.

DEFINITION 1.2.3. Let V be an analytic subset of dimension £ of P*, and let
f € My. We say that V is a degeneracy set for f if the rank of the restriction
fly\ris <€ —1. If k = 2, this means that fy\; is constant.

EXAMPLE 1.2.4. If f([z : w: t]) = [2® : w? : wt], then the image under f of the
line (w = 0) is the point [1:0: 0].

1.3. Preimages of a Point
Recall the statement of Bézout’s theorem:

THEOREM 1.3.1. Let Py, ..., P, be homogeneous polynomials on P*. If the set
of their common zeros is discrete, then the number of these zeros, counting multi-
plicity, equals the product d; . ..dy of the degrees of the polynomials Py, ..., Py.

This implies the following corollary:

COROLLARY 1.3.2. Let f € Hq(P*); then for every a € P* the cardinality of
{f~%(a)}, counting multiplicity, is d*.

PROOF. Let f = [Fp : Fy : ... : Ft], where Fp, F,..., F} are homogeneous
polynomials of degree d in z = (2o, 21,...,2;). We introduce a new variable ¢ and
solve the system

Fj(2) —ta; =0, j=0,1,...,k,
of homogeneous equations in P¥*1. Considering this system in C**2, we see that
the intersection with t = 0 reduces to 0. Hence f = at? defines an analytic subset of
PE+1 that does not intersect t = 0. It is thus a compact analytic subset of CF*+! | i.e.
a finite set. Applying Bézout’s theorem in P! we see that the set S = {f = at?}
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has d*+! points, and {f~!(a)} can be identified with the projection of S to P*.
But S does not intersect t = 0 and does not contain the point [0 :...: 0 :1]. Thus,
over each point in {f~1(a)}, there are exactly d distinct points of S, obtained by
multiplying ¢ by the d dth roots of unity. It follows that the cardinality of { f~!(a)}
is d*. O

The proof of the following theorem is similar.

THEOREM 1.3.3. [30] Let f and g be holomorphic maps from P* to P*. Assume
that f has degree d and g has degree d', d' < d. Then the set {f = g} is discrete
dk+1 — dlk+1

d—d

COROLLARY 1.3.4. Let f be a holomorphic map from P* to P*, f € Hy, where
d > 2. Then the number of periodic points of order n. of f, counting multiplicity, is
drk+1) _ 1

dn —1

PRrROOF. Recall that a point p is said to be periodic of period n if f™(p) = p,
where we assume, as usual, that n is the smallest such positive integer. The corollary
follows from the preceding theorem applied to f™ and g = Id. O

THEOREM 1.3.5. [73] Let F : U — RP be a map of class C', defined in a
neighborhood U C RP of 0. Assume that 0 is an isolated fized point of f™ for every
n. Then p(f™ — 1,0), the multiplicity of f™* — I at 0, is bounded by a constant
independent of n.

and, counting multiplicity, its cardinality is

We then obtain the corollary:

COROLLARY 1.3.6. Let f be a holomorphic map from P* to P*, f € Hq. Then
f has infinitely many distinct periodic orbits.

Observe that meromorphic maps do not necessarily have periodic points. For
instance, let f be defined by

f(z,y) = (az + P(y),y + B),

where P is a polynomial of degree d and «a, 8 # 0. Clearly the map has no periodic
points in C?, and passing to homogeneous coordinates gives

flr:y:t] = |axt? ! +t7P (%) syt 4 Bt td] .

In this example, ¢ = 0 is mapped to the point of indeterminacy [1:0: 0], so f has
no periodic point in ¢t = 0.

1.4. Indeterminacy Set. Degree of Iterates. Algebraically Stable Maps.

Let f € My. Let I be the indeterminacy set of f, and for each n € N, let I,, be
the indeterminacy set of f™. I, is the analytic subset of P* defined by (F},)~!(0),
where F), is a lift of f™. If m > n, then [, C I,,.

DEFINITION 1.4.1. We denote by E = I,, the set of points of indetermi-

nacy of the iterates of f.

PROPOSITION 1.4.2. Let f € My. If z ¢ E and f(z) € E, then z is in a
degeneracy set.

neN



DYNAMICS OF RATIONAL MAPS ON P* 91

PRrROOF. Let
Y ={z € P*\ E:dim f~!(f(2)) > 0}.
We know ([45], p. 136) that ¥ is a proper analytic subset of P*\ E. It is clear that
every point z of ¥ is in the degeneracy set f~1(f(z)). If 2 ¢ ¥, then there exist
arbitrarily small neighborhoods V' of z such that fl"‘, : V — U is surjective, proper,
and finite. But if each image contains a point in I;, then V' contains a point in
Iy ,,. Hence z € E. O

Let f € My. The degree d,, of f™ may be less than d™ because the components
of F™ may have a common factor. Thus dp4n, < d,, - dy, in general. However,
equality d, = d" does hold if there is no hypersurface of P¥ whose image under
f™!is contained in I. More precisely, we have the following result.

PROPOSITION 1.4.3. [29] Let f € Mg, g € Ma. The algebraic degree of fog
is d-d' if and only if there is no hypersurface V such that g(V \ I;) C Iy.

Proor. If g(V \ I;) C Iy, then all the components of F' o G have a common
factor, which gives the defining equation of V. The degree of f o g is thus less than
d-d'. The converse is also clear. |

DEFINITION 1.4.4. We say that f € Mg is algebraically stable if there does not

exist any integer n or hypersurface V' such that all the components of F'™ are zero
onV.

It follows from Proposition 1.4.3 that if f is algebraically stable and has degree
d, then f™ has degree d™.

If f is algebraically stable and I,, denotes the indeterminacy set of f”, then
I, C I, for m > n. Algebraically stable maps are introduced in [32], where they
are called “generic maps”.

EXAMPLES 1.4.5.

(1) Hénon maps (Example 1.1.3(2)) are algebraically stable. Indeed, {t = 0} is
mapped to the fixed point [1:0: 0].

(2) The automorphism g (Example 1.1.3(3)
image of {t = 0} is the set {[az? + By* : y2? :
does not intersect I;.

(3) The map h defined by h([z : y : t]) = [zt+t* : yt+2? : t?] is not algebraically
stable because {t = 0} is sent to the point of indeterminacy [0: 1 : 0].

) is algebraically stable because the
0 : 0]}, which is stable under g and

EXAMPLES 1.4.6.

(1) Let f € My be an algebraically stable map. If g is a meromorphic map
that is birationally equivalent to f, then g is not necessarily algebraically stable. It
suffices to take

flz:w:t] = [z :w?: Y, @, =[az® +wt: 2t : t7].
We have
otz w:t] = [wt: 2t — aw? : 7]
and
Galz:w:1] =@, o fopulz:w: 1] = (2% (az® + w)? — az®?).
When a # 0, the image of the hyperplane (¢ = 0) is the point of indeterminacy
I =[0:1:0]. If a approaches 0, then g, approaches f. It is clear that the dynamics
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of g is essentially that of f. Thus we must choose the “good” representation for a
map in a given conjugacy class.

(2) We give an example (due to V. Guedj) of an algebraically stable automor-
phism of C? such that f~! is not algebraically stable but f~2 is algebraically stable.
For A € C*, a € C*, set

flz,y,2) = (2% + Ay + az, X 'a? 4y, 2).

Then f(t =0) =[\:1:0:0], which is a fixed point; thus f is algebraically stable.
But

) = (s -3 2w ) )

and f~1(t=0)=1[0:1:0:0]is a point of indeterminacy for f~!. One can check
that f~2 is algebraically stable and even that I(f?)NI(f=2) = 0.
(3) Let f be the automorphism of C* defined by

Then

fﬁl(may)’z) = (y - 22) T = (y _Z2)2) Z)

One can check that f is algebraically stable, but f~™ is not algebraically stable for
any n > 1 because f~"(t=0)=[0:1:0:0] € I_.

If f is not algebraically stable, then F™ = h, F}, for sufficiently large n, where
hy is a nonconstant homogeneous polynomial and the components of F;, have no
common factor. We have d,, < d", where d,, denotes the degree of F;,. One can
check that
and hence that

lim di/m = inf dxm,

Thus we can state the following definition:

DEFINITION 1.4.7. Given f € M, we define the dynamical degree d; of f by
the relation
5; = lim d¥/™.

n—o00
If g is birationally equivalent to f, it is easy to check that d; = d,. If f is
algebraically stable, then d; = d. Hence §, = d if g is birationally equivalent to an
algebraically stable map f € M.

1.5. Fatou Sets. Julia Sets. Normal Maps.

DEFINITION 1.5.1. Let f € M, be an algebraically stable meromorphic map.

— A point p is in the Fatou set of f if there exists a neighborhood U of p such
that the family f"}] is equicontinuous.

— The Julia set is the complement of the Fatou set.

— A point p is called normal if there exist a neighborhood U of p and a neigh-
borhood V of the indeterminacy set I such that f*(U) NV = § for every
n €N

It follows from the definitions above that the Fatou set is open and disjoint
from E (see Definition 1.4.1), the Julia set is closed, and the set of normal points
is an open subset of P\ E.
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DEFINITION 1.5.2. A meromorphic map is normal if the set N of its normal
points is P* \ E.

EXAMPLES 1.5.3.

(1) Hénon maps are normal. Indeed, the point of indeterminacy p_— =[0:1: 0]
is attracting for f='. If f™ (p;) — p—, then p; = f~" (f" (p;)) — p—.

(2) All the maps in #H4 are normal because E is empty.

(3) Let g be the map defined by

g([z:w:t]) = [2¢:w? : t9 ).
Then
g (2w t]) = [27 cw? ¢ d7D pd" —(d=D")

and E=1={[0:0:1]}. Let Q@ = {[z:w:¢] : |2| < |w| < |¢|}. In the chart { =1,

we have, for [z :w : t] € Q,

_ il d—1)"

Hence g‘”Q([z :w : t]) converges to [0 : 0 : 1]. The points of 2 are therefore not
normal. However, the open set {2 is contained in the Fatou set.

(4) If f([z:w:t]) = [27: w? : ¢, then the Julia set of f is
Tp = {lz] = o] 2 [t} U{lz] = [t] = [w]} U {Jw] =[] = |2]}.

1.6. Green’s Current Associated with a Meromorphic Map

Let f € My be a dominant meromorphic map on P¥. We will associate with
it a closed, positive current T' of bidegree (1,1) whose properties are tied to the
dynamics of f.

Let w be the standard Kéhler form on P*. If 7 is the projection from C*+1\ {0}
to P*, the Kihler form is defined by the property that m*w = ddlog|z|, where
z = (20,21,---,2,). We have seen (see Section A.5) that for every closed, positive
current S of bidegree (1, 1) on P¥, there exists a p.s.h. function u on C¥+! such that

u(Az) = clog|A| +u(z), YAeC", and7*S =ddu.
Moreover, ||S]| = / S Awk! = ¢, and u is unique if we impose the normalization
/ w = 0. We call u the potential of S. Weak convergence of currents translates
ilft](s; convergence of potentials in L.

10C(Ck+l )

If f € My, let S be a closed positive current on P* and let u be the potential
of S. We can then define f*(S) by the relation 7*(f*(S)) = dd°(u o F'). In other
words, f*(S) is the current of the potential u o F'. Since f is dominant, the image
of an open set is not contained in an analytic subset, and the operation S — f*(S)
is continuous in the topology of currents.

THEOREM 1.6.1. Let f € My (d > 2) be a meromorphic map on P* that is
1
dominant and algebraically stable. The sequence of currents {d—n(f”)*(w)} con-

verges to a closed positive current T of bidegree (1,1) that satisfies

F(TY=d-T.
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If F = (Fy, F,...Fy) is a lift of f, then T has a plurisubharmonic potential G on
Ck1 satisfying
G(Xz) =log M| + G(2)
G(F(2)) =d-G(z).
Moreover, if a function v satisfies the properties above, then v < G.
PRrROOF. Since the function F' is defined up to a multiplicative constant, we
may assume that supg |F| = 1 on the unit ball of C**!. By homogeneity, it follows

that
[F(2)| < |27, so [F™(z)] < |F™(2)]"

1
Set G, = d—nlog|F”|. Then
1 n+1 1 n
Gut1(z) = WloglF (2)] < d—nlog|F (2)] = Gu(2).
The sequence {G,} is thus a decreasing sequence of p.s.h. functions. Hence G,
converges to a limit G that is either a p.s.h. function or = —oo. We will show later
that G = —oo does not occur.

Assuming this for now, it follows from the definition of G,, that
1 1
EG(F(Z)) = lim EGH(F(Z)) =lim Gpy1(2) = G(2).

Hence G(F(z)) = d- G(2).
Similarly, G(Az) = log|A|+ G(z) follows from the same relation satisfied by the
Gp. The current T such that 7*T = dd°G thus has the stated properties:

FT=d-T and |T|=1.

We now show that G = —oo does not occur. For N > 1, set
N-1
1 1 ny\*
ON = N nz::O ﬁ(f ) (w)-

Then {on} is a sequence of closed positive currents such that ||on|| = 1. Hence it
has a convergent subsequence, oy, — o. It follows easily from the definition of the

1
on’s and the continuity of the operation f* that Ef*(a) = 0. Let h be the potential

1
of 0. The equality above implies that E(h o F') = h + ¢, where ¢ is a constant.

cd

The function H defined by H := h + y

HoF =d-H. We show that such a potentia_l is always a lower bound for GG, which
will imply that G Z —oo.
The relation H(\z) = log|A| + H(z) gives the upper bound

H(z) <log|z| + C,

is thus a potential for ¢ such that

S0
1 1
H(z) = 2 H(F") < = (1og|F"| + O)
Passing to the limit as n goes to +o00, we obtain H < G. Thus G # —oo. O

REMARKS 1.6.2.

(i) Special cases of Theorem 1.6.1 are proved in [32]. Diller [23] has shown that
G # —oo for algebraically stable birational maps of P2.
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(ii) The proof above also shows that v < G for every function v satisfying
voF =d-vandv(z) <log|z|+C.

PROPOSITION 1.6.3. Let G be the set of closed positive currents S of bidegree
(1,1) such that f*(S) = d-S and ||S|| = 1. Then the Green’s current T is an
extreme point of the compact convex set G.

PROOF. Suppose that
T + 1>

)

T =

with £*(T;) =d - T;, |T;ll =1, j = 1,2.
We can choose potentials G; for T; satisfying G,;(F(z)) = d - Gj(z). Remark 6.2
(ii) implies that

G1 + Gs
2

G; <G and hence that H = <d@.

But H = G because G — H = ¢ and ¢(F(z)) = d-¢, so ¢ = 0. It follows that
G =G =G,. O

EXAMPLE 1.6.4. Let f be the map defined by f = [z¢ : w? : tY]. Then F" =
(%" w? ,t?"). We find that

.1 n n n
G = tim - log(sup{|=|"" Jwl ", [11”"}) = sup(log]e],log ], log ).
The functions log |z|, log |w|, and log |t| also satisfy the functional equations.
In what follows, except in Section 1.9, we will restrict ourselves to the case of
algebraically stable maps; that is, those for which the lift of f™ is F™.

THEOREM 1.6.5 ([32]). Let f € Mgy be an algebraically stable map.
(1) The support of the current T is contained in the Julia set, which is thus

nonempty.
(2) If N denotes the set of normal points, then for every compact subset K of
N we have o
K
Vizt, |Gntj = Gal < 5,

and NN (P*\supp T) is contained in the Fatou set; in particular, the Green’s
function G is continuous on 7= (N).

PROOF. Let p € U, where U is an open set contained in the Fatou set. Shrink-
ing U if necessary, we may assume that a subsequence {f™} converges in U to a
holomorphic map h and that " (U) C {z0 = 1, |2;] < 2}. We can then write

1 nj 1
Gn, = Wlog|Fgl |+ E1og|(1,A}, oAb
The last term converges uniformly to 0, and the first is pluriharmonic. Hence G is
pluriharmonic in U, and U does not intersect the support of 7T'.

Now let U be an open set biholomorphic to a ball, such that U C K C N. We
will prove that if dd°G = 0 in 7 1(U), then the sequence {fﬁj) is equicontinuous.
By hypothesis, there exists a constant Cx such that the distance 0(f"(z),I) is
greater than or equal to C'x. It follows that

F >, hence that |[F"T!(2)| > C|F™(2)|%
()| 2 F1(2)] 2 1R ()
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Thus o C
o
% <Gpy1 —GR <0,

c . . . .
Hence |Gpyj — Gp| < d_:‘ for every j. Passing to the limit as j goes to +oo, we see
C1
that |G — G| < an
By hypothesis, G is pluriharmonic in 77! (U). Hence there exists a holomorphic
function h such that G = log|h|, and the estimate above can also be written as

1. |F7| 1 1 P
F’I’L n
Thus et < ||h|d"| < e, Since ||h|d’|‘ is a lift of f™, the family {f"} is equicontin-
uous in U. n

COROLLARY 1.6.6 ([32]). Let f € My be algebraically stable. If some subse-
quence f™ is equicontinuous in an open set U contained in a set of normality N,
then U is in the Fatou set.

ProOOF. The proof of the preceding theorem shows that G, converges to a
pluriharmonic G in U. Hence U is in the Fatou set. O

COROLLARY 1.6.7 ([32]). If f is normal, then the support of T equals J. The
support of T is always connected, and the Fatou set is a Stein manifold.

ProOF. If f is normal, the preceding theorem implies that the support of T
coincides with J.

It is easy to see that the complement of the support of a closed positive current
of bidegree (1,1) in a complex manifold is a pseudoconvex set (see [20, 33]). In P*
the Lévi problem has a positive solution; that is, every open set in P¥ that is not
P* and is pseudoconvex is a Stein manifold. We know that if we have a compact
subset K of a Stein manifold €, then Q \ K cannot be Stein. Let Q = P\ J. If
we had J = K; U K,, with K; and K> nonempty disjoint compact sets, then K;
would be the support of a closed positive current Ty = Tg,. Then P* \ K, would
be a Stein manifold, as would P* \ (K; U K3); but this, as we have just recalled, is
impossible. O

1.7. Holder Continuity of the Potential of T in the Domain of
Normality

The Holder continuity of the Green’s function has been proved for Hénon maps
n [27], for maps in Hy by Briend-Duval [14, 15], and for some special cases by
Kosek [56] (also see Carleson-Gamelin [18]).

THEOREM 1.7.1. Let f € Mg be an algebraically stable dominant map. Let N
be the open set of normal points. Then the Green’s function is Holder-continuous
in Tt L(N).

PROOF. Let z; be such that 7(z1) € N. We may assume that G(z1) > 0. Let
U € N be an open set containing m(z), and let U = 7~ *(U); this is a cone in
Ck*+1. By Theorem 6.5, we may assume that for every z € [7,

1

c 1
log |F™ - —< < —log|F"(2)].
- log |F"(2)] — = < G(2) < - log|F"(2)
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It follows that if G(2) = 0, then F™(2)| < e“. Let §(z) denote the distance from 2 to
G~1(0), and let zg be the point such that G(z9) = 0 and §(21) = |21 — 20|- Suppose
that 2 is sufficiently close to {G = 0} that z € U. Consider the segment, ¢ with
endpoints zg and z;. Let m be the first index such that F™({) is not contained
in the ball B(0,2¢%). Then there exists zo € £ such that |F™(z2)| > 2e“. Set
M = supy|,|<s.c [|F'(2)]], where || | denotes the operator norm. By the mean value
theorem,
e <|F™(29) — F™(20)] < M™|2y — 21| < M™6(21).
logd

Set a = log—M; then d™ = M™<. It follows from the inequalities above that
1 1 A A
= — Fm < —_— F < — = — < 5
Glz) = 2o G(E™(21)) < ‘2‘5;12110 mGF(2) < -0 = gm0 < C8%(2),

where A and C' are appropriate constants.

Take z; and z] in U close to {G = 0}, such that G(z1) and G(z7) are positive.
Let (o be such that z; = A\(p and G({p) = 0, with |[Ag| > 1. Consider the following
function, which is subharmonic in the variable A:

v(A) = G(Ao + 21 — 27) — C']z1 — 21
By homogeneity, G(A\{p) = 0 still holds for |\| = 1. Hence we can apply the estimate
above to z = A(yp + 21 — z1. Since
d( Ao + 21 — 21) < |21 — 21]
for |A\] = 1, it follows that
G(\o + 21 — 21) < C'ar — 21]%;

that is, v(A\) <0 on |A| = 1.

But the subharmonic function v(A) — log |A| is bounded above at infinity, and
less than or equal to zero on |A| = 1. By the maximum principle,

v(A) <log|A| on [\ >1.
But, still by homogeneity, G(A(p) = log|A|. Thus, taking A = A9, we have
G(z) = G(21) < C'a1 — 2|
Interchanging the roles of z; and z{, we find that the Green’s function is Holder

continuous in a neighborhood of {G = 0} in 7~ (), hence throughout 7—*(N) by
homogeneity. |

REMARK 1.7.2. If f € H4, then G is Holder continuous with Holder exponent

a for every a < ap, where ag = , with A = sup [|F'(2)].
G(z)<0

o8d
log A

The Holder continuity of the Green’s function has consequences for the Haus-
dorff dimension of certain invariant subsets associated with f. Classical methods
suffice [48].

THEOREM 1.7.3. Let uy,...,uy be p.s.h. functions that are Hélder continuous
with exponent a > 0 in an open subset of C*. The current
Sy :=dd°ui A -+ A dduy
assigns no mass to those sets A whose [2(k—{)+al]-dimensional Hausdorff measure
As(k—t)+ae(A) is zero.
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PrOOF. We sketch the proof. We may assume that A is compact. Set 7 =
2(k —€) + af. For a given ¢ > 0, we can cover A by dyadic cubes @); with sides
s; and centers ¢; such that ) s7 < e. Let (1;)1<i<n be an associated partition of
unity such that

N
3 — |
i €300 w1 D% < O

Set U. =, Q; and Sy_j := dd° A --- A ddu;_j. Then

/Sz/\wkflg/ Sz/\o.lkilZ
A U:

< / Se -
Xi: (3/2)Q;:

= Z / Sp1 A uwedd®o; AWt
= Z / Se—1 N (ue(z) — ue(c;))ddy; A wh=t
< CZ S?_2/ Se_1 A wkil+11/)i.

(3/2)Qi
One then repeats the process. O

COROLLARY 1.7.4. Let f € My. Let a be a Hdélder exponent for G. Then the
currents T = T A--- AT (( times) assigns no mass to those sets A C N such that
Ao(p—t)+ae(A) =0, a < ag = logd/logA.

1.8. The Current T Assigns No Mass to Analytic Sets

THEOREM 1.8.1. Let f € My be an algebraically stable map. The current T
assigns no mass to hypersurfaces.

PROOF. Suppose that T assigns mass to some hypersurface Vy of P*. By Siu’s
theorem [76], we have T' = T 4+ T», where T} has no mass on any hypersurface and
T> = 3 ; ¢j[V;], where the [V}] are hypersurfaces and the c; are positive constants.
Using the invariance

(f*Ty + fT»),

Z <ZCJV])

1
and comparing the two sides of the inequality, we see that Ty = = f*T5.

&IH

and

&.I'—‘

Since the current 7' is extremal among the invariant currents, it follows that
T = T»; in particular, G = —co on 7~ (UV}).

Let a = sup; ||¢;[V]l|. The supremum is attained because the mass of 7' is finite
and that of each [V;] is an integer. Suppose, for instance, that a = ||co[Vp]]]- We

%(fj)*CO[VO]

Since the mass of T" is bounded, the components of f~7 (V) cannot all be distinct.
Hence there exists an irreducible submanifold V such that V c f~4(V). We may

1 )
have = «. The current 7" dominates each current E( ) co[Vol-
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assume for simplicity that £ = 1. Then f(V \ I) C V. Now we define by recursion
a sequence of analytic subsets

Xi=f(V\D),...,.X; = f(X;1\I).
The analytic set X := N;X; # 0 because f is algebraically stable. We may consider

X to be an irreducible analytic set satisfying f(X \ I) = X; that is, f|x is dominant.
If X reduces to a point z, it is a fixed point and G(x) # —oo, which is the

desired contradiction. This is the idea we will generalize. Set

N-1

1 1.

n=0
We have oy —w = dd°vx, where vy € L'(X). The masses of the o are bounded.
Thus some subsequence converges to a limit o, which is a current of bidegree (1, 1)
on X and satisfies

o —wx = ddv.

Hence 7*c has a potential u = log|z| + v on X = 7 *(X). Since the current o
is invariant, we proceed as in Theorem 1.6.1; we construct a potential H on X
such that H(F(z)) = dH(z) and show that H < G|z It follows that G|z is not
identically —oo, which completes the proof.

1.9. The Non-Algebraically Stable Case

Suppose that f € M, is not algebraically stable. Then for n sufficiently large,
we have F = h,F,, where h, is a homogeneous polynomial, F), is of degree
d, < d", and the components of F,, have no common factors.

One can check the inequality d, 1, < d;,d, for all m,n. In this case as well,
one sets

1
dn
As in Theorem 1.6.1, one shows that G = lim G, is not identically —oo and defines
the current T' = dd°G.

When S is a closed positive current such that 7*S = ddu, the currents S,, and
wy, are defined by the relations

1 1
™8, = d—nddcu oF" mrwy, = ﬁddc log |F™|.

THEOREM 1.9.1. Let f € M, be non-algebraically stable. The following prop-
erties hold:

— The current T is supported on a union of hypersurfaces.

1
— If F* = h, F,, then T =lim d_n[hn = 0], where [h,, = 0] denotes the current
n
of integration on the hypersurface (h, = 0).
— T =1im S,, for every closed positive current S of bidegree (1,1).
n

Gn = —log |F"|.

PRrOOF. Since f is not algebraically stable, F'* = hyF, for some ¢ > 2, where
the degree of Fy is dy < d’. The inequality dy,4pn < dynd,, then implies that Z—Z — 0.
We have

ilog|F”| = i10g;|hn| + i10g|Fn|.
dn dn dn
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Hence
1
wp = —[hn = 0] + op,
dn
1 dy
where %0, = d—ddc log|Fy,|. We have ||o,]| = T 0, and the result follows.

Let S be a cqosed positive current of bidegree (1,1) and mass 1. Suppose that
m*S = dd°u, where u is a p.s.h. function such that u(\z) = log|A| + u(2).
Then

1 1
d—nU,OFn = dnlog|h |+ —uo Fp.
It follows that )
S, = d_n[hn =0]+ o),

n — 0, as before.
dn

where ||o] || =

We now give a description of T'. For every n,

1
G<G,= d—nlog|hn| + O(1).

1
The function G — P log|hy| is p.s.h. because it is bounded above near hy, = 0.

1
Hence T — d_n[hn = 0] is a closed positive current. The mass of —[h, = 0] ap-

proaches 1. It follows that all the mass of 7" is supported on J, [k, = 0]. O

REMARKS 1.9.2.

(1) The behavior of the sequence {d,,} under a non-algebraically stable map can
be fairly diverse. See Bonifant [13], who has studied some examples.
(2) It is natural to study the Cesaro convergence of the currents of the potentials

1
T log |F,,|- The current T of Theorem 1.9.1 accounts only for the distribu-

n
tion of those hypersurfaces that, under iteration, land on the indeterminacy
set.

1.10. Convergence in Mean to T

Let f € M, be an algebraically stable map. Given a closed positive current S
1
of bidegree (1, 1), we ask whether the sequence of currents d_"( f™)*S converges to

T. This does not always occur because there may exist other currents than 7" that
satisfy the equation
frS=d-S.

For instance, if f is the map f([z: w : t]) = [2¢ : w? : t9], then the currents [z = 0]
and [t = 0] are also solutions. For a given current S, we need hypotheses on the
dynamics of f or on the support of S (see Theorem 3.5.1). There is, however, a
result on almost sure convergence for a family of currents; its proof goes back to a
classical method in value-distribution theory ([19, 44, 61, 70, 69]). Let B, be the
unit ball in C¢, with variable denoted by w.

Let U : C**! x B, — [—00, 00) be a measurable function such that
) UMz, w) =log ||+ U(z,w);
) z = U(z,w) is p.s.h. for each w;
) w+— U(z,w) is p.s.h. for each z;
)

UG, w) <0if |¢] =1

(1
(2
(3
(4
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(5) fBz |U(¢, w)|dm(w) < C a.e. on |¢| = 1, with respect to Lebesgue measure
(denoted here by m) on || = 1.

For each w € By, let S,, be the closed positive current of bidegree (1,1) on P*
defined by

7 (Sy) = ddSU (z,w).
We will call the family S,, an admissible family of currents. Condition (5) ensures

that the family is sufficiently large, or else that the potentials are locally bounded.
Let us give some examples:

(1) U(z,w) = log |{z,w)| € C*+1 \ {0}. We obtain the family of hyperplanes.
(2) U(z,w) =log|P(z,w)|, where P(-,w) ranges over an open set, of polynomials
of degree d.

The following theorem is a variant of a result of Russakovski-Sodin [70] and
Russakovski-Shiffman [69].

THEOREM 1.10.1. Let f € My be an algebraically stable map. Let S,,, w € By,
be an admissible family of closed positive currents of bidegree (1,1). Then there
exists a pluripolar set & C By such that

1 *
for every w € By \ €.
We begin by proving the following lemma:

LEMMA 1.10.2. Let v be a probability measure on By such that

/|U(C,w)|du(w) <a,
for almost every ( € OB (with respect to Lebesgue measure).

Then d—n(f”)*Sw — T, v-almost everywhere, as n — oo.

PROOF. Let ¢ be a test form. Set K (z,w) :=log|z| — U(z,w) (> 0). Then
(Fw = F*Sur o) = |(dd° K (F(2),0), )| = [(K(F(2), w), dd"g)]

< |ple (K (F(2), w),wt)| = |pl2mp(w),
where |¢|s denotes the C? norm of .
Using the property that K(F(z),w) = —U(F(z)/|F(z)|,w) and Fubini’s theo-
rem, we have

[ KE@ k) = [t [|v () |aw <.
Hen
o vmpw) > 5) < .
Let, - .
& :}JN{ St
then
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It follows that & := UJ; My SJN has v-measure zero. For w ¢ £, we have

‘<(f”Y(w) (f”Y(Sw),¢>‘_+0_

dn dn
(f")*Sw
It suffices to observe that T converges to T'. |

n\*
PROOF OF THE THEOREM. If the set £ on which (f;insw does not converge to
T were not pluripolar, then it would contain a nonpluripolar compact set K C By.
But we know (Appendix, Theorem A.9.2) that for every nonpluripolar compact set
there exists a bounded p.s.h. function ug, defined in By, for which v := (dd°ug)* is
a probability measure supported on K. By the Chern-Levine-Nirenberg inequalities
(see Proposition A.6.3),

/w«wmmwm%wscmmmwﬁsa.
|

REMARK 1.10.3. In the case where the family {S,,} consists of hyperplanes,
measures v satisfying the hypotheses of the lemma are studied in [61].

Russakovski and Shiffman [69] proved a result on the equidistribution of inverse
images of subspaces of codimension greater than 1. For each meromorphic map
f :P* - Pk with indeterminacy set I, let

0o(f) := frot Awk=t
PE\T

d¢(f) is the generic degree of the manifold f~1(W), where W € G({, k), the
Grassmanian of subspaces of codimension £. They prove the following result.

THEOREM 1.10.4. [69] Let {f,} be a sequence of rational maps from P* to Pk,
Let {an} be a sequence of positive numbers such that

i 6l(fn) < 00

a
n=1 n

Let £ be the set such that
1
(W]~ fy) =0
for W e G(£,k)\ E. Then & is pluripolar.



CHAPTER 2

Polynomial Automorphisms of C*

2.1. Introduction

Let f = (f1, f2, ..., fx) be a polynomial automorphism of C* of algebraic degree
d > 2. We will denote by f the meromorphic extension of f to P* (when there is
no ambiguity, we write f for f).

The coordinates in C* are denoted by z = (z1, 23, ...,2;) and the coordinates
in P*¥ by [21 : - : 2 : t]. The equation of the hyperplane at infinity is ¢ = 0.

We denote the indeterminacy sets of f and f=1 by I, and I_, respectively.
They are analytic sets of codimension at least two in P* that are contained in
{t =0}.

We have seen some examples of automorphisms of C? and C®. We return to
the case of C?. An elementary automorphism [40] is an automorphism of the form

e(z,w) = (az + p(w), w + 7),
where p is a polynomial of degree d > 2. Then

e[z :w:t]) = |azt?™ ! +tip (%) s Bwt?t 4yt td] .

The automorphism e is not algebraically stable. Indeed, the image of {t = 0} is the
point of indeterminacy I; = [1: 0 : 0]. The dynamics of e is fairly easy to study
(see [40]). Note that I, = I_ in this case.

We also have Hénon automorphisms. These are finite compositions of auto-
morphisms h; defined by

hj(z,w) = (pj(2) — ajw,z),
where a; € C* and p; is a polynomial of degree d; > 2. Each hj has I, =[0:1:0]

as point of indeterminacy, and {t = 0} is mapped to I_ = [1 : 0 : 0], which is an
attracting fixed point. It follows that the elements of the semigroup H consisting
of the compositions h = hy, o---oh; are algebraically stable. Note that I, N1_ = {)
for every h € H.

The following result shows that the only dynamically interesting polynomial

automorphisms of C? are those that are conjugate to elements of .

THEOREM 2.1.1 ([40]). Let f be a polynomial automorphism of C*>. Then f is
conjugate in the group of polynomial automorphisms to either an elementary map
or an Hénon map (i.e., an element of H ).

There is another criterion, due to J.-Ph. Furter:

THEOREM 2.1.2 ([41]). A polynomial automorphism f of C? is conjugate to an
elementary map if and only if deg f? < deg f.

103
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2.2. Regular Automorphisms of C*

DEFINITION 2.2.1. Let f be a polynomial automorphism of (Ck_of degree d. We
say that f is regular if the indeterminacy sets Iy of f and I of f~1 are disjoint.

We have seen that a polynomial automorphism of C? is conjugate to either an
elementary automorphism or a regular automorphism (Hénon map).

Let f be a regular automorphism. If h is an automorphism of P* that leaves
{t = 0} stable, then the automorphism g = h~! fh is regular. This is not true when
h is a polynomial automorphism of C¥.

EXAMPLE. If f(z,w) = (2° + aw, 2), a # —1, and h(z,w) = (w,z + w?), then
g = h~ ' fh is not regular.

Let f be a polynomial automorphism of C¥. Suppose that f and f~' have
degrees d and d_, respectively. Sincﬂz 2, we also have d_ > 2. We denote by F
and F~! the lifts to C**! of f and f~1. Then

FoF Yz, ..,z1t) = F Vo F(zy, ..., 25, t) = tY="(z, . ., 2, t).
This implies the inclusions f({t =0} \ I3) C I- and f~'({t =0} \ 1) C ;.

Let By =JI4+,, and E_ = JI_ , be the closures of the indeterminacy sets of
f™and f~™. The following proposition is a consequence of Definition 2.1.

PROPOSITION 2.2.2. Let f be a regular polynomial automorphism of C*. Then
S f{t=0N\L) I, f({t=0}\1)CL,,

- E+ :I+ andE_ :I_,

— f is algebraically stable.

PROOF. The first property always holds. The other two follow from it: since
I.NI_ =0, nopoint in {t =0} \ I+ can be sent to L. O

PROPOSITION 2.2.3. Let f be a regular polynomial automorphism of C*. Then
f is normal. In particular, the Green’s function G*(2) := G(z,1) is Holder contin-
uous in CF.

PROOF. Recall that f is normal at z € C* if there exist a neighborhood U of
¢ and a neighborhood V' of I such that f*(U)NV = for every n.

We have f~'({t = 0} \ I_) C I;. Moreover, the derivative of f~' in the
direction t is zero on {t = 0} \ I_. To see this, observe that the corresponding
component is t?, and d is greater than or equal to 2. It follows that there exists
a neighborhood V' of I, with V disjoint from I_ and f~}(V) € V. We use the
continuity of f~1 on {t = 0} \ I_, the inclusion f~*(V N {t = 0}) C I, and the
fact that f~! is contracting in the direction ¢.

Let ¢ € CF. Let V be a neighborhood of I, as above. We may assume that
q ¢ V. If f were not normal at g, there would exist a sequence {g;} in C* such that
¢; = q and f"(g;) — I;. For sufficiently large j we would then have f"i(g;) € V,
which would imply that g; = f~" o f"(g;) € V, contradicting ¢ ¢ V. It is clear
that the points in {t = 0} \ I are normal. O

We give some examples:
(1) Let f be the automorphism

f(z) = (Pi(z1,- ., 2k—1)Farze, Pa(21, .- ., 2p—2)Fak—12k—1, - - - , Pe—1(21)+a222, 21),
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where, for each j, a; is a nonzero constant and P; is a polynomial of degree d > 2
in which the coefficient of z{ , is nonzero. It is clear that f is an automorphism.
We have I, ={[0:0:...:0:1:0]} and
FEE=0INT) C{lGt v i Gor :0: 0]},
Observe that
fHz)
1 1 1
= | 2k, — (2h—1 — Pr—1(2x)), — (2h—2 — Pr—2(2r, — (2k—1 — Pr—1(2x)))),--- | -
a2 as a2

One can check that f~! is well defined on I .
Thus the automorphism f is regular. It is easy to construct examples of such

f for which degf = d and d_ = degf~' = dF~'. If we allow the coefficient of

zd ; in the polynomial P; to vanish, then f is still an automorphism, but it is not

necessarily regular.
(2) For a € C*, let g be the automorphism of C* defined by
g(21,22,23) = (27 + az2, 21, 23);
then
97 (21, 22,23) = (%2(21 —25),23> :
We have
I, ={[0:22:25:0]}, I-={[#1:0:23:0]}, I.NI_={[0:0:1:0]}.

The automorphism g is not regular, but it is dynamically interesting. Its study
reduces to the study of an Hénon map on C2.

Fornaess and Wu [37] have described the conjugacy classes of polynomial au-
tomorphisms of degree 2 in C3.

Later we will use the notion of an attractor. We recall the definition:

DEFINITION 2.2.4. Let M be a metric space, and let f be a continuous map
from M to M. A compact set X C M is said to be attracting for f if there exists
a neighborhood U of X such that f(U) € U and X = ,5, f"(U). It is said to
be an attractor if, for all 2,y in X and every € > 0, there exists an e-chain from
x to y. More precisely, there exist points zop = x,21,...,2; = y in X such that
d(f(z;),xiy1) <efor 0<i<k—1 (see [67]).

DEFINITION 2.2.5. We assign to a polynomial automorphism f of C* the sets
KT, K=, U*%, U, and K defined as follows:

Kt ={z€CF: f(z)is bounded}, Ut =CF\KT,
K ={z€CF: f"(2)is bounded}, U~ =Ct\K,
K=KTnK~.
We also introduce the notation G*, G~, and G to denote the functions

Gt (z) = Gt (z,1) =lim di” log™ | f™(2)|,

G=(2) = G~ (2,1) =lim = log™ |/ ™"(2)]
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and
G (2) = sup(G*(2),G™(2)).

REMARKS.

(1) Bedford and Pambuccian [5] have proved the existence of the functions G*
and G~ and associated currents for certain (shift-like) automorphisms of
Ccr.

(2) The sets K+ and K~ are not closed in general. One can even find exam-
ples of non-polynomial automorphisms for which they are everywhere dense

([34]).
In the case of regular automorphisms, we nonetheless have the following propo-
sition:
PROPOSITION 2.2.6. Let f be a regular polynomial automorphism of C*, of
algebraic degree d > 2. Then the following properties hold:

— The functions Gt and G~ are continuous in C*, and
Kt={Gt =0}, K ={G~ =0}.
— The closures K+ and K= of K™ and K~ in P* satisfy
KtcK"ul, and K-CK UIL.
— The set I is attracting for f=1, and I_ is attracting for f.
~ K=K*NK~ is a compact subset of C*.

PROOF. We have seen that the points of C*, and hence the points of P* \ I,
are normal. Thus (by Theorem 1.6.5) G is continuous on Ck*! \ 771(I,), and in
fact exp G is continuous on CF*1.

The inclusion K C {G* = 0} follows from the fact that f™ is bounded on
K. Moreover, since the map is normal,

C
< —
S
at every point z of C*. Hence log™ |f"(2)| < C, and thus |f"(z)| < €°, if GT(2) =
0. The reverse inclusion {G* =0} C K follows from this.
Since the points of {t = 0} \ I are sent to I_, we certainly have

K+n{t=0}cI,, whence K+CK'UI,.

GT(2) - G} (2)]

The fact that I_ is attracting for f follows from the property (already used in

Proposition 2.2.3) that there exists a neighborhood V' of I_ such that f(V) € V.
It follows from the hypothesis I, N I_ = @ that K = Kt N K~ is a compact

subset of C*. |

PROPOSITION 2.2.7. Let f be a reqular automorphism of C*. Then the distance
from f"(z) to K approaches 0 uniformly on compact subsets of K+. In particular,
the family {f™} is equicontinuous in the interior of K.

ProOOF. Let X be a compact subset of K*. Suppose that G~ < C on X.
Then, for z € X,

C
< —

GHME =0 and GT(M(E) = 5 GT() < o

dr
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Hence
n C
Grelf"(2) < o
The result follows because Gk is continuous and K = {Gg = 0}. O

DEFINITION 2.2.8. Let f be an algebraically stable polynomial automorphism.
Let {X;} be the sequence of analytic sets defined recursively by

Xi=f({t=0}\1y),.... X; = f(Xj-1 \ I1).

This sequence is decreasing, hence eventually constant. We define Xy to be the
limit analytic set; that is, X; = X}, where h is the first index such that X, = Xp, ;.
The set X is nonempty because f is algebraically stable.

We give an example. Let f be the algebraically stable automorphism of C3
defined by

f(z,y,2) = (2* + 2% +y,2% + 2, 2).
Wehave I_ = X; ={z=t=0}and X = X; = {y =z =1t =0}. As can be seen,
I_ need not equal X.

REMARK 2.2.9. X, = I_ if f is a regular automorphism with dim I, = 0.
Indeed, at every point ¢ € I, the blow-up B, of f~! at ¢, which has dimension
greater than or equal to 1, cannot be contained in I.. But f(B, \ I+) = ¢. Hence
FI_)=1I_and I_ = X,.

PROPOSITION 2.2.10. Let f be a regular automorphism of C¥. Then X is
attracting for f; that is, the distance from f"(x) to X1 approaches 0 uniformly on
compact subsets of UT. If X, has dimension 0, then it is an attracting point, U™
is in the Fatou set, and G is pluriharmonic in UT. If X, has dimension 0, then
the support in C* of the current Ty := dd°GY is J* := OK ™.

PROOF. We have seen that I_ has a neighborhood V' such that f(V) € V.
Thus a neighborhood of {t =0} \ I is sent to V. Hence X is attracting.

The set X, is always connected. Thus, if it has dimension 0, it reduces to
a point, which is necessarily attracting. The family {f™} is then equicontinuous
in U', so G* is pluriharmonic in U". Since KT = {GT = 0}, it follows from
the minimum principle for harmonic functions that Gt can have no pluriharmonic
extension to a neighborhood of a point in J*. Hence supp7 NCF = J+. O

REMARK 2.2.11. We denote by T, the current associated with the meromor-
phic function f that extends f. It is a current on P*. We will sometimes omit the
bar because this current assigns no mass to ¢t = 0.

THEOREM 2.2.12. Let f be a regular automorphism of C¥. For every closed

positive current S of bidegree (1,1) on P* whose potential u in C**1 is bounded in
a neighborhood V' of m=1(X;) N {||z|| = 1}, we have

o1 =
lim =2 (£")7(8) = T}
Moreover, the convergence is uniform on the set Gy ¢ of closed positive currents S
of bidegree (1,1) and total mass ||S|| = 1 whose potentials u are all bounded on the
open set 'V by the same constant C'.
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PRrOOF. Let {S;} be a sequence of closed positive currents in Gy,c. We may
assume that their potentials {u;} are normalized by supg u; = 0 on the unit ball

dn

1 1
Since u; < log|z|, it follows that i © Fr < n log |F™|. Hence the sequence

1
B. We want to show that {—uj o F”} converges to G, uniformly in j.

is locally bounded above. In the cone v generated by V,
log|z| — C < u; <log|z|.
This cone is stable under F' because X is attracting. Hence {(1/d™)u; o F™}
converges to Gt in UT.
If din(f")*(S) does not converge uniformly to T with respect to S € Gy ¢,

then we can find a sequence n; that goes to infinity and an S; € Gy ¢, with potential
uj, such that

~ .1 ,
v = hmEuj o F™ £ GT.
We know that o = G on 7 }(U*). Now consider the restrictions to CF. Set
v(z) =0(z,1) and v;(z) = @;(2,1). Then v =G on U" and v < G everywhere.
The function G is positive on UT and zero on J© = OUT. The function v
is zero on JT because it is u.s.c. We must show that v = 0 on the interior of K+

as well. Suppose v < —24, where § > 0, on an open subset W of K. Then the
Hartogs lemma (see Theorem A.1.2) implies that

1
gy vio f <=0
for sufficiently large j. Let E; be the set defined by E; = {z € C* : v;(2) < —6d" }.
Proposition A.7.1 of the Appendix and Fubini’s theorem imply that
vol (E; N B(0, R)) < Cye %"

where C] is a constant independent of j. But the Jacobian of f is constant, with
modulus |a|. Hence

vol (™ (W)) > Calal*™.

But for sufficiently large n;, we cannot have Csla*"s < Cre %", Hence v = G
everywhere. [l

COROLLARY 2.2.13. Let f be a reqular automorphism of CF.
(1) The current Ty is extremal in the cone of closed positive currents of bidegree
(1,1).
(2) If there ewists a monzero closed positive current S of bidegree (1,1) on Pk
whose support is contained in 74_, then the support of Ty is contained in
K and S = cTy, where c is a positive constant.

PRrROOF. Let S be a closed positive current of bidegree (1, 1), with mass ¢ > 0,
such that S < Ty . We must show that S = cT}.

Set S, = d*(f~")*S in C*, and let §n be the trivial extension of S,, to P*.
Now, {t = 0} is an analytic set and the mass of S,, is bounded in a neighborhood
of {t = 0} (see Skoda’s theorem, in Appendix A.4, on extending currents that have
bounded mass in a neighborhood of an analytic set). Hence S, is a closed positive
current.
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Moreover, S, < d"(f ™)*T = T. Indeed, we have d"G* (f ") = G* in Ck. We

—n —n

also know that ( preserves the mass of currents in P¥. But u(S'/n) <Ty,
dn dn

and the left-hand side equals S in C¥. Hence equality also holds in P*. It follows
that B
1Sl = IS = c.

Let v, and w,, be potentials for §n and T—gn, respectively, with v, +w, = GT.

We may assume that
/ v, =0 and Wy, = G.
OB OB OB

It follows that v,, and w, are uniformly bounded above. But G is continuous in
a neighborhood of Y_ := 7 ~1(I_) N 8B. Hence |v,| < C in a neighborhood of Y_.

Set §1 = ||§n|| By Theorem 2.2.12, (f ) (Sl) converges to T'y. It follows
n
that lim —— =14 ,s0 S = cI}

||5 |
Let S be a current supported on K" . Suppose ||S|| = 1. Let u be its potential.

As above, set S, = d*(f~™)"S, and let S, be its extension by 0. The current S,, is
closed by Property (e) of Section A .4.

—n*

We show that S’ := (];—n)(gn) is equal to S. This is clearly true in C¥, so it

suffices to check that S’ assigns no mass to {t = 0}. The currents S, and S, are
supported on K. Let Up, be the potential of S,.. The function o, is pluriharmonic
in 7= (Ut U{t=0}\1.). Set UT = (UTU{t =0}\L). Since f* sends UT

to U™, the potential of S’ is also pluriharmonic on 7=1(U*). Thus we have the
desired relation

.
S = (J;n) (Sn)-
Hence ||S,|| = 1. Since the potentials v, of S,, are pluriharmonic in a neighborhood

of Y_ (where we may choose a point p and normalize by setting v, (p) = 0), they
are bounded above by a fixed constant C' in a fixed neighborhood of Y_. (It suffices
to use Harnack’s inequalities.) We can therefore apply Theorem 2.2.12 to obtain
)z f

I (Sn )—hm— Sp=25.

The proof shows that if suppT # i , then there is no nonzero closed positive

T+ = lim

current of bidegree (1, 1) supported on I O

REMARKS 2.2.14. (1) For Hénon maps on C?, X reduces to a point. The

only closed positive current supported on K" and of mass 1 is T_ ([29]). Versions
of Theorem 2.2.12 for Hénon maps can be found in [7, 8, 9, 27, 29]. We have
followed the approach in [27].

(2) We return to the example we saw earlier:
gz y:2:t]) = [Plz,y) + azt’ ' : Q(z) + byt w1 1],
where P and () are homogeneous polynomials of degree d. We have
g{t=0})={s=t=0}=X; and g '({t=0})={[0:0:1:0]}.
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Hence the only closed positive current supported on K— and of mass 1is T_. We
can arrange that the support of the current T’ associated with g is all of P2, Indeed,
if the Jacobian Jyg is such that |Jg| = |ab| > 1, then K+ has empty interior.

The polynomials P and @ can be chosen in such a way that the Julia set of

9x, [z 1yl =[P(z,y) : Qz)]

is P1. Thus the family {g"} is not equicontinuous in U*. It follows that the Julia
set coincides with 3. Hence the support of Ty is P2. So this is an example of an
extremal closed positive current of bidegree (1,1) with support P3. The compact
set X, is an attractor in this case.

1

REMARK 2.2.15. In the proof of the theorem we used that (f=1)*(7}) = ETJF,

1
which follows from G (f~1)(T}) = EGJF.
Note, however, that

(FO* () = 2T + (d_ - é) =0,

(The bars are meant to emphasize that we are considering the pullback to projective
space.) Indeed, this result follows from

d-G(F7'(2)) = G(FF™'(2)) = G((t*%-"")2) = G(2) + (d - d_ — 1) log|t|.

Thus most of the mass of the current (f~—1)*(7T+) is on {t = 0}.

2.3. Relation between the Degrees of f and f~!. Periodic Points.
Entropy.

We have seen examples of automorphisms of C* of degree d whose inverses
were of degree d*~!. We will give a precise relationship between the degree of an
automorphism f and that of f~!. We begin by estimating the degree of the inverse
(see [2]).

PROPOSITION 2.3.1. Let f be a polynomial automorphism of C*. Suppose that
f has degree d and f~' has degree d_. Then d < (d_)*~!.

PROOF. Let w be the Kihler form of P¥. Then f (w) has no mass on {t = 0}
because t is not a common factor of the components of f. Hence

k—
=L [rone =1 [oagre s S

Now suppose that f is regular. Let £ be an integer, 1 < ¢ < k — 1, such that
dim/_ </¢{—1 and dimIy <k—-/¢-1.
Since I, N I_ =, we must have dim I, +dimI_ <k — 2. O

PROPOSITION 2.3.2. Let f be a reqular automorphism of C*. There exists an
¢ such that

d( — (d_)k—l-
Moreover, dim I, +dimI_ =k —2 and diml, =k —{—1.
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ProoF. The potential of (f)*w is locally bounded outside I, which has di-
mension less than or equal to & — ¢ — 1. It follows from the intersection theory of
[75, 33, 22] (see Section A.6) that we can define the currents ((f)*w)? for every
j < €41, and that they are closed and positive. In particular, the current ((f)*w)¢,
of bidimension (k— ¢, k —{), assigns no mass to I, which has dimension < k—¢—1.
Since its potential is locally bounded in {t = 0} \ I, it assigns no mass to {t = 0}

(see Theorem A.6.2). We have the same situation for the current ((f=1)*w)*—*¢.
Hence
dl :/ (?*w)l /\wk—f :/ (f*w)l /\wk—f
Pk o

= [ n e = [ A (et = dt

Since the result holds for all ¢ satisfying the inequalities of the statement, £ is
unique, and we must have

dim/_=¢—-1 and dimlI;y =k—-/¢-1.

REMARK 2.3.3. The proposition above remains true if
dim/_</¢{—-1 and dimlI; <k—-/¢-1,
even if these sets are not disjoint.

THEOREM 2.3.4. Let f be a regular automorphism of C*. For every n, the set
A, i={zeC": fr(z) = 2}

is discrete. The automorphism f has infinitely many distinct periodic orbits. If
N(n) denotes the number of periodic points of order n in C*, counting multiplicity,
then N(kn) = d*™™, where dimI_ = { — 1.

PrROOF. In CF, the equation f¥"(z) = z is equivalent to

fe) =0 ) =0,

Passing to homogeneous coordinates, we obtain a system of k polynomial equations,
with homogeneous polynomials that all have the same degree d‘ since d*~¢ = d¢.
But I; and I_ are disjoint, so there is no solution in {¢t = 0}. Since the set of
solutions is discrete we can apply Bézout’s theorem, and we find that N (kn) = d*‘".
It follows that A,, is discrete for all n.

The Shub-Sullivan theorem states that the multiplicity of a periodic point is
bounded. Hence there are infinitely many distinct periodic orbits. O

REMARK 2.3.5. Favre ([24]) has given precise estimates of the number of pe-
riodic points for algebraically stable birational maps of P2,

REMARK 2.3.6. Let Ay 4 be the set of polynomial automorphisms of C* with
algebraic degree less than or equal to d. More precisely, f = (f1,..., fr) € Apq if
f is an automorphism and max;<j deg f; < d.

Ap,q is clearly an analytic subset of the space of polynomial maps of degree less
than or equal to d. This is true because (as we have seen) the degree of the inverse
is bounded above by d*~!, so the set Ay, q is the projection, on the space of f’s, of
the analytic subset defined by

(%) gof=fog=1d,
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where g is a polynomial map of degree < d*~!. Since we can think of the maps (x)
as equations in PV x PM for suitable N and M, we see that A 4 is an analytic
set. One can check that Ay 4 is connected. The description of the irreducible
components of A, 4 is a delicate problem. For the case where k = 2, the question
was studied by Friedland-Milnor [40].

Let .Zhd denote the set of automorphisms of C*¥ of degree exactly d. It is a
Zariski open subset of Ay 4. The regular automorphisms of ,Zk,d form a Zariski
open subset of .Z;md: the condition I, N I_ # () describes an analytic set that, by
the examples of Section 2.2, is not equal to ,Ik,d.

There are, however, irreducible components that do not contain any regular
automorphisms. An example in .Zg,d is the component containing the elementary
automorphisms of degree d,

e(z,w) = (P(w) + az, bw + d),
where deg P = d and a,b # 0.

The work of Yomdin [87] (see also Gromov [43]) has shown connections between
the entropy of a C* map ¢ from a compact manifold M to itself and the growth
of the volume of the image under g of manifolds of dimension s.

In the setting of rational maps of P*¥ to P*, Friedland ([38]) introduced the
following entropy: let p;(f) be the degree of f*[L], where L is a generic subspace
of dimension k — j. Set

m
H(f) =liminf max M.
m—oo 1<<k m

PROPOSITION 2.3.7. Let f be a regular automorphism of C*. If dimI_ = ¢ —1,

then H(f) = logd®.

PRrROOF. Let L be a generic subspace of dimension k — j.
— If j </, then

AW =d
ck

because f*[L] assigns no mass to I}, hence none to {t = 0}.
— If j > ¢ and L is not contained in {¢t = 0}, then

FHLIAwWhI :/ [LIA(f Y w)kd =gk,
Cc* ck

Thus

(fmy _ gfm _ ¢
1[;1](ja,gxklogp3(f )=d and H(f) =logd".

O

There is also a well-known notion of metric entropy, which quantifies the com-
plexity of the orbits (see [86]). We recall the definition. Let (X,d) be a metric
space, and let g be a continuous map from X to itself. Set

_ i i
dn(,y) = max d(g'(2),9"(y))

Then dy(z,y) > e if, before time 7, the distance between some pair of points g'(z)
and ¢'(y) in the orbits is at least €. Let M(n,e,X) be the minimum number of
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balls of radius € needed to cover X when it is equipped with the distance d,,. We
define the entropy h4(g) by the formula

1
ha(g) = lim lim sup - log M (n,e, X).

€20 nooo
When f: P¥ — P* is a meromorphic map , we consider its graph I' C P*¥ x P*.
The set of orbits is
Foo = {(z:)1° : (@5, zi41) €T},
and we equip 'y, with the metric
d(wi,yi)
i>1 2i-1 )

We introduce the shift operator o, where o(x;)5° = (2;)3°, and set

h(f) = hs(o).

Friedland has shown ([38, 39]) that h(f) < H(f) always holds. Thus h(f) < logd*
in the case we are considering. If we consider the restriction of f to K, then we
also have

h(fix) < logd".
In the setting of C* maps g : M — M of compact manifolds, Yomdin has
shown that the metric entropy h(g) satisfies

h(g) > lim sup 2&YOHI" (Vs))

m—00 m
where V; denotes a manifold of dimension s.

Smillie [78] has proved that Yomdin’s argument can be adapted to Hénon maps
on C2. The essential reason is that K is compact. Since K = KT N K~ is compact
in the present case as well, Smillie’s arguments can be applied in this setting, and
we obtain:

THEOREM 2.3.8. Let f be a regular automorphism of C*. Suppose that I_ has
dimension { — 1. Then h(fx) = logd’.

2.4. Basins of Attraction. Stable Manifolds

The attracting case. We begin by recalling a result of Sternberg [79] on the
normal form of a holomorphic map in a neighborhood of an attracting fixed point.
([79] treats the more general case of C*° maps.)

Let f: U — C* be a holomorphic map defined in a neighborhood U of 0 and
such that f(0) = 0. Let Ay,..., \x be the eigenvalues of f'(0), where we assume

0< |>\k| <--- < |/\1| <1
We say that 0 is an attracting fixed point. Let
Ry ={I=(ir,...,i;) €N : \jy1 = A ... A7},

and let P; denote the vector space of polynomials in j variables generated by the
monomials z," ...z}, where I € R;.

We will call a map ¢ triangular, associated with Ay, ..., A, if it is of the form

g:(gla'-'agk)7 where g]:A]Z]‘i‘p](Zl,,Z]_l), pj epj—l-
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THEOREM 2.4.1 ([79]). Let f be a holomorphic map f : U — C* such that
f(0) = 0. Suppose that the eigenvalues of f'(0) are as above. Then there exist a
germ of a biholomorphism h and a triangular map g such that

foh=hog, h(0)=0, R'(0)=Id
In particular, f is linearizable in a neighborhood of 0 if R; = () for every j.

COROLLARY 2.4.2. Let f be an injective holomorphic map from C* to C*. If
0 is an attracting fized point, then the basin of attraction of the origin

N={z: lirrln f"(z) =0}

is biholomorphic to C*.

PROOF. Let h and g be the maps whose existence is guaranteed by the theorem.
Observe that g is a polynomial automorphism of C* and that the basin of attraction
of 0 for g is C¥. The map h, which is defined in a ball B(0,r), must be extended

to a map defined on C*. To do this, we define the extension h by the relation
h(z) = f " ohog"(2).

It is easy to check that for a given z, 7L(z) is well defined for sufficiently large n,
and that the definition is independent of n. O

We say that €2 C CF is a Fatou-Bieberbach domain if  is biholomorphic to C*
and Q # CF.

COROLLARY 2.4.3. Let f be a regular polynomial automorphism of C*. The
basin of attraction of an attracting fized point of f is a Fatou-Bieberbach domain
contained in the interior of KT.

PRrROOF. We have seen that the set X is nonempty and attracting for f. If p
is an attracting fixed point, then its basin of attraction is necessarily disjoint from
U*. Hence it is a Fatou-Bieberbach domain. O

THEOREM 2.4.4. Let f be a reqular polynomial automorphism of C*. Let Q0 be
a Fatou component associated with a periodic point p of f that has one eigenvalue
with modulus less than 1 (all the other eigenvalues have modulus less than or equal
to 1). Let S be a closed positive current on P*, with bidegree (1,1), whose support
Y is disjoint from I .
Then ¥ N Q is nonempty, and XN KT is compact.
PROOF. By Theorem 2.2.12, the hypothesis on the support ¥ implies that
1
dn
But the support of T_ intersects 2 because the family {f~"} cannot be equicontin-

uous at p. The support of (f~")*S is contained in f"(X), whose intersection with
Q would be empty. Hence ¥ N is nonempty.

We have seen that K N {t = 0} C I,. Hence the compact set K N is
contained in C*. O

(f")*S > T_.

REMARKS 2.4.5. (1) If Q is a Fatou-Bieberbach domain associated with an
attracting fixed point of a regular automorphism, it follows that {2 contains
no algebraic variety but intersects them all in a bounded set; this was proved
for Hénon maps in [6].
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(2) Some condition on the support of S is clearly necessary; for instance, the
support of T’y does not intersect any Fatou component.

The case of a saddle point. Let f be a holomorphic map f : U — C¥, f(0) = 0.
We now consider the case where the eigenvalues of f'(0) satisfy
0 <Al <o <Py <A <o <A G <Pk

In this case, we say that 0 is a saddle point.
We may assume that the space CF can be split into two complementary sub-
spaces, C* = E| @ E,, where Es is the eigenspace associated with gt Ay

E, is the eigenspace associated with {A1,...,A;}, and the coordinates have been
chosen so that
Elz{ze(Ck tZjp1 = =z = 0}, EQZ{ZE(Ck tz =--=z; =0}

One shows ([53] or [72]) that there exists a stable holomorphic manifold
w?#(0,r) = {z € B(0,r) :ngrfoof (z) = 0}.

W#(0,r) is the graph of a holomorphic map ¢ defined in a neighborhood U, of 0 in
E2 by

SO:UQ _>U7 ()0(2,) :(@1(21)7"-7(pj(zl)7zl)7 ZI: (Zj+la---7zk)7
where ¢ (0) = -+ = ¢}(0) = 0.
When f is defined on C*, we set

we0) = |J e o,r).

n

This is an immersed manifold.

PROPOSITION 2.4.6. Let f be an injective holomorphic map from C* to C*. If
0 is a saddle fixed point, with k — j eigenvalues of modulus less than 1, then the
manifold W*(0) is biholomorphic to CF=7 .

ProOOF. Consider the map ¢! o f o ¢ in a neighborhood of 0 in C¥~J. Stern-

berg’s theorem asserts that there exists a polynomial automorphism g of C*~7/ and
a biholomorphism A such that

(p_lofO(p:hogoh_l.
Set 1) = poh. Then fo =1 og. We are looking for an extension QZ of 1 to Ck—7 .
It suffices to set N
Y(z) = f"otpog"(z)
in B(0,r), for sufficiently large n. O

PROPOSITION 2.4.7. Let f be a regular automorphism of C*. Let p be a saddle
fized point of f. Then the stable manifold W*(p) is contained in JT.

PROOF. We have seen that W?(p) is biholomorphic to C*~7. Since W?(p) =
{z :lim, 100 f*(2) = p}, we have W#(p) C K+. The family f™ is equicontinuous
in the interior of K*. Let v be a vector such that f'(p)v = Av, |A(| > 1. If
there were some point ¢ in the intersection of W#(p) and the interior of K, then
(f™)"(¢)v would have to be bounded. But this is impossible because f is expanding
on W#(p) in the direction v. O
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The case of transformations tangent to the identity. This work was done
by Hakim ([47, 46]). We summarize the main results here.

Let f(Z) =Z+ P2(Z) + P3(Z) + ... be a holomorphic transformation tangent
to the identity, defined in a neighborhood U of 0 in C*, where, for h € N, P, denotes
the homogeneous polynomial part of degree h of the power series expansion of f.
We show that there exist pieces of invariant manifolds consisting of points of U
that are attracted by the origin in a given direction. For V € CF \ {0}, we denote
its image in the projective space P*~1 by [V] = = (V).

DEFINITION 2.4.8. Let Z € U, and let V € CF\ {0}. We say that Z is attracted
by the origin in the direction V if f*(Z) — 0 (in C*) and [f"*(Z)] — [V] (in Pk~ 1).

For simplicity, we consider the case where P»(Z) is not identically zero. One
then proves the following elementary lemma ([47]).

LEMMA 2.4.9. Let Z € U and V € C* \ {0}. If f*(Z) — 0 in the direction V,
then either P,(V) =0 or [P(V)] = [V].

DEFINITION 2.4.10. Any direction V € C* \ {0} such that P»(V) # 0 and
[P(V)] = [V] is called a nondegenerate characteristic direction.

Analysis in a neighborhood of a nondegenerate characteristic direc-
tion. The characteristic directions are the solutions of a system of £ — 1 homo-
geneous polynomial euqations of degree 3. Thus there are 3*~! such directions in
general. Let V' be a nondegenerate characteristic direction. We can choose coordi-
nates such that V = (1,0,...,0) and P»(V) = (—1,0,...,0). Then, letting (z,w)
be the coordinates with 2 € C and w € C¥~! and taking the blow-up w = uz in a
neighborhood of u = 0, we can write the transformation f in the coordinates (z, u)
as follows:

21 =2 — 2%+ O(||ul|2?, 2%),

up = (I — zA)u + O(||ul|?z, 22),
where I is the identity (k — 1) x (k — 1) matrix and A is a (k — 1) x (k — 1)
matrix associated with V. It is easy to check that the equivalence class of A under
the relation of linear change of coordinates is an invariant, and we can choose
coordinates so that A is in Jordan canonical form.

The main results are the following ([46]):

THEOREM 2.4.11. Let V be a nondegenerate characteristic direction, and let
A be the matriz associated with V. Let d be the sum of the multiplicities of those
eigenvalues Aj of A for which ®A; > 0 (d = 0 if the real parts of all the eigenvalues
of A are negative or zero).
— Then there exists a stable piece of manifold W* of dimension d+1 consisting
of points attracted by the origin in the direction V', such that 0 is in OW?*.
— The piece of manifold W* is the image under an injective holomorphic map
(of class Ct up to the boundary) of a sector

Sysp=1{(z,v) €CxC*:|3z| <Rz, |2| < s, ||v]| < p}.

— The restriction of f to W? is conjugate to a transformation on S, s ,:

ERER
—=—+1, vy=v,.
z1 z
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THEOREM 2.4.12. Let f be a global isomorphism of (C¥,0), let 0 be a fived
point of f where the transformation is tangent to the identity, and let V be a
nondegenerate characteristic direction at 0. Suppose that the matriz A associated
with V' has d eigenvalues, couning multiplicity, with positive real part.

— If A has no eigenvalue with zero real part, let Z,, = f™(z) and

- D .1 _ . _
Qo) ={Z2€C: nll_}Holo Zn =0 and nh—>Holo[Zn] = [V]}.

Then Qo,v) is isomorphic to C+.

— If there exist eigenvalues with zero real part, then Qo vy is still isomorphic
to CH1 if we modify the definition of Qo,v) as follows (using the coordi-
nates (z,u) introduced above, and assuming V = (0,1); the definition is
independent of «). Let o > 0 such that the eigenvalues of the positive real
part satisfy RA; > «, and let

Qoyvy=1Z2€C: lim Z,=0 and lim z,%u, =0}
n—o00 n—o00

In the transformation f considered above, if the quadratic part P»(Z) is iden-
tically 0, let P,(Z) be the polynomial part of lowest degree that is not identically
zero. It is then necessary to introduce corresponding nondegenerate characteristic
directions, that is, the directions V' € C* \ {0} that are solutions to P, (V) # 0 and
[Pn(V)] = [V]. The results above generalize easily; the only difference is that for
each direction there are h stable pieces of manifolds, analogous to the h petals of
the Fatou domains, for the transformations of (C,0) tangent to the identity.

REMARK 2.4.13. Let f be a polynomial automorphism. If f(0) = 0 and f'(0) =
I, then the Jacobian is 1 everywhere. The map is volume-preserving, and the
condition of Theorem 2.4.12 cannot be realized for d = k£ — 1 because no domain
can be attracted by 0. On the other hand, there are examples of stable pieces of
manifolds of dimension d + 1 with 0 < d < k — 2.

2.5. The Invariant Currents Ti and T,iij

DEFINITION 2.5.1. Let f be a regular automorphism of C¥, with dim I_ = {-1.
For j </ + 1, we write f for the support in P* of the current Ti_, and call it the
Julia set of order j. Its intersection with C* is denoted by J;r. There are analogous
sets for f~!, denoted by f and J; .

We also define J := Jj N Ji_,- In particular, Jf is the support of 7. It may
be equal to C* and not equal to J* := K.

Since the potential of the current T, is locally bounded outside I, which has
dimension k — £ — 1, we can define the currents Ti for j < ¢+ 1 and T for
Jj <k—1{+1 (see Section A.6).

THEOREM 2.5.2. Let f be a reqular automorphism of CF. Then it has the
following properties.
(1) (dd°GT)* = 0 in U*. The current Tiﬂ is a cycle supported on I,. In
particular, (dd°GT)**t =0 in C* and J/ C J* (= 0KT).
(2) (dd°G™)*=¢ =0 in U~. The current T s a cycle supported on I_. In
particular, (dd°G~)*~“*1 =0 in C* and J; ,C J (= 0K").
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(3) Let p:=T{ ANT* . Then p is a probability measure on J = J, N J;_,. It
is invariant under f; that is, f*u = p.

PRrROOF. We first show that Tf“ is zero in C*.

f"*w>“1 kt1 1 / 0t1 —nk, Nk—b—1
Aw = — VA (™
/(C’“ < dr dU+1)n ok ( )

(d_)k—e—1 n 1
< = — 0.
= < de+1 (dd_)"
Since Tﬁ“ assigns no mass to {t = 0} \ I, it is supported on I;. But it is a closed
positive current of bidimension (k—¢—1,k—¢—1) that is supported on the analytic

set Iy, which has dimension k& — ¢ — 1. Hence (A .4, property h) the support of T_fH
is contained in I;. We will show that its support equals I,. We know that

1
G§310g|F|.

For p € I, let A, be a polydisk with center p and dimension ¢ + 1, transverse to
I.. We have G|a, < clog|z—pl|, z € Ay, ¢ > 0. It follows that (dd°G|a, )™ > cgp,
where ¢, denotes the Dirac measure at p (see [22]). Slicing theory applied to the
current Tﬁ“ allows us to conclude that p is in the support of Tfrl. The argument
for T+ is identical.

First, suppose I_ has dimension 0. We may assume that I_ =[1:0:---:0].
Let fi',..., fi be the components of f". For z € U we have |f{*(2)| > |f}'(2)],
j > 2. It follows that
- o log" 17 (2)]
in Ut. Hence G is pluriharmonic in Ut and dd°GT =0in UT.

Next, observe that if gq,...,g¢ are £ holomorphic functions without common
zeros in an open set W, then (ddlog(|gi|> + - -+ + |ge|?))* = 0. Indeed, if g; # 0 in
a neighborhood of a point, we can write

)

But the restriction of the function to the variety of codimension ¢ — 1 defined by
go =a2-g1,--.,9¢ = ag-gy is pluriharmonic. Hence, on any ¢-dimensional subspace,
dd®log(]g|*) has zero as an eigenvalue.

We now consider the general case, where I_ has dimension £ — 1. We can find
coordinates in {t = 0}, identified with P*~1  such that

Gt (2) = lim — log™ | f"(2)| = lim

2

92 4+

g
g1

log(|g1]? + -+ + |ge|*) = log(|g1[*) + log (1 "

[2e1] + - 4 2k S Cllza] 4 -+ 4 [2e])

on I_. It suffices that the subspace z; = --- = zy = 0 not intersect I_; this is
always possible for dimensional reasons. Since f™ converges to I_ in Ut in this
case we have

. 1
G (=) = lim o log(fiP 4+ + |fef?),

where the convergence is locally uniform. The same argument as above shows that
(dd°G*H)" =0 in U*+. Hence G+ (dd°G+)" =0 on C*, so (dd°G+)"™ =0 on C*.
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=l =kl . =
We know that p =T, A T]i is a probability measure. We have seen that T',
. — —k—{ —
is supported on J* = K+ and that T_  is supported on J~ = K —. Hence the
measure p is supported on J = J+ N .J~.
Now we prove that p is invariant under f:
1

k—€ __
[y T

fru=fTEA T =d'TE A

The following result was obtained with V. Guedj.

PROPOSITION 2.5.3. Let f be a regular automorphism of C¥. Then we have
f({t = 0}\I+) = I_, SO X+ =1_and X_ = I+.

Proor. We will show that X_ = I,. We have seen (Proposition 2.2.2) that
X_ CIy. Let p € I.. We know that if B} \ I_ is nonempty, then f~' (B \I1_) =p
(Proposition 1.2.1). Thus it suffices to verify that Bf ¢ I . If Bff C I, then
f(B(p,¢e) \ I+) would be contained in a neighborhood V' of I_ for sufficiently small
€. We may assume that Tﬁ_ = 01in V. The relation f*(T,) = dT, implies that

Ti =0 in B(p,e) \ I+. One checks this first in B(p, ) \ {t = 0}, then uses the fact
that the potential is locally bounded outside I .

Since the current Ti has bidimension (k — ¢,k — {), it assigns no mass to I,
which has dimension & — £ — 1 (Appendix A.4, Property (h)). Hence Ti =0in

B(p,€). But the support of Tiﬂ contains p, by Theorem 2.5.2. This is the desired
contradiction. It follows that f=1({t = 0} \ I_) = I,.. Applying the same result to
f2, we find that f1(I,) = I,. Hence X_ = I,. O

PROPOSITION 2.5.4. Let f be a reqular automorphism of C¥. Suppose that
dimI_ = ¢ — 1. Then there exists a surjective holomorphic map from P‘~" onto
I_ = X .. In particular, if I_ is smooth, then I_ is isomorphic to P~ and the
restriction fo of f to I_ is conjugate to an endomorphism of degree d of P¢~'.

ProoF. We have seen that f({t = 0} \ I;) = I = X, (Proposition 2.5.3).
The rank of the restriction fo of f to {t = 0} is therefore £ — 1. Since the set I
has dimension k — ¢ — 1, we can find a subspace P‘~! contained in {t = 0}, disjoint
from I, and on which the rank is £ — 1. It follows that fo(P~!) = X .

A theorem of Lazarsfeld [58] states that the existence of a surjective holomor-
phic map from P‘~! onto a smooth projective variety X of the same dimension
implies that X is isomorphic to P¢~1.

Let G be the p.s.h. function in C**! defined by

o1 n
Go(z,t) = nler;Od—nlog|F (z,0)|.

We can associate with G a closed positive current Ty of bidegree (1,1) on P¥. The
potential of Tj is continuous in a neighborhood of X, = I_. If T} denotes the
restriction of Ty to the variety I_, then

foTy =dTh

and
fo(T{™h)=d"'T{
Hence f, is an endomorphism of topological degree d‘~ . O
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REMARK 2.5.5. The results of Chapter 3 on the dynamics of endomorphisms
can be applied to the endomorphism fy. For example, the repelling periodic points
of fo have stable manifolds of dimension k& — ¢+ 1 in UT. The structure of the
currents Tj_, j <{€—1,is tied to that of the currents T} associated with the endo-
morphism fy. We see that studying the automorphisms of C* leads to considering
the endomorphisms of P~!. We will not pursue this connection here.

COROLLARY 2.5.6. If f is a reqular automorphism of C*, then K =K+ Ul,.

PRrOOF. We have seen (Proposition 2.2.6) that K cKtu I, . It suffices to
show that the points of I are accumulation points of K. But I is contained in

the support of Tﬂ if dim I_ = ¢ — 1; indeed, we have seen that the support of Tﬁl
is I... Moreover, by Theorem 2.5.2, Tﬁ_ assigns no mass to Ut U ({t = 0} \ 1),

the basin of attraction of X . Hence the set KT has all the mass of Ti, and it
follows that I, is contained in the closure of 0K . O

The results in Sections 2.6 and 2.7 are due to Bedford and Smillie ([7, 8, 9])
in the setting of Hénon maps in C2.

2.6. Convergence to T' and Density of Stable Manifolds

PROPOSITION 2.6.1. Let R be a closed positive current of bidegree (7,7) in a
ball B. Let 1) >0, ¢ € C°(B). Let f be a reqular automorphism of C*. Set

m(f”)*(w).

Every current S that is a limit point of the sequence {R,} is positive and closed,
and has mass

R, =

c= /szA (dd°G—)".
Moreover, the masses of OR,, and iOOR,, converge to 0.

Proor. We compute the mass ||R,|| of R, and find its limit. We have

(o9} = (R, sy (7).

1 . )
But Tj)n(f*”)*wk*] = (dd°G,;)*"7. The potentials G;, are decreasing and

(d-)

have limit G~ , which is continuous. Hence, by Theorem A.6.2,
RA(dd°G,))*7 — R A (dd°G™)*.

Let 6 be a test (0,1)-form. Set ¢ = § A w*7=1. Let S(¢)) be the support of
1. Setting ¢, = (d_)*~9" and using the Cauchy-Schwarz inequality (Section A .4,
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Property (h)), we have

fonnd] = L

/R ANOY NP A (f7)*whk—i—1

/ O NRA(f) 0 A (f) kit

1/2

IN

1/2

| RAGTYOATTIBA (W
S(¥)

B (f ") wk—i—1 1/2

1/2

<1
— (d_)n/Q

-‘/7(;}0)(1?)” ANOANGAWEI—T

Since both integrals are bounded, the right-hand side approaches zero. Hence

||OR,|| approaches zero. B
Let a be a C*° function bounded by 1. If —Cw < i00¢y < Cw, then

R N0 ;
fir s

wk—j—l

1
(d-)"

c / ki1
< —— [ RAwA (dd°G;)F—I 1,
@ ( )

Hence the mass of id0R,, approaches 0. O

k—j—1

REMARK. If j < ¢, then of course R,, — 0 because (dd°G ™) =0.

THEOREM 2.6.2. Let f be a reqular automorphism of C* such that dim I =0
(that is, £ = 1). Let p be a hyperbolic fized point of saddle type for f, where we
assume that

Al 21> [Aa] = -0 2> Al
Ifpe J_,, then W5(p) is dense in J* = OK™.

ProoOF. Let D be a polydisk of dimension k — 1 passing through p, transverse
to the unstable direction, and such that

/ (dd°G™ )1 =¢; £0.
D

Such polydisks exist. Since we have assumed that p € J;_, = supp (dd°G~)*1,

it suffices to apply slicing theory ([25]) to the closed positive (hence, in Federer’s
terminology, locally flat) current Tk L,
Let v > 0 be a test function equal to 1 in a neighborhood of p and 0 in a

1
neighborhood of dD. The sequence d_"( )" (¥[D]) converges to ¢TIy, where

_ cry—\k—1
c—/Di/J(ddG) .
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Indeed, Proposition 2.6.1 ensures that every limit point of the sequence is a closed
positive current of mass c. It is necessarily supported on K+. Hence, by Corollary
2.2.12, it is proportional to T'+. Moreover, since p is hyperbolic, (f~")(D)N B(p,r)
converges to W2 (p). It follows that the current T is supported on |J f="(W2(p)),
which is thus equal to the support of T}.. O

REMARK 2.6.3. In C?, the hypothesis p € J, | is always satisfied ([8]). For
ddcg|_Wﬁ (p) = 0 would imply that the function G~ was harmonic on Wy (p). But G~
is nonnegative, and zero at p. By the minimum principle for harmonic functions,
G~ would be zero on W?. But this is impossible because W# is an image of C, and
the set K, where G = 0, is compact.

Although there is a minimum principle for the solutions of (dd°u)*~* = 0 (for
k > 2), it is as strong only for harmonic functions. The function u may attain its
minimum without necessarily being constant.

THEOREM 2.6.4. Let f be a regular automorphism of C*. Suppose the dimen-
sion of I_ is 0. Let Q) be a Fatou component associated with a fixed point p that
has one eigenvalue with modulus less than 1, and the others with modulus less than
or equal to 1. Suppose that p € J, . Then 0Q = J+.

PrOOF. Let D be a polydisk of dimension k — 1 passing through p and such
that [, (dd°G™)*"' = ¢; # 0. As in the preceding theorem, we show that if
1 is a nonnegative test function equal to 1 in a neighborhood of p and 0 in a

1
neighborhood of 0D, then the sequence d—n(f")*(z/JD) converges to ¢TIy, ¢ # 0.
Hence the boundary 6Q contains J*. It is clear that 0Q C KT = JT. O

REMARK 2.6.5. When k = 2, the point p must be in K, and the support of
dd°G~ is K—. Of course, it would be interesting to give a dynamical characteriza-
tion of the set J, ;.

2.7. Mixing When dim/7_ =0

We recall a few concepts [86]. Let (X,.A,m) be a measure space with proba-
bility measure m. Let f : X — X be a measure-preserving map. We say that f is
mixing if

lim m(f~"(A) N B) = m(A)m(B)
n—oo

for every A, B € A. If X is contained in a manifold M and A is the o-algebra of
Borel sets, it suffices to show that

o ()« (f o) )

for arbitrary positive test functions ¢, ¢.

THEOREM 2.7.1. Let f be a regular automorphism of C*. Suppose that I_ has
dimension 0. Then the measure p = Ty A T*=1 is mizing. More precisely, if
and @ are test functions, then

[wtamyean— ( [oan) ([ oan).
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PROOF. Since dimI_ = 0, we have | = 1 and d = (d_)*~!. By Proposition
2.6.1,

n ]‘ n\*
V(F)NT) = 5 (F")°(WT) = S,
where S is closed and positive. But if 0 < ¢ < 1, as we may assume, then
Y(f")(Ty) < Ty. Thus S < Ty. Corollary 2.2.13 implies that S = ¢TI, where

c= [Ty ATF = [4pdp.
We will show that (f™)T4 A T_ approaches ¢TIy AT_. If € is a test form of
bidegree (k — 2,k — 2), then

WUNTL AT ) = (i (o) (T 16) .6 ).

1
Set R, = d_n(fn)*T+¢' Then the right-hand side of the inequality above equals

(dd°Ryy A6 + Ry, A dd°6 + 2dR,, A d°6,G ™).

But we have seen that ||dR,|| and ||dd°R,|| approach 0. Hence, passing to the limit,
we have

m(y(fY)T AT-,0) = (T} Add°8,G™) = (T, Add°G~,8)

since G~ is continuous. Then

Ty AT
n — *
¢(f )T"r NT_ = ( ) (d,)(kiz)n
1

because (f")*Ty = d"Ty = (d_)*=I"T, and (f*)*T_ = WT,. Now we can

Ty AT -
set R, = (fn)*gfl;ﬂ and prove by induction on j7 < k — 1 that

O(fMTL AT — T ATV,

which gives the result. O

COROLLARY 2.7.2. If f is a reqular automorphism of C*> or C?, then the mea-
sure j is mizing for f.

PROOF. The case C? is clear. Let f be an automorphism from C* to C3. If
dim I_ = 0, we apply the preceding result. If dim/_ = 1, then dim I, = 0. We
apply the preceding result to f~* and the measure T A (T')2. |
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CHAPTER 3

Holomorphic Endomorphisms of P*

In this chapter we study the dynamics of holomorphic endomorphisms of P¥.
We have denoted by Hy the semigroup of endomorphisms of algebraic degree d.
Recall that f € Hgq lifts to a map F = (Fy,...,F)) on C*1) where the Fj are
homogeneous polynomials of degree d and F~*(0) = 0. The indeterminacy set
considered in Chapter 1 is empty.

We summarize the results obtained so far; some were proved in the setting of
dominant meromorphic maps, and can be applied to maps in Hg4.

PROPOSITION 3.0.3. Let f be a holomorphic endomorphism of P*.
(i) For every a € P, the number of points in f~'(a), counting multiplicity, is
d*.
(ii) The cardinality of the set of periodic points of order n is (d™*+1) —1)/(d—1).
There are infinitely many distinct periodic orbits.
(ili) The critical set C associated with the endomorphism f is an algebraic hy-
persurface of degree (d —1)(k +1).

We denote the closure of the orbit of the critical set by C = J,,q f*(C). We
say that f is critically finite if C is an algebraic variety, and write

Co = U Fi(0).

n>0j>n
3.1. Some Examples

(i) Ueda [84] used the following construction to give some examples whose
dynamics follow from the dynamics of rational maps of P!.
Let ® : P! x P! — P2 be the two-fold branched covering defined by

@([20 : Zl], [’LU() : ’LUl]) = [Z()U)o 21wy 2wy + leO].

If we denote the diagonal of P! x P! by A, the covering is branched over ®(A).
Note that ®([zo : z1], [wo : w1]) = ®(Jwo : w1],[20 : 21]). Let h be a rational map

of degree d > 2 of P!. We define a map h on P? such that the following diagram
commutes:

pl x pt LERAWD b1 p

»| E

P2 k., P2
_ The dynamical properties of h can easily be derived from those of h. Set
h = (h,h). Let L be the union of all the components of h~! except A. One can check
that ®(L) is critical for h and that h(®(L)) = ®(A). Moreover, h(®(A)) = &(A).

125



126 NESSIM SIBONY

(a) If (Q2;) are the Fatou components of h in P! and we take j # k, it is clear
that h has a Fatou component isomorphic to (Q; x Q). In particular, there
may exist Fatou components isomorphic to a product of annuli.

(b) If the Julia set of h is P!, then the Julia set of % is P2, One can check that
since the repelling points of h are dense in P!, the repelling points of h are
dense in P? [18].

(c) If h is critically finite, so is h. Observe that ®(A) is always in the critical
set of h; we have seen that E(‘I)(A)) = d(A).

(d) Let oy, denote the group of permutations on {1,...,k}. The map ® shows
that P? is isomorphic to P! x P!/gy. Similarly, (P*)* /oy is isomorphic to
Pk, Tt suffices to consider the map that assigns to a point (z1,...,2;) € C*
the symmetric functions of the (z;) and to extend the map to (P')*.

In the same way as for P?, one can obtain examples of endomorphisms
of P*¥ whose dynamics follow easily from the dynamics of the corresponding
maps from (P!)" to (P1)".

(ii) We give an example of a critically finite map of P? that is not of the type
above. We define [28]

glz:w:t] =[(z —2w)?: (z — 2t)% : 27].
The critical set is C' = {z = 2w} U {z = 2t} U {z = 0}. We have
z=2w)—=>(z=0—>{t=0—>(t=w) > (z=w) > (z2=t) > (t =w).

Similarly,

(z=2t) > (w=0)—> (z=1t) = (t =w).
This example is not of the type above because there is no component of the critical
set whose image under g is stable under g (see 1.(i).(a)). It is shown in [28] that
the Julia set of g is P2, Critically finite maps are studied in [30], [28], Ueda [84],
Jonsson [52].

3.2. Fatou Components

Let f € Hg- We know that the Julia set J of f is equal to the support of the
current 7. Hence an open set U in P* is contained in a Fatou component if and
only if the function G is pluriharmonic in 7= 1(U).

A Fatou component U for f is a connected component of P¥\ J. We say that
U is fixed if f(U) = U, periodic if f*(U) = U for some n > 1, and wandering if
the (f™*(U)) are pairwise disjoint. By a theorem of Sullivan [80], we know that for
k = 1 there are no wandering components if f is a rational map of P'. The question
is open for k > 2.

We have seen that for automorphisms of C* there may exist Fatou components
biholomorphic to C*. We will see that there are no such components for maps in
Haq; the Fatou components are more like bounded domains.

Recall the definition of Kobayashi hyperbolicity. Let M be a complex manifold.
For p € M and £ € T,(M), consider the set of holomorphic maps from the unit
disk D with values in M, ¢ : D — M, »(0) = p and ¢'(0) = ¢£.

The Kobayashi-Royden pseudometric is defined by setting

Kot (0, €) mf{% co D = M, 9(0) = p, ¢(0) =cs}.
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If M contains holomorphic images of C in the direction &, then K/ (p,£) = 0.

DEFINITION 3.2.1. Let Y be an immersed submanifold in a compact Hermitian
manifold M. We say that Y is hyperbolically embedded if there exists a constant
C' > 0 such that

KY(P; 6) > O|£| for every (p7 6) € TY)
where |¢] denotes the Hermitian norm of the vector ¢.

We refer the reader to Kobayashi [55], Lang [57] for more about this concept.
Recall, however, that the Kobayashi-Royden metric is contracting for holomorphic
maps. If & : M — N is holomorphic, then

Kn(®(p), @' (p)§) < Kn(p, ).

THEOREM 3.2.2 ([85]). Let f € Hq, d > 2. If Q is a Fatou component of f,
then € is hyperbolically embedded.

PROOF. Set A = {z : z € C**! G(z) = 0}. Here G denotes the Green’s
function associated with f. We know that G is continuous and grows at infinity
like log ||z]|. Hence A is compact. The set of normality of a holomorphic map is
P*; thus G is pluriharmonic on 7~ 1(1).

Let ¢ : D — Q be a holomorphic map. We will show that there exists a section
o of 7 such that o o ¢ takes values in in A. Let ¢ = ¢({p). Let s be a holomorphic
section of 7 in a neighborhood of ¢. The function G o s o ¢ = log|h|, where h is
holomorphic in a neighborhood of (y. It suffices to set 0 = s/h. Then G(ogop) = 0.
Since the disk is simply connected, we construct a holomorphic lift @ of ¢ with
values in the compact set A. It follows that the derivative of ¢ = 7o @ is uniformly
bounded at 0, independently of . O

REMARKS 3.2.3. (i) Let S be a closed positive current of bidegree (1,1) in P*.
Suppose that S has a locally bounded potential H. Every immersed manifold V' in
P¥ on which H is pluriharmonic is hyperbolically embedded. One argues as before.
The set A = {H = 0} is bounded in C¥*! and one constructs sections as above.

(ii) Ueda’s result also holds in the following setting. Let f € Hq. Let p € P*.
Suppose p is in a hyperbolic set in the dynamical sense [67]. One can then define
the stable manifold of p,

W?(p) = {z: dist(f"(2), f"(p)) = 0, n — oo}.

It is an immersed complex manifold (not necessarily connected). Then the stable
manifold of p is hyperbolically embedded.
It suffices to check that the Green’s function G restricted to 7= (W?(p)) is

pluriharmonic. Suppose that f™ (p) — [0:---:0: 1]. We have
1 . 1 i O(1)
Wlog|F |m=1(Ws(p)) = ngw’“ + qni .

It follows by passing to the limit that G|z-1(ws(y)) is pluriharmonic.
We will prove another result of Ueda [85] on the equicontinuity of inverses.

THEOREM 3.2.4 ([85]). Let W be an immersed complex manifold in P*. Sup-

pose there exist inverses hj, of fi» on W; then (h;,) is locally equicontinuous on
w.
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ProoF. We know there exists a constant C' > 0 such that
1
Gl <IFE)] <Oz

It follows that there exist » and R, 0 < r < R < 00, such that |F(z)| < r whenever
|z| < r and |F(z)] > R whenever |z| > R. Hence

F'({r<|z| < R}) Cc {r < |2| < R}.

Note also that F is of the form ¢ — ¢t? on every complex line passing through 0;
its only branch point is 0. Thus, in a ball B in W, we can define sections s,, of 7w
such that F~J» := s, o hj, om take values in {r < |z| < R}. Hence, if 77! is a
section of 7 over B, the functions

hj, =moF ot
are equicontinuous in B. O

COROLLARY 3.2.5. Let f € Hg. Let p be a periodic point of order n of f. Let
AL, ..., \g be the eigenvalues of the derivative of f™ at p. Suppose |A1| > -+ > | Akl
If [\e| <1 or if A is a root of unity, then p € C = J;5, f7(C).

Proor. We may assume that p is a fixed point. If p ¢ C, then there exists
a neighborhood B of p disjoint from (J;5, f4(C). Hence we can define inverse
branches h; of f7, j > 0, with h;(p) = p. The equicontinuity of the h; implies that
the eigenvalues of the derivative have modulus less than or equal to 1, and any that
has modulus 1 cannot be a root of unity. [l

PROPOSITION 3.2.6. Let f € Hy. Let U be a Fatou component containing an
attracting fized point p. Then U intersects the critical set C' of f.

PRrOOF. Since U contains a fixed point p, we have f(U) = U. If UNC = 0,
then UN f~7(C) = 0 for every j > 1. In some ball B(p,r) we can define an inverse
h; of f=7 such that hj(p) = p. The equicontinuity of the (h;), which follows from
the fact that U is hyperbolically embedded, implies that the derivatives of h; at p
are bounded. But this is impossible because p is attracting. O

REMARKS 3.2.7.

(i) If p is a fixed point of f with some eigenvalues of modulus less than one
and others of modulus greater than one, then the stable manifold of p intersects
the critical set C'. The proof is the same as for a Fatou component.

(ii) Let p be a periodic point of period ¢, attracting for f. Let {po,...,pe—1}
denote the cycle. The basin of attraction U of p is defined by U = Uf;(l) Uj, where
Uj = {z : d(f""(2),p;) — 0}. We denote by U? the connected component of U;
containing pj, 0 < j < ¢ —1, and set U* := Uﬁ;i UJ[-). It follows from Proposition
3.2.6 that U™ intersects the critical set C. In one variable, this leads to a proof that
there exist at most (2d — 2) attracting cycles. Such a conclusion is not possible in
P* for k > 2.

Using Newhouse’s method [62] for constructing infinitely many attracting cy-
cles for diffeomorphisms of surfaces, E. Gavosto [42] produced elements of H, in
P? that have infinitely many attracting cycles. The result has been improved by G.
Buzzard [17].
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THEOREM 3.2.8 ([17]). There exist a positive number d and a nonempty open
set N' C Hq(P?) containing a dense G5 set N' C N such that every f € N' has
infinitely many attracting cycles.

DEFINITION 3.2.9. Let f € Hy. Let U be a Fatou component. We say that U
is a Siegel domain if there exists a subsequence (f™) that converges to the identity
on compact subsets of U.

THEOREM 3.2.10 ([85]). Let f € Hq have critical set C. If U is a Siegel do-
main for f, then OU C C = J;5, f7(C).

Proor. Let p € OU. Suppose p ¢ C. Then there exists a neighborhood W of
p that does not intersect |J;5, fi(C). Let Wy ¢ WNU. We define an inverse g,
of f in W such that g,,(W1) C U; this is possible because we may assume that
f — Id. We extend g,; to W; this is possible because W does not intersect C'.
By Theorem 3.2.4 we can find a subsequence In! that converges in W. We must

have g,, — Id in W. Hence (f™) converges to the identity in W. By Corollary
1.6.6 we may conclude that U U W is in a Fatou component. Hence U U W = U,
which is the desired contradiction. O

Recall that a Fatou component U is recurrent if, for some py € U, there exists
a subsequence (n;) such that f™(py) — ¢ € U. A recurrent component is clearly
periodic. Hence we can restrict to the case where it is fixed.

Our knowledge of the dynamics in a recurrent component is incomplete. How-
ever, we have the following partial result.

THEOREM 3.2.11 ([31]). Let f € Ha(P?), d > 2. Let U be a recurrent Fatou
component such that f(U) = U. Then one of the following properties is satisfied.

(i) U is the basin of attraction of a fived point p € U.

(ii) There exists a closed complex submanifold ¥ of U of complex: dimension one
such that f*"(K) — X for every compact subset K of U. The Riemann sur-
face X is biholomorphic to either a disk D, a punctured disk, or an annulus,
and fis is conjugate to an irrational rotation.

(iii) The domain U is a Siegel domain.

At the beginning of this section we introduced the notion of Kobayashi hyper-
bolicity. We will characterize the Brody-hyperbolic attractors.

DEFINITION 3.2.12. Let X be a compact subset of a complex manifold M. We
say that X is Brody hyperbolic if every holomorphic map h : C — M such that
h(C) C X is constant.

The following theorem characterizes Brody-hyperbolic compact sets [57, p. 68].

THEOREM 3.2.13. Let X be a compact subset of a complex manifold M. X is
Brody hyperbolic if and only if X has a hyperbolically embedded neighborhood.

A result of H. Tsuji now allows us to characterize the Brody-hyperbolic attrac-
tors. More precisely, we have the following theorem:

THEOREM 3.2.14 ([82]). Let Y be a Kobayashi-hyperbolic complex manifold,
and let f:Y =Y be a holomorphic map such that f(Y) €Y. Then

(1) N :=Nysy [H(Y) is a nonempty analytic subset of Y ;

(2) there ezists an integer Ly such that f*|n = Idn.
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COROLLARY 3.2.15. Let f € M. Suppose that for every £, the periodic points
of order ¢ of f form a discrete set. Let X be a Brody-hyperbolic closed subset of
Pk, If X is attracting for f, then it is a finite union of attracting periodic orbits.

PRrROOF. Since the compact set X is attracting, there is a neighborhood U of X
in P* such that f(U) € U. We have implicitly assumed that U does not intersect
the indeterminacy set of f. Moreover, X = (1,5, f"(U). Since the compact set X
is Brody hyperbolic, we may assume that U is Kobayashi hyperbolic. By Theorem
3.2.14, X is an analytic set; by the hypothesis on the periodic points of f, X is
finite. So it is certainly a finite union of attracting cycles. O

REMARK 3.2.16. In particular, if f € H4, then the nontrivial attractors of f
contain images of C. On this topic, see the paper by Fornaess-Weickert [36].

3.3. The Currents T’ (1 < ¢ < k) and Their Supports J;

We have seen that we can assign to a holomorphic map f € H,4 a closed positive
current T' of bidegree (1,1) and mass 1. Recall that T' is defined by

T = dd°G,
where G is p.s.h. in C**1 and defined by
1
G(z) = lim an log |[F™(z)].

The function G satisfies the relation G(F(z)) = dG(z). Hence
F°T = dT.

We have shown that the function G is locally Holder continuous, and in particular
continuous. By Appendix A.6 we can define the currents T := TA---AT (£ terms).
These are closed positive currents of bidegree (¢, £) and satisfy the functional equa-
tion

(T4 = d'T*.

DEFINITION 3.3.1. Let f € Hg. The Julia set of order ¢ associated with f is
the support of the current T*. We denote it by J,.

We will see that the set Jp has properties similar to those of the Julia set in
one variable. We also have J; = J, the Julia set.

THEOREM 3.3.2 ([32, 33]). Let f be a holomorphic map of degree d in P*.
Then

(i) The support of T is the Julia set of f.
(ii) The currents T* have bidegree (£,¢) and mass 1. In particular, the Julia sets
Je are nonempty and totally invariant. Moreover, J; is connected if 20 < k.
The open set P\ J; is (k — ()-pseudoconvez.
(iii) The measure pu := T* is a probability measure that is invariant under f. It
satisfies the relation f*p = d*p and mazimizes entropy.

PRrooFr.

(i) Since the map f is holomorphic, its set of normality is P*. Hence the
property follows from Theorem 1.6.5.

(ii) The mass of T¢ is 1. Indeed, T is in the fundamental class of w and
|IT|| = 1. We can apply Corollary A.6.5. Since f*T* = d*T*?, it is clear that the
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support of T* is totally invariant. We refer the reader to [33] for the notion of (k—¥¢)
pseudoconvexity. Recall, however, that the usual pseudoconvexity coincides in this
terminology with (k — 1)-pseudoconvexity. An open set is (k — ¢) pseudoconvex if
it satisfies the Kontinuitétssatz for holomorphic disks of dimension /.

(iii) The equation f*u = d*pu follows from the functional equation satisfied by
the Green’s function G. In particular, the measure y is invariant: if ¢ is a test
function, then

(fers 0) = (uyp0 f) = d%(f*mwf) = dik <u, > (90°f)(zi)> = (1, )

f(zi)=2
Gromov [43] has shown that the metric entropy of a map f € Hq equals logd*. A
measure satisfying the equation f*u = d*u has entropy logd* [64]. O
THEOREM 3.3.3. Let f € Ha. Set A = supg< ||[F'(2)]| and
logd
@0 = logA”

(i) For1 < { <k, the current T* assigns no mass to sets of Hausdorff dimension
less than 2(k — £) + Lay.

(ii) Let X be a compact set that is attracting for f. Suppose that Aop(X) = 0,
where Aoy denotes the 2(-dimensional Hausdorff measure. Then T is zero
on the basin of attraction of X . In particular, an attractor of dimension less
than 2 is an attracting cycle.

PRrRooOF.

(i) We have seen that since f is holomorphic, T¢ can be defined for every /.
Hence the property follows from Remark 1.7.2 and Theorem 1.7.3.

(ii) Recall that X is an attractor if there exist arbitrarily small neighborhoods
V of X such that f(V) € V.

If A2p(X) = 0, then there exists a complex subspace L of codimension ¢ that
does not intersect X [25, 71]. We may assume that L = {zp = --- = z,_1 = 0}.
Hence there exists a constant C' such that

X CA{lzo| + -+ |2ze=1] > C(|ze| + -+ -+ |z&|)} == U.

If an open set B is in the basin of attraction of X, then f"(B) C U for sufficiently
large n. Hence, for z € 771 (B),

. 1 n n
G(z) = 7}13010 an log(|Fg'| + -+ + | FLq ),

where FJ* denotes the jth component of F™. We already pointed out in Section 2.5
that

(dd®(log |ho| + ... [he_1)! =0
if h, . .., he_1 are holomorphic functions without common zeros. Thus (dd°G)¢ = 0
on 7~ 1(B).

If A»(X) =0, we find that T = 0 on the basin of X, which is thus contained
in the Fatou set. Replacing f by an iterate if necessary, we may assume that X is
contained in a Fatou component W and that f(W) C W. But W is hyperbolically
embedded. The Kobayashi metric is contracting. Using equicontinuity and the
fact that Ay(X) = 0, we see that the limits of convergent subsequences of f™ are
constants. To see that these limits are attracting fixed points, observe that if {f™}
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converges to p on a compact subset containing p and f(p), then p is fixed, hence
necessarily attracting. |

EXAMPLES.

Q) I f([z:w:t]) = [27: w?: t9], then J» = {|z| = |w| = |¢|}, and the measure
1 is Lebesgue measure on this two-dimensional torus.

(ii) Let h be a rational map of P! whose Julia set is P*. Let 1 be the associated
map from P? to P2, as in the example in Section 3.1. It is fairly easy to
check that J; = J, = P?: if v is the measure associated with k on P', then
w=o,.(rov).

(iii) For the example f([z : w : t]) = [(z —2w)? : (2 —2t)? : 2?], which is critically
finite, Jonsson [52] has shown that J, = P2,

REMARK 3.3.4. Tt follows from the functional equation for G that the Green’s
function associated with f™ is the same as that associated with f. Hence the Julia
sets Jp associated with f™ are the same as those associated with f.

3.4. Dynamic Hyperbolicity

The only totally invariant set J, on which f can be hyperbolic is Ji. We begin
by recalling a few ideas (see Ruelle [67]).
Let f € Hq. Let K be a compact subset of P* such that f(K) = K. Consider

K= {.7; = (xn)nSO D flwp) = wn+1}-
This is a compact sllbset of KN, which we equip with the product topology. The
tangent bundle to K, denoted by T, consists of pairs (z,&), where 2 = (2,)n<o
and £ is a tangent vector at xy. Let 7 : K — K be defined by 7(z) = z9. The map
[ has a lift fsuch that 7o f: fom. The derivative D f of f lifts to Df. We call

(K, f) the natural extension of (K, f).

DEFINITION 3.4.1. Let K C PP* be a compact set such that f(K) = K. We say
that f is hyperbolic on K if there exists a continuous decomposition E* & E* of

Tz such that Df(E") C E*, Df(E®) C E®, and there exist constants ¢ > 0, A > 1
such that, for every n > 1,

IDF ™€) < e "] if ¢ € B

IDf™(&)] < ¢ 'AT"¢] if € E*.
The fiber dimension of E is called the unstable dimension and that of Ef the
stable dimension.

THEOREM 3.4.2 ([33]). Let f € Hq. The map f cannot be hyperbolic on any
of the sets P*, J1,...,Jx_1. If f is hyperbolic on J, then the unstable dimension
of Jy is k.

PROOF. It actually suffices to prove the last assertion because, on the one hand,
Je C Jg_1 C --- C P, and, on the other, the critical set C intersects J;_1,...,P*
(the current T A[C] is nonzero if £ < k — 1; see Appendix A.6). We now prove the
last assertion. Suppose f is hyperbolic on J; and the stable dimension is at least
1. Since dim E® > 1, through every point of J; there is a disk on which the local
potential u of T' is harmonic. It follows (see [33], Lemma 5.5, or Appendix A.10.3)
that (dd°u)* = 0, which contradicts the fact that p is a probability measure. [l
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3.5. Convergence to T

We give a theorem on the convergence to 1" of the pullbacks of a current that
is more precise than in the case of maps in My. Let f € H4. Recall that the
multiplicity of f at a € P* equals the generic number of solutions in a neighborhood
of a of the equation f(z) = w, for w in a neighborhood of f(a); we denote this
number by v(f,a).

THEOREM 3.5.1 ([32]). Let f € Hq. Let P be the set of points of multiplicity
v(f,a) > d. Suppose there exists an attractor A such that the set P\ A is finite
and contains no periodic points. Let S be a closed positive current of mass 1 whose
potential is locally bounded in a neighborhood of A. Then the sequence of currents
((f”)*S

dn

PROOF. Let u be the potential of S. Let Q be the basin of attraction of A. In
a neighborhood of 771(4), we have

log|z| - C <u<log|z|+ C.
It follows that u(F™)/d™ — G on 7w 1(Q). We first consider the case where P

is finite, with no periodic points, and A is empty. We show that the sequence
u(F™)/d"™ does not converge uniformly to —oo. If it did, then for sufficiently large

n we would have
(i) < -
| —==) < -=d".
[E|) —
Then the image of the unit sphere under F™/|F"| would be contained in

{u <—=d™}n{lg| =1}
But the Lebesgue measure of this set approaches 0, giving a contradiction (Remark
A.8.3).

1 . .
Hence we may assume that v,, := dTu(F”) —vin L{ ,

show that v = G (Theorem A.1.2). We know that v < G. Suppose {v < G} were
nonempty. Since G is continuous, there exist 6 > 0 and an open set U C P* such
that v < G — 26 on 7 1(U). By the Hartogs lemma, for sufficiently large n; we

have

L <tF—n> <=6

ani " TFm
on 7= H(U), for all ¢t € [1/2,1]. Hence n~1(f™ (U)) N {1/2 < |z| < 1} is contained
in X :={u < —dd™}.

Let L be a complex line on which « is not identically —oo. Since u grows
logarithmically on L, the logarithmic capacity of X NL is at most e~%"*. A classical
estimate (Proposition A.8.2) shows that any disk contained in X N L has radius of
order e~%?"". To reach a contradiction, it suffices to show that X N {1/2 < |z| < 1}
contains balls of radius r(?=1/2)"* for sufficiently small r. This follows from a
Lojasiewicz-type lemma, details of which are given in [32]. O

> converges to T.

and it suffices to

LEMMA 3.5.2. Let g : W — CF be a holomorphic map in a neighborhood W
of a compact set K C C¥. Suppose that the fibers S, = f~'(f(w)), w € K, are
discrete and that at every point w € K the multiplicity is less than or equal to m.
Then there exists a constant C > 0 such that, for allw € f(W) and z € K,

|f(2) —w| > Cdist(z,Sy)™.
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In particular, there exist a > 0, ro > 0 such that for all z € K and 0 <7 < rg,
f(B(z,7)) 5 B(f(2),ar™).

END OF THE PROOF OF THE THEOREM. The open set f"(U) does not inter-
sect the basin of attraction of A because, as we saw above, v = G. Let £ be the num-
ber of points in P\ A with multiplicity is greater than or equal to d; the multiplicity
is less than d*. We know that P\ A has no periodic points. It follows that for suffi-
ciently large N, the local multiplicity of fV is at most (d*)¢(d—1)N ¢ < (d—1/2)V.
Hence, for B(z,r) C U, the image f~(B(z,r)) contains a ball of radius

rd“(dq)N—‘»’ > T(d71/2)N_

This is the desired contradiction because X N L contains only disks with radius less
than or equal to e "%, O

COROLLARY 3.5.3. For d > 2%, there is a Zariski dense open set Uy C Hq(PF)

such that (fdzl 5

bidegree (1,1).

ProoOF. Set Z; ={(f,2): f € Ha, v(f,z) > d}. Then S, is an analytic subset
of Hg x P*. Let Y, denote its projection to Hg4. This is an analytic subset of Hy
because projection to Hy is a proper map. It suffices to check that it is not equal
to Hgq for d > 2%. We will then set Uy := Hq \ Yy, and the result will follow from
Theorem 3.5.1.

It is easy to construct an endomorphism f from P! to itself of degree d such
that the local multiplicity at each point is less than or equal to 2; it suffices that all
the zeros of the derivative be simple. Consider the map fthat makes the following
diagram commutative:

— T for every f € Uy and every closed positive current S of

(]Pl)k f ; (]Pl)k

nl A lﬂ
(PY* Jopy —L s PV /oy,

We know that P* is isomorphic to (P!)¥ /oy, where o) denotes the group of

permutations on k elements. We have set f(z1,...,2;) = (f(21),.-., f(zr))-
The local multiplicity of f is less than or equal to 2% < d. O

3.6. The Measure u, Mixing

Let f € Hq4. We have seen that the measure p := T* associated with f is
an invariant probability measure that maximizes entropy. We will show that f is
mixing for p and derive several consequences.

THEOREM 3.6.1 ([32, 39]). Let f € Ha. Let p = T* be the associated proba-
bility measure. Then
(i) the map f is mizing for u;
(ii) there exists a pluripolar set £ such that, for a ¢ £,
a 1 nY\ *
Ky 2= W(f )'€a = 1

(where e, denotes the Dirac measure at a).
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PROOF. Let ¢ be a test function. Set

1 1
M) = (U™ eme) = g X ),
fr(zi)=a
where the sum is taken over the preimages of a, counting multiplicity.

Recall that a subset £ of P* is pluripolar if, for every a € P*, there exist a
neighborhood U of a and a p.s.h. function u # —oo such that ENU C {u = —o0}
(Definition A.2.3).

Given a compact set K C B(0,1) C C*, we set (as in [11])

C(K,B) = sup{/ (dd°u)*; wp.sh.in B,0<u< 1}.
K

u

Bedford and Taylor [11] have shown that C'(K,B) = 0 is equivalent to K being
pluripolar (Property (c) of Section A.9).
The Siciak function of K is defined by

ug(z) = sup{v : v p.s.h. in C*, v < logt |z| + O(1), v <0 on K}.
If K is not pluripolar and m(K) := suppq 1) uk, we have the following inequalities:
(1) log™ |2| < uk(z) < m(K) +log™ |z].
The constant m(K) is related to C'(K, B) by the Alexander-Taylor inequality [1]
(Theorem A.9.3): if K C B(0,r), r < 1, then

2) m(K) < ——1)__

The theorem will be a consequence of the following lemma.

LEMMA 3.6.2. There exists a constant M such that, for s > 0 and every test
function o,

Mol

1| An(a, ) — ¢l > s) < o

and

Mlpls
dn -
We have set ¢ := [ @dpu, and |p|» is the C? norm of ¢. For the second inequality,
we take B to be the unit ball of a chart C* C P*,

C((IAnla, ) = ¢l > s) N B(0,1/2), B) <

PROOF OF THE LEMMA. We work in the chart zo # 0 of P* and set
Ks=1{a:a€ B(0,1/2) c C*, \.(a,p) —c > s}.

We may assume that K is not pluripolar, since otherwise there is nothing to show.
Let u, be the Siciak function of K. For z € C*, set

vs(2) = log 20| + us (ﬁ o i’“) .
20 20
The function v, is p.s.h. in C**! and satisfies the usual homogeneity condition.
To see this, observe that it is locally bounded above in a neighborhood of zo = 0,
which is pluripolar (Appendix A.2). Hence there is a closed positive current S of
bidegree (1,1) defined by 7*S = dd°vs. It has mass 1 and admits a locally bounded
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potential in C¥*1 \ {0}. Thus we can consider the probability measure v; := Sk,

and since (f")"u = d"* u and v, is supported on K, we have

s< [Onlae) - v,

/An(aaw)dvs —/sodu
_ /)\n(a,go)dus—/kn(a
")

= An(a’atp)(sk -

/M@@W—HA

k—1
Z SiA Tkli]

i=0

= 1.

But (f™)*(S —T) = dd°(vs — G)(f™). It is important to note that vs — G is a
function on P*. Moreover, the current (f)*S® A T¥~1=% has mass (d")*~!. Thus

dd° n 1 -— ny* Qi n*kalfi
I= dn(US_G)Of /\WZO:(]C)SAU) :

Thus, since there are k terms in the sum and each current in the sum has mass 1
(Corollary A.6.5),

(3) I<k|d| sup |vs — G|.

Set

m(s) =supus, M = sup G.
B ‘z‘:l

By the homogeneity of vs and G,
lvs — G| < m(s) + M.
By (3) and (2),

lol2 lpl2 [ A(1/2)
I<k:d—n(m(s)+M) <k—= o <m+M> .

It follows that o

C(KB) < <l

where M’ is a constant independent of s. This proves the second inequality of the

lemma.
Set ) an
= Z & +1].
2 \supp |G(1,2)|
Then 0 < w < 1 on B and hence, by the definitions of capacity and of u, there
exists a constant a > 0 independent of s such that
WKy, B) < aC(Ky, B).

The lemma follows. (|
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END OF THE PROOF OF THE THEOREM. Let ¢ and v be test functions. We
must estimate

But

(1, o (f")) = dnk((f") 1 (f*)e) = (s PAn(a, @)

Hence

|| <

A
y
<
Q
IS

=
N——
-
~
'
y
>
3
—~
S
|
o
3
S
=
N——
-
~
=

IN

L 1/p
11lq (/ ps? (| An(a, @) — ¢ 28)d5>
1/p
< Il ( / pr 202 )
1

Thus f is mixing for u, and we even have an estimate for the rate of convergence

of I, to 0.
1
An(a, p) —/sodu‘ > Z}

For the proof of (ii), we set
-UNU #=Use
¢

1
Eﬁ:{aeB<o,—> :
2
for n,f € N, and define

¢t N n>N

For every N, we have

C(&,B) < Y C(EL,B) < Mgl Y dﬁn.

n>N n>N

Hence & has capacity zero in B, and so does £(yp). Taking a dense sequence {p;}
and setting & = [J; £(;), we see that uf, — p fora € B\ €. O

Some properties of .J;, the Julia set of order k, can be derived from Theorem
3.6.1. Recall that when k = 1, .J; is the Julia set .J.

COROLLARY 3.6.3. Let f € Hq. Set J, = supp .
(i) If X is a closed set such that f~1(X) C X, then either X is pluripolar or
Jr C X.

(ii) If U is a union of Fatou components and U is completely invariant, then
Jy COU C J;.

PRrOOF. (i) Let £ be the pluripolar set of Theorem 3.6.1. If a € X N (P*\ &),
then p? = 2% (f")*eqa — p; hence the support of p, which is Ji, is contained in X.
The other possibility is that X C &; it would then be pluripolar.
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(ii) The inclusion OU C J; is clear because the (f™) cannot be equicontinuous
in a neighborhood of a point in U. Since U is totally invariant, f~1(6U) C dU.
Thus the result is true unless QU is pluripolar. If QU is pluripolar, it is contained
in the interior of U. For if a point is a boundary point of U and of the complement
of U, then the boundary cannot be pluripolar at that point because pluripolar sets
have connected complements (Properties A.2.4). Let p € OU. If OU is contained
in the interior of U, then AU is open in J; because UN.J; = (U \ U) N J;. But
T assigns mass to every open subset of J; and assigns no mass to pluripolar sets
(C.L.N. inequality, Proposition A.6.3). This is the desired contradiction. [l

REMARKS 3.6.4.

(i) As we mentioned earlier, Gavosto has shown that there exists f € H4(P?)
with infinitely many attracting cycles [42]. Hence there exist pairwise dis-
joint, completely invariant open sets (Up)nen, €ach of which contains Jo in
its boundary.

(ii) There can exist pluripolar closed sets that are completely invariant. The
set X = {z = 0} is pluripolar, and it is completely invariant for the map
f=1[z4 w17

COROLLARY 3.6.5 ([32]). Let f € Hq. If the interior of Jy. is nonempty, then
Ji, =Pk, More generally, if U is an open set, then P\ |J, <, f*(U) is pluripolar if
and only if U intersects Jy. B

PROOF. Suppose U N Ji is nonempty. Let a € |J,,~o f"(U). The supports of
the measures p% = d%k( f™)*eq, which are Dirac measures on the preimages of a,
do not intersect the open set U. Since p has mass on U, we must have a € &, the
pluripolar set introduced in Theorem 3.6.1. Hence the closed set P* \ |~ f"(U)
is contained in €. Conversely, the open set U = P¥\ Jj is invariant under f and
does not intersect Jj, which is not pluripolar (Proposition A.6.3).

If U C Ji, then U~ f"(U) C Ji. Since the complement of (J, f*(U) is
pluripolar and J;, is closed, we have .J;, = P*. O

3.7. Lyapunov Exponents and the Measure u

Let X be a metric space, and let g : X — X be a continuous map. A point
x € X is wandering if it has a neighborhood V such that ¢g"(V) NV = ) for every
n > 1. Otherwise it is nonwandering. The set Q(g) of nonwandering points is closed
and invariant; if g is surjective, then g(Q2(g)) = Q(g)-

For f € Hq(P*), it is rather delicate to describe the dynamics of f on Q(f),
even if we assume that Q(f) is compact and hyperbolic. An attempt was made in
[35], in the case f € H4(P?). Moreover, the hypothesis of hyperbolicity is rather
hard to verify except when one perturbs very simple examples.

We have seen that the measure u is mixing for f € Hq(P*). It follows that
supp p = Jr C Q(f). When Ji is assumed to be hyperbolic, we have seen that the
restriction of f to Ji is expanding.

Briend-Duval ([14, 15]) have shown that the Lyapunov exponents of f for u
are always positive; that is, the measure u is hyperbolic. The proof is based on a
variant of Pesin’s construction [65] of stable manifolds and on some estimates from
potential theory. We start by recalling the notion of Lyapunov exponents.
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Let K be a compact invariant set, f(K) = K. We introduced in Section 3.4
the natural extension that conjugates f to a shift on K, where

K:=={z:z= (Tn)n<o, f(Tn) =Tps1}

If 7(x) = zo, we have a map f: K — K such that 7r0f: fom. For (z,§) € T

~ ~

we set DJ(z,€) = (F(@), (Df)(w0)6). A

The measure p on K = J; lifts to an invariant measure fi, fifi = f, which
satisfies the relation m, i = p. It is a classical result [64] that f mixing for u if and
only if that f is mixing for fi.

Observe that Df(a:) is not invertible because f € Hq(P*) has a critical set. But
in Oseledec’s theorem [63], which we will apply, this is an important hypothesis. In
fact, we can easily reduce to this case by means of the C.L.N. inequality (Proposition
A.6.3). If C is the critical set of f, we use the C.L.N. inequality to prove that for
the measure p, which is locally equal to (dd°u)* with u a continuous p.s.h. function,
w(C) = p(f7"(C)) = 0.

Set X = Jp \ Upsof "(C). Then p(X) = 1. We construct the natural
extension ()/(\', f,ﬁ), then Ji is invariant under f, and Df(:r,f) = (]?(a:), (Df)(z0)&)
is invertible.

Let ||Df(z)|| be the norm of the derivative of f at z. One can check that, in a
chart, z — log||Df(2)|| is p.s.h. By the C.L.N. inequality, this function is integrable
with respect to u. In this setting, Oseledec’s theorem [63] reads as follows.

THEOREM 3.7.1. Let ()A(,f,ﬁ), f € Ha(P*) be as above. There erists a Borel
set Y C X with the following properties.

M af =1
(ii) For every x € Y, there is a decomposition of T,P* ~ CF into complex
subspaces

The decomposition is measurable and is invariant under Df.
(iii) There are real numbers Ay > -+ > Ay such that, forz € Y and all 1 < i < ¢,

1 ~
lim - log |[Df"(x)v]| = A
locally uniformly in v € E;.

The numbers \; are the Lyapunov exponents of f. They are constants because
the measure i is mixing, hence ergodic. Briend-Duval obtain the following result.

THEOREM 3.7.2 ([14, 15]). Let f € Hq(P*). Let Ay > -+ > X\ be the Lya-
punov exponents of f with respect to u. Then
logd

Aez ——

We refer the reader to Briend’s thesis [14] and to [15] for the proof. We restrict
ourselves to showing that Ay > 0 and sketching the idea of the proof.

SKETCH OF THE PROOF. Suppose \; < 0. It follows from Pesin theory that for
p-a.e. zg € Jj, there exists a holomorphic stable manifold W#(zg) passing through
20- For z € W?(z), we have dist (f™(z), f™(z0)) — 0; hence the sequence f™ is
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equicontinuous, and if u is a local potential for the current T', ujyys(.,) is harmonic.
It follows from Corollary A.10.3 that u assigns no mass to these points. This is the
desired contradiction.

Thus we may suppose that Ay > 0. The idea is to construct, for every n and
for every point z of a set E C J; satisfying u(F) > 1/2, an approximating stable
manifold A” on which [, dd°u < C/d". One estimates the mass of (dd“u)* in a
Pesin box and counts the number of boxes needed to cover E; this is related to
the value of A\;. The estimate for A\, follows. The computation requires Holder
continuity of the function G to estimate the mass of y in a Pesin box. O

As a consequence of Theorem 3.7.2, Briend-Duval obtain the following result.

THEOREM 3.7.3 ([14, 15]). Let f € Hq(P*). Let p,, be the measure

1
Hn 2= Ik Z €y,

f™(y)=y, y repelling

where €, denotes the Dirac measure at y. Then the sequence (i) converges weakly
to p.

APPENDIX

In this appendix we recall the main properties of plurisubharmonic functions
and currents that are used throughout this Panorama.

A.1. Plurisubharmonic Functions. A Convergence Theorem. Jensen’s
Formula

DEFINITION A.1.1. Let © be an open set in R". A function u : Q@ — [—o0, +00)
is subharmonic if
(i) w is not identically —oo in any component of 2,
(ii) w is upper semicontinuous (u.s.c.),
(i) w satisfies the sub-mean value property.

More precisely, for zg € Q such that B(z,r) € Q,

u(zg) < M(zo,r) = / u(zg + r¢) dU(C),

I¢l=1 Cn

where ¢, = f‘ do(¢) and o is Lebesgue measure on the sphere.

=t
We show that if u is subharmonic, then u € L\ (Q) and Au > 0 in the sense

loc

of distributions. If v € L{ () and Av > 0, then v is equal almost everywhere to
a subharmonic function.

Property (iii) is equivalent to the property
(iii)" For every xo €  and every ball B(zg,r) € Q,

1
/ u(z)dm(z),
ann B(zo,r)

where m denotes Lebesgue measure on R and 7, is the volume of the unit
ball in R™.

u(zg) <
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THEOREM A.1.2 ([49, p. 94]). Let (v;) be a sequence of subharmonic functions
on a domain Q@ C R™. Suppose that the sequence (v;) is bounded above on every
compact subset of . Then

(i) If (v;) does not converge to —oo on compact subsets of Q, then there is a
subsequence (vj,) that is convergent in Li (Q) to a subharmonic function.
(ii) If v is subharmonic and v; — v in L{, ., then

lim supsup(v; — f) < sup(v — f)
j K K

j—oo
for every compact set K C Q) and every function f that is continuous on K.

Property (ii) is known as the “Hartogs lemma”.

The compactness theorem above replaces, in some sense, the normal families
argument in the iteration theory of rational functions of one variable.

The Poisson-Jensen formula relates the growth of a subharmonic function to
the growth of its Laplacian.

THEOREM A.1.3 (Poisson-Jensen formula). Let u be a function on R™ that is
subharmonic in a neighborhood of the closed ball B(r). Then

r 1 1
/ ji / Au=— / udo — —— / udo.
o ¢ B(t) r 8B(r) 0 8B(ro)

A.2. Plurisubharmonic (p.s.h.) Functions. Pluripolar Sets

DEFINITION A.2.1. Let 2 be an open subset of C*. Let u : Q — [—00, +00) be
an u.s.c. function. Suppose that u is not identically —oo in any component of (2.
We say that u is p.s.h. if

1 2m )
u(zp) < %/0 u(zo + we')dh

for every w € C" such that the disk zo + wD C 2, where D denotes the unit disk
in C.

We denote the convex cone of p.s.h. functions in Q by Psh().

P.s.h. functions are R2" subharmonic. Thus the convergence theorem A.1.2
holds for sequences of p.s.h. functions.

P.s.h. functions have the following properties.

PROPERTIES A.2.2. (a) If f is holomorphic in €, then log|f| is p.s.h. in Q.
(b) A function v € L _ is equal almost everywhere to a p.s.h. function if and
only if
0%
2 9z,0%, 0 F =
Jik

for every w € C". This means that the left-hand side defines a positive
measure.

(c) If g: Q@ — Q' is a holomorphic map between two open sets in C* and wu is
p.s.h. in ', then u o g is either p.s.h. in Q or —oo. This property allows us
to use charts to define p.s.h. functions on holomorphic manifolds.
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(d) Let B be the unit ball in C*. Let a € C§°(B) be a function that depends
only on |z| and satisfies @ > 0, [a = 1. Set a.(z) = Ez—na(z/s). If u is

p.s.h. in ©, then the functions u. = u*a. are C* p.s.h. in {z: d(2,Q) > €}.
Moreover, u. } v and u. = u in L{ ().

(e) A function w is pluriharmonic if dd“u = 0. It is locally the real part of a holo-
morphic function. One can also write u = log |h|, where h is a nonvanishing
holomorphic function.

DEFINITION A.2.3. A set £ C © C C" is pluripolar if, for every point z € €,
there exist a connected neighborhood U of z and u € Psh(U) such that £ENU is
contained in {z € U : u(z) = —oo}.

PROPERTIES A.2.4.

(a) Pluripolar sets have Lebesgue measure zero.

(b) The notion of pluripolar set carries over to holomorphic manifolds.

(c) If £ C N is a pluripolar closed set and v € Psh(Q\ ) is bounded above in a
neighborhood of every point of £, then v has a unique extension v € Psh(2).

(d) It follows easily from the preceding property that if £ is a pluripolar closed
subset of a connected set €, then Q\ £ is connected.

A.3. Currents

See [66]. Let M be a C* manifold of dimension m. We denote by DP(M)
the space of compactly supported smooth forms of degree p on M. A sequence ;
approaches 0 in DP (M) if the supports of the ¢; lie in a fixed compact set K and
the functions ¢; and all their derivatives approach 0 uniformly.

We denote by D, (M) the space of continuous linear forms on DP(M). An
element S of D), (M) is a current of dimension p (it acts on forms of degree p). It
is also said to be of degree m — p. Indeed, in a chart we can write

S = Z S[dl’l,
[T[=m~—p

where I = (i1,-..,im—p), i1 <+ < im—p, and dzl :=dz;y; A Adop_p.
If J=(j1,.--,7p) J1 <-+- < jp, then Sy is the distribution defined by

(—=1)7DSr, p0) = (S, pada?),
where, if TUJ = {1,...,m}, o(I,J) is the signature of the permutation
iy imeps 1y e e
EXAMPLES AND DEFINITIONS A.3.1.
(a) Let g : Y — M be a proper smooth map from a manifold Y of dimension

pto M. Then
w—>/ gte
Y

is a current of dimension p on M.
(b) If S is a current of dimension p on M and « is a smooth form of degree k,
we define S A a by the relation

(SAa,p):=(S,anp).

S A a is a current of dimension p — k.
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(c) If « is a form of degree m — p with coefficients in Ll , it defines a current

loc?
of dimension p if we set
(a, ) ::/ a .
M
(d) Let (S;) be a sequence in D), (M). We say that S; — S if

(Sjr ) = (S, )

for every ¢ € DP(M).

(e) Given a current S of degree ¢, we define a current dS of degree ¢ + 1 by
setting

(dS,p) = (=1)"T(S,dyp), @€ D™ T H(M).

This is a continuous operation on currents.

(f) Let M and N be manifolds, dim M = m, dim N =n. Let f : M — N be
a smooth map. Let S € D'(M). Suppose that f restricted to the support of S is

a proper map (if X is a compact subset of N, then f~!(X) Nsupp S is compact).
The pushforward f.S of S is defined by setting

(f:S,0) = (S, f*), » €DP(N).
Then f.S € D,(N), and the operation f. preserves the dimensions of currents. It
has the following properties.

(i) supp f.S C f(supp S).
(ii) If ¢ is a smooth form, then

[«(SNA fr) = fuS AN,
(iii) d(f.S) = (=1)™*" f.(dS).

Hence d commutes with f, when m + n is even.
(g) Pullback of a current under a submersion
Let f: M — N be a C* submersion. Let ¢ be a form of class C* on M (resp.
with coefficients in Llloc) If f is proper on the support of v, we can consider the
pushforward f.1) of ¢ under f. This is a form of class C* (resp. in L] ) obtained
by integrating 1) along the fibers of f. The map f. : D™ P(M) — D" P(N) thus
constructed is continuous, and

(fsh, @) = (¥, f*p), ¢ € DP(N).
When S is a current, f*S is defined by the formula

(£, 0) = (S, fxip)-

When S is a smooth form, f*S is the usual pullback of the form S. The pullback
operation has the following properties:

(1) deg f*S = degS.

(2) If¢ is a smooth form, then f*(S A1) = f*S A f*1).

(3) d(f*S) = f~ (dS)

(4) supp (f*S) C f~!(supp 5).

(5) If S; — S, then f*S; — f*S.

(h) Currents representable by integration

Let © be an open set in R”. A current S =) Srdx! is said to be representable
by integration if the distributions Sy are regular measures on 2. The currents
representable by integration extend to continuous linear forms on the space Cp(2)
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of differentiable forms of degree p that are continuous on ). For every open U € (2,
we set

My (S) = sup{[(S, )| : ¢ € Dp(U), |e(z)| <1, x € U}.
If K is a compact subset of (2, we set

Mg(S) = limUinf{MU(S) : U an open set containing K'}.

The notion of currents representable by integration can be generalized to manifolds
by taking charts.

A.4. Positive Currents on Complex Manifolds

See [54, 59, 22, 77, 75]. Let  be an open set in C™. We denote by DP1(2)
the space of compactly supported smooth forms of bidegree (p, q). They are written

o= > prdeAdzy,
=p,|J|=¢
where dzy = dz;, N+ Ndz;,, dz; =dz; N--- Ndzj,.

We denote by D,, () the space of currents of bidimension (p,g), that is, the
dual of DP4(Q2). A current S € D, , can be represented as a differential form of
bidegree (m — p,m — ¢) with distributional coefficients:

S = Z S[”JleII/\dEJI.

’

[I'|=m—p
|J' |=m—q

The Poincaré d operator can be decomposed into d = 9 + 9, where
0vr,y 5 01,7

The operator d¢ is defined by d° := ﬁ(é — 0). It is a real operator, in the sense
that d°u = d°u. We have dd° = 199. If S is a current of bidimension (p,p), then

<d5)90> = _<S)d(p>
(d°S,p) = —=(S,dp)
(dd®S, p) = —(S,dd°p).

Positive currents. Let S be a current of bidimension (p, p). We say that S is positive
if (S, ) > 0 for every test form

o =iar A1 A ANiay N@p, «aj € DVO(Q).
Let S be a current of bidegree (1,1). Then it can be written in the form
S=iY Sjdzj Adzy.
The current S is positive if for any w € C" the distribution
Z S]'k’ijk > 0.

It follows that the S;;, are measures. In particular, a positive current is representable
by integration. A function u € L], () is equal a.e. to a p.s.h. function if and only
if

ddcu—izﬁdz»/\dz->o
T 82’@‘821' ! ;=
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PrROPERTIES A.4.1. (a) Every positive current of bidimension (p,p) is repre-
sentable by integration.

(b) If S is a closed positive current of bidegree (1,1), then for every zo €
there exist a neighborhood U of zg and u € Psh(U) such that S = dd°u in U. If
Q =C™, then S = dd°u, where u € Psh(C™). If u; and uy are potentials of S in
U, then u; — us is a pluriharmonic function.

(c) Let Z be an analytic subset of €2 of pure dimension p. We denote the regular
points of Z by Reg Z and set

Qﬂﬁﬁzl;z% o € DP(Q).
eg

Lelong has shown that [Z] is a closed positive current on (2, of bidimension (p, p).
(d) Let B =i}, dz; A dz; denote the canonical (1,1) form on C™. For each
positive current S € D}, ,(Q), we set

1
os = —'S/\Bp.
p!

This is the trace measure of the current S. It dominates the measures |Sy 7|

For the current associated with an analytic set, the trace measure of a region
in Z is equal to its volume.

(e) Let E be a closed subset of 2. Let S be a positive current of bidimension
(p,p) in Q\ E. Suppose S has bounded mass in a neighborhood of any point in
E. The trivial extension S of S is the current obtained by extending S by 0 on E.
Since the coefficients of S are measures, we simply extend the measures by 0 on E.
If S is closed, the current S is not closed in general. But if F is an analytic set,
Skoda has shown that S is a closed positive current.

(f) Let f be a nonzero meromorphic function in 2. Let ) m;[Z;] be the asso-
ciated divisor. Then log|f| € L{,.(Q2), and we have the Lelong-Poincaré equation

loc
ddlog|f| = > m;[Z;].

(g) All these notions carry over to complex-analytic manifolds. Let M be a
Kéhler manifold with Kéhler form w. If S € D}, ,(M) is a positive current and K
is a compact subset of M, we set

p
mK:/SA%.
K b:

It can be shown that there exists a constant Cx such that

1
C—MK(S) < |S|K < CKMK(S)
K

for every positive current S. When M is compact, we set

wp
uw:/SAE.

This is what we do, for instance, when M = P*.

If a sequence of positive currents on a compact manifold has bounded mass, it
has a convergent subsequence.

(h) The following result is a special case of Federer’s support theorem [25]. Let
A, denote the a-dimensional Hausdorff measure Let S be a closed positive current
of bidimension (p,p) in Q@ C C™. Let A = supp S.
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(i) If Agp(A) =0, then S =0.
(i) If A is a complex-analytic subset of dimension p, then S = )" ¢;[A4;], where
the A; are the irreducible components of S and the ¢; are positive constants.

(i) Cauchy-Schwarz inequality

Let S be a positive current of bidimension (1,1). Let ¢, € DY°(Q). By
definition of the positivity of S, (S,ip A p) > 0; this gives a Cauchy-Schwarz
inequality for the scalar product (p,) := (S,ip A ¢). We obtain

(S, i A | < (S,ip ABYY2(S, i A )L/,

A.5. Currents of Bidegree (1,1) on P*

See [32]. Let P*¥ be complex projective space. Let  : C¥+1 \ {0} — P* be the
canonical projection. We consider P, the convex cone of functions u that are p.s.h.
in C**! and satisfy, for some ¢ > 0,

(1) u(Az) = clog|\| + u(z), =z e CH.

Then u(z) < clog||z||+O(1). We can normalize the functions in P by assuming, as
we do from now on, that fB udm = 0, where m denotes Lebesgue measure on the
unit ball B. We assign a closed positive current R of bidegree (1,1) to a function
u € P as follows: let s be a holomorphic section of 7 on an open set U, and define
the current Rs on U by setting Rs = dd®(u o s). This is a closed positive current
on U. If s’ is another nonzero holomorphic section of w, then s’ = hs for some
holomorphic h, and

Ry = dd®(uos') =dd*(u(h-s))
= cdd®log|h| + dd°u o s = R,.

Thus we have defined an operator L : P — D;c—l,k—l(]}vk)7 L(u) = R, where R is
the current that coincides with R, on U. For instance, the Kihler form w of P* is
associated with the function u(z) = log|z| on CF*1.

Conversely, let R be a closed positive current on P*, of bidegree (1,1). Since
the map 7 : C**1 \ {0} — P* is a submersion, we can consider the closed positive
current 7*R and assign to it its trivial extension to C¥*!. Hence there exists a
p.s.h. function in C**! such that

dd°v = 7" R.

Define

T o

one can check that ddu = #* R and that there exists a constant ¢ > 0 such that

u(Az) = clog|A| +u(z), AeC.

ulz 1 2771}6i92 N
(2) / (e 2)db;

The function v = u — clog|z| is well defined. Hence

||R||=/RAW'H:c/wu/ddcumfl:c/wk_

The correspondence R — u is continuous and open (see [32] for more details); u is
called the potential of R. We have proved the following result.
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THEOREM A.5.1. The map L from P to the space of positive currents of bide-
gree (1,1) on P*¥ is an isomorphism. For every R, there exists a unique u € P
satisfying ™ R = dd°u, u(Az) = clog|\| + u(z), and ||R|| = c.

EXAMPLE. Let V' = {P(z) = 0}, where P is a homogeneous polynomial of
degree d in CF*!. We know that 7*[V] = dd°log|P|. We find that ||V] = d
because

log |P(Az)| = dlog|A| + log |P(z)].

PROPOSITION A.5.2. Every closed positive current of bidimension (p,p) on Pk
is a limit, in the sense of currents, of closed positive smooth currents.

PRrROOF. Let R be a closed positive current of bidimension (p,p). Let p. be a
smooth approximate identity on the group U (k), which acts transitively on P*. Let
v denote the Haar measure on U(k). It suffices to set

R. = /U PO Rv(g),

One can check that the R. have the required properties. O

A.6. Exterior Product of Currents

For this section, we refer the reader to [11, 22, 75, 33].
Let S be a closed positive current of bidimension (p,p) in an open set Q2 C C™.
Set 3 = dd°|z|*>. We denote by |S| the positive measure defined by

|S] =S ApBP.
If u € Psh(Q) N Ll .(|S]), then the product uS is a current on . We define the
current dd°u A S by setting ddu A S := dd°(uS). In particular, when u is bounded,

the definition makes sense for all S [11].

PROPOSITION A.6.1 ([33]). Let u € Psh(Q) N LL (|S]). The current ddu A S
is closed and positive in Q. If uj — u in L{ .(|S]), then dd°u; NS — dd°u A S in
the sense of currents.

Let w1, ...,uqy € Psh(Q2) N LS. (). The current

loc
dd®ui Addus A -+ - ANddug A S := dd®(uiddus A - - Addug A S)
is defined by recursion. One can show that it is symmetric with respect to u1, ..., ug.

THEOREM A.6.2 ([11]). Let uq,...,u, € Psh(Q) N LX.(Q). Let ul,... ,ud be

loc
decreasing sequences of p.s.h. functions that converge pointwise to ui,...,u,. Then

a) wlddul A Addoul A S — uiddus A -+ - A ddug A S;
1 2 1 q
b) dd°ui Addub A---Addul NS —s ddui A -+ Addug A S.
1 2 a q
The following variant of the Chern-Levine-Nirenberg inequality [21] is quite useful.

PROPOSITION A.6.3 ([22]). Let K, L be compact subsets of Q, with L € K.
Let
Ul,...,ug € Psh(Q)NL> and V € Psh(Q).
Then

Vdd®uy A+ Adduglle < Cr,lIV o) lurllpee () - - - gl e (1)
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In particular, the current dd“u; A -- - A ddu, assigns no mass to pluripolar sets
because we can take for V' a function that equals —oo on the pluripolar set.

It is useful to generalize the definition of the exterior product of closed positive
currents in Dy _, , () to the case where the potentials are unbounded (see [22,
33, 75]).

For u € Psh(f?), we define

M(u) :={q:q € Q, uis unbounded in a neighborhood of ¢}.
We denote the a-dimensional Hausdorff measure by A,.

THEOREM A.6.4 ([22, 33]). Let uy,...,u, be p.s.h. functions on an open set
Q C C™. Suppose that

A2(m—€+1)(M(uj1) n---N M(“jz)) =0

for every choice of indices j1 > -+ > jo in {1,...,q}. Then u; is locally integrable
with respect to the trace measure of dd°us A --- A ddugy, and we can set

ddui A -+ - Addug = dd(urddus A - -+ A dduy).

If for each 1 < k < q there is a sequence uf; of functions in Psh(Q) such that
uy, — ug in Li, (Q) and u), > uy for all j, then

wlddul A+ A ddud —s uyddus A - - A ddCu,
in the sense of currents, and
dd°w] A dd°ul A -+~ A dd®ul — dduy Addus A - A ddCuy.

The theorem allows us to define the exterior product when the sets M (u;) are
contained in analytic sets A; satisfying codim(A4;, N---N A;,) > £ for every choice
of indices. This is a case considered in [22].

Since the results are local, they hold for closed positive currents Sy, ..., S, of
bidegree (1,1) on a complex manifold M. We can consider the product S1 A---AS,
provided that the local potentials uq,...,u, of Si,...,S, satisfy the hypothesis of
Theorem A.6.4.

COROLLARY A.6.5 ([33]). Let Si,...,S; be closed positive currents of bidegree
(1,1) on P*. Suppose that the local potentials ui,...,u, satisfy the hypothesis of
Theorem A.6.4. Then Si A--- NSy is well defined. It is a closed positive current.
Moreover,

151 A== A Syl = (ISl -+ - [l

It suffices to observe that S; = cjw + dd°vj, where v; is defined on P* and
& = 1]l

The computation above is a generalization of Bézout’s theorem. If S; = [V}],
where V; is a hypersurface in P¥, and codim(V;, N---NV;,) > £ forall j; < -+ < jm,
then

IV A= AV = VAL IVl

If ¢ = k, we find that the number of points of intersection, counting multiplicity,
equals the product of the degrees.

If u € Psh(Q) and As(n_gi1)(M(u)) = 0, we can define the current (dd°u)’;
this means that u is locally integrable with respect to (dd°u)~' and that (dd®u)*
is a closed positive current. For example, consider u(z) = log|z| in C™. One can
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check that (dd°u)™ = 0 away from the origin. Hence (dd®u)™ = c¢peg0, where gq is
the Dirac measure at 0 and ¢,, is a positive constant that can be computed.

A.7. Pullbacks of Closed Positive Currents

See [60, 29]. We saw in Section A.3 that we can define the pullback of a current
under a submersion. The hypothesis of surjectivity of the differential is imposed
because we want the operation to be continuous; that is, we want S; — S to imply
f*S; = f*S. When we restrict our attention to the class of closed positive currents
of a certain type, we can take pullbacks under maps that are not submersions,
and even under meromorphic maps. We begin with an immediate consequence of
Theorem A.1.2.

ProprosITION A.7.1. Let 2, Q' be domains in C™, and let f : Q@ — Q' be
a holomorphic map. Suppose that the Jacobian of f is not identically zero. Let
uj € LL (V) NPsh(Q). If uj — w in L ('), then ujo f — wo f in L] ().
More generally, let f; : Q@ — Q' be a sequence of holomorphic maps that converge
to f uniformly on compact sets. Suppose that the Jacobian of f is not identically
zero. Then ujo f; — wo f in Ll ().

loc

PROOF. The sequence (u;) is locally bounded above because it converges in
Ll ., and we can apply the mean-value inequality. Set v; = uj o f. The v; are
locally bounded above in . We want to show that v; = wo f. This follows
from Theorem A.1.2. Passing to a subsequence if necessary, we may assume that
v; & vin L{ . and a.e. Since f is generically of rank n, we conclude that v = uo f
a.e., hence everywhere. We may assume that u; o f; converges to v in L{ . After
passing to a subsequence, we may assume that u; converges to u uniformly on sets

of arbitrarily large measure. To show that v = wo f, it suffices to write

ujo fi—uof=(ujofj—uof;)+(uofj—uof)

the first term on the right-hand side is small because u; converges to u uniformly
on sets of large measure. O

Let f: Q — Q' be holomorphic, of generic rank m = dim(Q2) = dim(Q)’). Let S

be a closed positive current of bidegree (1,1) on '. We define the closed positive
current f*S as follows. Given zo € Q, let wo = f(z0) and B(wg,r) C . In
B(wp,r) we have S = dd°u for some p.s.h. u. There exists a positive number r;
such that f(B(z0,71)) C B(wo,r). We set f*S|p(z,,r) = dd°uo f. The definition is
independent of the potential u because if u; and us are two potentials of S, then
dd®(ur —u2) o f = 0. If S; — S in the sense of currents, then we can choose
potentials u; — w in L} .(B(wp,r)) and apply the preceding proposition.
Pullback under a dominant meromorphic map on P*. Let S be a closed positive
current of bidegree (1,1) on P¥. We know that there exists u € P such that
7S = dd°u. Let f € Mgy(P*). Then f = [Fy : --- : F}], where the F; are
homogeneous polynomials of degree k, and we set F = (Fp,...,Fy). Since f is
dominant, the Jacobian of F' is not identically zero. We define f*S by setting

7 (f*S) =dd°(uo F).

Then f*S is a closed positive current on P¥, with potential u o F. We have seen
that if S; — S, we can choose the potentials u; and v in such a way that u; = u
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. 1
in Ly,

(Ck+1). Hence f*S; — f*S, as desired. If
u(Az) = clog|A| + u(z),
then
uo F(Az) = edlog |\ + u(F(z)).
Thus we have a simple relation between the masses:

17751 = dl|S]l-

The case of currents of bidegree (£,¢), £ > 1. The pullback of a closed positive
current of bidegree (¢,¢), £ > 1, was studied by Meo [60]; hypotheses on f are
necessary. Here we consider the pullbacks of currents of the form dd“u; A- - -Add“u,,
where uq, ..., u, satisfy the hypotheses of Theorem A.6.4.

THEOREM A.7.2. Let Q, Q' be open sets in C™. Let f: Q — Q' be a holomor-
phic map with discrete fibers. Let uy, ..., u, be functions in Psh(Q'). Suppose
Ao(m—er1y(M (uz) N -+ N M(uj,)) =0
for every choice of indices j1 < --- < jein {1,...,q}. Set
frlddfuy A--- ANddug] == dd(ug o f) A--- Add®(uq o f).
If ui — uy, in L (Q'), where ui € Psh(QY') and ui > uy, for all j, then

loc

F [ddcu{ A Addoul| = F7 [ddouy A - AddCuy).

PRrOOF. It suffices to observe that
Ao(m—ty1) (M (ujy, o f)N--- N M(uyj, o f)) = 0.

We can then apply Proposition A.7.1 and Theorem A.6.4. O

THEOREM A.7.3. Let Q, Q' be open sets in C™. Let f : Q — Q' be a holo-
morphic map; suppose that f is generically of rank m. For ui,...,us € Psh(Q')N
L2 (), set

frddur A -+ - Addug] == dd (w1 o f) A--- Add®(uq o f).

If uf; — uy, in LL (Q'), where uf; € Psh(QY') and uf; > uy, for all j, then

loc
F [ddcu{ A Nddud| = £ [ddouy A - A ddCuy) .

PROOF. The functions uy o f are bounded and p.s.h. It suffices to apply The-
orem A.6.2 and Proposition A.7.1. |

A.8. Logarithmic Capacity in C

See [83]. We denote by £(C) the convex set of subharmonic functions u in C

that satisfy
u(z) < log™ |z + O(1).
For every compact set K C C, we define the Green’s function of K by
g(z) = (sup{u(z) :u<0on K, u e L(C)})*.

The asterisk * denotes the u.s.c. regularization.

When g is not identically +oo, it is harmonic on C\ K. At infinity, it has the
expansion

g(z) =log|z| +V + O(1).
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The constant V is called the Robin constant of K.

For the disk D(0,R) we find g(z) = log" |z|/R. We define the logarithmic
capacity of K by setting

cap(K) :=e7V.
If E is a Borel set, we define
cap(E) = sup{cap(K) : K C E, K compact}.

The following proposition lets us estimate the area of the set where a function in
L(C) is small.

PRrOPOSITION A.8.1. Let v € L(C). Suppose

limsup(v(z) —log |z|) = A > —oc.
|z| =00
For m > 0, set
E, ={z:]z] <1, v(z) < —m}.
Then
cap(Ep) < e 4e™™
and
area(E,,) < me(cap(Ep))? < me~?4e™2m.
ProOOF. We have v + m < 0 on E,,. Hence, by definition of g,
v(z) + m <log|z| + Vi, + O(1)

for sufficiently large |z|, where V,,, denotes the Robin constant of E,,. Subtracting
log |z|, we obtain A 4+ m < V,, and cap(E,) = e~V < e~4e™™.

The area estimate via the capacity is given in Tsuji [83, p. 85]. O

PROPOSITION A.8.2 ([83, p. 85]). LetU be a continuum in C of diameter 6(E).
Then
0(E) <4-cap(E).
Thus the sets where a function in £(C) is small cannot contain disks that are
too large.

REMARK A.8.3. If u € Psh(CF) is of logarithmic growth, one can estimate the
volume of {z : |z| < 1, u(z) < —m} by applying Proposition A.8.2 to each slice,
then using Fubini’s theorem.

A.9. Bedford-Taylor Capacity and the Siciak Extremal Function

See [11, 54]. Bedford-Taylor introduced [11] a capacity related to plurisub-
harmonic functions. Let €2 be a bounded open set in C™.

DEFINITION A.9.1 ([11]). For each Borel set E C (2, we define
C(E,Q) = sup {/ (dd°u)* : u € Psh(Q), 0 <u < 1} :
E

The C.L.N. inequality, Proposition A.6.3, shows that C(E,Q) < oo if E € Q
and that C(E,Q) = 0 if E is pluripolar. It is clear that C has the following
properties:

(1) If £, C E2, then C(El,ﬂ) < C(E2,Q)

(i) C(UE;,9) < ¥, C(E;,9).
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(iii) If E; ~C, then C(E;,Q) /1 C(E,Q).
(iv) C(E,Q) =sup{C(K,Q) : K C Q, compact}.
The capacity C' also has the following properties, whose proofs are less imme-
diate [11].
(a) If Q3 C 2y € C™, then C(E,Q;) > C(E, Q) for every Borel set E C .
(b) Let w @ Q4. There exists a constant A > 0 such that C(E, Q) < AC(E, Q2)
for every Borel set E C w.
(c) Let E be a Borel subset of Q. If C(E,Q) =0, then E is pluripolar.
(d) Let K € B, the unit ball in C™. Set

ur,g =sup{v:v € Psh(B), v<0on K, 0 <wv<1}.
Let uj g be the upper semicontinuous regularization of ug,g. Then

C(K,B) = /B (dd°ue )™

Siciak (see [54]) introduced a generalization to C™ of the Green’s function. Set
L(C™) = {u € Psh(C™) : u(z) <log™ |2| + O(1)}. If E is bounded in C™, set

Ug(z) = sup{u(z) : u € L(C™), u<0on E}.

Let U, denote the u.s.c. regularization of Ug. This is the Siciak function of E. If
U} is not identically 400, then Uf, € £ and, at infinity, satisfies

Uf(2) =log|z| + O(1).
Moreover, (dd°Uj)™ = 0 on C™ \ E.
If E = B(0,r), then U (2) = log™ (|2|/r).

THEOREM A.9.2. The function Uj, is not identically +oo if and only if E is
not pluripolar. Then (dd°u})™ is a probability measure with support in E.

Suppose E is not pluripolar and E C B, the unit ball. Set m(E) = supg Uj.
One can check that

log* [2] < Up(2) < m(E) + log* |2
Alexander and Taylor proved a relationship between m(E) and C(E, B).
THEOREM A.9.3 ([1]). For r > 1, there exists a constant A(r) such that

(K, B) /¥ < m(K) < %

for every compact set K C B(0,r).

A.10. The Dirichlet Problem for the Monge-Ampeére Equation
Let B be the unit ball in C*. Let u € C(0B). We define
(1) 4 =sup{v : v € Psh(B)NC(B), v < u on dB}.

The function @ is p.s.h. in B, and it is easy to check that wjpp = u. This is a
construction that generalizes Perron’s method of solving the Dirichlet problem. For
m = 1, one finds that @ is the solution of the Dirichlet problem for the Laplacian.

TueoREM A.10.1 ([10]). Let u € C(dB). The function u € Psh(B) NC(B); it
satisfies the Monge-Ampére equation (dda)™ = 0 in B. If u is Holder continuous
of order o > 0, then u is Holder continuous of order /2.



DYNAMICS OF RATIONAL MAPS ON P* 153

Given two function u;, uy € Psh(B) satisfying u; < us, it is useful to be able to
estimate (dd®u;)™ on certain sets; the following result of Briend-Duval ([14, 15])
makes this possible.

THEOREM A.10.2 ([14, 15]). Let u;, us € Psh(B)NL>(B). Suppose uy < us.
Fore >0, set

Yo :={z:]z] €1/2, ua(z) <wui(z) +¢}.

There ezists a constant C (independent of u; and uz) such that

(ddur)™ (%) < / (dduz)™ + Ce(lluzllo +1)™72 - [luzlloo-
B

In particular, if (dd°us)™ =0, then
(dd°uy)™(52) < Ce(lfuzlloo + 1™tz oo

log " (2]z()
log(3/2)
and ug(z) = 11if |z| = 3/4.

Define v := us + 3euz — 2. We have . C {v < u1} € B. Indeed, if z € X,
then

PRrROOF. Set ug = . The function wus is p.s.h., uz = 0 if |z| = 1/2,

v(z) Sui(z) +e—2e=ui(z) —e.
Moreover, v > us + ¢ > uy for |z| > 3/4.
Let x € C§°(B), with 0 < x <1 and x =1 in a neighborhood of |z| < 3/4. Set
6 = max(uq,v). Observe that 6 = uy near X, and 6 = v for |z| > 3/4, in particular
on the support of dy. Integrating by parts, we have

I ::/ (dd®uy)™ < /X(ddce)m = /dx/\dce/\ (ddcg)™!

= — /dx Ad¢v A (ddCv)™ !

= /X(ddcv)m.
Expanding (dd®v)™, we have
m—1
I. < / X | (ddus)™ +2Cy Y (ddus)’ A (dduz)™
j=1

Since x has compact support in B, applying the C.L.N. inequality gives

m—1

L < / (ddus)™ + Coz 3 [[ualldy Jus |7
B

j=1
< [ (dun)™ + Celjuallot + ullo)™
B
([l

For an u.s.c. function u, we consider the set E(u) of points through which there
passes a holomorphic disk on which u is harmonic. More precisely, E(u) is the set
of points zy € B for which there exists a nonconstant holomorphic h : D — B such
that h(0) = zp and w o h is harmonic on D.
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COROLLARY A.10.3. Let u € Psh(B)NC(B). Then
(dd“u)™ (E(u)) = 0.

PRrROOF. Observe that the estimate of Theorem A.10.1 is invariant under ho-
motheties. If the functions u; are defined in B(0,r), it suffices to apply the theorem
to the functions z — w;(rz) in B.

Let E, , denote the set of points zy € B(a,r) for which there exists a noncon-
stant holomorphic function h : D — B(a,r) such that h(0) = 2o, h(e?) € 0B(a,r),
and w o h harmonic in D.

If v < won dB(a,r) and v € Psh(B(a,r)), then v o h < wo h. Hence U, ,, the
solution of the Dirichlet problem with boundary data u, satisfies %, r(20) = u(20).
Taking u; = u in Theorem A.10.2 and uy = U, ., we conclude that (dd°u)™(E, ) =
0.

Choosing a with rational coordinates and r rational, we conclude that

UE..
a,r

But for any zo € E(u), we can find a,r such that zy € E, ,. O

(dd°u)™ =0.
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DYNAMICS OF QUADRATIC POLYNOMIALS

by

Jean-Christophe Yoccoz,

from notes by Marguerite Flexor

Abstract: The study of the dynamical system defined by a holomorphic function
consists of analyzing the behavior of the orbits under iteration of the function
and describing their distribution in the plane. The simplest nontrivial case is
that of quadratic polynomials in one complex variable, which are the subject of
this article. The article is divided into three sections. The first is an overview of
the elementary theory of the dynamical plane of a polynomial and the parameter
space of the family of quadratic polynomials. The second is devoted to hyper-
bolic aspects and is centered around Jakobson’s theorem. The third describes
quasiperiodic aspects, which are related to problems of small divisors.

Introduction

The study of the dynamical system defined by a holomorphic function consists
of analyzing the behavior of the orbits under iteration of the function and describing
their distribution in the plane. This program was initiated in 1919 by G. Julia and
P. Fatou. After a long period of dormancy, it has seen renewed activity in 1942
with C. Siegel and during the past twenty years.

The simplest nontrivial case is that of quadratic polynomials in one complex
variable, which are the subject of this article. Although the function considered is
particularly simple, the associated dynamics can turn out to be quite complicated,
and can be drastically altered by a slight perturbation of the function.

Moreover, the results obtained can be reinvested in the study of the dynamics
of polynomials of higher degree, rational maps, and, more generally, holomorphic
functions with simple critical points.

This article consists of three sections. The first is a very general overview of the
elementary theory in the dynamical plane, for the analysis of a single polynomial,
and the elementary theory in the parameter space, for the analysis of the family of
all quadratic polynomials.

Figure 0 represents the subset of the parameter plane that is classically called
the Mandelbrot set. (Here we have a single complex parameter, and the parameter
plane is C.)

Figure 0
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The Mandelbrot set consists of those parameters for which the set of points
with bounded orbit is connected. The figure shows some of the phenomena that we
will touch on in this section, corresponding to various values of the parameter. We
have deliberately distorted parts of the drawing for clarity. This first section is also
an introduction to the results and open questions that will be elaborated on later.

The second section is devoted to hyperbolic aspects and is centered around
Jakobson’s theorem. The third section describes quasiperiodic aspects, which are
related to problems of small divisors.

The point of view adopted here emphasizes the dynamical rather than the
geometric or analytic aspects, and thus ignores some important questions. Our
goal is to concentrate on some ideas that can be extended to a broader context.

We give no proofs of the deep theorems that are mentioned—at most, for some
of them, an indication of the approach followed. References for their proofs are
given in the bibliography.

Let us also state explicitly that some of the figures are merely suggestive of the
phenomena they illustrate, and are meant to help the reader understand a few real
patterns.

1. General Overview

1.1. The dynamical plane and the parameter space. Every quadratic
complex polynomial is conjugate under an affine map to a polynomial of the form

P.(z) =2’ +ec.

Hence it suffices to study the family of polynomials (P.), for ¢ € C.
For ¢ € C, consider the filled Julia set

K. ={z:sup|P(2)| < +o0},
n>0

where P = P, o---0 P, n times. Our first description of K is the following.
Let R = (1+ +/1+4|c|)/2. Since |P.(z)| > |z| for |z| > R, we have

K.= () P, "D(0,R).

n>0
In particular:

— K., is an intersection of compact subsets, hence compact.

— K, is nonempty because it contains all the periodic points (i.e., all the points

z for which there exists an integer n > 0 such that P"(z) = z).

K. is totally invariant; i.e., P.(K.) = K. = P. *(K,).

- K. is full; i.e.,, C\ K, is connected. This is true because, by the maxi-
mum principle, every bounded open set with boundary in K, must itself lie
completely within K.

The boundary J. = 0K, is the Julia set. By a theorem obtained independently
by Julia and Fatou, J. is also the closure of the set of repelling fixed points. This
is the unstable set of the dynamics.

EXAMPLE. For ¢ =0, Py(2) = 2%; Ko =D and Jy = S* = {2z : |z| = 1}.
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1.1.1. The Green’s function of K.. To study such a compact set, we consider
the potential G that it defines. For Julia sets, G is very easy to compute. Since P,
behaves at infinity like z — 22, the function

Ge(=) = lm_27"log" |P(2)

(where log" = max{log,0}) is well defined and has the following properties.
(1) G.:C — R is continuous;

(2) Ge(Pe(z)) = 2G.(2);

(3) Kc={2€C:G.(2) =0}

(4) G is harmonic in C\ K.: it is the uniform limit of a sequence of functions
each of which (as the logarithm of the modulus of a holomorphic function)
is harmonic;

(5) G(2) = Ge(2) = loglz| + O(|z|?), |2| = +o0.

1.1.2. Critical points of G. in C\ K.. The critical point 0 plays a special role
in the structure of K.. By a theorem of Fatou dating from 1919, we have:

Case 1. If 0 € K., then G, has no critical points in C\ K, and K, is connected.

Case 2. If 0 € C\ K., then the critical points of G. are 0 and all its preimages
(i.e. the points in Up>oP~"(0)); G.(0) is the largest critical value; and K. is not
connected. K. is actually a Cantor set, as we will see in 1.2.

Set g.(2) = lim,, , 1 oo (P™(2))?"". For very large |z|, this function is well defined
and satisfies the functional equation
9e(Pe(2)) = (ge(2)).
defined on {z : G.(z) > G.(0)} and satisfies
)

The function g.(z) i
| =Ge(z
> G.(0)} = {z:]z] > expG.(0)} is a conformal representa-

(1) log|ge(z )
(2) ge:{z:Ge(z
tion;
(3) ge(2) =2+ 0(z7"), |2| = +o0.
In particular, the map
0e=9g.":C\D— C\K.

is a conformal representation if K. is connected.

G.
)

In the parameter space, consider the Mandelbrot set
M = {c € C: K, is connected}.
If || > 2 and n > 0, then |P™(0)| > |c|(Je| — 1)2"" and hence P"(0) — oo; it

c
follows that ¢ is not in M. In fact, M = {c: |P™(0)| < 2, n > 0} and is therefore
compact. €\ M has no bounded component by the maximum principle, so it is
connected. Hence M is full. Moreover, M is symmetric with respect to the real
axis, which it intersects in the interval [—2,1/4].
K. is not connected for ¢ in C\ M, but G.(c) > G.(0) > 0 and g.(c) is well

defined. Douady and Hubbard [5] showed that the map
¢:C\M —-C\D
defined by ¢(c) = gc(c) is a conformal representation.

In the remainder of this section, we consider where the parameter c lies in the
plane C and describe the dynamics of P, accordingly.

Figure 1
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1.2. Dynamics for ¢ ¢ M. Let ¢ ¢ M; let ro > 0 satisfy rog < G.(0) < 2ro.
Let L = {z: G.(2) < 2ro}. The set P.}(L) = {2z : G.(2) < ro} has two connected
components, Ly and Li, which satisfy P.(L;) = L for j = 0,1 and do not contain
the critical point 0. Ly and L; each contain some point in K. (otherwise G, would
be harmonic and positive on L;, hence constant). Similarly, P='(L;) has two
connected components, and so on (see Figure 1, case 2).

Since cis not in L, the map f; = P_‘ : L = L; is well defined and contracting

with respect to the Poincaré metric on L (Schwarz’s lemma), and

= PFM(LoULy) = J.
n>0
is a Cantor set.
We point out two important properties in this case:

— The dynamics for ¢ ¢ M is of shift type.
To see this, let ¥+ = {0,1}" (a compact metric space), and consider the shift
0 : YT = T defined by
o(@)(n) =60(n+1).
The map H : K. — X7 defined by
H(z) = (H(z)(n)), where H(z)(n) =j if P!'(z) € Lj, j € {0,1},

is a homeomorphism that conjugates Pk, to o. Intuitively, H(z) is the address
of the point z; the inverse map consists of taking the unique point with the given
address.

— P. is hyperbolic; i.e., there exist A > 1, C' > 0 such that |D,P"| > CA" for
every z € K. and n > 0.
This is an application of the following criterion for ¢ € C: P, is hyperbolic on J. if
and only if the closure T of the orbit of the critical point O does not intersect J..
To see this, set S = C\ T; S is connected, contains J., and satisfies P-1(S) C S.
If R is a component of P71(S), then the map P! : S — R C S is injective and
locally contracting with respect to the Poincaré metric on S. Since .J, is compact,
there exist A > 1 such that for every z € J. and every tangent vector v at z,

|1D:-Pe(v)l|p = Aljollp,

where || ||p denotes the norm in the Poincaré metric on S.

1.3. Dynamics for ¢ € M. Let ¢ € M, and let zy be a periodic point of P,
with period m and associated cycle

O(20) = {Pi(20), 0 <i <m}.
Let p = (P™)'(20) be the multiplier of the cycle. There are three cases:

)
(1) |u| < 1: O(zp) is an attracting cycle, superattracting if p = 0;

(2) |u] = 1: O(z0) is an indifferent cycle;

(3) |p| > 1: O(z0) is a repelling cycle

The existence (or nonexistence) of a periodic point of type (1) or (2) is a
determining factor for the structure of K.. Douady showed in 1982 that in any
case P. has at most one cycle of type (1) or (2).
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1.3.1. Attracting periodic orbits and hyperbolic components of M. Let ¢ € M
be such that P, has an attracting cycle O(zg) of period m. The set

W= W(O()) = {z: lim_d(P!(2),0(0)) =0}

is called the basin of attraction of O(zp). It is open and totally invariant.
To complete the description of K. in this case, we mention the following two
properties:
— Let U be the component of W containing zg; U is also a component of
P™(U). Since PTi; is not an isometry, U contains a critical point of P

and there exists 0 < k < m such that Uy = P*(U) contains 0.
— W is the interior of K,.. Since the closure of the critical orbit does not
intersect J., we see as above that P, ;. is hyperbolic.

In the parameter plane, if P., has an attracting periodic orbit O(zp), then ¢ is in
the interior of M (this follows from the reasoning above).

Let Vj be the connected component of the interior of M containing ¢y. One can
follow the attracting periodic point ¢ — zo(c), zo(co) = 2o in Vp; the cycle (O(zo(c))
is still attracting and has the same period. Moreover, the map ¢ — u(c), Vo — D,
where p(c) is the multiplier of the cycle O(z(c)), is a conformal representation
(Douady-Hubbard, Sullivan) [5].

Such a component is called a hyperbolic component of M.

ExAMPLE. The set of ¢ such that P, has an attracting fixed point is the interior
of a cardioid, called the main cardioid, which contains 0 (see Figure 0). For such ¢,
the interior of K. has only one component, and J,. is a quasicircle (Sullivan); i.e., it
is the image of S' under a quasiconformal homeomorphism (defined below) ¢ such
that P.(¢(z)) = ¢(z?) for z in a neighborhood of J..

DEFINITION. A homeomorphism ¢ : C — C is quasiconformal if ¢ satisfies

sup Supd(y,z):t d(¢(2), ¢(y))
z€eC, t>0 infd(y,z):t d(¢(2), ¢(y))
(Intuitively, D¢~ exists almost everywhere and turns the field of infinitesimal

circles into a field of infinitesimal ellipses with bounded eccentricity.)
We now consider the interior of M.

— The interior of M is dense in M. More precisely, every point on the bound-
ary of M is approximated by parameter values each of which has a superat-
tracting cycle.

To see this, let U be an open disk that does not contain 0 and intersects
the boundary of M. If no point ¢ in U has a superattracting cycle, then
the family of functions g, : ¢ = P7(0)/+/—¢, which is well defined on U,
does not assume the values 0,1, c0. By Montel’s theorem, (g,) is a normal
family. But for ¢g in the boundary of M and ¢ near c¢o, either g,(c) — oo or
gn(c) remains bounded (both cases can occur), and (g,) cannot be a normal
family.

— The interior of M contains all the hyperbolic components.

The question, of course, is whether the interior of M has other components.

Douady and Hubbard conjectured in 1982 that it does not.

Figure 2
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CoNJECTURE (Hyperbolicity). All the components of the interior of M are
hyperbolic.

Partial results in this direction have been obtained. We mention the following
two important theorems. Theorem 1.1 is due to R. Mané, P. Sad, and D. Sullivan
[13]; Theorem 1.2 is due to G. Swiatek [7].

THEOREM 1.1 (Stability). Every interior point ¢ of M is J-stable; i.e., if f
is a holomorphic perturbation of P. in a neighborhood of J., then f and P. are
quasiconformally conjugate in a neighborhood of J..

COROLLARY. Ifc and ¢’ are in the same component of the interior of M, then
P, and P, are quasiconformally conjugate in a neighborhood of J..

If P. is hyperbolic, then it is J-stable. To prove the hyperbolicity conjecture
one must show that the converse is true. There is a partial result:

THEOREM 1.2. The intersection of the hyperbolic components with
MNR=[-2,1/4]
is a dense set.

This result admits an extension due to M. Lyubich [12]. However, M. Jakob-
son’s theorem, the subject of Section 2, states that if F is the set of ¢ € M NR that
have an attracting cycle, then (M N R) \ E has positive measure.

The proof of Theorem 1.2 is difficult and uses a number of arguments that
appear in the proof of Jakobson’s theorem.

1.3.2. Indifferent periodic points and the boundaries of the hyperbolic compo-
nents. Let ¢ € M be such that P, has an indifferent periodic point zp; i.e., zp has
multiplier u = exp2ima, a € R. Let m denote its period. We distinguish three
cases, depending on the properties of «a:

(1) The case where o € Q (parabolic case). In this case, 0 is in the interior int K,
of K.. Let U be the component of int K. containing 0. Then U also contains the
set {P*™(0) : k > 0}. There is a z; in O(z) such that z; is in the boundary of
U and the sequence (P*™(0)); converges to z;. Furthermore, O(zp) C .J. and the
sequence of iterates of each point in int K, converges to a point in O(zp).

Since 29 € J, P is not hyperbolic.

EXAMPLE. For ¢ = 1/4, the point zg = 1/2 is a parabolic fixed point and int K
has only one component. P, is topologically conjugate on J,. to the map z — 22.

(2) The case where « is irrational and satisfies Brjuno’s condition. Recall that a
number « satisfies Brjuno’s condition if

> a7 10g gni1 < +o0,

n>0
where the fraction p,/q, is the nth convergent to a in its continued-fraction ex-
pansion.

In this case, 2o € int K. and 0 € J;; in particular, it follows that P. is not hy-
perbolic. A. Brjuno [2, 3] showed that P, is linearizable; i.e., if U is the component
of zp in int K, then there exists a conformal representation h : (U, z9) — (D,0)
that conjugates P"(’} to the rotation z — Az. The set U is called a Siegel disk.
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The converse is also true, and was proved by Yoccoz [22]: if P. is linearizable,
then « satisfies Brjuno’s condition.

(8) The case where « is irrational and does not satisfy Brjuno’s condition. In this
case, P, is not linearizable in any neighborhood of zp, and K, has empty interior.

We will return to cases (2) and (3) in Section 3.

In the parameter plane, any point ¢y € M that has an indifferent cycle is in the
boundary of some hyperbolic component. This is true because the multiplier of a
cycle is an analytic function with modulus that is not locally constant, so we can
perturb the polynomial P., to a polynomial P. that has an attracting cycle. (This
argument must be very slightly modified if the multiplier equals 1.)

1.3.3. The interior of K.. The following theorem completes the description of
the interior of K..

THEOREM 1.3. Let U be a component of int K.
(a) U is preperiodic: there exist n > 0, k > 0 such that P*(P*(U)) = P*(U).
(b) If U is periodic, then exactly one of the following is true:
— U has an attracting periodic point.

— The boundary of U contains a parabolic periodic point.
— U is a Siegel disk.

The classification of the periodic components (assertion (b) of the theorem)
is due to Fatou. Assertion (a), also called the nonwandering theorem, is due to
Sullivan [20].

COROLLARY. If all the cycles of P, are repelling, then K. has empty interior.

1.3.4. Quadratic-Like Maps. Renormalization. Results of Douady and Hub-
bard. Copies of M. Douady and Hubbard introduced the basic notion of quadratic-
like maps, which provides the right setting for studying certain fine properties of
quadratic polynomials.

More precisely, a map f : V — U, where V and U are simply connected open
sets in C, is quadratic-like if V' is relatively compact in U and f is a 2-fold branched
covering. We continue to denote the critical point of f by 0.

We define
Kp= () (),
n>0
the filled Julia set of f. It is compact, nonempty, totally invariant, and full. More-
over, Ky is connected if and only if 0 € K.

ExampLE. For f = P,, we can take U = (0, R), where R is sufficiently large,
and V = P71(U).

Douady and Hubbard [6] proved the following theorem:

THEOREM 1.4 (Straightening). Let f : V — U be a quadratic-like map. There
exists ¢ (unique if Ky is connected) such that f and P. are conjugate in a neigh-

borhood of K under a quasiconformal homeomorphism h satisfying Oh = 0 a.e. on
Ky.

Figure 4

Figure 5
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ExaMPLE. For |u| = 1, there exists €9 > 0 such that the quadratic polynomial
P(z) = pz + 22 and the cubic polynomial Q(z) = puz + 22 + 2% are conjugate in a
neighborhood of the origin for |e| < g¢. In particular, this occurs for p that do not
satisfy Brjuno’s condition; P is not linearizable in this case and has complicated
dynamics.

The proof of this straightening theorem is based on quasiconformal surgery,
a procedure that allows one to start with two dynamical systems acting on two
distinct subsets of C and construct a new dynamical system on C that respects the
initial systems. In the case that interests us, one of the dynamical systems is of
course f : V — U. The otheris g = ¢poPyop™! : C\U — C, where Py(z) = 2% and
¢:C\D — C\U is a conformal representation. The existence of the dynamical
system P, : C — C constructed from these two systems is based on the Ahlfors-Bers
integrability theorem [1], which has no equivalent in real dynamics.

For every pair (m,cp), m > 2, satisfying P"(0) = 0, there exists a homeomor-
phism

S, =®: M — My, CM

such that ®(0) = ¢y and, for every ¢ € M, there are simply connected neighborhoods
V and U of 0, with V relatively compact in U, such that P‘IT(C”V : V' — U has the
following properties: it is quadratic-like; its Julia set is connected; and it can be
straightened to P, (cf. Theorem 1.4).

The parameters ¢ € M,, ., are called m-renormalizable, and M,, ., is called
a copy of M. Two copies are either disjoint or nested. Indeed, if m < m/, then
My et C M, if and only if m' is a multiple of m and if ¢ is in M, ¢, -

A parameter is infinitely renormalizable if it is contained in an infinite sequence
of nested copies. For example, the Feigenbaum point ¢ = —1.401155. .., the only
parameter ¢ in M N R for which the real periodic points of the polynomial P. are
of order 2" for every n > 0, is in the intersection of the 2™ copies (n > 0) centered
on the real axis.

We are very far from understanding all the complexity of M. In 1982 Douady
and Hubbard [6] proposed the following conjecture.

CoNJECTURE (MLC). M is locally connected.
An important step in this direction was taken by Yoccoz [10] in 1991.

THEOREM 1.5. If ¢ is a point in M that is not infinitely renormalizable, then
M s locally connected at c. Moreover, K. is locally connected for such c.

This theorem is proved in two steps: the first when ¢ is in the closure of a
hyperbolic component, the second when all the periodic orbits are repelling, with
the second step broken into two cases according to whether the orbit of the critical
point 0 accumulates at 0 (recurrent case) or does not accumulate at 0 (non-recurrent
case).

The tools used in the proof of this theorem also enable us to show the following.
To prove the MLC conjecture, it suffices to show:

(%) The intersection of every sequence of nested copies is a point.
Similarly, to prove the hyperbolicity conjecture it suffices to show:

(%%x) This intersection has empty interior.
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It is becoming evident that the MLC conjecture implies the hyperbolicity con-
jecture. We note in conclusion that properties (x) and (%) are certainly necessary.

2. Hyperbolic Aspects

The goal of this section is to present some ideas that lead to Jakobson’s theorem.
This theorem (the precise statement of which is given later) is the point of departure
for a new direction in the study of dynamical systems. In particular, it is a necessary
step for understanding the work of Benedicks-Carleson on Hénon maps.

We start by pinning down the region of M left unexplored by the analysis in
the last section; this region is the subject of Jakobson’s theorem.

In Section 1 we saw that P. is hyperbolic for every ¢ in either C\ M or a
hyperbolic component. On the other hand, P, is not hyperbolic if ¢ is in the
boundary of a hyperbolic component.

Now consider a parameter ¢ in M such that

(1) c¢is not in the closure of a hyperbolic component (i.e., all the periodic orbits
are repelling);
(2) cis not in a copy of M (i.e., P. is not renormalizable).

By Theorems 1.3 and 1.5, K. = J. has empty interior and measure zero and is
locally connected; the dynamics of P. on K, is controlled by the recurrence of the
orbit of the critical point.

The following theorem, due to Jakobson [11], shows that if this recurrence is
not too strong, then the dynamics is (non-uniformly) hyperbolic. For real ¢, this
occurs with positive probability (in c).

2.1. Jakobson’s theorem for real c. The statement of this theorem requires
some preliminary definitions and notation.
2.1.1. Preliminaries. We begin by listing several known properties of polyno-
mials P. with ¢ real and in M:
— For ¢ < 1/4, the fixed points = (1 + /1 —4¢)/2 and a = (1 — /1 — 4¢)/2
of P, are real.
The interval A = [a, —a] will serve throughout the proof of the theorem as
a test interval for the returns of a point in a neighborhood near 0.
— For —2 < ¢<1/4, K. is connected and K. "R =[-8, 5].
— For ¢ =1/4, 8 = a =1/2 is a parabolic point: P!(a) = 1.
— For 1/4 > ¢ > —3/4, a is an attracting point.
— Let ¢ be the real root of the equation PZ(0) = —a, i.e.

A 4+2% +2c+2=0.
For —3/4 > ¢ > ¢(®) = —1.54369 ..., we have
a < PX(0) < —a.

The map P;‘"A : A — A is quadratic and 0 is its only critical point, so P, is
2-renormalizable.
— For =2 < ¢ < ¢®, P2(0) > —a and P, is not 2-renormalizable.

M. Jakobson published the following theorem in 1981 [11]:

THEOREM 2.1. The following properties are satisfied for a set of parameters
c € [-2,c?) of positive measure:
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(a) There exists A = A. > 0 such that

1
lim —log|D,P}| =
L
for Lebesgue-almost every x € [— 83, f].
(b) There exists a probability measure that is invariant under P. and absolutely
continuous with respect to Lebesgue measure on [—f, f5].

Before tackling the proof of the theorem, we give some more definitions and
notation that will be needed in what follows and are illustrated in Figure 7.

For ¢ < 0, we denote by a(!) the negative preimage of —« and by a(?, i > 1,
the negative preimage of —a(i—1),

For a(=1) > ¢, @ denotes the negative preimage of ol The sequence
(@) is decreasing and has limit —f; the sequence (&@(¥) is increasing.

Furthermore,

ie1)

—B<ec<al
for ¢ € (=2,¢?), and there exists n > 1 such that ¢ € [a(™, a("~1)].

2.1.2. The case ¢ = —2. This is a limiting special case: f = 2 = —¢; 0 is
preperiodic. The pair (A, 1) can easily be computed explicitly in this case. It is
nonetheless a good illustration of the approach followed for proving the theorem in
general.

We have a = —1, P_5(2cosf) = 2cos26. To simplify notation we set P = P_,.

Let
hiz) =1/v4 - 2?;
then | D, P| = 2h(z)/h(P(x)) and hence, for all n > 0,
h(z)
h(P(z))
Consider p = Lh(z)dz for x € [-2,2]. This is a probability measure that is
invariant under P and absolutely continuous with respect to Lebesgue measure.

The sequence (a(i))i>0 is defined for ¢ = —2, and the map T defined by the
graph below is a first return map in A = [-1,1].

|D,P"| = 2"

For z € A, we set N(z) = inf{n > 0: P*(z) € A} and T(z) = PVN®)(z). We
also define Ni(z) = Y go;cp N(T%(2)). Then T*(z) = PNe()(z). The normalized
restriction pr = p4/pu(A) is invariant under 7.

For k > 2, we have

pr({z: N(z) = k}) =2'7",

and the random variables N (T%(z)) are independent. Hence, for almost every z € A,

- Ni(z) 1—k
1 — = k2 =3.

For every n > 0, there exists k such that Ny (z) < n < Ngi1(z). Hence
log |D,PNe+1| 4+ (n — Nj41)log4 < log|D,P"|
< log|D,PN*| + (n — Ni)log4.
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It follows that, for almost every x € A,

1 1
lim -~ log|D,P"| = kETm A log |D,.PN¢| = log 2.

n—+oo
This property still holds for almost every x € (—2,2) because such a point enters

A after iteration by P. Thus the pair (A = log 2, u) satisfies conditions (a) and (b)
of Jakobson’s theorem.

2.2. Regular parameters. If we want to generalize the strategy deployed for
the case ¢ = —2, we are led to consider the return map 7 from A to A. For ¢ # —2,
the domain of T" is a union of intervals called regular (see the definition below).

More precisely, we first define the interval A = [a()), —a(M], which contains A
and will allow us to control the distortion on A.

DEFINITION. An interval J is regular if there exist an integer n > 0 and a
neighborhood J of J such that the restriction Pl’} of P™ to J is a diffeomorphism

from J onto A that maps J onto A.

If J is regular, then the neighborhood J and the integer n are uniquely deter-
mined; J is said to be of order n, and n is called the order of J.

Let M > 3 be such that o™ ~D < ¢ < oM~ Then PM(0) = PM~1(c) € A,
and M is the return time of 0 in A. The intervals [a(),ali=D], for i > 0, and
[@D,a®], for 1 <i < M — 1, are regular of order i.

DEFINITION. A parameter ¢ € [—2,¢() is regular if there exist C' > 0, 8 > 0
such that, for all n > 0,

meas({z € A : x is not in a regular interval of order < n}) < C27",

EXAMPLES.

~ Forc = —2and n > 0, the intervals I,, = [@" 1, @™] and —I,, are regular of
order n and cover A\ {0}. A quick calculation shows that &™) = sinm/3-2",
so |In] < C2™ and ¢ = —2 is a regular parameter.

— More generally, the parameters ¢ for which 0 is preperiodic are regular;
however, they form a set of measure zero.

We assume from now on that ¢ € [~2,¢®); the constants denoted C' that
appear are independent of M. Jakobson’s theorem is a consequence of the following
two theorems.

THEOREM A. Conclusions (a) and (b) of Theorem 2.1 are satisfied if ¢ is reg-
ular.

THEOREM B. The set of regular parameters in [—2, c(2)) has positive measure.

Indeed, the proportion of regular parameters in [—2, —2 + ¢) approaches 1 as
e — 0.

2.3. Sketch of the proof of Theorem A (classical). The proof sketched
here is classical and consists of eight steps. In this subsection and the next, where
the parameter c is fixed, we write P, = P. If J is a regular interval of order n, we

denote by J the interval such that P"} T disa diffeomorphism, and we set
97 = (P~
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2.3.1. Bounded distortion. Let J be a regular interval of order n. The distortion
of g7 on A is bounded. The argument is as follows. The Schwarzian derivative

1
S(gs) = D*log|Dgs| — §(D log |Dgy|)?

is positive on //1\, SO
|Dlog |Dg ()] < Co,

where Cjy = 2 . Let C1 = exp(Co|A|).
la — a)|
Then
L |J]| |
—-——<|D < Cy—
cr 1A < Pl = Gy

and, for every measurable subset B of A,

1 meas(B) < meas(gy(B)) <0 meas(B).
G 7] - |4
2.3.2. The return map T'. It follows from the definition that the endpoints of a
regular interval of order n are two consecutive points in P~"({a, —a}). Hence two
regular intervals either are nested or have disjoint interiors.
Let J be the set of intervals J that are regular, contained in but not equal to
A (i.e., of order > 0), and maximal with these properties. We set U = | | ;. ;int J.

For J € J of order n and x € J, we set N(z) = n and T(z) = P™(x). Then
we define maps N : U - Nand T : U — A such that

Niingg =1y, Tiingg = P,

where ny = ord(J). The gs, J € J, are the inverse branches of T
For z € ﬁ;?;&T’j(U), we set

k—1
Ni(z) =Y N(T(x)),
j=0
so Tk (z) = PNe(®)(z).
2.3.3. If Jy,...,J, is a finite sequence of elements of 7, we set

l:ngo"'ong(A);

this is a regular interval such that g; = gj, o--- 0 gs,. Conversely, every regular
interval contained in A can be obtained in a unique way by this procedure. The
set of such intervals can thus be identified with | |, J*.

We set
Cs :1—i <1—imaX|J|>'
Ci |A| Jeg '
then
0<Cy <.

For .J € J* and z € J, applying the estimates obtained in 2.3.1 gives

|I| < C5|AL; - |D,TF| >

CiCk

We assume from now on that c¢ is regular. In this case, meas(A \ U) = 0 and there
exist C' > 0, # > 0 such that, for every n > 0, meas({z : N(z) >n}) < C27".
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2.3.4. Let u = h(z)dz be a finite positive measure on A, absolutely continuous
with respect to Lebesgue measure, and with density h € L'(A). The image T,u is
also absolutely continuous with respect to Lebesgue measure and has density Lh,
where

Lh(z) =Y hogy(x)|Dgs(z)|.
JeJ
For k>0, L¥h(x) =Y ;e 7 ho gs(x)|Dgs(x)].

2.3.5. Let C; be the complex plane minus (—oo, ) and (—a), +00). For
a regular interval J of order n > 0, the inverse branch g; extends to a univalent
map from C; to C because the critical values of P™ are real. As n and J vary,
these maps form a normal family (their images avoid (—oo, —f) and (8, +00)).

Let £ be the sign of Dgy on A. The family

[,kl =h, = Z e’:‘iDgi
Jegk

of holomorphic functions defined on Cj is also normal. Let hr be a limit point of
the sequence

=
L
0
It is a holomorphic function on Cz that is positive on A and satisfies Lhy = hr.
2.3.6. The T-invariant measure ur = hy(z)dz is ergodic. To see this, let E
be a T-invariant subset of A of measure > 0, and let z¢ be a point of density of E.

Since E is T-invariant, o € NyT~*(U). Let J(k) € J be the interval containing
zo. Then

meas(A \ E) <C meas(J(k) \ (ENJ(k)))
— — <0
|4 | T (k)|
by 2.3.1. Since |J(k)| — 0 as k — oo, meas(A \ E) = 0. The measure pur is
the unique T-invariant, absolutely continuous measure. In particular, the sequence
k—1
1

Z Z hj converges to hr (actually, the sequence hy, itself converges to hr).
0

2.3.7. The exponent \. Since meas({z : N(x) > n}) < C 27" for every n > 0,
the map N is pr-integrable. Furthermore, log1/Cy < log|DT| < (log4)N; hence
log|DT)| is also pr-integrable. By Birkhoff’s theorem,

1 1
E10g|DmT’“| 2% [ log |DT|dur; ENk(m) 29 /Nd,uT.
By the last inequality of 2.3.3,

1 . 1
/log |DT |dpy = A /10g|DT’”|d,uT > log o > 0.

Finally,

log | D, PNx(2)| £>)\_flog|DT|d,uT

Ni(z) ~ [Ndur
To pass from the subsequence (Ni)r>o to the sequence (n),>0, we proceed as in
the case ¢ = —2.
Condition (a) of Jakobson’s theorem is satisfied at the point c.

> 0.
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2.3.8. The invariant measure pp. Finally, still for regular ¢, define S by
S:C([=8,8) = L'(A,dur)

and pp by
N(z)—1
Sp(x)= Y poPi(a), /sadup = /S‘Pd,UT-
i=0
The measure pp is finite and positive on [—f, 5], invariant under P, absolutely
continuous with respect to Lebesgue measure (equivalent to Lebesgue measure on
[c, P(c)]), and ergodic, and it satisfies condition (b) of the theorem at c.

REMARKS.

— For the case ¢ = —2, we recover up = hp(z)dz, with hp(z) = Lh(z)dz and
pr = hr(x)de, with hr = hp|4.

— pp is less regular than pur; hp is not in L%([c, P(c)]).

2.4. Some steps toward Theorem B. What has to be done now is to esti-
mate the measure of the set of regular parameters. We sketch the strategy followed.
First we construct a set R of parameters for which the successive returns of 0 to A
will be good but not too close to 0. Next, we must show both that the elements of
R are regular and that the conditions placed on these returns enable us to evaluate
the size of R.

2.4.1. Construction of R. For every m > 1, there exists a unique solution ¢(™)
in [-2,¢®)) of the equation a(™~1(¢) = ¢. The sequence (™)) is decreasing and
has limit —2.

Given a very large integer M, we consider, in the rest of this subsection, the
parameters ¢ € (cM), (M=) for which

oMV (e) < e < aM(c),
The integer M is the return time of 0 in A. Although 0 ¢ U, we agree to set
T(0) = PM(0).

For i € [2,M — 2], the intervals [@ 1 &®], [-a®, —al~Y] are maximal
regular intervals of order i. We call them simple intervals. Every other element of
J is of order > M.

Now consider the following conditions on an integer k& > 0:
l=k—1

(1x) T0)e () T4U).
£=0

Under this condition, the iterates T*(0) are defined for 0 < ¢ < k+1. For 0 < ¢ < k,
T*(0) is in an interval J(¢) € J of order n, = N(T*(0)).

(2k) S on <2V for0< <k
0<j<t, nj>M

In particular, J(¢) is a simple interval for £ < M VM

Observe that conditions (1p), (2¢9) are automatically satisfied and that condi-
tions (1g+1), (2g+1) are more restrictive than conditions (1;), (2)-

Let Ry denote the set of parameters ¢ € (c¢(™),(M=1)) that satisfy conditions
(1%), (2&), and let R = Ng>oRy. Theorem B, and hence Jakobson’s theorem, is a
consequence of the following two assertions:
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(B') Every parameter in R is regular.
(B") The relative measure of R in (™), M=) approaches 1 as M approaches
infinity.

2.4.2. Expansion along the critical orbit. Suppose conditions (1;) and (2j) are
satisfied. For 0 < ¢ < k + 1, we define a decreasing sequence of intervals B(f)
containing T'(0):

B(1)=A, B(l+1)=gpu)(gs0)(A)).
We set

-1
Ny = ZN(T](O)) and  gp(r41) = IB(£) © 9r(6) = 9J(1) " ° Gi(r)-
0

Then the intervals B(f) are regular of order

-1
ZTL]' :Ng—M.
1

When J({) is not simple, we have the trivial estimate
47" < |Dgyl < 1.
But we have a precise estimate for |[Dgy (| in the simple case:
h(g0) ()
h(z)

where h(z) = 1/+/8% — 22, z € A. Combining these, we have the following estimate
for B(¢) (and it is here that we use (2g)):

1 1
2—Ng+M—CM Ny S |DgB([)(m)| S 2—Ng+M+CM N[’

\|ng ()] 27 _ 1‘ <Cqne,

for every 0 < £ <k +1 and every z € A.

2.4.3. The crucial measure estimate (assertion (B')). This is the most delicate
point in the proof. We continue to assume that conditions (1;), (25) are satisfied.
Let U,, denote the union of the intervals J € J of order < n, and £(n) the set of
connected components of A\ U,.

We will show that for 0 < # < 1/2, there exists C' > 0 such that for every

n < Nita,
> E|<C2
Ee&(n)
We will consider only the special case where the following two properties are
satisfied for all 0 < ¢ < k (see Figure 10):

(%) The left endpoints of B(¢) and B(¢ + 1) are distinct.
(%%) The leftmost connected component of B(/érl) \B(¢+1) is a regular interval.
The general case is not much more complicated. We set
A(0) = [@-2), —g(M-2)

—

and, for 0 < £ < k+1, denote by A(¢) (resp. A(£)) the component of 0 in P~ (B(¢))
(resp. P~M(B(())). By (x), A({ +1) C A(f). By (x) and (%), the two components
of A(£)\ A(£) are regular intervals of order Ny41. Note that P (0) is the maximum

M
of F i

Figure 10
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Let n be a (fixed) integer such that Ny < n < Ng41. Then we can write

Em)= || Em,0] | M),

0<t<k
where £(n, £) denotes the set of components that are contained in A(¢) but not in

A(7+\1), and &'(n) is the set of components that are contained in A(k). One then
proves the following proposition:

PROPOSITION 2.2. Let £,n be such that 0 < £ < k and Ny < n < Niy1. Let
E € &(n,!l).
(i) If J(€) is simple and gp()(0) is to the left of B(( + 1), then PN'(E) is a
component of E(n — Ny).

(ii) If J(€) is simple and gp(¢)(0) is to the right of B({ + 1), then PNt+1(E) is
a component of E(n — Npyq — 1).

(iii) In general, either PN¢(E) is a component of £(n — N;) or there erists a
regular interval J of order ny, 0 < ny < ng, such that PNt (E) is a
component of E(n — Ny —ny). Moreover, the orders of such intervals J are
distinct.

From this proposition it is not hard to obtain the estimate

> |EI<Cc27m,

Ecé&(n)

with a constant § < 1/2 that is close to 1/2 when M is large. Indeed, this can be
checked immediately for n < M — 1. We have

£(n) = {[@™, —a™1}.

By Proposition 2.2, one can now argue by induction on n, using the expansion
given by the last inequality of 2.4.2.

2.4.4. Structure in the parameter space. The sequence (Ry) is decreasing, with
Ry = (¢™),¢M=1))_ Let us explain how to find the components of Ry contained
in a given connected component of Ry.

Let £ > 0, ¢ € Ri. Then the intervals B({) and the integers N, are defined
for P,y and 0 < £ < k + 1.

Let I denote the component of ¢y in Rj; this is also the component of ¢ in
{c: PN+ (0) ¢ {a, —a}}. Moreover, every preimage of a or —a of order < Ny,
depends analytically on ¢ in Ij,. In particular, the endpoints of J(¢) (for 0 < £ < k)
and of B(¢) (for 0 < ¢ < k+ 1) depend analytically on ¢ in Ij. In contrast, for ¢ in
I, the integers ny (for 0 < ¢ < k) and Ny, (for 0 < £ < k + 1) are independent of c.

If J is a regular interval for P, of order < Ny, then the interval obtained by
analytic continuation of the endpoints of J stays regular for every ¢ in I. We set

i1 = max(M,2 VM (k + 1))
and write
9 = GlaM-1) q(1-2)].

We show that if  is an endpoint of an interval J € J of order < nj_, (in particular,
if y=aory=—a), then

0 1 _
5c9 ° gB(k+1)(7) — 3 <c2™M
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for every c in I;,. But it is also certainly true that

0 0
I pM —_p =1
LRV () = £-P.(0) = 1
hence ¢ = P,(0) ranges over g(B(k + 1)) with a relative speed that is nonzero and

essentially constant. To each J € J of order < nj_, there corresponds the interval
Iiy1(J) C I, for which PM(0) € gp(rt1)(J). If ¢ is in Irt1(J), then TF+(0) € J
and hence J = J(k + 1).

The connected components of Ry,1 contained in I}, are exactly those intervals
Ij.41(J) for which either ord(J) < M or

S m) +ord(J) < 27VM(k +1).
0<t<k, ng>M

Finally, the measure estimate carries over to the parameter space.
For 0 <n < nj,,, we have

meas(Ik \ | | IkH(J)) < "2 "I,

JeJ, 0<ord J<n

Figure 11
2.4.5. The large deviation argument. For ¢ € Ry = (c(M),c(Mfl)), we define a
sequence of random variables X (c), k > 0, as follows. For k > 0:
- If ¢ ¢ Ry, then Xyy1(c) =0;
— If ¢ € Ry, let I, be its component in Ry,.
— If ¢ is not in any of the intervals Iy (J) (with 0 < ord(J) < nj )
as above, we set Xy 1(c) =nj,, + 1.
— Ifc € Iy11(J), we set
0 if 0 <ord(J) < M,
Xia(€) = 10 < ordl) <
ord(J) if ord(J) > M.

It is easy to see that R consists of exactly those ¢ such that, for every & > 0,
k
3" Xe(e) <27V Mk
1

Moreover, the inequality
Prob(Xpy1 > nl|Xy,..., Xp) < C"27"

follows from 2.4.4. The left-hand side of this inequality indicates the probability
that Xz.1 > n, knowing that X; = a1, ..., X, = ;. Thus, if we set Sy = Y25 X,
and let Exp denote the expectation, we have

EXp(QoS’“/2|X1, . ,Xk) <14 oM/,
Hence i
EXp (29Sk/2) S (1 + CIIIQ—HM/Q)

and
pr =1
e —17

D = Prob(Sk > 2*“@) <

where =1+ C"2-0M/2 apnd )\ = 902~V /2.
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Finally, for large M, we obtain

> e <270
k>0

and
meas{c = (C(M),C(Mfl)) s ¢ R} S 2*9M/3 C(M) _ C(Mfl) )

3. Quasiperiodic Aspects

In this last section we present without proof some results on quasiperiodic
dynamics, which apply in particular to quadratic polynomials. The first of these
results shows that the only interesting holomorphic dynamics in a neighborhood of
a nontrivial (i.e. nonempty and not a single point) connected compact set is the
quasiperiodic dynamics.

3.1. Connected compact sets that are invariant under a univalent
map. Let K be a nontrivial connected compact subset of C, and let F be a map
that is univalent (i.e. holomorphic and injective) in an open neighborhood V' of K
and satisfies F(K) = K. We set F = Z?‘K.

Let U be a connected component of C\ K. Shrinking V' if necessary, we may
assume that V N U is connected and F(V NU) is contained in a component U’ of
C\ K. If U is bounded (resp. unbounded), let h : D = {z : |z| < 1} = U (resp.
h:C\D — U) be a conformal representation.

When U’ = U, the map g = h™' o F o h extends by Schwarz reflection to an
analytic diffeomorphism of the circle S, with rotation number denoted by p(U, F).

The following theorem gives a classification of the different types of dynamical
behavior of (K, F = ﬁ\K)

THEOREM 3.1. With the hypotheses and notation above, exactly one of the fol-
lowing cases holds:
(1) F has finite order.
(2) F is of Morse-Smale type; i.e., F' has finitely many periodic orbits, and the
w-limit and a-limit sets of each orbit are periodic orbits.
(3) K is full or annular, with irrational rotation number. The iterates of F
accumulate at the identity (in the topology of uniform convergence on K ).

We give some comments on and supplementary results to this theorem, which
is due to E. Risler [17] and also to R. Pérez Marco [16] for the full case.

(1) Recall that K is full if C\ K is connected, and annular if C\ K has two connected
components.

(a) If K is full and p = p(C\ K, F) is irrational, then F has a fixed point with
multiplier exp 2imp, and this point is the unique periodic point.

If the interior int K of K is nonempty, then int K is a Siegel disk, i.e. a simply
connected domain on which F' is conjugate to the rotation

z — (exp 2imp)z.

(b) If K is annular and we are in case (3) of the theorem, then F preserves the
two connected components Usng, Uexy (Where Uiny denotes the bounded component).
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In this situation,
p(Uint) = p(Uext) eER \ Qa

and p is called the rotation number of (K, F'). The map F has no periodic orbit.
If int(K) # (), then int K is an annulus on which F' is conjugate to the map
z > (exp 2imp)z.

(c) Pérez Marco [16] has shown that in the two cases above, the dynamics is
quasiperiodic: if p,/q, is the nth convergent to p in its continued-fraction expan-
sion, then (F'%) converges uniformly to the identity.

When int(K) = (), the topology of K becomes very complex; hence such K are
called hedgehogs (cf. 3.4).

(2) Suppose that F' is not of finite order and we are not in any of the preceding
situations. In this case, F' is of Morse-Smale type (cf. point (2) of Theorem 3.1).
If a component U of C \ K is preserved by some iterate F* of F, then p(U, F*) is
rational. Furthermore, p(U, F*) is zero if K is not full or annular.

The periodic points are attracting, repelling, or parabolic. Perhaps after con-
jugating F by a quasiconformal homeomorphism and enlarging K, we have

K = {periodic points of F'} U U P,

i=1,...,r

where P; is a petal that is invariant under an iterate F*; i.e., P; is a connected
open set for which F¥(P;) = P;, Flljpi has no fixed point, and there exist two points

T4 and x, such that lim,_, . F™(z) = z, and lim,_,_,, F"™*(z) = z, for every
T € Pz
The petals P are of three distinct types:

— those for which z,, # z,, .
— those for which z, = z, and P is full,
— those for which z, = z, and P is annular.

Figure 13 below represents a dynamics in which each type of petal apppears.

Furthermore, there is a “Mather-Ecalle-Voronin”-type analytic classification of
the pairs (K, F).

We will say nothing further about Morse-Smale type. The following subsections
deal with case (3), separating the linearizable case (Subsections 3.2, 3.3) and the
nonlinearizable case (hedgehogs, Subsection 3.4).

3.2. Brjuno’s condition and Brjuno’s function. Let @« € R\ Q have
continued-fraction expansion

o =ag +
ay + ——
02+—

Figure 13
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We set ag = a, f_1 = 1, ap = po, @0 = 1, and, for n > 0, define the natural
numbers i, P, Gn, Bn by

1 _Dn + Pn—1Qp
1 Gn + qn-10n
1

Apn + 0

a=ag+
a1+

n
Bn = |(Ina _pn| = Hai-
=0

We also set 8y = ag. The sequence (3,) measures how well « is approximated by

Pn/n-
We already defined the Brjuno numbers in §1.3.2 by the condition

$(a) =D g, " loggni1 < 0.
n>0

But rather than considering the function ¢, we prefer the function called Brjuno’s
function, which maps R\ Q to RU {oo} and is defined by

B(a) = ZBi—llOga;l-
0

This function is periodic with period 1: B(a+1) = B(a). For 0 < a < 1, it satisfies
the functional equation

B(a) =loga™! + ag(1/a).
In fact, there exists a constant C' > 0 such that
|Ba) - é(a)| < C,
so the set of Brjuno numbers is
B={a€]0,1):B(a) < +o0}.

Let f(z) = (exp2ima)z + O(z?) be a univalent function on D. We denote by
Ay the Siegel disk of f, i.e. the (possibly empty) maximal domain on which f is
analytically conjugate to the rotation z — (exp 2ima)z.

Brjuno’s function provides an estimate of the size of the Siegel disk Ay as a
function of a. More precisely, Brjuno [2, 3], Siegel [19], and Yoccoz [22] prove the
following theorem.

THEOREM 3.2. There exist 0 < Cy < Cy (universal constants) such that the
following conditions hold for every a € R\ Q:

(1) For a € B,
(1.1) if f(2) = (exp 2ima)z + O(z?) is univalent in D, then f is linearizable
and Ay D D(0,Cyexp(—B(w)));
(1.2) there exists f(z) = (exp 2ima)z + O(z?), univalent and quadratic-like,
such that Ay 2 D(0,C exp(—B(a))).
(2) For o ¢ B, the polynomial P : z — (exp 2ima)z + 2% is not linearizable and
Ap=0.
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Study of Brjuno’s function. This work was carried out jointly by Marmi, Moussa,
and Yoccoz [14]. The starting point is the functional equation for B:

1
B(z) = —logz + zB <E> .
One is thus led to consider the set

Y={f:R— R: fis measurable and f(z) = f(z + 1)}

and the operator T' : ¥ — X defined by T(f)(z) = xzf(1/x). The functional
equation above can also be written as

(1d—T)(B) = t,

where t(z) = —logx for 0 < < 1. For every p > 1, T acts on LP(T) N X, where
T = R/Z; its spectral radius is < 1, so Id — T is invertible, and we have

B =Y T"().
n>0

Since the function ¢ is not in L*°(T), we cannot expect that B is. On the other
hand, we have the following inclusions:

L*(T) € BMO(T) C (] L*(T).
p>1
Recall that

1
BMO(T) = {Lp € LY(T) : supm / lo — prldz < +oo} ,
I I

where I ranges over the intervals in T and ¢y is the average of ¢ on I. Since
the function ¢ is in BMO(T), we immediately obtain assertion (a) of the following
theorem:

THEOREM 3.3. The function B satisfies the following conditions.
(a) B is in BMO(T).
(b) The harmonic conjugate of B is in L>(T).

We sketch the proof of assertion (b). Consider the space
E ={h:C\0,1] = C, holomorphic, h(cc) = 0}.
Let M denote the monoid in GL(2,Z) consisting of the identity and matrices of
the form (Z b) satisfying 0 < a <b<danda <c<d. Forge M, h € E, the

d
function

Ly(h) = (a—cz) [h (ZZ__CD _h (_ gj)} _ ad;bch, <_ c‘j)

is in E. This defines an action L : M x E — E
L(g,h) = Ly(h).

1
We now set t1(z) = ——Liz(1/z), where Lis is the dilogarithm, i.e.
T

n

Lis(2) = ZZ—Q.

n>0
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The function ¢; is in E. It can be shown that the series

By = Z Lg(Tl)

geEM

defines an element of E satisfying

- Bi(z) = Bi(2);
—for0<z <1, B(z) = lim Im B (z + iy);
y—0t

— Ba(z) =Re )., Bi(z +n) is bounded on {z : Im(z) > 0}.

The case of the quadratic polynomial Qx(z) = A(z — 22). The results obtained for
@ that we mention here are due to Yoccoz [22].

For A € C*, not a root of unity, let Hy be the unique formal series of the form
Hy(z) = 2z + az2% + - - - that satisfies

Hy(Az) = Qx(Hx(2))-
Let R(A) be the radius of convergence of Hy; H) extends continuously and injec-

tively to {z: |z] < R(\)}.
For |A\| <1, 0 is an attracting fixed point of @ and R(\) is nonzero. Set

U = lim A "QR(1L/2).

The function A — U()) is well defined, is holomorphic on D, and satisfies

= [UNI = RA), HA(U(XN)) =1/2;

— U()) is the only singularity of Hy in {z:|z| < R(\)}.

The case where A has modulus 1 but is not a root of unity is clearly the most
interesting but also the hardest. We point out that in this case

— |U| has nontangential limit R(\) at A.

3.2.1. Some questions about the functions B and U.

— For a € B, does there exist C' > 0 such that

R(exp2ira) < C'exp(—B(a)) ?

In other words, is the function a — log |U (exp 2iwa)| + B(«) in L>°(T)?
Recall that R(exp2ima) > Cexp(—B(a)). Moreover, for every ¢ > 0 we
have

R(exp 2ima) < C(e)exp(—(1 — €)B(a)).

— For which a does ArgU have a limit at A = exp(2ira)? When this limit
exists, U(A) is defined. Is it still true that Hx(U(X)) = 1/27 We expect a
positive answer to these questions. By a famous theorem of Fatou [4], it
is true almost everywhere. This would imply in particular that the critical
point ¢ = 1/2 is on the boundary of the Siegel disk.

— Is ArgU bounded in D?

The function logU = log |U| + iArg U is a dynamical analogue of the function
B,. In this dictionary, the counterpart of the boundedness of By should be the
boundedness of ArgU. On the other hand, it is not impossible that Re U is positive
and hence that log|U| is in BMO(T).
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3.3. The boundary of the Siegel disk. For a € R\Q, consider the sequence
Ao(a) =0,..., AnJrl = 610g a;lt (An(a));

where §,(t) is the function defined by

et if t <u,
du(t) = N i
et —u+1) ift>wu.

Set
Ho = {a:Ing(a) : An(a) > loga, ! Vn > ng(a)}.

n
The elements of H, are those for which the growth of loga, ! is controlled by
A, (a), so that a,, is not too small; these are also the a that are not very well
approximated by rationals. Set

H={a:a, € Hy for every n > 0}.

In fact,
H C Ho C B,

and these sets are all distinct.

Consider the action of PGL2(Z) on R \ Q via the generators o — a + 1 and
a + 1/a, which produce the continued-fraction expansion of a. We see that B is
the set of o whose orbits intersect Ho and that # is the set of a whose orbits are
contained in Hg.

The following theorem of Yoccoz [22] characterizes the elements of .

THEOREM 3.4. a € H if and only if every f € Diff ¢ (T) with rotation number
a s analytically linearizable.

We return to quadratic polynomials. The following theorem of Herman [8]
gives, in the linear case, a (partial) description of the boundary of the Siegel disk.

THEOREM 3.5. Suppose a € B. Let S be the boundary of the Siegel disk of
Qo(2) = (exp 2ima)(z — 2%), and let ¢ = 1/2 be its critical point.
(1) If a € H, thenc€ S.
(2) There exists a € B\ H such that S is a quasicircle not containing c.
(3) « is of constant type (i.e., there exists C > 0 such that a; < C for every i)
if and only if S is a quasicircle containing c.
(4) The set of a for which S is a Jordan curve containing c is of full measure.

REMARKS.

(a) Assertion (4) was announced by Herman and Yoccoz.
(b) The set of « of constant type is a proper subset of Hg.
(c¢) The proof of (3) uses the results of Swiatek [21].

The following are natural questions if one wants to be able to complete this
description of S:
QUESTIONS

— Is the converse of (1) true, so that « € #H if and only if ¢ € S?
— Is S always a Jordan curve?
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3.4. Hedgehogs. These objects were studied by R. Pérez Marco [15], and
the results cited in this subsection are due to him.

We return to the study of case (3) of the classification of compact sets that are
invariant under a univalent map, given in Theorem 3.1.

We begin by considering the case of a full compact set. Let @ € R\ Q, and let
f be univalent in a neighborhood of D = {z : |2| < 1} and of the form

f(2) = (exp 2ima)z + O(2?).
For 0 < r <1, weset D, = {2 : |2|] < r} and denote by K, the connected

component containing 0 of the maximal invariant compact set N,ezf~"(D,). This
is a full compact set that intersects the boundary of ID,..
The rotation number p(C\ K, f) is independent of r; indeed, it is the rotation
number of the diffeomorphism of the circle derived from f by a conformal repre-
sentation of C\ K, (cf. 3.1), which also equals p(C\ K, f) by point (1.b) following
Theorem 3.1. Since p(C\ K., f) approaches « as r approaches 0, it equals a for all
r € [0,1].
R. Pérez Marco proves the following results:
— If K C D is a nonempty, full, invariant compact set, then there exists a
number r, 0 < r < 1, such that K = K, (we set Ky = {0}).

— If int K; = 0, then fix, is uniquely ergodic; the unique invariant measure is
the Dirac measure at 0.

— Let p,/g¢, be the nth convergent to . Then the sequence f‘qfé1 converges
uniformly to Id g, ; the subgroup of iterates of fx, in the group of homeo-
morphisms of K is not discrete; and the centralizer of f|x, is not countable.

We now briefly consider the annular case. Let Ko be an annular compact set
surrounding 0, and let hi, (resp. hext) be the conformal representation of I (resp.
C\ D) be the bounded (resp. unbounded) component of C\ K that fixes 0 (resp.
00).

For Ry <1 < Ry, we set,

ARy ry = C\ [hint({z : |2] < Ro}) Uhext ({2 : 2| > R1})].

Let f be a univalent map in a neighborhood of an annulus Ag, g, that preserves Ky
and each component of C\ Ko. Suppose the rotation number « of fig, is irrational.

For Ry <rp <1< r; <Ry, we denote by K, , the connected component
of Ky in the maximal invariant compact set ﬁnezf’"(zroyrl). This is an annular
compact set that intersects the two boundary components of ng,m- As before, the
rotation number of K, equals a. Every invariant annular connected compact
set that contains Ko and is contained in Ag, g, is one of the K, ,,. The sequence
of iterates f\quo,n converges uniformly to Id, Krgo -

Various possibilities for the compact sets K, and K, , are represented in
Figure 14:

— If a € H, then K, is a disk whose boundary is an analytic curve; K, ,, is
an annulus whose two boundary components are analytic curves.

— If a« € B, then the interior of K, contains 0 when r > 0. In the annular
case, the interior of K, ,, contains an annular open set surrounding 0 if f
is sufficiently close to a rotation.



DYNAMICS OF QUADRATIC POLYNOMIALS 183

3.5. Herman rings. Let Raty be the set of rational maps of degree d. If V
is the subvariety of reducible rational maps, then Raty; = CP2¢*+!1 \ V. For fixed
a € R\ Q, let W(a) be the subset of Raty consisting of those rational maps R that
have a Herman ring of period 1 and rotation number a.

The following theorem is due in part to M. Herman [9] and to E. Risler [18].

THEOREM 3.6. If o € B, then W(a) is a complezx analytic hypersurface.

Little is actually known about W («); it is not an algebraic hypersurface. We
mention some questions to which we would like to have answers, and for which
there are partial answers.

QUESTIONS

(1) Is W(«) nonsingular?
It is easy to see that W («) is nonsingular at a point that admits a unique
Herman ring with rotation number «, when the modulus of this ring is large.

(2) What is the dependence of W (a) on a as a ranges over 5?
When a ranges over certain compact subsets of B defined by uniform arith-
metic conditions on «, the W(«a) depend in a C*> way on « and hence form
a partial foliation.

(3) What can be said about the closure W (a) in CP2¢+1?

(4) What happens when « leaves B?
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