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The Lorenz Attractor, a Paradigm for Chaos

Étienne Ghys

Abstract. It is very unusual for a mathematical or physical idea to disseminate
into the society at large. An interesting example is chaos theory, popularized
by Lorenz’s butterfly effect: “does the flap of a butterfly’s wings in Brazil
set off a tornado in Texas?” A tiny cause can generate big consequences!
Mathematicians (and non mathematicians) have known this fact for a long
time! Can one adequately summarize chaos theory is such a simple minded
way? In this review paper, I would like first of all to sketch some of the
main steps in the historical development of the concept of chaos in dynamical
systems, from the mathematical point of view. Then, I would like to present
the present status of the Lorenz attractor in the panorama of the theory, as
we see it Today.

Translation by Stéphane Nonnenmacher from the original French text1

1. Introduction

The “Lorenz attractor” is the paradigm for chaos, like the French verb “aimer”
is the paradigm for the verbs of the 1st type. Learning how to conjugate “aimer”
is not sufficient to speak French, but it is doubtlessly a necessary step. Similarly,
the close observation of the Lorenz attractor does not suffice to understand all the
mechanisms of deterministic chaos, but it is an unavoidable task for this aim. This
task is also quite pleasant, since this object is beautiful, both from the mathemat-
ical and aesthetic points of view. It is not surprising that the “butterfly effect” is
one of the few mathematical concepts widely known among non-scientists.

In epistemology, a paradigm is “a dominant theoretical concept, at a certain
time, in a given scientific community, on which a certain scientific domain bases the
questions to be asked, and the explanations to be given.”2 The Lorenz attractor
has indeed played this role in the modern theory of dynamical systems, as I will try

1http://www.bourbaphy.fr/ghys.pdf
2Trésor de la Langue Française.
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Figure 1. The Lorenz attractor

to explain. The Lorenz dynamics features an ensemble of qualitative phenomena
which are thought, today, to be present in “generic” dynamics.

According to the spirit of this seminar, this text is not written exclusively for
mathematicians. The article [81] is another accessible reference for a description of
the Lorenz attractor. The nice book “Dynamics beyond uniform hyperbolicity. A
global geometric and probabilistic perspective” by Bonatti, Dı́az and Viana gives
an account of the state of the art on the subject, but is aimed at experts [16].

In a first step, I wish to rapidly present two past paradigms which have been
superseded by the Lorenz attractor: the “(quasi-)periodic dynamics” and the “hy-
perbolic dynamics”. Lorenz’s article dates back to 1963, but it was really noticed
by mathematicians only a decade later, and it took another decade to realize the
importance of this example. One could regret this lack of communication between
mathematicians and physicists, but this time was also needed for the hyperbolic
paradigm to consolidate, before yielding to its nonhyperbolic successors3. In a sec-
ond step I will present the Lorenz butterfly as it is understood today, focussing on
the topological and statistical aspects. Then, I will try to sketch the general pic-
ture of dynamical systems, in the light of an ensemble of (optimistic) conjectures
due to Palis.

Chaos theory is often described from a negative viewpoint: the high sensi-
tivity to initial conditions makes it impossible to practically determine the future
evolution of a system, because these initial conditions are never known with total

3For a historical presentation of chaos theory, see for instance [8].
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precision. Yet, the theory would be rather poor if it was limited to this absence
of determinism and did not encompass any deductive aspect. On the contrary, I
want to insist on the fact that, by asking the good questions, the theory is able to
provide rich and nontrivial information, and leads to a real understanding of the
dynamics.

There remains a lot of work to do, halfway between mathematics and physics,
in order to understand whether this “little ordinary differential equation” can ac-
count for meteorological phenomena, which initially motivated Lorenz. Long is the
way between these differential equations and the “true” Navier–Stokes partial dif-
ferential equations at the heart of the physical problem. Due to my incompetence,
I will not dwell on this important question.

I prefer to consider the butterfly as a nice gift from physicists to mathemati-
cians!

I thank Aurélien Alvarez, Maxime Bourrigan, Pierre Dehornoy, Jos Leys and
Michele Triestino for their help when preparing those notes. I also thank Stéphane
Nonnenmacher for his excellent translation of the French version of this paper.

2. Starting with a few quotations

I would like to start by a few quotations, which illustrate the evolution of the
opinions on dynamics across the last two centuries.

Let us start with Laplace’s famous definition of determinism, in his 1814
“Essai philosophique sur les probabilités” [41]:

We ought then to consider the present state of the universe as the effect
of its previous state and as the cause of that which is to follow. An
intelligence that, at a given instant, could comprehend all the forces
by which nature is animated and the respective situation of the beings
that make it up, if moreover it were vast enough to submit these data
to analysis, would encompass in the same formula the movements of
the greatest bodies of the universe and those of the lightest atoms. For
such an intelligence nothing would be uncertain, and the future, like the
past, would be open to its eyes.

The fact that this quotation comes from a (fundamental) book on probability
theory shows that Laplace’s view on determinism was far from naive [38]. We
lack the “vast intelligence” he mentions, so we are forced to use probabilities to
understand dynamical systems. Isn’t that a modern idea, the first reference to
ergodic theory?

In his little book “Matter and Motion” published in 1876, Maxwell insists
on the sensitivity to initial conditions in physical phenomena: the intelligence
mentioned by Laplace must indeed be infinitely vast [48]! One should notice that,
according to Maxwell, this sensitivity is not the common rule, but rather and
exception. This debate is still not really closed today.
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There is a maxim which is often quoted, that “The same causes will
always produce the same effects”.
To make this maxim intelligible we must define what we mean by the
same causes and the same effects, since it is manifest that no event ever
happens more that once, so that the causes and effects cannot be the
same in all respects.
[. . . ]
There is another maxim which must not be confounded with that quoted
at the beginning of this article, which asserts “That like causes produce
like effects”.
This is only true when small variations in the initial circumstances pro-
duce only small variations in the final state of the system. In a great
many physical phenomena this condition is satisfied; but there are other
cases in which a small initial variation may produce a great change in
the final state of the system, as when the displacement of the “points”
causes a railway train to run into another instead of keeping its proper
course.

With his sense of eloquence, Poincaré expresses in 1908 the dependence to
initial conditions in a way almost as fashionable as Lorenz’s butterfly that we will
describe below, including the devastating cyclone [62]:

Why have meteorologists such difficulty in predicting the weather with
any certainty? Why is it that showers and even storms seem to come by
chance, so that many people think it quite natural to pray for rain or fine
weather, though they would consider it ridiculous to ask for an eclipse by
prayer?We see that great disturbances are generally produced in regions
where the atmosphere is in unstable equilibrium. The meteorologists see
very well that the equilibrium is unstable, that a cyclone will be formed
somewhere, but exactly where they are not in a position to say; a tenth of
a degree more or less at any given point, and the cyclone will burst here
and not there, and extend its ravages over districts it would otherwise
have spared. If they had been aware of this tenth of a degree they could
have known it beforehand, but the observations were neither sufficiently
comprehensive nor sufficiently precise, and that is the reason why it all
seems due to the intervention of chance.

Poincaré’s second quotation shows that he does not consider chaos as an
obstacle to a global understanding of the dynamics [61]. However, the context
shows that he is discussing gas kinetics, which depends on a huge number of
degrees of freedom (positions and speeds of all atoms). Even though Poincaré has
realized the possibility of chaos in celestial mechanics (which depends on much
fewer degrees of freedom), he has apparently not proposed to use probabilistic
methods to study it4.

4Except for the recurrence theorem?
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You are asking me to predict future phenomena. If, quite unluckily, I
happened to know the laws of these phenomena, I could achieve this goal
only at the price of inextricable computations, and should renounce to
answer you; but since I am lucky enough to ignore these laws, I will
answer you straight away. And the most astonishing is that my answer
will be correct.

Could this type of ideas apply to celestial mechanics as well? In his 1898 article on
the geodesics of surfaces of negative curvature, after noticing that “a tiny change
of direction of a geodesic [. . . ] is sufficient to cause any variation of the final shape
of the curve”, Hadamard concludes in a cautious way [34].

Will the circumstances we have just described occur in other problems
of mechanics? In particular, will they appear in the motion of celestial
bodies? We are unable to make such an assertion. However, it is likely
that the results obtained for these difficult cases will be analogous to
the preceding ones, at least in their degree of complexity.
[. . . ]
Certainly, if a system moves under the action of given forces and its
initial conditions have given values in the mathematical sense, its future
motion and behavior are exactly known. But, in astronomical problems,
the situation is quite different: the constants defining the motion are
only physically known, that is with some errors; their sizes get reduced
along the progresses of our observing devices, but these errors can never
completely vanish.

Some people have interpreted these difficulties as a sign of disconnection
between mathematics and physics. On the opposite, as Duhem already noticed in
1907, they can be seen as a new challenge for mathematics, namely the challenge
to develop what he called the “mathematics of approximation” [23].

One cannot go through the numerous and difficult deductions of celestial
mechanics and mathematical physics without suspecting that many of
these deductions are condemned to eternal sterility.

Indeed, a mathematical deduction is of no use to the physicist so
long as it is limited to asserting that a given rigorously true proposition
has for its consequence the rigorous accuracy of some such other propo-
sition. To be useful to the physicist, it must still be proved that the
second proposition remains approximately exact when the first is only
approximately true. And even that does not suffice. The range of these
two approximations must be delimited; it is necessary to fix the limits
of error which can be made in the result when the degree of precision
of the methods of measuring the data is known; it is necessary to define
the probable error that can be granted the data when we wish to know
the result within a definite degree of approximation.

Such are the rigorous conditions that we are bound to impose on
mathematical deduction if we wish this absolutely precise language to be
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able to translate without betraying the physicist’s idiom, for the terms
of this latter idiom are and always will be vague and inexact like the
perceptions which they are to express. On these conditions, but only
on these conditions, shall we have a mathematical representation of the
approximate.

But let us not be deceived about it; this “mathematics of approx-
imation” is not a simpler and cruder form of mathematics. On the con-
trary, it is a more thorough and more refined form of mathematics,
requiring the solution of problems at times enormously difficult, some-
times even transcending the methods at the disposal of algebra today.

Later I will describe Lorenz’s fundamental article, dating back to 1963, which bears
the technical title “Deterministic non periodic flow”, and was largely unnoticed
by mathematicians during about 10 years [44]. In 1972 Lorenz gave a conference
entitled “Predictability: does the flap of a butterfly’s wings in Brazil set off a tor-
nado in Texas?”, which made famous the butterfly effect [45]. The three following
sentences, extracted from this conference, seem to me quite remarkable.

If a single flap of a butterfly’s wing can be instrumental in generating a
tornado, so all the previous and subsequent flaps of its wings, as can the
flaps of the wings of the millions of other butterflies, not to mention the
activities of innumerable more powerful creatures, including our own
species.
If a flap of a butterfly’s wing can be instrumental in generating a tor-
nado, it can equally well be instrumental in preventing a tornado.
More generally, I am proposing that over the years minuscule distur-
bances neither increase nor decrease the frequency of occurrence of var-
ious weather events such as tornados; the most they may do is to modify
the sequence in which these events occur.

The third sentence in particular is scientifically quite deep, since it proposes that
the statistical description of a dynamical system could be unsensitive to the ini-
tial conditions; this idea could be seen as a precursor of the Sinai–Ruelle–Bowen
measures which, as I will later describe, provide a quantitative description of this
type of chaotic system.

3. The old paradigm of periodic orbits

3.1. Some jargon

One should first set up the jargon of the theory of dynamical systems. The spaces
on which the motion takes place will almost always be the numerical spaces ℝ!
(and most often ℝ3). Sometimes more general spaces, like differentiable manifolds
! (e.g., a sphere or a torus) will represent the phase space of the system. The
topology of ! and the dynamics can be strongly correlated, this interaction being
the main motivation for Poincaré to study topology. However, we will ignore this
aspect here . . .
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The dynamics is generated by an evolution differential equation, or equiva-
lently a vector field " (assumed differentiable) on ! . Each point # on ! is the
starting point of a trajectory (or an orbit) on " . Without any further assumption,
this trajectory may not be defined for all time $ ∈ ℝ: it could escape to infinity
in finite time. If all trajectories are defined for for all $ ∈ ℝ, the field is said to
be complete: this is always the case if ! is compact. In this case, for # ∈ ! and
$ ∈ ℝ, we may denote by %"(#) the position at time $ of the trajectory starting
at # for $ = 0. For each $ ∈ ℝ the transformation %" : # "→ %"(#) is a differen-
tiable bijection on ! (with differentiable inverse %−"): it is a diffeomorphism of
! . Obviously %"1+"2 is the composition of %"1 and %"2 , and (%")"∈ℝ is called the
flow generated by the vector field " . In other terms, %" represents the “vast in-
telligence” Laplace was dreaming of, which would potentially solve all differential
equations! When a mathematician writes “Let %" be the flow generated by "”, he
claims he has made this dream real. . . Of course, in most cases we make as if we
knew %", but in reality knowing only asymptotic behavior when $ goes to infinity
would be sufficient for us.

One could object – with some ground – that the evolution of a physical system
has no reason to be autonomous, namely the vector field " could itself depend on
time. This objection is, in some way, at the heart of Maxwell’s argument, when
he notices that the same cause can never occur at two different times, because
indeed the times are different. I will nevertheless restrict myself to autonomous
differential equations, because they cover a sufficiently vast range of applications,
and also because it would be impossible to develop such a rich theory without any
assumption on the time dependence of the vector field.

The vector fields on ℝ! are not always complete, but they may be transverse
to a sphere, such that the orbits of points on the sphere enter the ball and can
never exit. The trajectories of points in the ball are then well defined for all $ ⩾ 0.
In this case, %" is in fact only a semiflow of the ball, in the sense that it is defined
only for $ ⩾ 0; this is not a problem if one is only interested in the future of
the system. The reader not familiar with differential topology can, as a first step,
restrict himself to this particular case.

It is customary to study as well discrete time dynamics. One then chooses a
diffeomorphism % on a manifold and studies its successive iterations %# = % ∘ % ∘
⋅ ⋅ ⋅ ∘ % (& times) where the time & is now an integer.

One can often switch between these two points of view. From a diffeomor-
phism % on ! , one can glue together the two boundaries of ! × [0, 1] using %,
such as to construct a manifold !̃ with one dimension more than ! , which car-
ries a natural vector field " , namely ∂

∂% , where ( is the coordinate on [0, 1] (see
Figure 2). Notice that the vector field " is nonsingular. The original manifold !
can be considered as a hypersurface in !̃ , transverse to " , for instance given by
fixing ( = 0. ! is often called a global section of " in !̃ . The orbits %"(#) of "
travel inside !̃ and meet the global section ! when $ is integral, on the orbits of
the diffeomorphism %. Clearly, the continuous time flow %" on !̃ and the discrete
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Figure 2. A suspension

time dynamics %# on ! are so closely related to each other, that understanding
the latter is equivalent with understanding the former. The flow %", or the field
" , is called the suspension of the diffeomorphism %.

Conversely, starting from a vector field " on a manifold !̃ , it is often possible
to find a hypersurface ! ⊂ !̃ which meets each orbit infinitely often. To each point
# ∈ ! one can then associate the point %(#), which is the first return point on !
along the future orbit of #. This diffeomorphism % on ! is the first return map.
The field " is then the suspension of the diffeomorphism %.5

Yet all fields are not suspensions. In particular, vector fields with singular-
ities cannot be suspensions, and we will see that this is the case of the Lorenz
equation. . . Nevertheless, this idea (due to Poincaré) to transform a continuous
dynamics into a discrete one is extremely useful, and can be adapted, as we will
see later.

3.2. A belief

For a long time, one has focussed on two types of orbits:

∙ the singularities of " are fixed points of the flow %": these are equilibrium
positions of the system;

∙ the periodic orbits are the orbits of points # such that, for some ) > 0 one
has %& (#) = #.

The old paradigm which entitles this section is the belief that, in general,
after a transient period, the motion evolves into a permanent régime which is
either an equilibrium, or a periodic orbit.

Let us be more precise. For # a point in ! , one defines the +-limit set (resp.
the ,-limit set) of #, as the set +'(#) (resp. ,'(#)) made of the accumulation
points of the orbit %"(#) when $→ +∞ (resp. $→ −∞). The above belief consists
in the statement that, for a “generic” vector field " on ! , and for each # ∈ ! ,
the set +'(#) reduces either to a single point, or to a periodic orbit. It is not
necessary to insist on the ubiquity of periodic phenomena in science (for instance in

5In general the return time is not necessarily constant, and the flow needs to be reparametrized
to obtain a true suspension.
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astronomy). The realization that other types of régimes could be expected occurred
amazingly late in the history of science.

In fact, the first fundamental results in the theory of dynamical systems,
around the end of the nineteenth century, had apparently confirmed this belief.
Let us cite for instance the Poincaré–Bendixson theorem: for any vector field on
the two-dimensional disk, entering the disk on the boundary and possessing (to
simplify) finitely many fixed points, the +-limit sets can only be of three types: a
fixed point, a periodic orbit or a singular cycle (that is, a finite number of singular
points connected by finitely many regular orbits). See Figure 3.

Figure 3. A fixed point, a limiting periodic orbit, and a “cycle”.

It is easy to show that the case of a singular cycle is “unstable”, that is, it
does not occur for a “generic” vector field; this remark confirms the above belief,
in the case of flows on the disk. Interestingly, Poincaré did not explicitly notice the
(rather simple) fact that, among the three asymptotic limits, one is “exceptional”,
while the two others are “generic”. Robadey’s thesis [63] discusses the concepts of
genericity in Poincaré’s work. The explicit investigation of the behavior of generic
vector fields started much later, probably with Smale and Thom at the end of the
1950s.

The case of vector fields on general surfaces needed more work, and was only
completed in 1962 by Peixoto [55]. There is no Poincaré–Bendixson type theorem,
and the +-limit sets can be much more complicated than for the disk. Yet, these
complex examples happen to be “rare”, and generally the limit sets are indeed
equilibrium points or periodic orbits.

We shall now introduce an important concept, which we will later widely
generalize. A singularity #0 of a vector field " (on a manifold ! ) is said to be
hyperbolic if the linearized vector field at this point (namely, a matrix) has no
eigenvalue on the imaginary axis. The set of points # the orbits of which converge
to #0 is the stable manifold of #0: it is a submanifold- %(#0) immersed in ! , which
contains #0 and has dimension equal to the number of eigenvalues with negative
real parts. Switching to −" , one similarly defines the unstable manifold -((#0)
of #0, of dimension complementary to that of - %(#0) (since the singularity is
hyperbolic).

If . is a periodic orbit containing a point #0, one can choose a ball / of
dimension 0− 1 containing #0 and transverse to the flow. The flow then allows to
define Poincaré’s first return map, which is a local diffeomorphism in / defined
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near #0 and fixing that point. If the linearization of this diffeomorphism at #0 does
not have any eigenvalue of modulus 1, then the orbit . is said to be hyperbolic. The
set of points # such that +'(#) coincides with the periodic orbit . is the stable
manifold of ., denoted by - %(.). As above, it is an immersed submanifold. The
unstable manifold -((.) is defined similarly.

In 1959 Smale defined the vector fields which are now called of Morse–Smale
type [72]. These fields are characterized by the following properties:

∙ " has at most finitely many singularities and periodic orbits, which are all
hyperbolic;

∙ The , and +-limit sets of all points are singularities or periodic orbits;
∙ the stable and unstable manifolds of the singularities or the periodic orbits
intersect each other transversally.

x0

W s(x0)

W u(x0)

γ

W s(γ)

B

Figure 4. Hyperbolic fixed point and periodic orbit

In this article Smale formulated a triple conjecture. Before stating it, I first
need to explain the fundamental concept of structural stability, introduced in 1937
by Andronov and Pontrjagin [5]. A vector field " is structurally stable if there
exists a neighborhood of " (in the 11 topology on vector fields) such that all fields
" ′ in this neighborhood are topologically conjugate to " . This conjugacy means
that there exists a (generally non-differentiable) homeomorphism in ! which maps
the orbits of " to the orbits of " ′, keeping the time orientations. For such fields " ,
the topological dynamics is qualitatively insensitive to small perturbations. This
concept of structural stability thus belongs to the “mathematics of approximation”
called for by Duhem. Andronov and Pontrjagin had shown that certain very simple
fields on the two-dimensional disk are structurally stable. The most naive example
is given by the radial field " = −#∂/∂# − 4∂/∂4, for which all points converge
towards the (singular) origin. If one perturbs " , the new field will still have an
attracting singularity near the origin: " is thus structurally stable.
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I can now state Smale’s conjectures:

1. Given a compact manifold ! , the Morse–Smale fields form an open dense set
in the space of all vector fields on ! .

2. All Morse–Smale fields are structurally stable.
3. All structurally stable fields are of Morse–Smale type.

The first and third conjecture are false, as Smale will soon himself discover.
But the second one is true. . . Smale’s motivation for these conjectures was clear:
he wanted to prove the (then dominant) belief in a permanent régime – equilibrium
point or periodic orbit – for a generic system.

In 1962 Peixoto proved the 3 conjectures if ! is a compact orientable sur-
face [55].

The first of Smale’s conjectures is surprising, since Poincaré or Birkhoff al-
ready knew it was false: a flow can have infinitely many periodic orbits in a stable
way. About this period, Smale wrote in 1998 [77]:

It is astounding how important scientific ideas can get lost, even when
they are aired by leading scientific mathematicians of the preceding
decades.

It was explicitly realized around 1960 that the dynamics of a generic vector field
is likely to be much more complicated than that of a Morse–Smale field. The
paradigm of the periodic orbits yielded to the next one – that of hyperbolic systems
– which I will describe in the next section. But periodic orbits will continue to play
a fundamental rôle in dynamics, as Poincaré had explained in 1892 [59, Chap. 3,
Sec. 36]:

In addition, these periodic solutions are so valuable for us because they
are, so to say, the only breach by which we may attempt to enter an
area heretofore deemed inaccessible.

One more remark before going on towards the Lorenz attractor . . . The dynamics
we are considering here are not assumed to be conservative. One could discuss for
instance the case of Hamiltonian dynamical systems, which enjoy very different
qualitative behaviors. For example, the preservation of phase space volume implies
that almost all points are recurrent, as follows from Poincaré’s recurrence theorem.
A conservative field is thus never of Morse–Smale type.

In the domain of Hamiltonian vector fields, the old paradigm is quasi-periodic
motion. One believes that in the ambient manifold, “many orbits” are situated on
invariant tori supporting a linear dynamics, generated by a certain number of
uncoupled harmonic oscillators with different periods. The typical example is the
Keplerian motion of the planets, assuming they do not interact with each other:
each planet follows a periodic trajectory, and the whole system moves on a torus
of dimension given by the number of planets. The KAM theory allows to show
that many of these invariant tori persist if one perturbs a completely integrable
Hamiltonian system. On the other hand, there is no reason to find such tori for a
“generic” Hamiltonian system.
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One should thus keep in mind that we are discussing here a priori dissipative
dynamics. It is amazing that eminent physicists like Landau and Lifschitz have for
a while presented turbulence as an almost periodic phenomenon, with invariant tori
of dimensions depending on Reynold’s number. Only in the 1971 second edition of
their famous treatise on fluid mechanics have they realized that almost periodic
functions are “too nice” to describe turbulence.

4. Second attempt: hyperbolic dynamics

4.1. Hadamard and the geodesics on a bull’s forehead

In 1898 Hadamard publishes a remarkable article on the dynamical behavior of the
geodesics on surfaces of negative curvature [34]. This article can be considered as
the starting point of the theory of hyperbolic dynamical systems and of symbolic
dynamics. It probably appeared too early since, more than 60 years later, Smale
had to follow again the same path followed by Hadamard before continuing much
further, as we will see.

Figure 5. Hadamard’s pants

Hadamard starts by giving some concrete examples of negatively curved sur-
faces in the ambient space. The left part of Figure 5 is extracted from his article.
This surface is diffeomorphic to a plane minus two disks, which allows me to call
it “(a pair of) pants”, and to draw it like on the right part of Figure 5.

The problem is to understand the dynamical behavior of the geodesics on
this surface. That is, a point is constrained to move on 5 , only constrained by the
reaction force. At each moment the acceleration is orthogonal to the surface: the
trajectories are geodesics of 5 , at constant speed.

An initial condition consists in a point on 5 and a tangent vector to 5 on
this point, say of length 1. The set of these initial conditions forms the manifold
! = ) 15 of dimension 3, called the unitary tangent bundle of 5 . The geodesic flow
%" acts on ! : one considers the geodesic starting from a point in a certain direction,
and follow it during the time $ to get another point and another direction.

hell02
From [34] with kind permission from (c) Elsevier (???).... depends on whether they have the back archive
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The main property of the negative curvature used by Hadamard is the fol-
lowing: every continuous path drawn on the surface between two points can be
deformed (keeping the boundary points fixed) into a unique geodesic arc joining
the two boundary points.

One can find three closed geodesics 61, 62, 63 cutting 5 into 4 parts. Three
of them correspond to the three “ends” of 5 , and the fourth one is the convex
core, which is a compact surface with boundary given by the three geodesics (see
Figure 6).

g1

g2
g3

Figure 6. The core of the pants

Let us now consider a geodesic $ ∈ ℝ "→ 6($) ∈ 5 . If the curve 6 intersects
61, 62 or 63 at time $0, to exit the core and enter one end, the property I have just
mentioned shows that for any $ > $0 the curve 6($) remains in this end and cannot
come back in the core. In fact, one can check that 6($) goes to infinity in that end.
Conversely, if a geodesic enters the core at time $0, it remains in one of the ends
when $ → −∞. One can also show that no geodesic can stay away from the core
for ever. There are thus several types of geodesics:

∙ 6($) is in the core for all $ ∈ ℝ;
∙ 6($) comes from one end, enters the core and exits into an end;
∙ 6($) comes from one end, enters the core and stays there for all large $;
∙ 6($) is in the core for $ sufficiently negative, and exits into an end.

The most interesting ones are of the first type: they are called nowadays
nonwandering orbits. Hadamard analyzed them as follows. Let us join 61 and 62
by an arc 73 of minimal length: it is a geodesic arc inside the core, orthogonal to
61 and 62. Similarly, let 71 connect 62 with 63, and 72 connect 61 with 63. The arcs
7) are the seams of the pants. If one cuts the core along the seams, one obtains
two hexagons 81 and 82 (see Figure 7).

Let us now consider a geodesic 6 of the first type, that is entirely contained
in the core. The point 6(0) belongs to one of the hexagons, maybe to both if it lies
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c3

c1

c2

Figure 7. Three cuts in the pants leading to two hexagons

on a seam, but let us ignore this particular case. When one follows the geodesic 6
from 6(0) by increasing the time $, one successively intersects the seams 71, 72, 73
infinitely many times6. One can then read an infinite word written in the 3-letter
alphabet {1, 2, 3}. If 6 intersects the seam 71, the next seam cannot be 71: it will
be either 72 or 73. The word associated to a geodesic will thus never contain two
successive identical letters.

Similarly, one can follow 6 in the negative time direction and obtain a word.
These two words make up a single bi-infinite word 9(6) associated with the geo-
desic 6.

Actually, Hadamard only treats the closed geodesics, which are associated
with the periodic words. In 1923 Morse will complete the theory by coding the
nonperiodic geodesics by bi-infinite words [50]. In the sequel I will mix the two
articles, and call their union Hadamard–Morse.

The main result of Hadamard–Morse is the following:
For any bi-infinite word 9 in the alphabet {1, 2, 3} without repetition, there

exists a geodesic 6 realizing that word. The geodesic 6 is unique if one specifies the
hexagon containing 6(0).

Of course, the uniqueness of the geodesic should be understood as follows:
one can move the origin of 6 into 6(:) without changing the word, as long as 6
does not meet any seam between $ = 0 and $ = : . Uniqueness means that if two
geodesics of type 1 are associated with the same word and start from the same
hexagon, then they can only differ by such a (short) time shift.

The proof of this result is quite easy (with modern techniques). Starting
from a bi-infinite word, one takes the word 9* of length 2; obtained by keeping
only the ; first letters on the right and on the left. One then considers a path
.* : [−<*, <*] "→ 5 which “follows” the word 9* and starts from 81 or 82. More
precisely, one chooses a point #1 in 81 and #2 in 82, and the path .* is formed by
2; geodesic arcs alternatively joining #1 and #2 and crossing the seams as indicated

6This fact is due to the negative curvature.
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in the word 9*. This arc .* can be deformed, keeping the boundaries fixed, into
a geodesic arc .̃* : [−<*, <*] → 5 . One then needs to show that this path converges
to a geodesic 6 : ℝ → 5 when ;→ ∞, which is easy for a modern mathematician
(using Ascoli’s theorem etc.). Uniqueness is not very difficult to check either.

Here are a few qualitative consequences:
∙ If two bi-infinite words 9 and 9′ coincide from a certain index on, the corre-

sponding geodesics 6, 6′ will approach each other when $→ +∞: they are asymp-
totes. There exists : such that the distance between 6($) and 6′($ + :) tends to
0 when $ → +∞. Nowadays we would say that 6 and 6′ belong to the same sta-
ble manifold. Of course, a similar remark applies when 9 and 9′ coincide for
all sufficiently negative indices: the geodesics then belong to the same unstable
manifold.

∙ Starting from two infinite words 9+ and 9− without repetitions, one can of
course construct a bi-infinite word 9 coinciding with 9+ for sufficiently positive
indices, and with 9− for sufficiently negative indices. Hence, given two nonwan-
dering geodesics, one can always find a third one which is an asymptote of the first
one in the future, and an asymptote of the second one in the past. One can even
arbitrarily fix any finite number of indices of 9. Obviously, this result implies a
sensitive dependence to the initial conditions: an arbitrarily small perturbation of
a given geodesic can make it asymptote to two arbitrary geodesics, respectively in
the past and in the future.

∙ Another interesting property: any nonwandering geodesic can be approached
arbitrarily close by periodic geodesics. Starting from a bi-infinite word, it suffices to
consider a long segment of this word and to repeat it infinitely often to construct a
nearby periodic geodesic. Therefore there exist countably many periodic geodesics,
and their union is dense in the set of nonwandering points. The dynamical behavior
of these geodesics is thus much more complicated than for a Morse–Smale flow.

To end this brief account of these two articles, I shall mention some conse-
quences Hadamard–Smale could have “easily” obtained, but did not notice.

∙ The description of the dynamics of the geodesics does not depend on the
choice of metric with negative curvature. One could “almost” deduce that for two
metrics of negative curvature on 5 , the geodesic flows are topologically conjugate.
We are close to the structural stability, proved by Anosov in 1962 [3]: the geodesic
flow of a Riemannian metric with negative curvature is structurally stable. More-
over, Gromov showed that, on a given compact manifold, the geodesic flows of two
arbitrary metrics of negative curvature are topologically conjugate [30].7

∙ Another aspect, implicit in these articles, is the introduction of a dynamics
on a space of symbols. The space of all sequences (#)))∈ℤ ∈ {1, 2, 3}ℤ is compact,
and the shift of the indices (#)) "→ (#)+1) is a homeomorphism which “codes”
the dynamics of the geodesic flow. More precisely, one should take the “subshift of

7Actually, the two metrics could be defined on two different manifolds with isomorphic funda-
mental groups.
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R1
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R2
21

R2
23

Figure 8. Dynamics on the rectangles =)+

finite type” formed by the sequences without repetitions, and (even more precisely)
one should take two copies of this space, corresponding to the two hexagons.

∙ Finally, by extrapolating a little, one could see in these articles a subliminal
construction of Smale’s horseshoe, an object I will soon describe. Indeed, consider
all unit vectors tangent to 5 on a point of a seam, heading towards another seam.
The geodesic generated by such an initial condition starts from 7), crosses 81 or
82, and lands on 7+ . These unit vectors form twelve rectangles: one has to choose
7), 7+ , then 81 or 82, which gives twelve possibilities, and for each one we should
indicate the starting and arrival points on the seams. These twelve rectangles –
denoted by =1

)+ , =
2
)+ – are embedded in ) 15 , the unitary tangent bundle of 5 ,

transversely to the geodesic flow.

Strictly speaking, the union = of these rectangles is not a global section for
the geodesic flow, since they do not meet all the geodesics: the seams themselves
define geodesics not meeting =. Nevertheless, one can define a “first return” map
%, which is not defined in the whole of =, and which is not surjective. Starting
from a unit vector # in =, the corresponding geodesic crosses a hexagon and lands
on another cut. The tangent vector at the exit point is not necessarily in =, since
the geodesic could then exit the second hexagon along 61, 62 or 63 instead of
another cut. If this tangent vector is still in =, we denote it by %(#). The domain
of definition of % is the union of 24 “vertical rectangular” zones, two in each
rectangle, and its image is formed by 24 “horizontal rectangular” zones. Each of
the 24 vertical rectangular zones is contracted by % along the vertical direction, and
expanded along the horizontal direction, and its image is one of the 24 horizontal
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rectangular zones. Figure 8 displays the two vertical zones in =1
12 and their images

in =2
21 and =2

23.
This simultaneous appearance of expansion and contraction is clearly at the

heart of the phenomenon, but it was not explicitly noticed by Hadamard–Morse.
An easy observation: if one slightly perturbs the geodesic flow (not necessarily
into another geodesic flow), = will still be transverse to the flow, and the “return”
on = will have the same shape, with slightly deformed rectangular zones; the
nonwandering orbits will still be coded by sequences of symbols, accounting for
the sequences of rectangles crossed along the evolution. The structural stability
(at least of the nonwandering set) can be easily deduced from this observation.

It is surprising that this article of Hadamard, containing so many original
ideas, could stay unnoticed so long. Yet, Duhem described this article in such a
“colorful” way as to attract the attention even of non-mathematicians [23].

Imagine the forehead of a bull, with the protuberances from which the
horns and ears start, and with the collars hollowed out between these
protuberances; but elongate these horns and ears without limit so that
they extend to infinity; then you will have one of the surfaces we wish
to study. On such a surface geodesics may show many different aspects.
There are, first of all, geodesics which close on themselves. There are
some also which are never infinitely distant from their starting point
even though they never exactly pass through it again; some turn con-
tinually around the right horn, others around the left horn, or right
ear, or left ear; others, more complicated, alternate, in accordance with
certain rules, the turns they describe around one horn with the turns
they describe around the other horn, or around one of the ears. Finally,
on the forehead of our bull with his unlimited horns and ears there
will be geodesics going to infinity, some mounting the right horn, oth-
ers mounting the left horn, and still others following the right or left
ear. [. . . ] If, therefore, a material point is thrown on the surface studied
starting from a geometrically given position with a geometrically given
velocity, mathematical deduction can determine the trajectory of this
point and tell whether this path goes to infinity or not. But, for the
physicist, this deduction is forever useless. When, indeed, the data are
no longer known geometrically, but are determined by physical proce-
dures as precise as we may suppose, the question put remains and will
always remain unanswered.

4.2. Smale and his horseshoe

Smale has given several accounts of his discovery of hyperbolic systems around
19608 (see for instance [77]). This discovery is independent of the previous contri-
butions of Poincaré and Birkhoff, which however played a rôle in the subsequent
developments of the theory. It seems that Hadamard’s article played absolutely

8On the beach in Copacabana, more precisely in Leme!
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no rôle at this time. Nevertheless, Smale constructs a counterexample to his own
conjecture, according to which Morse–Smale flows form an open dense set in the
space of dynamical systems: the famous horseshoe. It is a diffeomorphism % on
the two-dimensional sphere "2, thought of as the plane ℝ2 with an extra point
at infinity. % is assumed to map a rectangle = in the plane as shown on Fig-
ure 9, by expanding the vertical directions and contracting the horizontal ones.
The intersection = ∩ %(=) is the union of two rectangles =1, =2.

R R1 R2

φ(R)

Figure 9. Smale’s horseshoe

One can assume that the point at infinity is a repulsive fixed point. The
points of = which always stay in =, that is ∩#∈ℤ%#(=), form a Cantor set, homeo-
morphic to {1, 2}ℤ. Each of its points is coded by the sequence of rectangles =1, =2

successively visited by its orbit. In particular, the periodic points form an infinite
countable set, dense in this Cantor set. Smale then establishes that the horseshoe
is structurally stable, a rather easy fact (nowadays). If one perturbs the diffeomor-
phism % into a diffeomorphism %′, the intersection %′(=) ∩= is still made of two
“rectangular” zones crossing = all along, and one can still associate a single orbit
to each sequence in {1, 2}ℤ, allowing to construct a topological conjugacy between
% and %′, at least on these invariant Cantor sets. There just remains to extend the
conjugacy in the exterior, using the fact that all exterior orbits come from infinity.

Smale publishes this result in the proceedings of a workshop organized in
the Soviet Union in 1961 [73]. Anosov tells us about this “hyperbolic revolution”
in [4].

The world turned upside down for me, and a new life began, having read
Smale’s announcement of “a structurally stable homeomorphism with an
infinite number of periodic points”, while standing in line to register for
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a conference in Kiev in 1961. The article is written in a lively, witty, and
often jocular style and is full of captivating observations. [. . . ] [Smale]
felt like a god who is to create a universe in which certain phenomena
would occur.

Afterwards the theory progresses at a fast pace. The horseshoe is quickly
generalized by Smale (see for instance [74]). As I already mentioned, Anosov proves
in 1962 that the geodesic flow on a manifold of negative curvature is structurally
stable9. For this aim, he conceives the concept of what is known today as an
Anosov flow.

A nonsingular flow %" on a compact manifold ! , generated by a vector field
" , is an Anosov flow if at each point # one can decompose the tangent space
),! into three subspaces ℝ."(#) ⊕ ?(, ⊕ ?%,. The first one ℝ."(#) is the line
generated by the vector field, and the others are called respectively unstable and
stable subspaces. This decomposition should be invariant through the differential
@%" of the flow, and there should exist constants 1 > 0, A > 0 such that for all
$ ∈ ℝ and B( ∈ ?(, , B% ∈ ?%,:

∥@%"(B()∥ ⩾ 1−1 exp(A$)∥B(∥ ; ∥@%"(B%)∥ ⩽ 1 exp(−A$)∥B%∥
(here ∥ ⋅ ∥ is an auxiliary Riemannian metric).

Starting from the known examples of structurally stable systems (Morse–
Smale, horseshoe, geodesic flow on a negatively curved manifold and a few others),
Smale cooked up in 1965 the fundamental concept of dynamical systems satisfying
the Axiom A (by contraction, Axiom A systems).

Consider a compact set Λ ⊂ ! invariant through a diffeomorphism %. Λ is
said to be a hyperbolic set if the tangent space to ! restricted to points of Λ
admits a continuous decomposition into a direct sum: )Λ! = ?( ⊕ ?%, invariant
through the differential @%, and such that the vectors in ?( are expanded, while
those in ?% are contracted. Precisely, there exists 1 > 0, A > 0 such that, for all
B( ∈ ?(, B% ∈ ?%, & ∈ ℤ, one has:

∥@%#(B()∥ ⩾ 1−1 exp(&A)∥B(∥ ; ∥@%#(B%)∥ ⩽ 1 exp(−&A)∥B%∥.
A point in ! is called wandering if it has an open neighborhood C disjoint from
all its iterates: %#(C) ∩ C = ∅ for all & ∕= 0. The set of nonwandering points is an
invariant closed set, traditionally denoted by Ω(%)10.

By definition, % is Axiom A if Ω(%) is hyperbolic and if the set of periodic
points is dense in Ω(%).

Under this assumption, if # is a nonwandering point, the set - %(#) (resp.
-((#)) of the points 4 such that the distance between %#(4) and %#(#) goes to 0
when & tends to +∞ (resp. −∞) is a submanifold immersed in ! : it is the stable
(resp. unstable) manifold of the point #. An Axiom A diffeomorphism satisfies
the strong transversality assumption if the stable manifolds are transverse to the
unstable ones.

9Surprisingly, he does not seem to know Hadamard’s work.
10Although the notation looks like one of an open set.
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An analogous definition can be given for vector fields " : one then needs
to continuously decompose )Λ! into a sum ℝ." ⊕ ?( ⊕ ?%. In particular, this
definition implies that the singular points of " are isolated in the nonwandering
set, otherwise the dimensions of the decomposition would be discontinuous.

Smale then states three conjectures, parallel to the ones he had formulated
nine years earlier:

1. Given a compact manifold ! , the Axiom A diffeomorphisms satisfying the
strong transversality condition form an open dense set in the set of diffeo-
morphisms of ! .

2. The Axiom A diffeomoprhisms satisfying the strong transversality condition
are structurally stable

3. The structurally stable diffeomorphisms are Axiom A and satisfy the strong
transversality condition.

The second conjecture is correct, as shown by Robbin in 1971 and by Robinson
in 1972 (assuming diffeomorphisms of class 11). One had to wait until 1988 and
Mañé’s proof to check the third conjecture.

However, the first conjecture is wrong, as Smale himself will show in 1966 [75].
As we will see, a counterexample was actually “available” in Lorenz’s article four
years earlier, but it took time to the mathematics community to notice this result.
Smale’s counterexample is of different nature: he shows that a defect of transver-
sality between the stable and unstable manifolds can sometimes not be “repaired”
through a small perturbation. However, Smale introduces a weaker notion than
structural stability, called Ω-stability: it requires that, after a perturbation of the
diffeomorphism % into %′, the restrictions of % to Ω(%) and of %′ to Ω(%′) be
conjugate through a homeomorphism. He conjectures that property to be generic.

Smale’s 1967 article Differential dynamical systems represents an important
step for the theory of dynamical systems [76], a “masterpiece of mathematical
literature” according to Ruelle [69].

But, already in 1968, Abraham and Smale found a counterexample to this
new conjecture, also showing that Axiom A is not generic [1]. In 1972, Shub and
Smale experiment another concept of stability [70], which will lead Meyer to the
following comment:

In the never-ending quest for a solution of the yin-yang problem more
and more general concepts of stability are proffered.

Bowen’s 1978 review article is interesting on several points [18]. The theory of
Axiom A systems has become solid and, although difficult open questions remain,
one has a rather good understanding of their dynamics, both from the topological
and ergodic points of view. Even if certain “dark swans” have appeared in the
landscape, destroying the belief in the genericity of Axiom A, these are still studied,
at that time, “as if they were hyperbolic”. Here are the first sentences of Bowen’s
article, illustrating this point of view.

These notes attempt to survey the results about Axiom A diffeomor-
phisms since Smale’s well-known paper of 1967. In that paper, Smale
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defined these diffeomorphisms and set up a program for dynamical sys-
tems centered around them. These examples are charming in that they
display complicated behavior but are still intelligible. This means that
there are many theorems and yet some open problems. [. . . ] The last
sections deal with certain non-Axiom A systems that have received a
good deal of attention. These systems display a certain amount of Ax-
iom A behavior. One hopes that further study of these examples will
lead to the definition of a new and larger class of diffeomorphisms, with
the Axiom A class of prototype.

It is not possible here to seriously present the theory of hyperbolic systems, the
reader may try [36]. I will still describe a bit later some of the most important
theorems, which give a more precise account of the ergodic behavior of these
systems.

Still, I have to cite one of the major results – due to Bowen – which allows to
understand the dynamics à la Hadamard. Assume one covers the nonwandering set
Ω(%) by finitely many “boxes” /) (D = 1, 2, . . . , <), assumed compact with disjoint
interiors. Let us construct a finite graph, with vertices indexed by D, and such that
each oriented link connects D to E if the interior of %(/)) ∩ /+ is nonempty (as a
subset of Ω(%)). Let us denote by Σ the closure of the set of sequences {1, 2, . . . , <}ℤ
corresponding to the infinite paths on the graph, namely the sequences of indices
F(;)*∈ℤ such that two consecutive indices are connected in the graph. One says
that Σ is a subshift of finite type. The collection of boxes is a Markov partition if
this subshift faithfully codes the dynamics of %. One requires that for each sequence
F ∈ Σ, there exists a unique point # = G(F) in Ω(%), the orbit of which precisely
follows the itinerary F: for each &, one has %#(#) ∈ /-(#). But one also requires
that the coding G : Σ → Ω(%) be as injective as possible: each fiber G−1(#) is finite
and, for # a generic point (in Baire’s sense in Ω(%)), it contains a single itinerary.
Bowen establishes that the nonwandering sets of hyperbolic sets can be covered
by this type of Markov partition. The usefulness of this result is clear, since it
transfers a dynamical question into a combinatorial one.

Nowadays, Axiom A systems seem to occupy a much smaller place as was
believed at the end of the 1970s. The hyperbolic paradigm has abandoned its
dominant position . . . Anosov’s following quotation could probably be expanded
beyond the mathematical world [4].

Thus the grandiose hopes of the 1960s were not confirmed, just as the
earlier naive conjectures were not confirmed.

For a more detailed description of the “hyperbolic history” one can also read the
introduction of [36] or of [54]. See also “What is . . . a horseshoe” by one of the
actors of the subject [69].

4.3. How about Poincaré’s infinitely thin tangle?

I barely dare to set a doubt on Poincaré’s legacy in this seminar bearing his name.
Many authors claim that Poincaré is at the origin of chaos theory. His rôle is
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doubtlessly very important, but maybe not as much as is often claimed. Firstly,
the idea that physical phenomena can be very sensitive to initial conditions was
not totally new, as we have seen with Maxwell. Second, Poincaré’s contributions
on these questions seem to have been largely forgotten in the subsequent years,
and have only played a minor rôle in the further development of the theory. Most
of Poincaré’s results were rediscovered. More essentially, the central idea that I
wish to present here is that chaos theory cannot be restricted to the “powerless”
statement that the dynamics is complicated: the theory must encompass methods
allowing to explain the internal mechanisms of this dynamics. The following famous
quotation of Poincaré illustrates this powerlessness facing the complexity of the
dynamics [59, Chap. 33, Sec. 397]:

When we try to represent the figure formed by these two curves and their
infinitely many intersections, each corresponding to a doubly asymptotic
solution, these intersections form a type of trellis, tissue, or grid with
infinitely fine mesh. Neither of the two curves must ever cut across itself
again, but it must bend back upon itself in a very complex manner in or-
der to cut across all of the meshes in the grid an infinite number of times.

The complexity of this figure is striking, and I shall not even try
to draw it. Nothing is more suitable for providing us with an idea of the
complex nature of the three-body problem, and of all the problems of
dynamics in general, where there is no uniform integral and where the
Bohlin series are divergent.

Poincaré’s major contribution11 was to realize the crucial importance of ho-
moclinic orbits. Let’s consider a diffeomorphism % on the plane, with a hyperbolic
fixed point at the origin, with stable and unstable subspaces of dimension 1. A
point # (different from the origin) is homoclinic if it belongs to the intersection
- % ∩-( of the stable and unstable manifolds of the origin. The orbit of # con-
verges to the origin both in the future and in the past.

It is not necessary to recall here in detail how this concept appeared in 1890.
On this topic, I recommend the reading of [12], which relates the beautiful story
of Poincaré’s mistake in the first version of his manuscript when applying for King
Oscar’s prize [12]. The book [11] also discusses this prize, insisting on the historical
and sociological aspects rather than the mathematical ones.

Poincaré’s setup was inspired by celestial mechanics, so % preserves the area,
and he had first thought it was impossible for - % and -( to cross each other
without being identical. He deduced from there a stability theorem in the three
body problem. When he realized his error, he understood that these homoclinic
points where - % meets -( transversely are not only possible, but actually the
rule. He also understood that the existence of such a point of intersection implies
that the geometry of the curves - % and -( must indeed constitute an “infin-
itely thin tangle”. Poincaré did not try to draw the tangle, but to illustrate the
complexity of the situation he shows that the existence of a transverse homoclinic

11in this domain!



The Lorenz Attractor, a Paradigm for Chaos 23

Figure 10. A homoclinic orbit

intersection induces that of infinitely many other homoclinic orbits: the arc of - %

situated between # and %(#) crosses the unstable manifold -( infinitely often.
In [68] Shil’nikov wonders why Poincaré does not attach more importance to

Hadamard’s article, where one may obviously detect the presence of homoclinic
orbits: an infinite sequence of 1, 2, 3 without repetitions and taking the value 1 only
finitely many times defines a geodesic on the pants, which converges towards the
periodic orbit 61 both in the future and in the past. But Poincaré thinks that [60]:

The three-body problem should not be compared to the geodesics on
surfaces of opposite curvatures; on the opposite, it should be compared
to the geodesics on convex surfaces.

The opposition hyperbolic/elliptic, negative/positive curvature is not new.
The next step in the analysis of homoclinic orbits is due to George Birkhoff

in 1935: through a cute geometrical argument, he establishes that one can find
periodic points arbitrarily close to a transverse homoclinic point [13].

Then comes Smale’s rediscovery 25 years later. If one considers a rectangle
= near the stable manifold, containing both the origin and the homoclinic point,
like in Figure 11, then a sufficient iterate %. on = acts like a horseshoe. One thus

Figure 11. A homoclinic point and its horseshoe
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obtains a description of the “internal mechanism” of this thin tangle, for instance
using sequences of symbols 0, 1 as we have seen above. The presence of infinitely
many periodic orbits becomes obvious. One can read in [68] an account on the
evolution of the ideas around these homoclinic orbits.

5. The Lorenz attractor

How could one explain the lack of communication in the 1960s and 1970s between
a theoretical physicist like Lorenz and a mathematician like Smale? The first one
was working on the East Coast and the second one on the West Coast of the
United States . . . According to Williams [82], one reason would be the journal
where Lorenz published his article12:

Though many scientists, especially experimentalists, knew this article, it
is not too surprising that most mathematicians did not, considering for
example where it was published. Thus, when Ruelle–Takens proposed
(1971) specifically that turbulence was likely an instance of a “strange
attractor”, they did so without specific solutions of the Navier–Stokes
equations, or truncated ones, in mind. This proposal, controversial at
first, has gained much favor.

It seems that Smale had very few physical motivations when cooking up his the-
ory of hyperbolic systems, while physics itself does not seem to encompass many
hyperbolic systems. This is at least Anosov’s point of view [4]:

One gets the impression that the Lord God would prefer to weaken hy-
perbolicity a bit rather than deal with restrictions on the topology of an
attractor that arise when it really is “1960s-model” hyperbolic.

Even nowadays, it is not easy to find physical phenomena with strictly hyperbolic
dynamics (see however [35, 39]). In my view, one of the main challenges of this
part of mathematics is to “restore contact” with physics.

5.1. Lorenz and his butterfly

Lorenz’s 1963 article [44] is magnificent. Lorenz had been studying for a few years
simplified models describing the motion of the atmosphere, in terms of ordinary
differential equations depending on few variables. For instance, in 1960 he describes
a system he can explicitly solve using elliptic functions: the solutions are “still”
quasiperiodic in time [42]. His 1962 article analyzes a differential equation in a
space of dimension 12, in which he numerically detects a sensitive dependence to
initial conditions [43]. But it is the 1963 paper which – for good reasons – lead
him to fame. The aim of the paper is clear:

In this study we shall work with systems of deterministic equations
which are idealizations of hydrodynamical systems.

12One may also wonder whether the prestigious journal where Williams published his paper [82]
is accessible to physicists.
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After all, the atmosphere is made of finitely many particles, so one indeed needs
to solve an ordinary differential equation in a space of “huge” dimension. But of
course, such equations are “highly intractable”, and one must treat them through
partial differential equations; in turn, the latter must be discretized on a finite
grid, leading to new ordinary differential equations depending on fewer variables,
and probably more useful than the original ones. Lorenz discusses the type of
differential equations he wants to study.

In seeking the ultimate behavior of a system, the use of conservative
equations is unsatisfactory [. . . ]. This difficulty may be obviated by
including the dissipative processes, thereby making the equations non
conservative, and also including external mechanical or thermal forcing,
thus preventing the system from ultimately reaching a state at rest.

A typical differential equation presenting both viscosity and forcing has the fol-
lowing form:

@#)
@$

=
∑

+,#

H)+##+## −
∑

+

I)+#+ + 7)

where
∑
H)+##)#+## vanishes identically13 and

∑
I)+#)#+ is positive definite. The

quadratic terms H)+##+## represent the advection, the linear terms
∑
I)+#+ corre-

spond to the friction and the constant terms to the forcing. Lorenz observes that
under these conditions, the vector field is transverse to spheres of large radii (that
is, of high energy), so that the trajectories entering a large ball will stay there
forever. He can then discuss diverse notions of stability, familiar to contemporary
mathematicians; periodicity, quasiperiodicity, stability in the sense of Poisson, etc.
The bibliographic references in Lorenz’s article include one article of Poincaré, but
it is the famous one from 1881 [57]. In this article, founding the theory of dynam-
ical systems, Poincaré introduces the limit cycles, and shows particular cases of
the Bendixson–Poincaré theorem, introduces the first return maps etc., but there
is no mention of chaotic behavior yet; chaos will be studied starting from the 1890
memoir we have discussed above, which Lorenz seems to have overlooked. An-
other bibliographic reference is a dynamical systems book by Birkhoff published
in 1927. Again, this reference precedes Birkhoff’s works in which he “almost” ob-
tains a horseshoe . . .

Then, Lorenz considers as example the phenomenon of convection. A thin
layer of a viscous fluid is placed between two horizontal planes, set at two different
temperatures, and one wants to describe the resulting motion. The high parts of
the fluid are colder, therefore denser; they have thus a tendency to go down due
to gravity, and are then heated when they reach the lower regions. The resulting
circulation of the fluid is complex. Physicists know well the Bénard and Rayleigh
experiments. Assuming the solutions are periodic in space, expanding in Fourier

13This condition expresses the fact that the “energy”
∑

!2
! is invariant through the quadratic

part of the field.
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series and truncating these series to keep only few terms, Salzman had just ob-
tained an ordinary differential equation describing the evolution. Simplifying again
this equation, Lorenz obtained “his” equation:

@#/@$ = − F#+ F4
@4/@$ =− #J + K# − 4
@J/@$ = #4 −IJ.

Here # represents the intensity of the convection, 4 represents the temperature
difference between the ascending and descending currents, and J is proportional
to the “distortion of the vertical temperature profile from linearity, a positive value
indicating that the strongest gradients occur near the boundaries”. Obviously, one
should not seek in this equation a faithful representation of the physical phenome-
non . . . The constant F is the Prandtl number. Guided by physical considerations,
Lorenz is lead to choose the numerical values K = 28, F = 10, I = 8/3; it was a
good choice, and these values remain traditional. He could then numerically solve
these equations, and observe a few orbits. The electronic computer Royal McBee
LGP-30 was rather primitive: according to Lorenz, it computed (only!) 1000 times
faster than by hand . . .

But Lorenz’s observations are nevertheless remarkably fine. He first observes
the famous sensitivity to initial conditions14. More importantly, he notices that
these sensitive orbits still seem to accumulate on a complicated compact set, which
is itself insensitive to initial conditions. He observes that this invariant compact
set approximately resembles a surface presenting a “double” line along which two
leaves meet each other.

Thus within the limits of accuracy of the printed values, the trajectory
is confined to a pair of surfaces which appear to merge in the lower
portion. [. . . ] It would seem, then, that the two surfaces merely appear
to merge, and remain distinct surfaces. [. . . ] Continuing this process
for another circuit, we see that there are really eight surfaces, etc., and
we finally conclude that there is an infinite complex of surfaces, each
extremely close to one or the other of the two merging surfaces.

Figure 12 is reprinted from Lorenz’s article. Starting from an initial condition, the
orbit rapidly approaches this “two-dimensional object” and then travels “on” this
surface. The orbit then turns around the two holes, left or right, in a seemingly
random way. Notice the analogy with Hadamard’s geodesics turning around the
bull’s horns.

14The anecdote is quite well known “I started the computer again and went out for a cup of
coffee”. . . It was told in the conference Lorenz gave on the occasion of the 1991 Kyoto prize,
“A scientist by choice”, which contains many other interesting things. In particular, he dis-
cusses there his relations with mathematics. In 1938 Lorenz is a graduate student in Harvard
and works under the guidance of G. Birkhoff “on a problem in mathematical physics”. He does
not mention any influence of Birkhoff on his conception of chaos. A missed encounter? On the
other hand, Lorenz mentions that Birkhoff “was noted for having formulated a theory of aes-
thetics”. Almost all Lorenz’s works, including a few unpublished ones, can be downloaded on
http://eapsweb.mit.edu/research/Lorenz/publications.htm.
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Figure 12. Lorenz’s diagram

Besides, Lorenz studies the way the orbits come back to the “branching line”
between the two leaves, which can be parametrized by an interval [0, 1]. Obviously,
this interval is not very well defined, since the two leaves do not really come
in contact, although they coincide “within the limits of accuracy of the printed
values”. Starting from a point on this interval, one can follow the future trajectory
and observe its return onto the interval. For this first return map [0, 1] → [0, 1],
each point has one image but two preimages. This corresponds to the fact that,
to go back in time and describe the past trajectory of a point in [0, 1], one should
be able to see two copies of the interval; these copies are undistinguishable on
the figure, so that two different past orbits emanate from the “same point” of the
interval. But of course, if there are two past orbits starting from “one” point, there
are four, then eight, etc., which is what Lorenz expresses in the above quotation.
Numerically, the first return map is featured on the left part of Figure 13. Working
by analogy, Lorenz compares this application to the (much simpler) following one:
L (#) = 2# if 0 ⩽ # ⩽ 1/2 and L (#) = 2 − 2# if 1/2 ⩽ # ⩽ 1 (right part of
Figure 13). Nowadays the chaotic behavior of this “tent map” is well known, but
this was much less classical in 1963 . . . In particular, the periodic points of L are
exactly the rational numbers with odd denominators, which are dense in [0, 1].
Lorenz does not hesitate to claim that the same property applies to the iterations
of the “true” return map. The periodic orbits of the Lorenz attractor are “thus”
dense. What an intuition!

There remains the question as to whether our results really apply to
the atmosphere. One does not usually regard the atmosphere as either
deterministic or finite, and the lack of periodicity is not a mathematical
certainty, since the atmosphere has not been observed forever.

To summarize, this article contains the first example of a dissipative and physically
relevant dynamical system presenting all the characteristics of chaos. The orbits
are unstable but their asymptotic behavior seems relatively insensitive to initial

hell02
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Figure 13. Lorenz’s graphs of first return maps

conditions. None of the above assertions is justified, at least in the mathematical
sense. How frustrating!

Very surprisingly, an important question is not addressed in Lorenz’s article.
The observed behavior happens to be robust : if one slightly perturbs the differ-
ential equation, for instance by modifying the values of the parameters, or by
adding small terms, then the new differential equation will feature the same type
of attractor with the general aspect of a surface. This property will be rigorously
established later, as we will see.

Everybody has heard of the “butterfly effect”. The terminology seems to have
appeared in the best-selling book of Gleick [29], and be inspired by the title of a
conference by Lorenz in 1972 [45].

5.2. Guckenheimer, Williams and their template

The Lorenz equation pops up in mathematics in the middle of the 1970s. According
to Guckenheimer [32], Yorke mentioned to Smale and his students the existence of
this equation, which was not encompassed by their studies. The well-known 1971
article by Ruelle and Takens on turbulence [67] still proposes hyperbolic attractors
as models, but in 1975 Ruelle observes that “Lorenz’s work was unfortunately
overlooked” [65]. Guckenheimer and Lanford are among the first people to show
some interest in this equation (from a mathematical point of view) [31, 40]. Then
the object will be fast appropriated by mathematicians, and it is impossible to give
an exhaustive account of all their works. As soon as 1982 a whole book is devoted
to the Lorenz equation, although it mostly consists in a list of open problems for
mathematicians [79].

I will only present here the fundamental works of Guckhenheimer and
Williams, who constructed the geometric Lorenz models [33, 82] (independently
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from Afraimovich, Bykov and Shil’nikov [2]). The initial problem consists in justi-
fying the phenomena observed by Lorenz on his equation. We have seen that this
equation is itself a rough approximation of the physical phenomenon. Proving that
the precise Lorenz equation satisfies the observed properties is thus not the most
interesting issue. Guckenheimer and Williams have another aim: they consider the
behaviors observed by Lorenz as an inspiration, in order to construct vector fields,
called geometric Lorenz models, satisfying the following properties:

∙ for each or these fields, the set of nonwandering points is not hyperbolic, since
it contains both nonsingular points and a singular one

∙ the fields are not structurally stable;
∙ the fields form an open set in the space of vector fields.

Let us first consider a linear vector field:

@#

@$
= H#,

@4

@$
= −I4, @J

@$
= −7J

with 0 < 7 < H < I. Let 1 be the square [−1/2, 1/2]× [−1/2, 1/2]×{1} ⊂ ℝ3. The
orbit starting from a point (#0, 40, 1) in this square is (#0 exp(H$), 40 exp(−I$),
exp(−7$)). Call )± the triangular zones where these orbits intersect the planes
given by {# = ±1}. They are defined by the equations # = ±1, ∣4∣ ⩽ 1

2 ∣J∣
0/2 and

J > 0, so they are “triangles” with their lower corner being a cusp. One then
considers the zone (“box”) / swept by the orbits starting from 1 until they reach
)±, to which one adds the future orbits of the points in {# = 0;−1/2 ⩽ 4 ⩽
1/2; J = 1} (which never intersect )±), as well as the wedge {−1 ⩽ # ⩽ 1; 4 =
0; J = 0} (see Figure 14).

The “Lorenz vector field” we will construct coincides with this linear vector
field inside the box /. Outside one proceeds such that the orbits exiting from )±

Figure 14. The box /
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Figure 15. A Lorenz geometric model

come back inside the square 1. One then obtains a vector field defined only inside
a certain domain N sketched in Figure 15.
The main objective is to understand the dynamics inside N, but one can also
extend the vector field outside this domain to get a globally defined field. Such a
vector field " is a geometric Lorenz model.

f

Figure 16. Return maps

An important remark is that not all the points of the triangles originate from
the square: the tips do not, since they come from the singular point at the origin.
There are several ways to organize the return from )± onto 1; one can make sure
that the Poincaré return map L : 1 → 1 has the following form:

L (#, 4) = (O(#), 8(#, 4)).

Technically, one requires that 8(#, 4) > 1/4 for # > 0 and 8(#, 4) < 1/4
for # < 0. Furthermore, that the map O : [−1/2, 1/2] → [−1/2, 1/2] satisfies the
following conditions:

1. O(0−) = 1/2, O(0+) = −1/2;
2. O ′(#) >

√
2 for all # in [−1/2, 1/2].
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The second conditions implies that for all interval P contained in [−1/2, 1/2], there
exists an integer < > 0 such that O .(P) = [−1/2, 1/2]15

To describe the structure of the orbits inside the box, Williams introduces
the concept of template. Figure 17 is reprinted from [15]16: We are dealing with a

Figure 17. The template

branched surface Σ ⊂ ℝ3 embedded in space, on which one can define a semiflow
Q" ($ ⩾ 0). A semiflow means that Q" : Σ → Σ is defined only for $ ⩾ 0 and
that Q"1+"2 = Q"1 ∘ Q"2 for all $1, $2. The trajectories of the semiflow are sketched
on the figure: a point in Σ has a future but has no past, precisely because of the
two leaves which meet along an interval. The first return map on this interval is
chosen to be the map O defined above. The dynamics of the semiflow is easy to
understand: the orbits turn on the surface, either on the left or on the right wing,
according to the signs of the iterates O#(#)

We shall now construct a flow starting from the semiflow using a well-known
method, the projective limit. One considers the abstract space Σ̂ of the curves
7 : ℝ → Σ which are trajectories of Q" in the following sense: for all ( ∈ ℝ and
$ ∈ ℝ+, one has %"(7(()) = 7((+ $). Given a point # on Σ, to choose such a curve
7 with 7(0) = # amounts to “selecting a past” for #: on goes backwards in time
along the semiflow, and at each crossing of the interval, one chooses one of the
two possible preimages. The map 7 ∈ Σ̂ "→ 7(0) ∈ Σ thus has totally discontinuous
fibers, which are Cantor sets. The space Σ̂ is an abstract compact set equipped
with a flow Q̂" defined by Q̂"(7)(() = 7((+ $), which now makes sense for all $ ∈ ℝ.

15The fact that the graph of " does not resemble Figure 13 is due to a different choice of notations.
16Incidentally, this figure shows that the quality of an article does not depend on that of its
illustrations . . .
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Let us fix a Lorenz model " generating a flow %" and associated with a first
return map O . Williams shows in [82] that: There exists a compact Λ contained in
the box N, such that:

∙ the +-limit set of each point in N is contained in Λ;
∙ Λ is invariant through %", and the restriction of %" on Λ is topologically
conjugate with Q̂" acting on Σ̂;

∙ Λ is topologically transitive: it contains an orbit which is dense in Λ;
∙ the union of all periodic orbits is dense in Λ.

We have now justified Lorenz’s intuition, according to which the attractor Λ be-
haves as a surface “within the limits of accuracy of the printed values”.

We also see that the topological dynamics of the vector field is completely
determined by that of the map O . To understand it, one uses the notion of kneading
sequence introduced around the same time in a more general context. Take the
two sequences ,#, R# = ± given by the signs of O#(0−) et O#(0+) for & ⩾ 0 (the
sign of 0 is defined to be +). Obviously, two applications O of the above type
which are conjugated by a homeomorphism (preserving the orientation) define the
same sequences ,#, R#, and the converse is true. Back to the vector field, these two
sequences can be obtained by considering the two unstable separatrices starting
from the origin, which will intersect the square 1 infinitely many times, either in
the part # > 0 or in the part # < 0. The two sequences precisely describe the
forward evolution of these two separatrices. It should be clear that these fields are
structurally unstable, since a slight perturbation can change the sequences ,#, R#.

Guckenheimer and Williams prove that the two sequences contain all the
topological information on the vector field. Precisely, the establish the following
theorem:

There exists an open 5 in the space of vector fields in ℝ3 and a continuous map G
from 5 into a two-dimensional disk, such that two fields ",S on 5 are conjugate
through a homeomorphism close to the identity if and only if G(") = G(S ).

We won’t dwell on the proofs, but will insist on an important point: the
Lorenz flow, although nonhyperbolic, is still “singular hyperbolic”. Namely, at
each point # of the attractor Λ, one can decompose the tangent space into a direct
sum of a line ?%, and a plane L,, such that the following properties hold:

∙ ?%, and L, depend continuously of the point # ∈ Λ, and are invariants through
the differential of the flow %";

∙ the vectors in ?%, are contracted by the flow: there exists 1 > 0, A > 0 such
that for all $ > 0 and all B ∈ ?%,, one has ∥@%"(B)∥ ⩽ 1 exp(−A$)∥B∥;

∙ the vectors in L, are not necessarily expanded by the flow, but they cannot be
contracted as much as the vectors in ?%. Precisely, if T ∈ L, and B ∈ ?%, are
unitary, one has ∥@%"(T)∥ ⩾ 1−1 exp(A$)∥@%"(B)∥ for all $ > 0;

∙ the flow uniformly expands the two-dimensional volume along

L, : det(@%"∣L,) ⩾ exp(A′$)

for some A′ > 0 and all $ > 0.
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For each # ∈ Λ one may consider the set - %(#) of the points 4 ∈ ℝ3 such that the
distance ∥%"(#) − %"(4)∥ goes to zero faster than exp(−A$). It is a smooth curve
with tangent in # given by ?%,. The collection of these curves defines a foliation of
an open neighborhood of Λ, justifying the terminology “attractor”: all the points
in this neighborhood are attracted by Λ and their trajectories are asymptotes of
trajectories in Λ. The branched surface Σ is constructed from the local leaves of
this foliation. Of course, one needs to show that all these structures exist, and that
they persist upon a perturbation of the vector field.

Hence, the open set in the space of vector fields detected by Guckenheimer
and Williams trespasses the hyperbolic systems, but the dynamics of this type of
fields can still be understood (at list qualitatively). The specificity of these fields
is that they are, in some sense, suspensions of maps O on the interval, but also
contain a singular point in their nonwandering set. In some sense, their dynamics
can be translated into a discrete time dynamics, but the presence of the singular
point shows that the first return time on 1 is unbounded. It would be too naive
to believe that this type of phenomenon, together with hyperbolic systems, suffice
to understand “generic dynamics”. We will see later some other types of phenom-
ena (different from hyperbolicity) happening in a stable manner. But the “Lorenz
phenomenon” I have just described is doubtlessly one of the few phenomena rep-
resenting a generic situation. We will come back later to this question.

As we have mentioned, the geometric models for the Lorenz attractor have
been inspired by the original Lorenz equation, but it wasn’t clear whether the
Lorenz equation indeed behaves like a geometric model. This question was not re-
ally crucial, since Lorenz could clearly have made other choices to cook up his equa-
tion, which resulted from somewhat arbitrary truncations of Fourier series. Lorenz
himself never claimed that his equation had any physical sense. Nevertheless, the
question of the connection between the Lorenz equation and the Guckenheimer-
Williams dynamics was natural, and Smale chose it as one of the “mathematical
problems for the next century” in 1998 [78]. The problem was positively solved
by Tucker [80] (before the “next century”!). The goal was to construct a square 1
adapted to the original Lorenz equation, the first return map on 1, and to check
that they have the properties required by the geometric model. The proof uses a
computer, and one needs to bound from above the errors. The major difficulty –
which makes the problem quite delicate – is due to the presence of the singular
point, and the fact that the return time may become very large . . . For a brief
description of the method used by Tucker, see for instance [81].

6. The topology of the Lorenz attractor

6.1. Birman, Williams and their “can of worms”

We have seen that the periodic orbits of a geometric Lorenz model are dense in
the attractor. To better understand the topology of the attractor, Birman and
Williams had the idea to consider these periodic orbits as knots. A knot is a
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closed oriented curve embedded in space without double points. A topologist will
consider that two knots are identical (the technical term is isotopic) if it is possible
to continuously deform the former into the latter without any double point. Now
the questions are: which knots are represented by at least one periodic orbit of the
Lorenz model? Can a single knot be represented by infinitely many periodic orbits?
Beyond knots, one can also consider the links, which are unions of finitely many
disconnected knots. Each collection of finitely many periodic orbits defines a link.
Since the periodic orbits are dense in the attractor, one can hope to approximate
the latter by a link containing a huge number of periodic orbits. The article [15]
nicely mixes topology and dynamics.

Figure 18. A few periodic orbits

A priori, this study of knots and links should be performed for each geometric
Lorenz model, that is for each return map O , or more precisely for each choice
of a pair of kneading sequences ,, R. However, we may restrict ourselves to the
particular case of the “multiplication by two” case, by setting O0(#) = 2# + 1
for # ∈ [−1/2, 0[ and O0(#) = 2# − 1 for # ∈ [0, 1/2]. A point in [−1/2, 1/2] is
fully determined by the sequence of signs of its iterates by O0, and each sequence
of signs corresponds to a point in [−1/2, 1/2]. This is nothing but the dyadic
decomposition of numbers in [−1/2, 1/2]. If O is the return map on [−1/2, 1/2] for
a given geometric Lorenz model, one can associate to each point # ∈ [−1/2, 1/2] the
unique point ℎ(#) ∈ [−1/2, 1/2] such that for each & ⩾ 0 the numbers O#(#) and
O#0 (ℎ(#)) have the same sign. This defines an injection ℎ : [−1/2, 1/2]→ [−1/2, 1/2]
such that ℎ ∘ O = O0 ∘ ℎ, and one can thus think that O0 “contains” all the one-
dimensional dynamics we are interested in. Of course, the map ℎ is not always a
bijection, depending on the specific geometric Lorenz model. We will study the
maximal case of O0, since it contains all the others. Strictly speaking, O0 cannot be
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a first return map of a geometric Lorenz model, since its derivative does not blow
up near # = 0. However, starting from O0 one may construct, like in the previous
section, a topological semiflow on the branched surface, and then a flow through a
projective limit. This topological flow is perfectly adapted to our problem, which
is the nature of knots and links formed by the periodic orbits of the geometric
Lorenz models.

Each periodic orbit of the Lorenz flow can be projected onto the template,
so it is associated with a periodic orbit of O . One could fear that this projection
could modify the topology of the knot through the appearance of double points.
But this does not happen because the projection on the template occurs along
the (one-dimensional) stable manifolds, and clearly a stable manifold can meet a
periodic orbit on at most one point (two different points cannot simultaneously be
periodic and asymptotes of each other).

The periodic points of O0 are easy to determine: they are the rational numbers
with denominators of the form 2(2<+1), with < ∈ ℤ. If # is such a periodic point of
period &, one constructs a braid as follows: inside the square [−1/2, 1/2]× [0, 1], for
D = 0, . . . , & − 1 one connects the points (O )(#), 0) and (O )+1(#), 1) by a segment,
such that the segments “climbing to the right” are below those “climbing to the
left”, like on Figure 19. Then, one closes the braid as usual in topology, to obtain

Figure 19. A Lorenz link

hell02
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a knot &(#). Starting from a finite number of periodic points #1, #2, . . . , #., one
obtains a link. Those are called the “Lorenz knots and links”.

Before describing some of the results obtained in [15, 83], I should remind
some definitions related with knots. An oriented knot is always the boundary
of a oriented surface embedded in the three-dimensional space (called its Seifert
surface). The minimal genus of such a surface is the genus of the knot. If a knot
cannot be obtained as the connected sum of two nontrivial knots, it is said to be
prime. A knot is said to be chiral if it cannot be continuously deformed into its
mirror image. Given a knot & embedded in the three-dimensional sphere "3 (union
of ℝ3 and a point at infinity), it is said to be fibered if the complement "3 ∖& fibres
on the circle; this means that there exists a family of surfaces with boundaries,
parametrized by an angle V ∈ "1, which all share the same boundary & but do not
intersect each other outside their boundary, and which altogether cover the whole
sphere. Near the knot, the surfaces looks like the pages of a book near the binding.
Finally, given two disjoint knots &1 and &2, one can define as follows their linking
number : choose an oriented surface with boundary &1, and count the algebraic
intersection number of &2 with this surface. This integer enl(&1, &2) is independent
of the chosen surface, and enl(&1, &2) = enl(&2, &1).

Here are a few properties of the Lorenz links:

∙ The genus of a Lorenz knot can be arbitrary large.
∙ The linking number of two Lorenz knots is always positive.
∙ The Lorenz knots are prime.
∙ The Lorenz links are fibered.
∙ The nontrivial Lorenz knots are chiral.

The Lorenz knots are very particular. For instance, using a computer and the tables
containing the 1 701 936 prime knots representable by plane diagrams with less
than 16 crossings, one can show that only 21 of them are Lorenz knots [28]. More
information on the Lorenz knots and the recent developments on the subject can be
found in [22, 14]. Surprisingly, Ghrist has shown that if one embeds the branched
surface in 3-space by twisting one of the wings by a half-turn, the resulting flow
is universal : all the links are represented by (finite collections of) periodic orbits
of that flow [25].

6.2. The right-handed attractor. . .

Try to see the attractor as a “topological limit” of its periodic orbits, and take into
account the fact that each finite union of periodic orbits defines a fibered link; how
do these circle fibrations behave when the number of components of the link tends
to infinity? In a way, one would like to see the complement of the attractor itself
as a fibered object . . . In [27] I propose a global description of these fibrations,
based on the concept of right-handed vector field.

Consider a nonsingular vector field " on the sphere "3, generating a flow
%". Let us call 7 the convex compact set formed by the probability measures
invariant by the flow. This space contains, for instance, the probability measures
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equidistributed on the periodic orbits (if any), as well as their convex combinations.
A general invariant probability measure can be seen as a generalized periodic orbit
(a foliated cycle in Sullivan’s terminology). We have seen that two knots in the
sphere always define a linking number; I show that one can also define a linking
quadratic form enl : 7 × 7 → ℝ. The flow is then called right-handed if enl only
takes positive values. For the Lorenz flow, enl is only nonnegative, but it is positive
when restricted to invariant measures which do not charge the singular point. This
fact can be directly “read” on Williams’s template, since two arcs of trajectory
only have positive intersections when projected onto the plane. The Lorenz flow
is thus not strictly right-handed.

One of the main results in [27] is that a right-handed flow is always fibered,
in the following sense. One can find a positive Gauss linking form on the flow.
Precisely, there exists a (1, 1)-differential form Ω on "3 × "3 minus the diagonal,
such that:

∙ if .1, .2 : "1 → "3 are two disjoint closed curves, their linking number is
given by the Gauss integral

∫ ∫
Ω31("1),32("2)(

431
4"1
, 4324"2

)@$1@$2;
∙ if #1, #2 are two distinct points, then Ω,1,,2("(#1), "(#2)) > 0.

Interestingly, such a Gauss form directly provides a fibration on the comple-
ment of each periodic orbit. Indeed, for W any invariant probability measure, the
integral

+,(B) =

∫
Ω,,5(B,"(4)) @W(4)

defines a closed and nonsingular 1-form on the complement of the support of W.
If W is supported on a periodic orbit, the form + admits a multivalued primitive,
which defines a fibration on the circle of the complement of the orbit.

Even though the Lorenz flow does not strictly belong to this frame, I show
in [27] how this construction allows to better understand the results of Birman
and Williams I have described above.

6.3. From Lorenz back to Hadamard. . .

Hadamard studies the geodesics on negatively curved pants, and shows that they
can be described by the sequences of symbols enumerating the crossed seams.
Williams analyzes the trajectories of the Lorenz attractor by a semiflow on the
“Lorenz template”, itself described by two sequences of symbols, following the
wings (left or right) successively crossed by two limiting trajectories. It is thus not
surprising to find a connection between these two dynamics. Such a connection
was indeed exhibited in [26].

Following a nonwandering geodesic on the pants 5 , after each crossing with
a seam one may consider to turn right or turn left to reach the next seam. It is
thus possible to associate to each nonwandering geodesic a bi-infinite sequence of
“left/right” symbols. Yet, this new coding is not perfect, because it is not bijective.
Assume the pants is embedded symmetrically in space, meaning that it is invariant
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Figure 20. Symmetries of the pants

through six rotations (the identity, two rotations of order three, and three rotations
of order two), as in Figure 20.

Obviously, each of these rotations maps a geodesic of 5 into another geodesic,
which shares the same “left-right” sequence. One is thus brought to consider the
quotient 5̂ of 5 by this group of order six. This quotient is not exactly a surface,
due to the intersection points of the rotation axes with 5 . Ignoring this “detail”,
the geodesics of 5̂ are bijectively coded by the sequences “left-right”, like the
orbits of the Lorenz flow.

We now recognize in 5̂ a variant of the modular surface, quotient of the
Poincaré half-plane ℍ = {J ∈ ℂ∣ℑJ > 0} through the action of Γ = PSL(2,ℤ)
by Moebius transformations. The subgroup Γ[2] formed by the matrices congruent
to the identity modulo 2, acts without fixed points on ℍ, and the quotient is a
sphere minus three points. The group Γ/Γ[2] of order six acts on this punctured
sphere similarly as it acts on 5 . A geodesic of the modular surface is thus coded
by a sequence of “left-right” symbols, like an orbit of the Lorenz flow.

To go further, one should compare the spaces supporting these two dynamics.
For the Lorenz equation, it is the usual space ℝ3. For the modular geodesic flow, it
is the quotient PSL(2,ℝ)/PSL(2,ℤ): this is due to the fact that PSL(2,ℝ) can be
identified with the unitary tangent bundle to ℍ. Figure 21 displays a fundamental
domain for the action of PSL(2,ℤ) on the Poincaré half-plane. Three copies of this
domain form a circular triangle, with corners sitting on the real axis. Two copies
of this triangle form a fundamental domain for Γ[2].

In [26] I use the topological identification (through the classical modular
forms) of PSL(2,ℝ)/PSL(2,ℤ) with the complement in the sphere "3 of the tre-
foil knot, in order to represent the modular geodesics on the sphere. I can then
“identify” the topological dynamics of the Lorenz flow and the modular geodesic
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Figure 21. A fundamental domain for the action of PSL(2,ℤ) on the
half-plane

flow. For instance, I show that the periodic geodesics on the modular surface, seen
as knots on the sphere, can be deformed into the Lorenz knots. The left part of
Figure 22 shows one of the periodic orbits of the modular geodesic flow, embedded
in the complement of (a version of) the Lorenz template. The right part shows the
Lorenz orbit with the same symbolic coding. The central part illustrates a step in
the deformation. For more explanations, see [26, 28].

Figure 22. Deformation of a modular knot into a Lorenz knot
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The analogy between a fluid motion and a geodesic flow is not new. In a
remarkable 1966 article, Arnold showed that the Euler equation for perfect fluids
is nothing but the equation for the geodesics on the infinite-dimensional group
of volume preserving diffeomorphisms [7]. Besides, he shows that the sectional
curvatures are “often” negative, inducing him to propose a behavior à la Hadamard
for the solutions of the Euler equation. Of course, Lorenz does not consider perfect
fluids, he starts from the Navier–Stokes equation instead of the Euler equation;
still, the motivations are similar.

7. The attractor as a statistical object

7.1. Physical measures

As we have seen, one of the major ideas to “escape” the sensitivity to initial
conditions is to introduce probabilities.

Lorenz is one of the people who have most clearly expressed this idea: “over
the years minuscule disturbances neither increase nor decrease the frequency of
occurrence of various weather events such as tornados; the most they may do is
to modify the sequence in which these events occur.”

A flow %" on a compact manifold ! preserves at least one probability mea-
sure. This results, for instance, from the fact that this flow acts on the convex
compact set of probability measures on ! (in an affine way); such an action of an
abelian group always admits a fixed point. This mathematical existence theorem
will certainly not impress any physicist! But, once we have “selected” an invariant
probability measure W, we may invoke Birkhoff’s ergodic theorem: for each function
T : ! → ℝ integrable w.r.t. the measure W, the asymptotic time average

T̃(#) = lim
&→+∞

1

)

∫ &

0
T(%"(#)) @$

exists for W-almost all point #. The function T̃, defined almost everywhere, is
obviously constant along the orbits of the flow. One can choose17 the measure W
to be ergodic, so that any invariant function is constant almost everywhere. This
ergodic theorem could be considered as fulfilling Lorenz’s wish: the frequency of
an event does not depend on the initial conditions. However, the difficulty lies in
the fact that a given flow %" usually preserves infinitely many measures, and the
sets of full measure for two invariant measures W1 and W2 may be disjoint. The
question is to determine whether there exists a “physically meaningful” invariant
measure.

In the early 1970s, Sinai, Ruelle and Bowen have discovered a fundamental
concept to answer this question [71, 66, 17].

17An invariant probability measure is ergodic if any invariant subset has measure zero or one.
The ergodic measures are the extremal points of the convex compact set of invariant probability
measures, showing that there exist such measures (this existence proof is rather abstract).
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Let us recall that on a manifold there is no intrinsic notion of Lebesgue mea-
sure, yet the Lebesgue negligible sets are well defined, that is, they do not depend
on the choice of coordinate system. For this reason, we may say that a measure is
absolutely continuous with respect to “the” Lebesgue measure. Lebesgue negligible
sets could be considered to be negligible for a physicist as well. . .

It is time to give a precise definition of the word attractor I have used many
times. A compact set Λ in ! is an attractor if:

∙ Λ is invariant by the flow %";
∙ there exists a point in Λ the orbit of which is dense in Λ;
∙ the basin of attraction /(Λ) = {# ∈ ! ∣+(#) ⊂ Λ} has nonzero Lebesgue
measure.

A probability measure W invariant by %" is an SRB measure (for Sinai–Ruelle–
Bowen) if, for each continuous function T : ! → ℝ, the set of points # such
that

lim
&→+∞

1

)

∫ &

0
T(%"(#)) @$ =

∫
T @W

has nonzero Lebesgue measure.
This set of points is called the basin of W, and denoted by /(W).
Of course there are similar definitions for discrete time dynamical systems

% : ! → ! (not necessarily bijective).
A simple example, yet not generic in our context, is that of a flow preserving

a probability measure absolutely continuous w.r.t. the Lebesgue measure, and
which is ergodic. Indeed, in that case the ergodic theorem precisely means that
the time averages converge almost surely towards the spatial average. But I have
already mentioned that our discussion mostly concerns the dissipative dynamics. . .
An SRB measure is an invariant measure which “best remembers the Lebesgue
measure”.

Before giving more examples, let us start by a counterexample, due to Bowen.
Let us consider a vector field admitting two saddle connections, as on Figure 23.
For an initial condition # inside the region bounded by the separatrices, the future
orbit will accumulate on the two singular points. Since the dynamics is slow near

Figure 23. Bowen’s counterexample
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the singular points, the trajectories are made of a sequence of intervals during
which the point is almost at rest, near one of the singular points, separated by
short phases of fast transitions. The slow intervals become longer and longer. As a
result, the time averages “hesitate” between the two Dirac masses on the singular
points. The statistics do not converge to any invariant measure; there is no SRB
measure.

This counterexample may seem a bit artificial, and in fact no significantly dif-
ferent counterexample is known. As we will see, it is conjectured that the existence
of an SRB measure holds generically among all dynamical systems (see also [84]).

Before providing some significative examples, an important word of caution.
Until now we have only considered the topological equivalence between flows: a
homeomorphism mapping the orbits of one flow to those of another one. Of course,
such a homeomorphism is often singular w.r.t. the Lebesgue measure, so it does
not map an SRB measure of the first flow to an SRB measure of the second flow. . .

The simplest example is given by an expanding map on the circle, which
stands as a model for all further developments. It is a map Q, say infinitely differ-
entiable, from the circle to itself, with derivative always greater than 1. Of course,
such a map cannot be bijective. One can show that Q is topologically conjugate
to # ∈ ℝ/ℤ "→ @.# ∈ ℝ/ℤ for a certain integer @ (@ ∕= ±1) but, as we have just
noticed, this does not imply any special property regarding the Lebesgue measure.

The Distortion Lemma is a simple, yet fundamental idea. Consider a branch
L# of the inverse of Q#, defined on an interval X of the circle. This branch can be
written as O#−1 ∘ O#−2 ∘ ⋅ ⋅ ⋅ ∘ O0, where each O) is one of the inverse branches of Q.
To evaluate the difference (logL ′

#)(#0)−(logL ′
#)(40), let us set #) = O) ∘⋅ ⋅ ⋅∘O0(#0)

and 4) = O) ∘ ⋅ ⋅ ⋅ ∘ O0(40). We observe that ∣#) − 4)∣ ⩽ Y)∣#0 − 40∣ for some Y < 1,
which allows to write:

∣(logL ′
#)(#)− (logL ′

#)(4)∣ ⩽
#−1∑

)=0

∣(log O ′
))(#))− (log O ′

))(4))∣

⩽ 1
#−1∑

)=0

Y)∣#0 − 40∣

⩽ 1

1− Y
∣#0 − 40∣ ,

where 1 is an upper bound for the derivative of (log O ′
)). This shows that the

quotients L ′
#(#)/L

′
#(4) are bounded uniformly w.r.t. & and the chosen branch.

This is the statement of the lemma.
Now let Leb be the Lebesgue measure, and Leb# its push-forward through

Q#. The density of Leb# w.r.t. Leb is the sum of the derivatives of all the inverse
branches of Q#. This density is therefore bounded from below and from above by
two positive constants, independently of the number & of iterations.

It is quite easy to check that any weak limit of the Birkhoff averages(∑#
1 Leb)

)
/& is an measure invariant through Q which is absolutely continuous
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w.r.t. Leb, with density bounded by the same constants. We have thus shown
the existence of an invariant measure absolutely continuous w.r.t. the Lebesgue
measure.

One can then show that Q is ergodic w.r.t. the Lebesgue measure: if Z ⊂ ℝ/ℤ
is invariant through Q (meaning that Q−1(Z) = Z), then the Lebesgue measure
of Z or of its complement vanishes. This property is also a consequence of the
Distortion Lemma. Assume the Lebesgue measure of Z is nonzero; one can then
find intervals X# such that Leb(X# ∩ Z)/Leb(X#) goes to 1 when & → ∞, provided
we allow the lengths of the X# to be arbitrary small. If we now set P# = Q!!(X#) for
some appropriate 0#, the Distortion Lemma shows that Leb(P# ∩Z)/Leb(P#) also
goes to 1, but this time we may assume that the lengths of the P# are bounded
from below. Hence, we can find intervals of lengths bounded from below, which
contain an arbitrary large proportion of Z. In the limit, we obtain a nonempty
interval P∞ such that Leb(P∞ ∩ Z) = Leb(P∞), implying that Z has a nonempty
interior, up to a negligible set. If we expand once more, using the fact that Q has
a dense orbit, we finally show that Z has full measure.

We have just shown that there exists a unique invariant measure absolutely
continuous w.r.t. the Lebesgue measure, and the Birkhoff ergodic theorem then
implies that this measure is SRB.

This proof is quite easy, and it has been generalized in many ways, under less
and less hyperbolicity assumptions.

The easiest generalization concerns an expanding map Q : ! → ! , where !
may have dimension greater than 1. One shows analogously that there exists an
invariant measure absolutely continuous w.r.t. the Lebesgue measure, and ergodic.
For this it suffices to replace the estimates on the derivatives by estimates on
Jacobian determinants.

The first really different case is that of a hyperbolic attractor. The situation
is as follows: a diffeomorphism % preserves a compact set Λ and the tangent bundle
)Λ! above Λ splits into the sum ?%⊕?( of a fibre made of uniformly contracted
vectors, and another fibre made of uniformly expanded ones. We assume that Λ is
an attractor, meaning that for each # ∈ Λ, the unstable manifold -((#) – made
of the points whose past orbit is asymptotic to that of # – is fully contained in Λ.
Each point 4 in an open neighborhood C of Λ then lies on the stable manifold of
a certain point # ∈ Λ: the future orbit of 4 is asymptotic to that of #, and thus
accumulates in Λ.

The set Λ is foliated by unstable manifolds, which are uniformly expanded
through %. The idea is then to copy the Distortion Lemma, but only along the ex-
panding directions. One starts from a probability measure supported in a small ball
contained in some unstable manifold, and which is absolutely continuous w.r.t. the
Lebesgue measure on the unstable manifold. One then successively pushes forward
this measure through the diffeomorphism, and tries to show a weak convergence by
time averaging the obtained sequence of measures. We don’t need to estimate the
full Jacobian determinants, but rather the unstable Jacobians, computed along ?(.
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The result is as follows: one obtains an invariant measure which is not necessar-
ily absolutely continuous w.r.t. the Lebesgue measure, but which is absolutely
continuous when restricted on the unstable manifolds. The last statement needs
some explanations. Locally, near a point # ∈ Λ, the situation is that of a product
/( ×/% of an open ball in the unstable manifold -((#) and an open ball in the
stable manifold - %(#). Two points with the same first coordinate (resp. the same
second coordinate) lie in the same stable manifold (resp. unstable manifold). A
measure W can then be “disintegrated” in these local coordinates: if Z ⊂ /(×/%,

W(Z) =

∫

&
W"(Z ∩ (/( × {$})) @[($) ,

where [ is a measure on /% and W" is a measure on /( defined for [-almost
all $ ∈ /%. The measures constructed above by time averaging are such that W"
is absolutely continuous w.r.t. the Lebesgue measure on the unstable leaves, for
[-almost all $. Technically, W is called an (unstable) Gibbs state.

There remains to show that these Gibbs states are SRB measures. If we con-
sider the basin /(W), namely the set of points for which, for any continuous test
function, the time average is equal to the W-average, this basin is clearly a union of
stable manifolds: if two points have asymptotic future orbits, their time averages
coincide. Besides, the defining property of Gibbs states implies that a set of full
W-measure intersects almost all the unstable manifolds along parts of full Lebesgue
measure. Does this indeed imply that the basin has positive Lebesgue measure in
! ? To show it, one needs to establish that a subset of /( × /% which is a union
of vertical balls, and meets each horizontal ball on a set of full Lebesgue measure
in /(, has positive full Lebesgue measure in /( × /%. This would be the case if
the parametrization of a neighborhood of # through /( ×/( were differentiable,
unfortunately it is generally not the case. On the other hand, one fundamental
technical result states that the “holonomies” of these stable and unstable folia-
tions are absolutely continuous w.r.t. the Lebesgue measure: this means that, in
the coordinates /( × /%, the projection on the first coordinate allows to iden-
tify different unstable balls, and these identifications all preserve the sets of zero
Lebesgue measure. One can then apply Fubini’s theorem to conclude that a Gibbs
state is indeed an SRB measure: its basin /(W) has full Lebesgue measure in the
open neighborhood C of Λ. These results make up most of [71, 66, 17].

To go further, one may relax the hyperbolicity assumptions. For instance,
one may assume that the diffeomorphism % is partially hyperbolic: it admits an
invariant decomposition ?( ⊕?. The vectors in ?( are still uniformly expanded,
but we don’t assume any more that the vectors in ? are contracted. On the other
hand, if a vector in ? is expanded, it should be so less strongly than the vectors
in ?(: one speaks of a dominated decomposition. Under this hypothesis, it is not
difficult to copy the previous reasoning and show the existence of unstable Gibbs
states. On the other hand, this hypothesis is not sufficient to show that the Gibbs
states are SRB measures: the condition ensuring the existence of sufficiently many
stable manifolds, such that almost every point of the open C is asymptotic to a
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point in the attractor, is lacking. To show that a Gibbs state W is an SRB measure,
it is enough for instance to require that for W-almost every point # ∈ Λ the vectors
in ?, are exponentially contracted.

The quest for the weakest conditions allowing to show the existence of SRB
measures is summarized in Chapter 11 of the book [16]. This question is funda-
mental since, as we will see, one hopes that “almost all” diffeomorphisms admit
SRB measures.

7.2. Ergodic theory of the Lorenz attractor

The geometric Lorenz models are not hyperbolic, hence are not encompassed by
the works of Sinai, Ruelle and Bowen we have just summarized. On the other
hand, the Lorenz flow is singular hyperbolic. At each point # of the attractor Λ,
the tangent space can be split into a direct sum of a line ?%, and a plane L,,
such that the vectors of ?% are uniformly contracted, while a vector in L, is “less
contracted” than the vectors in ?%. Of course the plane L, contains the Lorenz
vector field. Notice that a vector field is invariant through the flow it generates,
so at each nonsingular point it provides a nonexpanding direction. One expects to
find expansion in L,, in the direction transverse to the field, but this expansion
may not be uniform, due to the defect of hyperbolicity. For each point # ∈ Λ we
have a stable manifold - %(#), which is a curve “transverse” to the attractor.

We have also studied the structure of the first return map on the square 1:
it has all the characteristics of a hyperbolic map. This allows, e.g., to show the ex-
istence of an invariant measure absolutely continuous w.r.t. the Lebesgue measure
for the map O on the interval. The return map of an orbit on the square diverges
(logarithmically) when going to the discontinuity of O . This poses technical dif-
ficulties (but, quite strangely, sometimes also simplifies the work). Most of these
technical difficulties have been overcome, and we now understand quite well the
ergodic behavior of the Lorenz flows.

One of the first results, obtained in the 1980s, is that the Lorenz attractor
supports a unique SRB measure [21, 56].

Moreover, the unstable Lyapunov exponent for this measure W is positive. This
means that for W-almost every point # ∈ Λ one may find a line ?(, contained in
the plane L,, such that for B ∈ ?(, ,

lim
&→∞

1

)
log ∣∣@%& (B)∣∣ = A > 0 ,

with A independent of #. In other words, the dynamics exponentially expands
almost all the vectors. Of course, this expansion is not uniform.

One can then apply Pesin’s theory for the Lyapunov exponents, which allows
to construct unstable manifolds. Precisely, for W-almost all point # ∈ Λ, the set of
points 4 with past orbits asymptotic to that of # is a smooth curve - (

, contained
in Λ. In a way, W is hyperbolic almost everywhere, with a splitting of the tangent
space into three directions: ?%, (which continuously depends on #), ?(, (defined
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almost everywhere) and the direction of the vector field (defined everywhere except
on the singular point).

The fact that this SRB measure is mixing has been shown only recently [46]:
if Z,/ are two measurable subsets of C , one has

lim
"→+∞

W(%"(Z) ∩/) = W(Z)W(/) .

The most complete result is that obtained recently by Holland and Melbourne [37].
Consider a smooth function T defined on the open set C , and to simplify the state-
ment, assume that its W-average vanishes. Then, there exists a Brownian motion
-& of variance F2 ⩾ 0 and \ > 0 such that, W-almost surely,

∫ &

0
T ∘ %"@$ =-& +]()

1
2−6) when $→ +∞ .

That is, the Birkhoff sums oscillate like a Brownian motion around their average
value. This implies a Central Limit Theorem and a Law of the iterated logarithm.

Let us also mention the preprint [24] which analyzes in detail the statistics
of the recurrence times in a small ball.

8. The butterfly within the global picture

8.1. Singular hyperbolicity

The Lorenz attractor is mainly an example featuring a certain number of proper-
ties:

∙ it is complicated and chaotic, yet not hyperbolic;
∙ its dynamics can nevertheless be described reasonably well, both from the topo-
logical and ergodic points of view;

∙ it admits “some” hyperbolicity;
∙ it is robust: any perturbation of a Lorenz model is another Lorenz model.

The central question is to determine whether it constitutes a “significative”
example. The aim is to find sufficiently general qualitative properties on a dy-
namics, allowing to show that it resembles a Lorenz attractor.

Before stating some recent results in this direction, I shall first explain a
precursory theorem of Mañé, dating back to 1982 [47]. Let % be a diffeomorphism
on a compact manifold ! , and Λ ⊂ ! a compact invariant set. Λ is said to be
transitive if it contains a dense orbit (w.r.t. the induced topology in Λ). It is said
to be maximal if there exists an open neighborhood C such that for each point #
outside Λ, the orbit of # will leave C in the past or in the future. Finally, Λ is said
to be robustly transitive if these properties persist under perturbation: there exists
a neighborhood 9 of % in the space of 11 diffeomorphisms, such that if Q ∈ 9 ,
the compact set Λ7 = ∩#∈ℤQ#(C) is nonempty and transitive. Mañé’s theorem is
the first one showing that hyperbolicity can result from dynamical conditions of
this kind. It states that in dimension 2, the robustly transitive sets are exactly the
hyperbolic sets. Such a result cannot be generalized to higher dimension, where
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one should try to obtain some partial hyperbolicity. Chapter 7 in [16] is entirely
devoted to describing the recent results in this direction.

In the case of vector fields in dimension 3, the main result has been obtained
by Morales, Pacifico and Pujals in 2004 [49]. Let %" be a flow on a manifold ! ,
preserving a compact set Λ. Let us recall a definition given in Section 5.2: Λ is said
to be singular hyperbolic if – like in the case of the Lorenz model – the tangent
space )Λ! decomposes into ?% ⊕ L , such that:

∙ ?%, and L, depend continuously on the point # ∈ Λ and are invariant through
the differential of %";

∙ the vectors in ?%, are uniformly contracted by the flow;
∙ the decomposition ?%, ⊕ L, is dominated: if T ∈ L, and B ∈ ?%, are unitary,
one has ∥@%"(T)∥ ⩾ 1 exp(A$)∥@%"(B)∥ for all $ > 0;

∙ the flow expands the bidimensional volume on L,: det(@%"∣L,) ⩾ 1 exp(A$)
for all $ > 0.

The main theorem in [49] states that if a compact invariant set Λ of a
three-dimensional flow is robustly transitive, then:

∙ Λ is singular hyperbolic;
∙ if Λ does not contain any singular point, it is a hyperbolic set;
∙ all the field singularities contained in Λ are of Lorenz type; the three eigen-
values H1 < H2 < H3 of the linearization satisfy H1 < 0 < H3 and either
−H3 < H2 < 0 (index 2) or 0 < H2 < −H1 (index 1);

∙ all the singularities have the same index and Λ is an attractor or a repeller,
(i.e., an attractor for the reversed field) depending on the value 2, resp. 1, of
the index.

Hence, this theorem provides the Lorenz attractors (more precisely, the dynamics
of the same family) with a new status: they are singular hyperbolic attractors. They
represent, in dimension 3, a qualitative phenomenon: robust transitivity. One can
read a sketch of proof, as well as some complements, in Chapter 9 of [16].

One still needs to generalize the results available for the Lorenz attractor to
all singular hyperbolic attractors. The topological understanding of these objects
is still incomplete, although we know, for instance, that periodic orbits are dense
in the attractor [9]. The ergodic understanding is now much more advanced, and
rather close to the case of the Lorenz attractors; for instance, there exists an SRB
measure, the basin of which contains almost all the points of an open neighborhood
of the attractor [6].

8.2. Palis’s big picture

The history of dynamical systems seems to be punctuated by a long sequence of
hopes, soon to be abandoned . . . A Morse–Smale world, replaced by a world of
hyperbolic attractors, in turn destroyed by an abundance of examples like Lorenz’s
model. Yet, dynamicists do not lack optimism, and they do not hesitate to brush a
world view according to their present belief, (naively) hoping that their view will
not soon be obsolete. Palis has formulated such a vision in three articles in 1995,
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2005 and 2008 [51, 52, 53]. He states there an ensemble of conjectures describing
the dynamics of “almost all” diffeomorphisms or flows. These conjectures are nec-
essarily technical, and it is not useful to describe them in detail here. I will only
give a sketch of the general spirit.

The first difficulty – which is not specific to this domain – is to give a meaning
to “almost all” dynamics. The initial idea from the 1960s was to describe an open
dense set in the space of dynamical systems, or at least, a countable intersection
of open dense sets, in order to use Baire genericity. Yet, this notion has proved
too strict. It is well known that no notion of “Lebesgue measure” can be defined
on a space of infinite dimension, but a substitute – prevalence – seems to impose
itself little by little. Let 7 be a subset of the set Diff(! ) of diffeomorphisms (of a
certain regularity) on a manifold ! . We then consider a family of diffeomorphisms
%8 on ! depending on a parameter [, which for instance takes values in a ball
in ℝ*. One can then evaluate the Lebesgue measure of the set of [ such that %8
belongs to 7 . Of course, if the family %8 is degenerate, for instance if it does not
depend on [, it can completely avoid 7 . The set 7 is said to be prevalent if, for
a generic family %8 (in the Baire sense within the space of families), the set of [
such that %8 belongs to 7 has full Lebesgue measure (within the ball covered by
the parameter [).

Palis’s finiteness conjecture reads as follows:
The following properties are prevalent among the diffeomorphisms or the flows

on a given compact manifold:

∙ there exist finitely many attractors Λ1, . . . ,Λ#;
∙ each attractor admits an SRB measure;
∙ the union of the basins of attraction of the SRB measures covers almost all
the manifold, in the sense of the Lebesgue measure.

As for the lost hope of generic structural stability, it has been replaced by stochastic
stability. Consider a family of diffeomorphisms %8 depending on a parameter [ in
a neighborhood of the origin in ℝ*, with %0 = %. Choose a point #0 in an attractor
Λ, a small ^ > 0, and consider the random sequence of points

#0 ; #1 = %81 (#0) ; #2 = %82 (#1) ; ## = %8!(##−1) ; . . . ,

where the parameters [) are randomly chosen in the ball of radius ^. The SRB
measure W on the attractor Λ is said to be stochastically stable if, for any neigh-
borhood 5 of W in the weak topology on measures, and for any family %8 , one can
find ^ such that, for almost all choices of the above random sequence, the average
over the Dirac masses

1

& + 1
(Y,0 + Y,1 + ⋅ ⋅ ⋅+ Y,!)

has a limit when & → ∞, and the limit belongs to 5 . In other words, through a
stochastic perturbation, the statistical behavior “does not change too much”. . .

A second part of Palis’s conjectures states that stochastic stability is preva-
lent.
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Figure 24. A heteroclinic orbit and a homoclinic tangency

These conjectures come with a general strategy of proof. The idea is to explain
the non-density of hyperbolicity through the appearance of a few paradigmatic
phenomena, one of which is the Lorenz type attractor.

So far only a few nonhyperbolic phenomena have been identified:

∙ heterodimensional cycles

Such a cycle consists in two periodic hyperbolic points #, 4 in the same tran-
sitive set, the unstable manifolds of which have different dimensions, and such that
the stable manifold of each point transversally intersects the unstable manifold of
the other. It is, of course, an obstruction to hyperbolicity. For diffeomorphisms,
this type of cycle only appears for dimensions ≥ 3.

∙ homoclinic tangencies

A homoclinic tangency is a nontransverse intersection between the stable and
unstable manifolds of a same periodic point. Once more, it is an obstruction to
hyperbolicity.

∙ singular cycles

In the case of flows, the possible presence of singularities offers new possibil-
ities. A cycle is given by a finite sequence .1, . . . , .. of hyperbolic singularities or
periodic orbits, which are cyclically connected by regular orbits: there are points
#1, . . . , #. such that the ,-limit set of #) is .) and the +-limit set of #) is .)+1

(where ..+1 = .1). The cycle is singular provided at least one of the .) is a sin-
gularity. These singular cycles appear densely in the family of Lorenz models: the
two unstable curves starting from the singular point spiral in the attractor, and
can be localized in the stable manifold of this singular point. This happens if the
point 0 is periodic for the map O on [−1/2, 1/2] we have studied.

Palis proposes that on a given compact manifold, the set of vectors fields
which are either hyperbolic or display one of these phenomena is dense (in the 19

topology).
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In dimension 3, he conjectures that the union of the vector fields which are
either hyperbolic, or admit a homoclinic tangency, or have attractors (or repellers)
of Lorenz type, is dense (in the 19 topology).

Arroyo and Rodriguez–Hertz have made progresses in this direction, by show-
ing that a three-dimensional field can be approached, in the 11 topology, by fields
which are either hyperbolic, or present a homoclinic tangency or a singular cy-
cle [10].

In any case, the Lorenz attractor displays phenomena which could be charac-
teristic of “typical chaos”. At least in the framework of mathematical chaos, since
the relevance of the Lorenz model to describe meteorological phenomena remains
widely open [64].

8.3. A long and beautiful sentence

To finish, here is a quotation by Buffon dating back to 1783, and showing that his
view of an ergodic and mixing world was quite close from Lorenz’s one [20].

[. . . ] tout s’opère, parce qu’à force de temps tout se rencontre, et que
dans la libre étendue des espaces et dans la succession continue du
mouvement, toute matière est remuée, toute forme donnée, toute
figure imprimée; ainsi tout se rapproche ou s’éloigne, tout s’unit ou se
fuit, tout se combine ou s’oppose, tout se produit ou se détruit par des
forces relatives ou contraires, qui seules sont constantes, et se balançant
sans se nuire, animent l’Univers et en font un théâtre de scènes toujours
nouvelles, et d’objets sans cesse renaissants.
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[47] R. Mañé, An ergodic closing lemma. Ann. of Math. 116 no. 3, 503–540 (1982).

[48] J.C. Maxwell, Matter and Motion. 1876, rééd. Dover (1952).
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events of the twentieth century, 347–370, Springer, Berlin, 2006.

[69] M. Shub, What is . . . a horseshoe?, Notices Amer. Math. Soc. 52 no. 5, 516–517
(2005).

[70] M. Shub, et S. Smale, Beyond hyperbolicity. Ann. of Math. (2) 96, 587–591(1972).



54 E. Ghys

[71] Ja.G. Sinai, Gibbs measures in ergodic theory. (En russe), Uspehi Mat. Nauk 27,
no. 4(166), 21–64 (1972).

[72] S. Smale, On dynamical systems. Bol. Soc. Mat. Mexicana 5, 195–198 (1960).

[73] S. Smale, A structurally stable differentiable homeomorphism with an infinite number
of periodic points. Qualitative methods in the theory of non-linear vibrations (Proc.
Internat. Sympos. Non-linear Vibrations, Vol. II, 1961) pp. 365–366 Izdat. Akad.
Nauk Ukrain. SSR, Kiev 1963.

[74] S. Smale, Diffeomorphisms with many periodic points. Differential and Combinatorial
Topology (A Symposium in Honor of Marston Morse) pp. 63–80, Princeton Univ.
Press, Princeton, N.J. 1965.

[75] S. Smale, Structurally stable systems are not dense. Amer. J. Math. 88, 491–496
(1966).

[76] S. Smale, Differentiable dynamical systems. Bull. Amer. Math. Soc. 73, 747–817
(1967).

[77] S. Smale, Finding a horseshoe on the beaches of Rio. Math. Intelligencer 20 no. 1,
39–44 (1998).

[78] S. Smale, Mathematical problems for the next century. Math. Intelligencer 20 no. 2,
7–15 (1998).

[79] C. Sparrow, The Lorenz equations: bifurcations, chaos, and strange attractors. Ap-
plied Mathematical Sciences, 41. Springer-Verlag, New York-Berlin, (1982).

[80] W. Tucker, A rigorous ODE solver and Smale’s 14th problem. Found. Comput. Math.
2♠, no. 1, 53–117 (2002).

[81] M. Viana, What’s new on Lorenz strange attractors? Math. Intelligencer 22 no. 3,
6–19 (2000).

[82] R.F. Williams, The structure of Lorenz attractors. Inst. Hautes Études Sci. Publ.
Math. 50, 73–99 (1979).

[83] R.F. Williams, Lorenz knots are prime. Ergodic Theory Dynam. Systems 4 no. 1,
147–163 (1984).

[84] L.S. Young, What are SRB measures, and which dynamical systems have them? .
Dedicated to David Ruelle and Yasha Sinai on the occasion of their 65th birthdays.
J. Statist. Phys. 108 no. 5–6, 733–754 (2002).
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