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During the International Congress of Mathematicians held in Amsterdam in
1954, A.N. Kolmogorov announced an important theorem which was made
precise (and proven!) a few years later by V.I. Arnold and J. Moser [Kol54,
Arn63a, Mos62]. I would like to present a very elementary introduction to
this Kolmogorov-Arnold-Moser (KAM) theorem according to which “the solar
system is probably almost periodic”. My (modest) aim is to show the role of
resonances and small divisors in celestial mechanics by focusing on a very
simplified example, inspired by the real KAM problem: it is in some sense
a “toy model” of the solar system, much easier to understand. Facing a too
difficult question, the mathematician has the right to simplify the statement
to its maximum, in order to locate the difficulties. I will try to treat this
example in detail with the help of Fourier series. The “real” KAM theory
is much more difficult: the reader may find more information, along with
indications about the proof of the theorem, in J. H. Hubbard’s chapter in this
volume (Chap. 11).

10.1 A periodic world

We live in a world full of a great number of periodic phenomena. The Sun
rises about every 24 hours, the new moon comes back every 29.5 days, the
summer about every year... Of course, such examples could be multiplied ad
infinitum. This observation is old and the first scientists tried very early to
measure these cycles. Sometimes the period is not easy to determine and it
is very often only an approximation. Let us think e.g. about the cycle called
saros : every 6 585 days and 8 hours, the Moon, the Sun and the Earth find
themselves in about identical relative positions and there is such a periodicity
in the appearance of eclipses. As a matter of fact, due to the 8 hours, the
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periodicity of eclipses in a given place of the Earth is in fact triple (one day =
3 times 8 hours) so that the period is of 19 756 days (54 years and 32 or 33
days depending on leap years). We can only be fascinated by the precision
of the astronomers’ observations made during Ancient times which led to the
exact determination of this astronomical cycle. Maybe the existence of these
cycles in our universe is a preliminary condition for the appearance of life and
civilization? Can we imagine the difficulties of living on a planet which would
be the satellite of a double star: the rising and setting of the two suns would
become entangled in a more or less random way.

Mathematicians have always been fascinated by cycles and one did not
have to wait for Fourier to decompose a cyclic phenomenon into a sum of
elementary cyclic phenomena. What is more elementary than a point which
rotates on a circle with a constant angular velocity? It is of course the model
the first observers of the Sun (which rotates “evidently” around the Earth)
were thinking about. The situation is a little more complicated in the case
of planets, as the paths they follow in the sky seem sometimes complex (see
Fig. 10.1).

Fig. 10.1. Mercury’s orbit seen from the Earth (“Terre”). (From Flammarion’s
Astronomie Populaire.)
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In Ancient times, astronomers progressively elaborated a remarkably effi-
cient model giving a precise description, extremely close to the measurements
they could perform with their basic instruments. This is the theory of epicycles
(see Fig. 10.2) and equants, dating back at least to the time of Hipparchus,
which I will not describe in detail and which culminates with the marvelous
system of Ptolemy (the Almageste, II-nd century). The Earth is in the cen-
ter and the Sun and the planets turn around the Earth while following finite
combinations of uniform circular motions. The reader interested in detailed
information concerning Hipparchus and Ptolemy’s theories could refer to the
article [Gal01].

Ptolemy, one of the greatest geniuses of his time, is only known by con-
temporary students for his “false” geocentric system theory. And yet! What
is a “correct” theory in the fields of physics or astronomy? Isn’t the main aim
to develop a model which explains experiments of a given era? Isn’t any ques-
tion relative to the “correct” nature of space and time only a metaphysical
question which the physicist can ignore?

Copernicus’ heliocentric theory superseded Hipparchus/Ptolemy’s geocen-
tric theory. Is this new theory more correct than the previous one? One point
is clear: Copernicus’ theory is nicer and everything seems to fit in a quite
harmonious and simple way. This suffices to prefer heliocentrism. But if we
take a closer look, Copernicus’ theory is not as elementary as it seems. It also
uses cycles and epicycles. Ptolemy used 40 cycles and Copernicus still uses
34 of them... The tables established by Copernicus are not more precise than
those of Ptolemy. Besides, Copernicus does not present his theory as being
“true”: he puts at the beginning of his De Revolutionibus Orbium Coelestium
(1543) a preface, written by Osiander, about which a lot has been written. Did

Fig. 10.2. A (simplified) epicycle model. Mercury moves along a small circle (“epicy-
cle”) of radius 0.38 (Mercury-Sun distance in Astronomical Units), with period 88
days (Mercurian year), while this epicycle moves along a larger circle (“deferent”)
of radius 1 AU, with period 1 Earth’s year. Left hand side: after one (Earth’s) year;
right hand side: after seven years
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Osiander want to protect Copernicus from the pope’s ire? Or on the contrary
does this preface reflect Copernicus’ opinion? Here is an extract from this
preface (see [Cop92]):

... it is the duty of an astronomer to compose the history of the celestial

motions through careful and expert study. Then he must conceive and devise

the causes of these motions or hypotheses about them. Since he cannot in

any way attain to the true causes, he will adopt whatever suppositions

enable the motions to be computed correctly [...] these hypotheses need

not be true nor even probable. On the contrary, if they provide a calculus

consistent with the observations, that alone is enough.

Let us return to our cycles. If a phenomenon is periodic with period T , all mul-
tiples of T can also be considered as a period. Consequently, if two phenomena
have respectively a period T1 and T2, the combination of these phenomena
will be periodic as soon as a multiple of T1 coincides with a multiple of T2,
in other words as soon as the ratio T1/T2 is a rational number. Since we are
talking about astronomy and these periods can only be known approximately,
we can consider that these ratios are always (almost) rational. The combina-
tions of the cycles that we observe in our universe define therefore a globally
periodic phenomenon. A reader could quite rightly notice that this type of ar-
gument may easily lead to gigantic periods and that the physical meaning of
a period of e.g. one hundred billion years would be questionable. This reader
may be reassured: this question is somehow at the heart of this article and
our (pre-pythagorician) “physical hypothesis” that all numbers are rational
will be discussed and modified all along this article. Let us therefore start by
imagining that all physical functions are periodic...

The idea of combining circles to approach a periodic function may not be
due to Hipparchus and Ptolemy but in respect for these geniuses, I would like
to attribute them the joint property of the following theorem:

Theorem. [Hipparchus-Ptolemy-Fourier] Let f : R → C denote a contin-
uous periodic curve of period T with values in the complex plane. Then
f may be arbitrarily closely approximated by a finite combination of uni-
form circular motions. In other words, for any ε > 0, there exists a func-
tion of the form fε(t) =

∑N
n=−N an exp(2iπnt/T ) (with an ∈ C) such that

|f(t)− fε(t)| < ε for all t.

Clearly, Hipparchus and Ptolemy did not prove this theorem in the modern
sense of the term but neither did Fourier1. For a “modern proof”, the reader
can refer to e.g. [Kör89].

1 A “theorem” attributed to V.I. Arnold asserts that on one hand no theorem is
due to the mathematician which it is named after and on the other hand that
this theorem applies to itself.
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1. An adelic fantasy.

I would like to allow myself a mathematician’s fantasy which is totally useless for
the rest of this article and which the reader may skip. The time of contemporary
science is modeled by the set R of real numbers (even if it has been subject to
several avatars with the relativity theories). This set does not suggest the idea
of successive cycles which we have just mentioned: it flows inexorably from the
past to the future. Let us try to formalize time the same way astronomers such
as Ptolemy used to think about it, formed by cycles “piled up one on top of the
other”, in which recurrences are omnipresent.

For any integer n > 0, the quotient R/nZ formed by real numbers modulo

n represents the “cyclic time of period n”. If m and n are two integers such

that m divides n, there is an obvious projection πm,n from the cycle R/nZ to

the cycle R/mZ: if we know a real number modulo n, we know it in particular

modulo m. Let us define the cyclic time T as follows: an element t in T is a

map which associates to any integer n an element tn of R/nZ in a way which is

compatible with these natural projections, i.e. in such a way that if m divides n,

then we have πn,m(tn) = tm. In other words, an element of T is a way to place

oneself in all cycles while respecting the evident compatibilities. Obviously, the

“cyclic time” T contains the “ordinary time” R: to a given real number t, we can

associate for every n the point t modulo n in R/nZ and these various points are

compatible with each other. But T is much bigger than R (exercise). We can equip

T with a topological structure which turns it into a compact topological group

(exercise). Time as a compact set... a mathematician’s (or oriental philosopher’s?)

dream which illustrates the idea of recurrence. The usual group of real numbers

R is contained as a dense subgroup of T (exercise). Can one consider T as a

reasonable psychological model for the time we are actually living in? Is this a

futile mathematician’s exercise? Maybe not. The group T we have just introduced

is the “adelic torus”, the study of which is essential in contemporary number

theory.

10.2 Kepler, Newton. . .

I will not describe in detail the marvelous astronomical works of Kepler which
are often summarized as Kepler’s three laws. The first one states that a planet
orbits as a conic with the Sun at one focus. The second (law of areas) describes
the speed at which this conic is traversed. The third law expresses the period
(in the case of an elliptic motion) in terms of the major axis of the ellipse. All
of this is far too well-known and can easily be found in many books dealing
with rational mechanics. At this point, I would like to insist on two less well-
known aspects of Kepler’s work.
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Kepler is often “blamed” to have only offered a descriptive and nonex-
planatory model: what causes the motion of the planets? Newton’s law f = mγ
and the gravitational attraction in 1/r2 are wonders but do they explain more
than Kepler why objects attract each other? This is similar to the compari-
son Ptolemy/Copernicus: Newton’s laws prevail over those of Kepler by their
aesthetic aspect and because they allowed a revolution in physics (and in
mathematics). However, they do not explain the cause of the phenomenon
(and of course, I could make the same kind of comments on the explanatory
character of general relativity).
Kepler’s zeroth law : if the orbit of a planet is bounded, it is periodic, i.e. it
is a closed curve.

If one thinks about this, it is incredible.
Nowadays, one can show the following result (Bertrand’s theorem, al-

ready known to Newton?). Let us suppose that a material point moves
in the plane while being attracted towards the origin of the plane (the
Sun) by a force whose modulus F (r) only depends on the distance r to
the origin. Let us suppose that all the orbits which are bounded are in
fact closed curves. Then, the force F (r) can only be the Newtonian attrac-
tion F (r) = k/r2 or the elastic attraction F (r) = Kr (not very reason-
able in astronomy!). Why did “mother Nature” “choose” THE law that en-
sures the periodicity of motion? This is a mystery physics will not explain
soon!

How is the motion of a planet if the force of attraction towards the central
point is another function F (r)? This is a classical question of mechanics and
Newton himself studied a great number of cases in his Principia (1687). A
bounded orbit consists of arcs which join the successive apogees and perigees
(see Fig. 10.3). These arcs are obtained from one of them using a symmetry
and rotations, the angle of which depends on the considered orbit. Somehow,
we can consider that the motion is the result of two periodic phenomena:
one relates to the periodic variation of the distance to the Sun and the other

Fig. 10.3. An almost periodic orbit (between the apoapsis and periapsis circles).
LHS: an apoapsis and the subsequent periapsis; RHS: after several turns
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relates to the periodic variation of the direction of the straight line joining
the Sun to the planet. The orbit is periodic if the two periods have a rational
ratio and it is almost periodic otherwise. Only the forces in r and 1/r2 are
such that this ratio is always rational and it happens that it is then equal
to 1, so that in these two cases the orbits close themselves in fact after one
complete turn. The law 1/r2 is a resonance of nature since it corresponds to
the equality of the radial and angular frequencies.

Kepler must have been filled with wonder when he realized that the orbit
of Mars is periodic. This statement is not very obvious when we observe it
from the Earth and that does not follow in any way from the epicycle models
of Hipparchus-Ptolemy-Copernicus.

I should also mention Kepler’s “fourth” law which is rarely cited because
it is false, but which Kepler considered as his main discovery. This law was
meant to explain the numerical values of the major axes of the orbits of the
six planets (which were known at that time). The construction is marvellous,
almost philosophical: it is a question of successively encasing the five regular
(Platonic) polyhedrons in inscribed and circumscribed spheres (see the beau-
tiful Fig. 10.4 extracted from Harmonices Mundi (1619)): the radiuses of the
spheres give the radiuses of the orbits (up to similarity of course). Should we
make fun of this? Of course not, because it seems that the obtained result is
very close to reality and especially because it is an attempt of geometrization
of space and motion. Other attempts were very successful later in history.
In [Ste69], Sternberg encourages those who make fun of Kepler to also make
fun of contemporary theoretical physicists who relate the elementary parti-
cles to linear representations of simple Lie groups. The search for groups of
symmetries is at the heart of science no matter what the subject is: the icosa-
hedron group, gauge groups, or approximate symmetries in an almost periodic
motion, or in a quasicrystal.

Fig. 10.4. Harmonices Mundi
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10.3 An almost periodic world

Thus, the world we inherited from Hipparchus, Ptolemy, Kepler and Newton
is a periodic world. More precisely, each planet is periodic but the solar system
is “almost periodic” in its totality since there is of course no reason that the
ratios of the periods of the different planets are rational numbers.

Irrational numbers do exist. The sum of two periodic functions whose
periods have an irrational ratio is not periodic. But it almost is... The formal-
ization of this idea is recent. Let us begin with two “reasonable” definitions:

Definition. Let f denote a continuous function from R to C and ε > 0 a
(small) positive real number. A real number T is an ε-period if for every t in
R, one has : |f(t+ T )− f(t)| < ε.

Definition. Let f denote a continuous function from R to C. We say that f
is almost periodic if for every ε > 0, there exists a number M > 0 such that
every interval in R with length greater than M contains at least one ε-period.

The theory of almost periodic functions is rich. The interested reader may read
the book [Ste69], in particular for its link with the history of the celestial
mechanics. Here are two theorems. The first one is rather an exercise which
is left to the reader:

Theorem. Let a1, . . . , ak be complex numbers and ω1, . . . , ωk real numbers.
The function f from R to C defined by f(t) =

∑k
n=1 an exp(iωnt) is almost

periodic.

The second theorem is much more complicated. Formally, it is due to Bohr
but for the same subjective reasons as those exposed earlier, I also attribute
it to Hipparchus and Ptolemy.

Theorem. [Hipparchus-Ptolemy-Bohr] Every almost periodic function may
be arbitrarily closely approximated by functions of the preceding type.

Now that these definitions and theorems are presented, I can start to make
the content of this article more precise. Is the universe in which we live almost
periodic?

10.4 Lagrange and Laplace: the almost periodic world

The proof of Kepler’s laws using from those of Newton supposes a “simplified”
solar system in which a single planet is attracted by a fixed center. One learns
in elementary courses of mechanics that the problem is not much more diffi-
cult in the case of two masses which attract each other mutually: each one of
them describes a conic. But of course, there is not only one planet in the solar
system. Even disregarding many “small” objects, we can consider that nine2

2 This paper was written before Pluto was “expelled” from the official list of planets!
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2. A remark about the recent history of Physics.

The turbulence of fluids is a quite complex phenomenon which has been puz-

zling physicists for a long time, at least starting from Leonardo da Vinci, and

whose practical applications are more than obvious in aeronautics. How can we

understand these eddies of all sizes in turbulent fluids, and the flow of energy from

larger eddies towards smaller ones, up to the dissipative scales (Kolmogorov’s the-

ory [Kol41])? It is astonishing to note that physicists as eminent and imaginative

as Landau and Lifschitz presented for a long time turbulence as an almost periodic

phenomenon, of which the number of frequencies depends on the Reynolds num-

ber (related in particular to the viscosity of the fluid). It is only with the second

edition (1971) of their famous treatise on fluid mechanics that they became aware

that the almost periodic functions are too “well behaved” to represent this phe-

nomenon and that it is necessary to call upon much more “chaotic” functions: it

is the beginning of the theory of strange attractors, a beautiful example of collab-

oration between mathematicians and physicists. Old habits are difficult to loose:

the epicycles are still present in our scientific subconscious and it is difficult to get

rid of them. Should we forget the epicycles and almost periodic functions in the

description of our solar system? Are the conservative systems, such as the solar sys-

tem, also subject to some kind of chaos (and in which sense?), as in the case of the

dissipative systems (turbulence)? Somehow, the theorem of Kolmogorov-Arnold-

Moser is reassuring: it asserts that under good conditions (explained further on),

the almost periodic functions are sufficient to describe the motion of planets.

planets orbit the Sun and attract each other mutually. This N -body problem
is mathematically far more complicated and in a sense which I cannot describe
precisely here, it has been known since the beginning of the twentieth century
that it is impossible to “integrate” it.

For lack of finding “workable” exact solutions for the motion, we are re-
duced to finding approximate solutions. Lagrange and Laplace are prominent
among those who developed best the theory of perturbations. Of course, as
a first approximation, the dominant forces in the solar system are the forces
of attraction towards the Sun because the mass of the Sun is much bigger
than those of the other planets (in a ratio of approximately 103). We can thus
think that the planets will more or less follow the (periodic) elliptical Keple-
rian orbits and that those ellipses will change slowly because of the perturbing
influence of other planets. How important are these small perturbations? Are
they likely to significantly modify the harmony of the Keplerian system? These
are difficult questions. We could fear the worst: perhaps a perturbing force of
the order of 1/1000 times the principal force could significantly modify the
radius of an orbit after a time of about a thousand times the characteristic
time of the problem (the year). In other words, we could fear that within a
thousand years, the radius of the terrestrial orbit may be divided (or mul-
tiplied) by two. This would have important consequences on the history of
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our civilization! Since we did not notice any catastrophe of this kind in our
past, what is the phenomenon that explains why the perturbations perturb
less than what we could fear?

The theory of perturbations is complicated and requires many calculations
but the basic geometrical idea, such as Gauss explained it, is very simple (like
many great ideas). Let us consider a particularly simple case: the Sun, of very
large mass, is (almost) fixed; a planet P1 revolves uniformly on a circular orbit,
and another planet P2 of very small mass compared to P1 is launched on an
orbit around the Sun which is more or less circular and external in comparison
to the one of P1, in the same plane (see Fig. 10.5). Let us imagine that the
radius of the orbit of P2 is really bigger than the one of P1 so that the angular
velocity of P1 is really bigger than the one of P2 (according to Kepler’s third
law). Since the mass of P2 is very small, one can think that it does not perturb
very much P1 which will therefore stick very closely to its circular trajectory.
As for the planet P2, it is subject to two forces: the main one towards the
Sun and a perturbing one towards the planet P1. The perturbing force is weak
but not negligible; its direction oscillates unceasingly because P1 revolves very
quickly. The idea consists of supposing that these oscillations of the direction
of the perturbing force can be averaged: in practice, this means that one
replaces the revolving planet P1, by its orbit where one uniformly distributes
the mass of P1. In other words, the planet P2 is not attracted by a moving
planet P1 but by a circular ring at rest. Is this approximation valid? This is
what we will be discussing hereafter. The end of the argument is easy. One
knows since Newton that outside the orbit of P1, the forces of attraction of the
Sun and the fixed circular object can be reduced to the force of attraction of
a single punctual mass placed in the center. To summarize, everything occurs
as if the planet P2 was subject to the Newtonian force produced by a point
whose mass is that of the total mass of the Sun and P1. Thus, the planet
P2 will almost follow a periodic orbit. In other words, the perturbing forces
did not perturb the periodic character of the planet P2 and this fits with our
historical observation: during a few thousand years, the radiuses and the main
characteristics of planets did not evolve much.

Many questions are raised by this idea. Is it legitimate to replace a force,
whose size and direction vary, by a constant force which is the average of the

Fig. 10.5. Perturbation of the motion of a small planet P2 by a planet P1
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varying force? Clearly, there is a situation where this idea cannot work. Let
us suppose that the circular orbits which the planets P1 and P2 would follow
if their masses were infinitely small (and thus unperturbed) are such that the
ratio of their periods is rational, 10 for example. This would mean that if the
initial positions of P1 and P2 are in conjunction e.g. every 10 revolutions of
P1, the two planets are again in exact conjunction. Obviously, to take the av-
erage of the perturbation along the orbit of P1 would not mean much since the
angular coordinates of P1 and P2 are strongly correlated and the conjunctions
are much too regular. On the other hand, if the ratio between the periods is
irrational, it seems reasonable to replace the perturbation by its average (see
Fig. 10.6). Here is a statement which goes in this direction: it is a particularly
simple ergodic theorem (which Lagrange and Laplace did not know, at least
explicitly).

Theorem. Let F (x, y) denote a continuous function with real or complex
values which depends on two angles x, y considered as elements of R/Z (the
angle unit is a full turn). Let α and β denote two frequencies whose ratio is
irrational. Then, when the time T tends to infinity, the integral 1

T

∫ T
0 F (x0 +

αt, y0 + βt) dt converges uniformly to the mean value of F , i.e. to the double
integral

∫∫
F (x, y) dxdy.

Proof. The set of functions F for which the theorem is true is obviously a
vector subspace of the space C0(R/Z× R/Z,C) of complex continuous func-
tions on R/Z× R/Z. This subspace is closed in the uniform topology: a uni-
form limit of functions which verify the theorem also verifies it. According to
Fourier (with two variables), the subspace generated by the functions of the
type exp(2iπ(nx+my)) is dense in C0(R/Z×R/Z,C). It suffices then to verify
that each one of these functions exp(2iπ(nx+my)) satisfies the theorem but
this is an explicit and simple calculation which I leave to the reader. QED

Let us come back to Lagrange and Laplace. Given a real number, it is prob-
ably irrational and we may think that the method of Lagrange and Laplace is
justified. Still, we should be aware that we took a particularly simple case of
only one perturbing planet orbiting on an almost circular path. In its principle,
the method applies to the other situations. Let us consider an almost Keplerian
solar system, with small perturbations and let us average the perturbations

Fig. 10.6. An almost periodic motion
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on their configuration spaces. We hope that there are no resonances, i.e. no
rational linear relations between the periods which appear. This leads to the
stability theorem of Laplace which asserts that in the averaged system, the
major axes of the orbits remain constant in time, ensuring a certain stability
to the system. Finally, this “justifies” the fact that the effects of perturbations
are smaller than the ones we could fear a priori.

What kind of mathematical credit can we give to this type of “proof”? If we
seek “true stability theorems” which are valid for infinitely long times, we will
find nothing in Laplace’s works which resembles a proof, and the assertions
which we sometimes meet according to which “Laplace showed the stability
of the solar system” are largely exaggerated. On the other hand, if we seek
mathematical statements which are valid for long but finite times, we can hope
to transform these methods into theorems, at least in certain particular cases.
No matter what, this kind of method lets us think that if the perturbations
are of the order of ε (10−3 in our system), these perturbations have no global
effect at a time 1/ε as we might expect a priori but rather after a time 1/ε2

(“the next term in an asymptotic expansion”). We should have a quiet life for
about 106 years, which is more reasonable than 103. The reader who would like
to know more about these perturbation methods may consult some treatises
on celestial mechanics if he is brave enough or [Arn89, Arn83, AA68] for a
conceptual presentation.

Thus, we inherit from Lagrange and Laplace an almost periodic world,
at least for a million years! But they also leave us many questions: what is
the role of these resonances between the periods of the planets which put
in danger the averaging arguments? Is the stability of the motion perpet-
ual or does it get destroyed after a million years? How can we make this
“stability theorem of Laplace” rigorous? It took almost two centuries and
the works of mathematicians as powerful as Poincaré, Siegel, Kolmogorov,
Arnold and Moser to get to partial answers which themselves raised other
questions.

10.5 Poincaré and chaos

At the end of the nineteenth century, Poincaré invented rigorous geometric
methods in order to approach a global understanding of the N -body prob-
lem. As a matter of fact, he focused on the restricted three-body problem: two
punctual bodies orbit in a Keplerian way in a plane, around their center of
mass, and a third punctual body, with infinitely small mass, is subject to
the attraction of the two other masses. Here are some questions studied by
Poincaré in his famous article Sur le problème des trois corps et les équations
de la dynamique (1890) [On the three-body problem and the equations of dy-
namics]. Is the trajectory of the small mass confined in a bounded domain
of the plane if its total energy is sufficiently small? For an initial “generic”
condition, is there a risk of collision between the bodies? Is the dynamical
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behavior of the small body almost periodic? Unfortunately I will not de-
scribe this historical article of Poincaré. I will only point out that Poincaré
proves the existence of a great number of periodic orbits and that he at-
tempts to understand the dynamics in the vicinity of these periodic orbits.
At that point, he makes an error and sins by optimism in a proof (he is used
to doing so): his great memoir awarded by king Oscar of Sweden is false. In
haste, he has to correct it and this correction will prove to be of consider-
able scientific richness: Poincaré creates on this occasion the theory of chaos.
He highlights trajectories whose behaviors are very far from being almost
periodic:

“Let us try to represent the figure formed by these two curves and
their infinite number of intersections each one of which corresponds
to a doubly asymptotic solution, these intersections form a kind of
web, of fabric, of network with infinitely tight meshes; each one of
these curves should never intersect itself, but it must fold up it-
self in a very complex way to come to cut infinitely often all the
meshes of the network. One will be struck by the complexity of this
figure, which I do not even attempt to draw. There isn’t anything
more proper to give us an idea of the complication of the three-body
problem and, in general, of all the problems of dynamics where there
is no uniform integral and where the Bohlin series are divergent.”
(Poincaré [Poi90])

The history of this error and the way in which Poincaré transforms it into
success is fascinating. I recommend the book [Bar97] which is entirely devoted
to this question, and the article [Yoc06].

Thus, even if the initial conditions which lead to these examples of chaotic
trajectories are not very close to the physical conditions of our solar system,
we know thanks to Poincaré that the orbits of the celestial bodies are not
necessarily almost periodic. Will we find such orbits in our solar system? In
any case, it is necessary for us to be more modest in our search of stability.
Previously, we sought to know whether the orbits of planets are almost pe-
riodic and we are now much less ambitious since the question becomes the
following one. If we launch the planets of a solar system on almost circular
orbits around a Sun with very great mass, will the planets remain forever
confined in a bounded domain of space? Might it be possible that a planet be
ejected from the system for example?

10.6 A “toy model” of the theory of perturbations

We are going to build up a very simple (and even naive) model. On the
cylinder R/Z × R, let us consider the transformation f which associates to
the point (x, y) the point (x + α, y) where α is an irrational angle. We are
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going to iterate this transformation and study its dynamics. This is a first
simplification: instead of studying dynamics in continuous time (in R), we are
going to use a discrete time (in Z). After n iterations, the point (x, y) is sent to
the point (x+nα, y) so that the orbits of f spread on the circles y = const. We
can thus think about f as the dynamics of an almost periodic system. Now,
let us try to perturb the motion by imposing to our point of R/Z×R a “push”
towards the top or the bottom which only depends on the first coordinate.
In other words, we are now studying a transformation g which associates to
the point (x, y) the point (x + α, y + u(x)) where u is a certain very regular
function defined on R/Z (i.e. a periodic function of period 1) which we can
think of as being a small perturbation. What is the new dynamics? The n-th
iteration of g maps the point (x, y) to the point (x+ nα, y + u(x) + u(x+ α)
+ · · ·+ u(x+ nα)).

Lagrange’s averaging principle suggests to replace the impulse u by its
average on the circle. Of course, if this average is different from 0, we can
easily understand that the successive iterations of g will have a tendency to
make the second coordinate tend to infinity so that the perturbed system is
not stable. Thus, let us study the situation when the average of u on the
circle is equal to 0: on average the second coordinate is not modified. Can
we deduce that g is stable, in the sense that its orbits stay bounded? This is
the simplified problem we are going to study. In symbols, the question is the
following:

Let u denote a periodic function of period 1, which is infinitely differen-
tiable, and whose integral on a period is equal to 0. Let α denote an irra-
tional number and x a real number. Are the (absolute values of the) sums
u(x) + u(x + α) + · · · + u(x + nα) bounded when the “time” n tends to
infinity?

Let us begin with a lemma which is a special case of a lemma of Gottschalk
and Hedlund:

Lemma. Let us fix x0 in R/Z. The absolute values of the sums u(x0)+u(x0 +
α) + · · · + u(x0 + nα) are bounded if and only if there exists a continuous
function v on R/Z such that for all x one has u(x) = v(x+ α)− v(x).

Proof. If u(x) is of the form v(x+ α)− v(x), the above sum “telescopes” to:
u(x0) + u(x0 + α) + · · · + u(x0 + nα) = v(x0 + (n + 1)α) − v(x0). Thus its
modulus is bounded by twice the maximum of |v| (which is finite because v
is periodic and continuous).

Conversely, let us assume that |u(x0) + u(x0 + α) + · · · + u(x0 + nα)| is
bounded by M > 0. This means that the orbit of the point (x0, 0) in the
cylinder R/Z×R stays confined in the compact cylinder R/Z× [−M,M ]. Let
K denote the closure of this orbit. This is a compact set which is invariant
under the transformation g. Among all the non-empty compact sets contained
in K and invariant under g, let us choose one which is minimal for inclusion
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(use the property that the intersection of a family of non-empty compact sets,
which is totally ordered for inclusion, is not empty) and let us denote it by
M. I claim that M is the graph of a continuous function v from R/Z to R.

To justify this assertion, I first observe that the projection of M on the
first coordinate is a non-empty compact set in the circle, which is invariant
under the rotation with irrational angle α. All the orbits of such a rotation are
dense in the circle. Consequently, the projection of M on the first coordinate
is necessarily the full circle R/Z.

Now, let me prove that for each x in R/Z, the “vertical” line {x} × R

only meets the minimal set M in one point. In order to prove this state-
ment, I consider the vertical translations τt(x, y) = (x, y + t). Obviously,
these translations commute with g so that the image by τt of an invariant
set under g is also an invariant set under g. Consequently, τt(M) is in-
variant under g and so are the intersections τt(M) ∩ M. We have chosen
M as a minimal non-empty compact invariant set. It follows that for all t,
the intersection τt(M)

⋂
M is either empty or equal to M. But if τt(M)

would coincide with M for a t different from 0, then M would be equal
to τkt(M) for every integer k and would not be bounded (let k tend to in-
finity). Therefore τt(M) and M are disjoint when t is different from 0 and
this means that M meets each vertical {x} × R at a unique point (x, v(x)).
Thus, M is the graph of a function v of R/Z to R. As this graph is com-
pact, the function v is continuous (a traditional exercise). The assertion is
proven.

We still have to express analytically that the graph of the function v is
invariant under the transformation g. The image of (x, v(x)) is (x+α, v(x) +
u(x)) and has to be equal to (x+α, v(x+α)). We obtain as expected u(x) =
v(x+ α)− v(x) and the lemma is proven. QED

Before continuing, let me restate the lemma in a geometric way. As soon as
an orbit of the transformation g is bounded, it remains confined in an invariant
circle which is the graph of a continuous function. All the other orbits are then
bounded. In other words, in this case, the family of circles y = const which is
invariant under the non-perturbed transformation f is replaced by the family
of perturbed circles y − v(x) = const which is invariant under the perturbed
transformation g.

This leads to a question of harmonic analysis. Given an infinitely differ-
entiable function u whose integral on the circle is equal to 0, and given also
an irrational number α, does there exist a continuous function v on the circle
such that u(x) = v(x+ α)− v(x) identically?

The Fourier series are particularly well adapted to study this problem.
As the function u is infinitely differentiable, it can be expanded as a Fourier
series:

u(x) =
+∞∑

−∞
un exp(2iπnx).
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Let us also seek the function v through its Fourier series expansion (we will
discuss the convergence of this series afterwards):

v(x) =
+∞∑

−∞
vn exp(2iπnx).

(I use the complex notation for convenience: as the function v is real, the
complex numbers vn and v−n are conjugate). Then we have:

v(x+ α)− v(x) =
+∞∑

−∞
(exp(2iπnα)− 1)vn exp(2iπnx).

Identifying the Fourier coefficients of u(x) and of v(x + α) − v(x), we thus
obtain:

vn =
un

(exp(2iπnα)− 1)
·

The assumption according to which α is irrational means that (exp(2iπnα)−
1) is different from 0 for n different from 0. Therefore the vn’s are well defined
for n different from 0. For n = 0, our hypothesis on the average of u means
precisely that u0 = 0 so that we can choose any value for v0 (which of course
corresponds to the fact that if v is a solution to our problem, v+ const is also
a solution).

To summarize, Lagrange’s principle seems to work. We have certainly
found a function v which is a solution to our functional equation, or at least
its Fourier series expansion. But does this series converge and does it define
a continuous function as we expect? This is our new problem.

3. How can we “see” on a Fourier series that it defines
a regular function?

Let us consider a periodic function h of period 1 and let us expand it as a Fourier
series:

h(x) =

+∞∑

−∞
hn exp(2iπnx).

How can we “see” on the sequence of coefficients hn that the function h is infinitely
differentiable for example? If the function h is supposed to be continuous and not
more, is the sequence hn subject to some constraints? These are delicate questions
(which Fourier did not seem to have considered) about which we nowadays know
a lot. In this interlude, I will simply give some very elementary observations which
will suffice for my discussion. The n-th coefficient hn is given by Fourier’s formula:

hn =

∫

R/Z

h(x) exp(−2iπnx) dx.

If h is continuous, then the sequence hn must be bounded. Caution: the converse

is very far from being valid and my bound is rather crude. One can prove e.g. that

the sequence hn tends in fact to 0 and that the series (nh1 +(n−1)h2 +· · ·+hn)/n

is convergent.
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If h is continuously differentiable, we can calculate the Fourier coefficients h′
n

of its derivative by the well-known formula h′
n = 2iπnhn. The continuity of the

derivative and the previous observation show that there is an estimate for the
decay at infinity of hn of the form |hn| < Cst/|n|. If h is infinitely differentiable,
we can repeat this argument for all derivatives. Thus, the Fourier coefficients of
an infinitely differentiable function have a rapid decay. This means that for every
integer k, there exists a constant Ck > 0 such that |hn| < Ck |n|−k.
Conversely, let us consider a rapidly decreasing sequence hn and let us form its
associated Fourier series. It is easy to prove that this series is indeed convergent
and defines an infinitely differentiable function.

These simple remarks will suffice but it is a pity to have to leave such a topic

without having really gotten into it. The book [Kör89] is magnificent (but requires

more mathematical technique).

4. Numbers which are more or less irrationals?

Every irrational number may be arbitrarily approximated by rational numbers.
Let us try to make this assertion quantitative. Let α denote an irrational real
number. Let us fix a (small) real number ε > 0 and let us seek a rational number
p/q (where q > 0) such that |α − p/q| < ε. Such a p/q always exists but if ε is
very small, a rational p/q which verifies this inequality has necessarily a very large
numerator and denominator. What is the minimal value of q as a function of ε?
At what speed does this function tend to infinity when ε tends to 0? All depends
on the irrational number being considered. In this interlude, we present the basics
of the theory of diophantine approximation, which is important in our problem.
Some numbers are exceptionally well approximated by rational numbers. The most
famous example is the number defined by Liouville:

λ =

+∞∑

n=1

10−n! = 0.1100010000000000000000010000000000000000000000000 . . .

If we truncate the series at order n, we find a rational number whose denomina-

tor is 10n! and which approximates λ with a difference smaller than 2.10−(n+1)!,

which is extraordinarily small in comparison to the inverse of the denomina-

tor 10n!. For any physicist, this number is rational since it is different from

0.110001000000000000000001 by less than 10−120 which is a lot smaller than

any physically observable number. Nevertheless, not only does the mathemati-

cian know that λ is irrational (its decimal expansion is not periodic) but also that

Liouville has proven that λ is in fact a transcendental number. If the reader is

not impressed by the approximation speed of λ, he may replace the factorials n!

by double factorials n!! or even by any increasing function from N to N, which

may even be non-recursive. Thus, given any function ε(q) from positive integers

to positive numbers, tending to zero when q tends to infinity, we can always find

irrational numbers α which are approximated by rationals “better than ε(q)”, i.e.

for which there exists infinitely many rationals p/q such that |α − p/q| < ε(q).

Some irrational numbers resist to the approximation as much as they possibly
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can. A lemma of Dirichlet shows that every irrational number may be approxi-
mated by rationals “up to 1/q2”:

Lemma. For any irrational number α, there exists infinitely many rationals p/q
(q > 0) such that |α − p/q| < 1/q2.
Proof. Let us project the first N + 1 multiples 0, α, . . . , Nα in the circle R/Z.
At least two of these projections are at a distance smaller than 1/(N + 1) in the
circle. This means that we can find 0 ≤ k1 < k2 ≤ N such that (k2 − k1)α is at a
distance less than 1/(N + 1) of an integer p. Writing q = k2 − k1 ≤ N , we obtain
|qα − p| < 1/(N + 1) < 1/q. We observe that |qα − p| < 1/(N + 1) implies that q
tends to infinity when N tends to infinity. QED

Definition. An irrational number α is diophantine if there exists a constant

C > 0 and an exponent r ≥ 2 such that for any rational p/q (q > 0) one has

|α − p/q| > C/qr.

5. A diophantine number: the golden mean

The most famous example of a number which is badly approximated by the ra-
tionals is the golden mean φ = (1 +

√
5)/2.

Theorem. There exists a constant C > 0 such that for every rational p/q, we
have |φ − p/q| > C/q2.

In fact, we could even prove that we may take C = 1/
√

5 and that φ is the
irrational number which has the worst approximation by rationals (see [Niv56] for
a precise statement and for further details on these questions of approximation
by rationals).

Fig. 10.7. Lattice and eigendirections

Proof. (Outline) Let us consider the matrix Φ =

(
0 1
1 1

)
. It has two eigenvalues:

φ and −φ−1. The slopes of the eigen-directions are also φ and −φ−1(see Fig.

10.7). The linear forms π1(x, y) = y−φx and π2(x, y) = y +φ−1x are eigenvectors

of the transposed linear map, with eigenvalues −φ−1 and φ respectively. The
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matrix Φ acts linearly in the plane R
2 and preserves the two eigen-lines as well

as the lattice of integral points since its coefficients and those of its inverse are
integers. Note that Φ dilates the first eigen-line (φ > 1) and contracts the other
one. We are seeking to measure the degree of approximation of φ by rationals. In
other words, we are looking for points on the line of slope φ whose coordinates
are “as integral as possible”. Let us consider a disk D big enough in the plane
whose center is the origin. In this disk, there is only a finite number of points
with integral coordinates, so that there exists a constant C1 > 0 such that for all
integral points in D different from (0, 0), we have: |π1(q, p)π2(q, p)| > C1. Let us
study the effect of the action of the matrix Φn. The disk D is transformed in the
interior Dn of an ellipse, laid down along the line of slope φ, and the estimate
|π1(q, p)π2(q, p)| > C1 for the integral points (q, p) different from 0 and located in
D implies the same inequality for all
integral points of Dn different from 0. This is clear because the product |π1π2| is
invariant under the action of Φ. Thus the inequality |π1(q, p)π2(q, p)| > C1 is valid
for all integral points in all the Dn’s. When n varies in Z, these Dn’s cover a whole
“hyperbolic” neighborhood of the eigen-lines, of the form |π1(x, y)π2(x, y)| < C2.

To summarize, we have proven that there exists a constant C3 = min(C1, C2)

such that for any integral point (q, p) of the plane (different from (0, 0)), we have

|π1(q, p)π2(q, p)| > C3. Now, let us distinguish two sets of rationals p/q according

to whether |φ − p/q| is greater than or less than a fixed small enough quantity

C4 > 0. On the first set, the inequality |φ − p/q| ≥ C4 implies in particular that

|φ − p/q| ≥ C4/q2. On the second set, the inequality |φ − p/q| < C4 implies an

inequality of the form |π2(q, p)| > C5|q| (in fact C5 = φ + φ−1 − C4 =
√

5 − C4 is

appropriate) so that we have |π1(q, p)| > C3C
−1
5 /|q| and so |φ−p/q| > C3C

−1
5 /q2.

Thus indeed we have |φ−p/q| > C6/q2 for all integral points different from 0 with

C6 = min(C4, C3C
−1
5 ). QED

10.7 Solution to the stability problem “in the toy model”

Let us take up the problem again. Starting from a function u on the circle,
whose integral is 0, and which is infinitely differentiable, we seek to know
whether there exists a continuous function v whose Fourier coefficients are
given for n different from 0 by

vn =
un

(exp(2iπnα)− 1)
·

Since u is infinitely differentiable, the sequence of Fourier coefficients un is
rapidly decreasing (see Box 3). The terms (exp(2iπnα)− 1) which appear in
the denominator are different from 0 but they may be arbitrarily small because
α is irrational. This is the small divisors phenomenon. These denominators
could be so small that the Fourier coefficients vn may become very big and
the Fourier series of v may diverge. Therefore, the difficulty is to know who is
winning: is it the numerator which rapidly tends to zero or the denominator
which may be very small? The answer, which the reader has already guessed,
depends on the quality of the approximation of α by the rationals.
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First of all let us assume that α satisfies a diophantine condition |α−p/q| >
C/qr (see Box 4). Let us note that |(exp(2iπnα)− 1)| is nothing else than the
euclidian distance between the points 1 and exp(2iπnα) on the unit circle in
the complex plane. Since the length of a chord is bigger than 2/π times the
length of the arc which subtends it, we may write that | exp(2iπnα) − 1| is
2/π times bigger than the length of the circular arc joining 1 to exp(2iπnα),
i.e 2/π × 2π× the distance between nα and the closest integer p. Thus, we
obtain an estimate of the small divisor of the form:

| exp(2iπnα)− 1| > 4C/|n|r−1.

Since un is rapidly decreasing, there exists for every k a constant Ck such that
|un| < Ckn

−k. Thus, we obtain an estimate for the Fourier coefficients:

|vn| < (Ck/4C)/|n|(k−r+1).

Since this is valid for every k, the sequence vn is rapidly decreasing and hence
the Fourier series converges to an infinitely differentiable function v. In other
words, the continuous function v exists and the perturbed motion g is sta-
ble. In this case, we have obtained our justification of the Lagrange-Laplace
method, at least under the diophantine condition and in the (naive) framework
of our “toy model”.

If the rotation angle of the non-perturbed motion is diophantine, the per-
turbed motion is always stable, whatever the perturbation u (assumed to have
0 integral and to be infinitely differentiable).

What happens if α is not diophantine, e.g. if it is the Liouville num-
ber we previously defined? We may then construct unstable examples i.e.
for which the averaging method does not work. Let α = λ denote the Li-
ouville number. We know that there exists a sequence of integers pk such that
|α− pk/10k!| < 2.10−(k+1)!. Thus, for every k, we have | exp(2iπ10k!α)− 1| <
2π.2.10k!−(k+1)! = 4π.10−k.k! (this time, note that a chord is smaller than
the arc which subtends it). Let us construct a sequence un as follows. Let
u0 = 0 and un = 0 if n > 0 is not an integer of the form 10k! and
let u10k! = k.(exp(2iπ10k!α) − 1). Finally, let us define un for n < 0 by
un = u−n for n < 0. This sequence is evidently rapidly decreasing because
k.10−k.k! = k.(10k!)−k. This defines the periodic function u (with real values)
infinitely differentiable and with 0 integral. When we compute the correspond-
ing coefficients vn, we find, by their very construction, that vn = 0 if n is not
of the form 10k! and v10k! = k so that the vn’s are not bounded. Thus, there
does not exist any continuous function v whose Fourier coefficients are the
vn’s and our problem has no solution: there is no continuous function v such
that u(x) = v(x + α) − v(x). We know that this means that the perturbed
motion is not stable and that the averaging method does not apply.

The theorem of Kolmogorov-Arnold-Moser is analogous: it asserts that
the averaging principle works if the frequencies which come into play are dio-
phantine and if the perturbations are weak enough. A (slightly more) precise
statement will be given in the following lines.
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10.8 Are the irrational diophantine numbers rare
or abundant?

We are all convinced that rational numbers are rare among real numbers,
even if it took a lot of work from the mathematicians of the past to be clearly
conscious of this fact. For a contemporary mathematician, who is used to
the infinite sets à la Cantor, the explanation is easy: the rational numbers
are countable whereas the real numbers are uncountable. For this reason,
to assume that the ratio of the periods of two planets is irrational seems
reasonable and the converse has very little chance of happening.

We saw in the previous paragraph that the “rational/irrational” distinction
in celestial mechanics should better be replaced by a “non-diophantine/ dio-
phantine” one. I have already explained that the Liouville number, although
being mathematically irrational, is “physically rational” and we have just
noted that if a frequency is equal to this Liouville number, the averaging
method may fail.

Are the diophantine numbers abundant? There are essentially two possi-
ble mathematical definitions for abundance and it happens that the answer
depends on the choice of the definition:

The first possible approach is that of Lebesgue’s measure. Let us say that
a subset X of R is negligible in the sense of Lebesgue or that it has 0 Lebesgue
measure if for every ε > 0, we may find a countable collection of intervals
In ⊂ R whose sum of lengths is smaller than ε and whose union covers X . Let
us say that X ⊂ R is of full Lebesgue measure if its complement is negligible
in the sense of Lebesgue. One of the most interesting aspects of this concept
is that the union of a countable collection of negligible sets is negligible. Of
course, what is important for this theory to work is that a set cannot be both
negligible and of full measure. This is an exercise left to the reader.

The second approach is due to Baire. Let us say that a subset X of R is
meager in the sense of Baire if it is contained in a countable union of closed
sets of empty interiors. Let us say that X is residual in the sense of Baire
if its complement is meager. As with the previous definition, the countable
union of meager sets is meager (easy) and a set cannot be both meager and
residual (this is Baire’s theorem).

Which notion of abundance is best adapted to our intuition? The question
is delicate and sometimes generates violent polemics among mathematicians.
For the case we are interested in, i.e. the abundance of diophantine numbers,
the situation is caricatural.

Theorem. The set of irrational diophantine numbers is both meager in the
sense of Baire and of full Lebesgue measure.

The proofs are not difficult but they are instructive. Let us write the definition
of the set Dioph ⊂ R of diophantine numbers by using quantifiers:

Dioph = {α ∈ R | ∃r ∈ N ∃n ∈ N ∀(p, q) ∈ Z× N
� : |α− p/q| ≥ 1

nqr
}.
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Thus Dioph is a countable union indexed by r and n of closed sets which are
clearly of empty interiors: Dioph is meager in the sense of Baire.

In order to prove that Dioph is of full Lebesgue measure, let us fix a real
r > 2 and let us consider the set

Diophr = {α ∈ R | ∃C ∈ R
�
+ ∀(p, q) ∈ Z× N

� : |α− p/q| ≥ C/qr}.
It suffices to prove that Diophr is of full Lebesgue measure because Diophr ⊂
Dioph. In order to prove this, we show that its complement meets the interval
[0, 1] on a negligible set in the sense of Lebesgue (note that Dioph is invariant
under integral translations). Indeed [0, 1]\Diophr is the intersection with [0, 1]
of the following sets defined for C > 0:

NonDiophr,C =
+∞⋃

q=1

q⋃

p=0

]
p

q
− C

qr
,
p

q
− C

qr

[
.

This is a countable union of intervals whose sum of lengths is smaller than
2C

∑
q
q+1
qr . This sum converges because r > 2 and the sum is arbitrarily small

if C is small enough. Thus, by definition, NonDiophr,C is negligible and this
proves that Dioph is of full Lebesgue measure. QED

Of course, the previous statement is not mathematically contradictory but
it leaves us in an awkward situation. Which meaning will the physicist rather
give to the concept of abundance? My personal experience seems to show that
physicists do not either have any miraculous solution to suggest. I will come
back to this question in the last section but for now let us do “as if” the good
concept was that of Lebesgue.

We can therefore conclude that the set of rotation angles for which the
perturbed motion is stable is of full Lebesgue measure and we should therefore
be satisfied with this result since it covers most of the cases (but we should
not forget that if we had preferred Baire to Lebesgue, we should have had the
opposite conclusion).

10.9 A statement of the theorem
of Kolmogorov-Arnold-Moser

It is difficult to give a clear-cut statement of the KAM theorem. I will first
start by stating a precise theorem which is a special case and I will then try
to describe the general theorem, but I will need to be much fuzzier then.

Let us consider a transformation f of the cylinder R/Z × [−1, 1] defined
this time by f(x, y) = (x + y, y). Again in this case, the circles y = const
are invariant and f induces a rotation on each one of them but contrarily to
the “toy model”, the angle of this rotation depends on the circle since it is
equal to y. This map is often called a “twist” for obvious reasons. Now, let us
perturb f , i.e. we consider a map g of the form

g(x, y) = (x+ y + ε1(x, y), y + ε2(x, y)).
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As a matter of fact, we ask that g maps the cylinder to itself, i.e. that
ε2(x,±1) = 0 identically. We also assume that g preserves the area, i.e. that
its jacobian is identically equal to 1. Let us fix an irrational number α in the
interval [−1,+1] and let us suppose that it is diophantine. The KAM theo-
rem asserts that if ε1, ε2 are small enough, then there exists a curve which is
invariant by g, close to the curve y = α, and on which the dynamics of g is
conjugate to a rotation of angle α.

We must first give a meaning to “ε1, ε2 small enough”. The initial theorem
was formulated in 1954 by Kolmogorov in the space of real analytic functions
and it is with respect to this (exotic) topology that we may understand the
smallness [Kol54]. Kolmogorov only gave global indications on the proof and
it is Arnold who gave the rigorous proof of this theorem in 1961, still in the an-
alytical case [Arn63a]. In 1962, Moser succeeded in accomplishing the feat of
proving the theorem in the space of infinitely differentiable functions [Mos62].
In fact, Moser used functions which are 333 times differentiable and the topol-
ogy of uniform convergence on these 333 derivatives... The mere fact that it is
necessary to use as many derivatives shows the difficulty of the proof. Nowa-
days, it is known that the theorem is true with 4 derivatives and false with
3 [Her86].

I have to give up the idea of giving even a sketch of a proof of the the-
orem. I would simply like to explain that, contrarily to the toy model case,
this is a nonlinear problem in the (infinite dimensional) space of curves. The
linearization of this problem essentially leads to the problem we have already
discussed. To switch from a nonlinear problem to a linear problem, the math-
ematician uses the implicit function theorem, which is correct in a Banach
space but false in the Fréchet spaces which occur here. This is why this the-
orem requires quite formidable techniques of functional analysis (see about
this point in the second part of [Her86]).

Each diophantine number α has a corresponding neighborhood in which
the theorem applies. The more diophantine α is, i.e. the more difficulties
it encounters to be approximated by rationals and the more the invariant
circle of angle α is robust under the effect of the perturbation. Thus, given
a perturbation (ε1, ε2), we cannot apply the theorem to every diophantine
number. Typically, given the perturbation, some invariant circles remain and
the others “break down”. Furthermore, the theorem warrants that for a small
enough perturbation, the Lebesgue measure of the set of circles which remain
is arbitrarily close to the full measure. Thus, we may say that if we perturb
f a little, there is every chance that an orbit remains located on a circle and
be almost periodic. The situation in the so-called instability zone, outside
these invariant circles, is very complicated: a lot of problems remain open and
research keeps being very active.

What is the link between this theorem and celestial mechanics? Let us
consider the restricted three-body problem: two masses revolve one around the
other in a Keplerian way and a third infinitely small mass orbits in the same
plane. This third mass is attracted by the two others but does not perturb
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them. In order to describe the dynamics of the third mass, we introduce the
phase space: two position coordinates and two velocity coordinates are needed,
which gives a space of dimension 4. The conservation of total energy forces the
third object to stay in a 3-dimensional submanifold. So, we have to study the
dynamics of a vector field in a certain 3-dimensional manifold. For this purpose
one can use the method of Poincaré’s sections which consists in studying the
successive returns of the orbit on a surface transverse to the vector field. This
leads to iterate a transformation in dimension 2 of the type we previously
considered. Without any detail, the KAM theorem we have cited allows to
prove the stability of the system formed by these three bodies. Many more
pages, formulae and pictures would be needed to justify this point.

When we consider a “real” solar system, with many planets, the phase
space and Poincaré’s sections are of higher dimension, and the invariant circles
need to be replaced by invariant tori of higher dimensions. This complicates
the statement of the theorem but the spirit remains the same: these invariant
tori resist the perturbations if the frequency ratios in the initial system are
diophantine enough. The general KAM theorem deals with this case.

Thus, the “physical” consequence of KAM is the following. If we launch
a system of planets of small enough masses around a Sun of big mass in
initial conditions which are close to that of a Keplerian system, the dynamics
which will result from this will be almost periodic, at least for a set of initial
conditions whose Lebesgue measure becomes fuller and fuller as the masses
of the planets tend to 0. Outside this set of initial conditions, the theorem
does not say anything, apart from the fact that they are rare (in the sense of
Lebesgue measure).

This is the reason why our solar system “stands a good chance of being
almost periodic”...

10.10 Is the KAM theorem useful in our solar system?

The KAM theorem and its proof are magnificent. From a certain view point,
this may suffice to the mathematician. I have no intention of debating here in
a few lines of the complex relationship between mathematics and physics but
the KAM example could undoubtedly be used as a starting point.

Originating from Physics, the problem has generated a whole branch of
mathematics which perfectly suffices to itself and which also generates some
other problems which are often totally without any physical content. But it
seems to me that even the “purest” mathematician has the duty to go back
to the initial problem: has it been solved? Here are some elements of answer:

The KAM theorem applies in the case of “small enough” masses. If we
closely study the proof we realize that it applies to very small masses, smaller
by several orders of magnitude than what is observed in our solar system. It
would clearly be useful to obtain efficient and effective versions of KAM, let
us say for masses 1/1000 times the mass of the Sun. We are still very far away
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from this and, unfortunately, few colleagues find this mathematical issue to
be fascinating.

The forces which act in the solar system are mostly gravitational but other
forces are non-hamiltonian (e.g. the solar wind can “slow down” the planets).
After several hundred thousands years, the effects are perhaps not negligible
and the KAM theorem cannot help us to understand the situation. Indeed, is
there an interest other than philosophical or mathematical to prove that the
“theoretical” (= hamiltonian) solar system is stable or instable? The physicist
wants to understand the situation for the near future (let us say that a few
billion years would suffice him).

The union of the invariant tori given by the theorem has a large Lebesgue
measure but it has an empty interior. Which is the good abundance concept in
physics? As I have already explained earlier, mathematicians cannot answer
this question and physicists have to show them the way.

Experience shows that many frequencies encountered in the solar system
seem to be very rational. The following example, taken from [Bel86], is really
impressive. Let us consider the angular frequencies ωobsi (i = 1, ..., 9) of the 9
planets (measured in such a unit that the frequency of Jupiter equals 1). It
turns out that when we modify very slightly these values, we can find “theoret-
ical” frequencies ωti which are exactly linked together with integral linear rela-
tions: the following table exhibits a 9×9 matrix with small integer entries, with
a lot of zeros, which exactly anihilates the vector of theoretical frequencies.
Note that the discrepancies Δω/ω = (ωobs − ωt)/ω are extremely small.

Planet ωobsi ωti Δω/ω n1 n2 n3 n4 n5 n6 n7 n8 n9

1 Mercury 49.22 49.20 0.0004 1 –1 –2 –1 0 0 0 0 0
2 Venus 19.29 19.26 0.0015 0 1 0 –3 0 –1 0 0 0
3 Earth 11.862 11.828 0.0031 0 0 1 –2 1 –1 1 0 0
4 Mars 6.306 6.287 0.0031 0 0 0 1 –6 0 –2 0 0
5 Jupiter 1.000 1.000 0.0000 0 0 0 0 2 –5 0 0 0
6 Saturn 0.4027 0.4000 0.0068 0 0 0 0 1 0 –7 0 0
7 Uranus 0.14119 0.14286 –0.0118 0 0 0 0 0 0 1 –2 0
8 Neptune 0.07197 0.07143 0.0075 0 0 0 0 0 0 1 0 –3
9 Pluto 0.04750 0.04762 –0.0025 0 0 0 0 0 1 0 –5 1

The book [Bel86] contains a very interesting paragraph on these resonances
which are observed in our solar system. It contains in particular a discussion on
the “hypothesis of Moltchanov” according to which “every oscillatory system
having been subject to an extended evolution is necessarily in resonance and
is governed by a family of integers”. Thus, for Moltchanov, the small non-
hamiltonian forces keep the systems away from the diophantine frequencies
and push them in the zone where the KAM theorem does not apply... It seems
to me that justifying or invalidating this hypothesis remains a magnificent
challenge for today’s mathematicians.
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l’anneau. Astérique, 144 (1986)

[Kol41] Kolmogorov, A.N.: The local structure of turbulence in incompressible
viscous fluid for every large Reynold’s numbers. C. R. (Dokl.) USSR Sci.
Acad., 30, 301–305 (1941)

[Kol54] Kolmogorov, A.N.: General theory of dynamical systems and classical me-
chanics. In: Proceedings of the International Congress of Mathematicians,
Amsterdam, 1954. Erven P. Noordhoff N.V., Groningen (1957)

[Kör89] Körner, T.: Fourier analysis. Cambridge University Press, Cambridge
(1989)

[Mos62] Moser, J.: On invariant curves of area-preserving mappings of an annulus.
Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II, 1–20 (1962)

[Niv56] Niven, I.: Irrational numbers. The Carus Mathematical Monographs,
no 11. The Mathematical Association of America. Distributed by John
Wiley and Sons, Inc., New York (1956)

[Pet93] Peterson, I.: Newton’s Clock: Chaos in the Solar System. W. H. Freeman
& Co, N.Y. (1993)
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