
Appendix E - Riemannian Foliations: Examples and Problems

by Etienne GAYS

The object of this appendix is to present, via some examples, a
certain number of open problems which seem to us to be interesting.

1. How to construct Riemannian foliations.

The general theory of Riemannian foliations clearly shows the
crucial role played by Lie foliations. For this reason we will concen­
trate essentially on these Lie foliations.

The following is an extremely general method of construction.
Let G and H be two simply connected Lie groups and let
D : H - G be a surjective morphism. Suppose that H contains a
uniform discrete subgroup f. The foliation of H by the fibers of D
is clearly invariant by right translations by the elements of f so that
the compact manifold H If is equipped with a natural foliation. This
is a Lie G -foliation whose developing map is precisely D and for
which the holcnomy morphism h : 1rl(H If) == f - G is the restric­
tion of D to f.

This type of construction can sometimes be modified. For ex­
ample, let K be a compact subgroup contained in D -l(e). Then the
left action of K on H If preserves the leaves of the foliation that
we have constructed. If this action is free, then one obtains a Lie G­
foliation in the manifold K \H If.

The Lie foliations constructed by this type of method will be
called "homogeneous foliations".

We now give some concrete examples.

1.1 : "N ilpotent" foliations.

Let G be a simply connected nilpotent Lie group and let
f C G be a finitely generated dense subgroup. In this case Malcev's
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theory [RagJ enables one to construct a simply connected nilpotent Lie
group H, an imbedding i of f into H and a surjective morphism
D : H -- G such that :

1) i(f) is discrete and uniform in H.

2) D 0 i = wI"
So one has :

Proposition IH aJ4 : Every dense finitely generated subgroup of a

simply connected nilpotent Lie group G can be considered as
the holonomy group of a Lie G -foliation on a compact mani­
fold.

1.2 : "Solvable" foliations.

We will just give an example, due to A.Haefliger. Consider the
Lie group GA, of affine orientation preserving bijections of R, which

we identity with the group of matrices (~ ~) [a > OJ. This group

is a semi-direct product :

*0-- R -- GA -- R+ -- 1

It's the simplest example of solvable Lie group that isn't nilpotent.
Let k be anumber field, let A be its ring of integers and let

U be the group of units of A. Suppose that k verifies the following
conditions :
i) k is totally real, i.e., every imbedding of k in C has its image
contained in R. Let i : k -- R be one of these imbeddings.
ii) If u is a unit of U such that i (u) > 0, then all of the conju­
gates u' of u verify i(u') > O.

Under these conditions, A , as an additive group, is isomorphic
to Zn, where n is the degree of k over Q. Moreover, the group
of units u such that i(u) > 0 is isomorphic to Zn - 1 [see, for ex­
ample [SamJJ.

By considering the action of U on A, one can construct a
group f which is a semi-direct product :

0-- Zn __ f __ Zn -1 __ O.

Conditions i) and ii) enable one to "tensorize" this expression by R,



- 299 -

that is, to construct a Lie group H :

0.. Rn .. H .. Rn
- 1.. O.

This group H naturally contains f as a uniform discrete subgroup.
Furthermore, given an imbedding i of k in R, one can imbed f
in GA. This imbedding can, in its turn, be tensorized by R. One
thus obtains a surjective morphism D from H onto GA.

So we have constructed a homogeneous Lie GA -foliation on
H If. This manifold H If is a T li -bundle over the torus Tn - 1
The leaves are dense as soon as n <::: 3. When n = 2, one rediscov­
ers the Lie flows described in Appendix A.

1.3 : "Semi-simple" foliations.

Here again, we will just give an example. Consider the group
H =PSL (2, R) x PSL (2, R). A theorem of A.Borel [see [Bor]]
states that H, like any semi-simple group, admits a discrete uniform
subgroup f. We may assume that f is irreducible, that is, that the
projections of r into each of the two factors of H are dense. By
considering the group G = PSL (2, R) and the projection
D : H .. G onto the second factor, one obtains a Lie PSL (2, R)­
foliation with dense leaves on the compact 6-dimensional manifold
PSL (2, R) x PSL (2, R) I r.

In this case, one can assume as well that f is torsion free,
which ensures that the action of r on

(SO (2) \ PSL (2, R» x (SO (2) \ PSL (2, R»

is proper and has no fixed point. By observing that the homogeneous
space SO (2) \ PSL (2, R) is the Poincare disc, one thus obtains ex­
amples of Riemannian foliations [which in fact are transversally hyper­
bolic] on compact 4-manifolds.

1.3 : "C ompact" foliations.

The case where G is compact is somewhat different from the
general case in that here one has another general m<:,thod of construc­
tion. Let B be an arbitrary compact manifold, let B be its universal
covering and let h: 'll"l(B) .. G be an arbitrary homomorphism.

One can then "suspend" h, that is, one can consider the quotient of
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B x G by the obvious diagonal action of 'IT 1(B). This produces a

compact manifold which is a principal G -bundle over B, equipped
with a Lie G -foliation transverse to the fibers.

An interesting example of this construction is given by
A.Connes [Cn]. If B is a compact orientable surface of genus 2,
then it is possible to show that 'lTl(B) injects into SO (3, R). In this

way, one obtains a Lie SO (3, R)-foliation whose leaves are all simply
connected [diffeomorphic to R2]. The interest of this example, in the
theory of A.Connes, comes from the fact that, although the leaves are
contractible, one is lead to consider that the "average first Betti
number" of the leaves is non-zero.

2. Towards a classification of Lie foliations?

It would seem unreasonable to hope to completely classify Lie
foliations with dense leaves. However a "weak" classification is con­
ceivable and that is what we would like to explain in this section.

Let F be a Lie G -foliation with dense leaves on a compact
manifold M. If N is a compact manifold and if f : N ... M is a
smooth mapping that is transverse to F, then it is clear that f *F is
also a Lie G -foliation. Following A.Haefliger [Ha]4' we will say that

(M ,F) is a classifying space for the pair (G, f) if, conversely, for
every Lie G -foliation F' with holonomy group f on a compact
manifold N, there exists f : N ... M such that f *F = F'.

The following result characterizes the classifying spaces.

Theorem. (HaJ4 : Let F be a Lie G -foliation with holonomy

group f on a compact manifold M. Then F is a classifying
space for the pair (G, f) if and only if the leaves of F are all
contractible.

We have already observed that compact groups behave
differently. For convenience, let us say that a Lie group has no com­
pact factor if the quotient of G by its radical is a semi-simple group
having no compact factor.

The following would be an optimistic conjecture for a "weak"
classification of Lie foliations :
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Conjecture 1 : Let G be a simply connected Lie group having
no compact factor. Let F be a Lie G -foliation with holonomy
group reG with dense leaves on a compact manifold N. Is
it true that there exists a homogeneous Lie foliation which is a
classifying space for the pair (G, f) ?

A positive answer to this question would therefore show that
the only Lie foliations with dense leaves are the homogeneous folia­
tions and their inverse images by smooth maps.

A certain number of results suggest that the answer to this
question may be yes.

Proposition: Conjecture 1 is true if G is nilpotent.

Indeed, for each dense finitely generated subgroup of G, we
constructed above a homogeneous foliation with holonomy r. It is
easy to see that the leaves of this homogeneous foliation are
diffeomorphic to a simply connected nilpotent group and are therefore
contractible.

Discrete uniform subgroups of Lie groups often have strong ar­
ithmetic properties. If conjecture 1 is true, then one could expect that
these arithmetic properties would be reflected in the holonomy groups
of Lie foliations with dense leaves. There are a few results that run in
this direction. The first one treats the case where G = GA .

Theorem [GhJ4 : Let r C GA be the holonomy group of a Lie

GA -fOliation[=oin :1icjompact manifold. If r is generated by the

matrices [i = 1, 2, ... , N], then the 2N real

numbers at, ... , aN' bi"'" bN are algebraically dependent over

the rational numbers.

One can find in [Gh]4 another result related to conjecture 1

which concerns the cohomological dimension of r.
But the most encouraging result in favour of conjecture 1 is cer­

tainly that of R.Zimmer. It is still only a partial answer since it deals
with foliations whose leaves are symmetric spaces, which is obviously
a strong restriction. Nevertheless, it is the first general arithmetic
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result known for holonomy groups, We state it in our own language:

Theorem [ZiJ2 : Let F be Lie G -foliation with holonomy

group f on a compact manifold M. Suppose that the leaves
are dense and simply connected. As well, suppose that there
exists a bundle-like metric on M for which the leaves of F

are locally symmetric spaces, with non-positive curvature,
whose irreducible factors have rank at least 2. Then G is
semi-simple and the pair (G, f) admits a classifying space
which is a homogeneous foliation.

To finish this section, we would like to stress the fact that
knowledge of the existence of a classifying space is an important piece
of information which leads, in certain cases, to a complete understand­
ing of the foliation. Here is an example of an application of this
method.

Theorem Let F be Lie G -flow with holonomy group
f C G on a compact manifold M. If G is nilpotent then F

is conjugated to a homogeneous flow on a homogeneous space
O/f where H is nilpotent.

Sketch of the Proof: If the leaves of F are compact, then F
is a circle bundle over a quotient G If and the theorem is easy to
prove.

Otherwise, the leaves of F are all diffeomorphic to R and are
therefore contractible. So (M, F) is a classifying space for the pair
(G, f). Furthermore, we have seen that in the nilpotent case one can
construct a homogeneous foliation F' on H If which is also a classi­
fying space for (G, f). So there exists a homotopy equivalence
f : M - H If such that f"'F' = F. In particular, the dimension of
H is equal to that Qf M and F' also has dimension 1. Parametrize
F by a flow <1't and F by a flow I/It . Then there exists a function
u : H I f x R - R such that :

f(<I>t(x» = I/Iu(x,t)(f(x».

The map f may not be a diffeomorphism. This comes from the fact
that, x being fixed, the map t - u (x , t) may not be monotonic.
So we modify f along the orbits in order to make it injective by us-
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ing the averaging technique. Let a: a ... a be a function with com­
pact support and integral 1. Then set:

where
1 + 00

v(x) =T I u(x, t)fJ(Tt)dt.
- 00

It is easy to see that, for

sufficiently large T, f T is a diffeomorphism sending F to F'. For

more details the reader may consult [Ghh where a similar situation is

considered.

In the previous theorem, the fact that F has dimension 1 was only
used in order to "smoothen" f along the leaves. It would seem in­
teresting to ask whether such a "smoothing" is possible in higher di­
mension.

Problem : Let F 1 and F 2 be two Lie G -foliations with the

same holonomy group on a compact manifolds. Suppose that
the leaves of F 1 and F 2 are diffeomorphic to an. Then
does there exist a diffeomorphism sending F 1 to F 2 ?

This problem generalizes a well known problem concerning
non-singular closed forms on tori [the case where G = an]. Let WI
and w2 be two non-singular closed forms on the torus Tn + 1 and

suppose that they belong to the same cohomology class. Suppose as
well that the period groups of the two forms have rank n + lover
Q. Then are the forms WI and w2 conjugated? [See [SkI for a dis­

cussion of this problem].

3. Deformations of Riemannian foliations.

Since the structure of Riemannian foliations is now quite well
known, it is natural to study the structure of the space of Riemannian
foliations on a given manifold. More precisely, the problem that we
will consider in this section is the following. Given a Riemannian foli­
ation, is it possible to describe, up to differentiable conjugation, all the
Riemannian foliations which are close to it ?

We begin again with the simple case of Lie foliations. Let G
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be a Lie group and let F 0 be a Lie G -foliation on the compact mani­

fold M. If x 0 is a base point of M, one can define without am bi­

guity the holonomy representation h o : 'li1(M ,xo) - G. If F 1 is

another Lie G -foliation on M, we will say that F 1 is close to F 0 if

there exists an open covering (U j ) of M such that on each U j the

foliations F 0 and Flare defined by submersions that are close to

one another, from U
j
to an open subset of G. It is clear that the

holonomy hI: 'li1(M, x o) - G of F 1 is then close to h o' in the
following obvious sense : on a finite system of generators {'Y1"'" 'Y n}

of 'lil(M,x O)' the images hob) and hlb) are close in G.
The following result generalizes that of Moser [when G = R

see [Mos]]. It is well kown by the experts, though to our knowledge
the proof hasn't been published. One has an "intuitive" proof in

[Thuh-

"Moser-type" Theorem: If hI: 'lil(M ,xo) - G is a homomor­

phism close to h 0' then there exists a Lie G -foliation F 1 that

is close to F 0 and which has holonomy hI'

If F 1 is a Lie G -foliation close to F 0' then there exists a

diffeomorphism close to the identity that conjugates F 0 and

F 1 [as Lie foliations] if and only if there exists g in G, close

to the identity, such that h o = gh 1g -1.

Consider the space of homomorphisms from 'li l(M , x 0) to

G. Since 'li1(M, xo) is finitely presented, this space is an analytic
subset of the cartesian product G n

. Let S be the germ of this ana­
lytic set in a neighborhood of ho' The first part of the above theorem
can then be expressed in the following manner: there exists a family
of Lie G -foliations Fs ' parametrized by s E S , such that the holono­

my of Fs is precisely s. As for the second part of the theorem, it

can be expressed in the following manner: let H A be a family of Lie

G -foliations parametrized by 1\ E A, with H 0 = F 0 [A is a "reason­

able" space of parameters, for example the germ at 0 of an analytic
subset of Rm]. Then there exists a map q,: A - S such that H A

is conjugated to F ~(A) by a diffeomorphism of M which depends
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smoothly on X. We will express this fact by saying that the family

(Fs)s E S is a "versa! deformation" of Fo'
In the general case of Riemannian foliations, we are lead to in­

troduce the following definitions. We intentionally formulate them in
a vague fashion, some minor changes being certainly possible.

Definitions: Let F be a Riemannian foliation on a compact
manifold M and let 5 be a germ at 0 of an analytic subset of Rm .
Then a "deformation" of F indexed by 5 is a family of Riemannian
foliations Fs indexed by (5,0) which depends smoothly on sand

for which F 0 =F .

If Fs and H s are two deformations of F 0 = H 0' indexed by

(S, 0), then we say that these deformations are "equivalent" if there
exists a family of diffeomorphisms (<I>s)s E S such that <1>0 = id and
<I> *F = H .s s s

Let F 0 be a deformation of F indexed by (5, 0) and let

(T ,0) be another germ of an analytic set. If u : (T , 0).... (S, 0) is
a smooth map, the deformation H t defined by H t = Fu(t) is the

"deformation induced" from Fs by u.

A deformation (FJ of F indexed by (S, 0) is "versal" if

every other deformation indexed by (T, 0) is induced by Fs by

some mapping u : (T , 0).... (S, 0).

Conjecture 2 : Every Riemannian foliation on a compact mani­
fold admits a versal deformation.

In intuitive terms, this conjecture can be expressed in the fol­
lowing manner: the conjugation classes of Riemannian foliations close
to a given Riemannian foliation depend only a finite number of param­
eters.

For example, the classification of Riemannian flows in dimen­
sion 3 and 4 [see Appendix A] is so precise that it effectively shows
that these flows are described by a finite number of parameters. The
proof of conjecture 2 for the case of Riemannian flows in arbitrary di­
mension shouldn't in fact pose any major problems.

Here are some of the difficulties that one meets while trying to
prove this conjecture.
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Let H be a Lie group which possesses a discrete uniform sub­
group f. Let Go: be a Lie subgroup that is normal in H and

depends on one parameter a. Then the manifold H If is furnished
with a one parameter smooth family of Lie foliations F correspond-

0:

ing to the left cosets of Go: in H. The foliation F 0: is a Lie

H IG a-foliation. The family of Lie groups H IG a is a continuous

family of Lie groups in the sense that their Lie algebras can be defined
by structure constants that depend continuously on a. In certain
cases this family may be non-trivial, that is, the groups H IG a may

not be pair-wise isomorphic. So, in short, when a Lie foliation de­
forms, its structure group may also deform. Here is an example of
this situation. The group H will be the nilpotent group whose Lie
algebra h is generated by X, Y , Z ,T with the following relations :

{
[X, Y] = Z

Z and T are in the center of h.

The group G a is the one parameter group generated by Z + aT.

The reader can easily verify that H IG 0 is Abelian [it is isomorphic to

R
3
] and if a * 0, H IG a isn't Abelian [it is isomorphic to the

Heisenberg group of dimension 3].
This suggests that a proof of the conjecture should incorporate

two ingredients : the Moser theorem cited above and the theory, now
well developed, of deformations of Lie algebras. Of course, such an
approach requires a reduction of the families of Riemannian foliations
to families of Lie foliations.

Problem : Develop a structure theory for deformations of
Riemannian foliations. For example, let {F.Jf E S be a defor­

mation of the transversally parallelizable foliation F 0 through

transversally parallelizable foliations parametrized by the germ
of an analytic set S. Does there exist a family {~s}s E S of
diffeomorphisms and a fibration 'TT : M .. B such that:
1) the leaves of ~s*Fs are contained in the fibers of 'TT

2) the restriction of ~s*Fs to a fiber of 'TT is a Lie Gs­

foliation where Gs is a deformation of Lie groups.
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To finish this section, note that if the ambient manifold is simply con­
nected, then the structure of its Riemannian foliations is extremely
simpIe [see [Ghh]. In particular, the structure group is necessarily
Abelian [see Chapter 5]. This would suggest that conjecture 2 is prob­
ably easier to prove i!) this case.

4. Cobordism of Riemannian foliations.

Let us recall that A.Haefliger was lead to generalize the notion
of a foliation. If X is a topological space, then a I' -structure of codi­
mension q on X is given by a covering (Vi) of X, continuous

maps f i : Vi'" Rq and diffeomorphisms q,ij of class Crz>, for which

f j = q,ij 0 f i and for which the obvious cocycle condition is verified.

In the same way, one can define Lie I' -structures, Riemannian 1'­
structures, etc... Two I'-structures on X are said to be concordant if
there exists a I'-structure on X x [0, 1] which induces the given
r-structures on X x {O} and X x {I}. A.Haefliger constructed a
classifying space B r q such that, for all [reasonable] X, the homoto­
py classes of maps of X into B r q are in one to one correspondance
with the concordance classes of I' -structures on X. In the same way,
one obtains a Riemannian classifying space B I'3ie and, if G is a Lie

group, a classifying space for the Lie _I' -structures modelled on G.
Let this latter space be denoted by BG [this space is different from
Milnor's classifying space BG]. For technical reasons, one is lead to

consider the classifying spaces B fq and B f: ie of I'-structures

whose normal bundles are trivialized. Notice that a Lie I'~structure
has a normal bundle which is canonically trivialized, so that, by forget­
ting structure, one has homotopy classes of maps :

- -q -q
BG ... B r Rie ... B r .

The interest of the spaces B r q has become even more obvi­
ous because of the work of W.Thurston. If X is a manifold,
W.Thurston gives an explicit and concrete conditio!) for a given r­
structure to be concordant to an actual [non-singular] foliation. The
cohomology [and homotopy] of B r q is not known; it is clear that its
knowledge would be of fundamental importance for the homotopic
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classification of foliations. Nevertheless, a small [?] part of the coho­
mology of B r q is known ; this is the continous cohomology. This
leads to the theory of secondary characteristic classes of foliations.
These classes are constructed by comparing two connections adapted
to the foliation: a 80tt connection and a Riemannian connection. For
example, the secondary characteristic classes of a Riemannian foliation
with trivial normal bundle are all zero. For all these notions, the
reader may consult [Law], for example.

The problem that we consider here is to explain the vanishing
of the characteristic classes in the following way.

Conjecture 3 The natural map B r Rie - B r is homotopically

trivial.

For example, this conjecture would imply that if F is a
Riemannian foliation with trivial normal bundle, then the foliation F
is concordant to the trivial r -structure [by a non-Riemannian concor­
dance, of course].

As in the general theory, one can beg~ by considering the case
of Lie foliations. The classifying space BG can be described in a
more direct manner. Let BG 8 be the Ellenberg-McLane space
K (G, 1). The fundamental group of BG

8
, Le. G, acts on G by

translations. So one can consider the associated G -bundle BG l) IX G
over BG l) This space is equipped with a "horizontal Lie G -foliation"
transverse to the fibers of the principal G -bundle. It turns out that
this total space BG l) IX G , furnis~ed with this ''horizontal foliation", is
precisely the classifying space BG [see [Ha]4]' When G is contracti-

- l)
ble, BG therefore has the same homotopy type as BG . A special
case of conjecture 3 is then :

Conjecture 3' : Let G be a Lie group of dimension q. Then

the natural map BG - B rq is homotopically trivial.
This conjecture can indeed be proven in certain cases. If G

has dimension q, we will say that G has property C) if there exists
an action of G of class COO on Rq having the following properties:

1) the action is trivial on a non-empty open subset of Rq

2) there exists a point of Rq whose stabilizer is trivial.
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For example, G = R verifies (*). Indeed, it suffices to consid­
er a flow on R whose fixed point set contains a proper open subset of
R. In the same way, G = Rq verifies (*). It would seem that nilpo­
tent groups verify (*) [by a remark of P.Greenberg].

The interest of this notion comes from the following result
which is nothing more than a generalization of a method used by
T.Tsuboi in [Ts].

Theorem: Let G be a q-dimensional contractible Lie group
verifying (*). Then the natural map BG ... B fq is homotopi­
cally trivial.

Sketch of the Proof: Since G acts on Rq
, one can construct,

by suspension, a Rq -bundle E over BG 8. This space is equipped
with a "horizontal" r -structure P. Let s be a section of E. If the
image of s is contained in the open set where the action of G is
trivial, then s *p is obviously a trivial r -structure on BG a. Let
m E Rq be a point of Rq whose stabilizer is trivial. Then the orbit
of m is diffeomorphic to G and, via this diffeomorphism, the action
of G on the orbit of m coincides with the left action of G on it­
self. So if the image of s is contained in the [open] orbit of m, then
s *p is conjugated to the universal Lie r -structure on
BG 8 == BG. Since two arbitrary sections are homotopic, one deduces
that this universal Lie structure is concordant to the trivial r -structure
on BG.

To finish this section, let us remark once again that the case of
Riemannian foliations on simply connected manifolds is probably the
simplest case. This follows from the fact the structural group is Abeli­
an and therefore verifies condition (*).

5. "Qualitative Riemannian foliations.

Riemannian foliations are those for which two leaves "don't
separate too much" one from the other. To formulate this notion, one
is lead to introduce bundle-like metrics, which use all the arsenal of
differential geometry. In this section, we want to raise the following
question: is it necessary to introduce differential geometry in order to
develop the theory, or can one instead consider the theory in terms of
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topological dynamics ?
To formalize this question, we introduce a definition. Let

(X, d) be a reasonable metric space [for example, a locally compact
locally connected space of finite topological dimension]. Let
H 1 = {h 1 ' ... , hn } be a finite collection of homeomorphisms between

open sets of X. We will say that the pseudogroup H generated by
H 1 is equicontinuous if, for all £ > 0, there exists 1) > 0 such that
if x and yare two points of X such that d(x, y) < 1) then
d(h (x), h (y» < £ for all h E H whose domain contains x and
y.

If E is a compact metric space, then a "foliation" is a covering
of E by open sets V j that are homeomorphic to a product L j X T j

such that the "coordinate changes" preserve the "plaques" L
j
x {*}.

Such a foliation obviously possesses a transverse pseudogroup. We
will say that the foliation is equicontinuous if its transverse pseudo­
group is equicontinuous. A Riemannian foliation is a trivial example
of an equicontinuous foliation. A foliation which is topologically con­
jugated to a Riemannian foliation is also equicontinuous even though
it may not be Riemannian. For example, a codimension1 foliation of
class C 2 having trivial holonomy is topologically conjugated to a folia­
tion that is defined by a closed form [hence Riemannian] [see [He­

Hill·
Problem : Is it possible to develop a qualitative theory of
equicontinuous foliations analogous to that of Riemannian folia­
tions? For example, do the leaf closures also define a partition
of the ambient space ?

Here are two examples of analogous situations where such a
theory is possible. If tf>t is a flow on a compact metric space E, we

will say that tf>t is equicontinuous if the family of homeomorphisms
{tf>t}t E R is equicontinuous. This notion is very close to Lyapounov's

notion of stability. The following theorem is well known [see [Ne­
Snll. The reader will notice its analogy with the general structure
theorem for Riemannian flows.
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Theorem [Ne-Sn]: Let <1>, be an equicontinuous flow on a

compact metric space. Then the closures of the orbits of <1>,

define a partition of E. Each of these closures is
homeomorphic to a compact Abelian topological group on
which <1>, acts as a one parameter group.

Sketch of the Proof: Let x E E. On the orbit of x, one has
a natural group structure ole given by <1>, (x) ole <1>, (x) = <1>, +' (x).

1 2 1 2

The equicontinuity of <1>, implies that this group operation can be ex-

tended to the closure of the orbit of x.

This immediately suggests the following question which general-
izes the theorem of Caron-Carriere [Appendix A].

Problem : Let <1>, be a flow without fixed points on a compact

metric space. Suppose that the i-dimensional foliation generat­
ed by <1>, is equicontinuous. Then is it true that the closure of

an orbit of <1>, is homeomorphic to a compact Abelian topolog­

ical group?

Another motivation for the general problem of this section is
the following remark. In a certain sense, the general structure
theorem for Riemannian foliations is a generalization of the well
known fact that the group of isometries of a Riemannian manifold is a
Lie group. This situation is actually much more general because of the
following theorem which follows immediately from the solution of
Hilbert's 5,h problem.

Theorem: Let (E, d) be a compact connected locally connect­
ed finite dimensional metric space. Let r be a group of
homeomorphisms of E acting equicontinuously on E and
having a dense orbit. Then the action of r extends to an ac­
tion of compact Lie group containing r.

Sketch of the Proof: By Ascoli's theorem, the closure of r
in the space of continuous maps from E to itself is a compact topo­
logical group G. By considering the metric d' on E defined by

d'(x,y) =Supd('yx, ,,/y),
"Y
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one sees that G is a subgroup of the group of isometries of (E, d ').
The theorem then follows from the fact that this group of isometries is
a compact Lie group [see [Mon-Z]].
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