Invent. math. 126, 281-286 (1996)

Inventiones mathematicae © Springer-Verlag 1996

On transversely holomorphic flows II

Étienne Ghys

École Normale Supérieure de Lyon, UMR 128, CNRS, 46, Allée d'Italie, F-69364 Lyon Cedex 07, France; e-mail: ghys@umpa.ens-lyon.fr

Oblatum 26-IX-1995 & 6-II-1996

1 Introduction

This paper is a complement to the preceding one by Marco Brunella [2]. Our purpose is to complete the classification of transversely holomorphic flows on closed 3-manifolds, avoiding the "rationality" assumption made in [2]. The main tool is still the existence of a harmonic atlas established by M. Brunella and we shall only add some simple ideas coming from the theory of complex surfaces.

We follow the notations of [2]. As a matter of fact, our main result is the following:

Theorem 1.1 Let \mathscr{L} be an orientable transversely holomorphic foliation on a closed connected 3-manifold M. Assume that $H^2(M; \mathcal{O}) \neq 0$ where \mathcal{O} denotes the sheaf of germs of functions which are constant along the leaves and holomorphic in the transverse direction. Then, \mathscr{L} is riemannian, i.e. there is a riemannian metric on the normal bundle which is invariant under holonomy.

Theorem 1 in [2] gives a complete description of the situation on closed 3-manifolds for which $H^2(M; \mathcal{O}) = 0$. On the other hand, Y. Carrière obtained in [3] a classification of riemannian foliations in dimension 3. Therefore, the association of Theorem 1.1. and Brunella's result gives a classification: the only transversely holomorphic foliations on closed orientable connected 3-manifolds are examples 1) to 6) described in [2].

I would like to thank Yves Carrière: I had the pleasure to make with him the first attempts to classify these objects. As the reader will notice, the main ideas are contained in Brunella's paper; I wish to thank him for communicating these ideas to me. We fix a transversely holomorphic orientable foliation \mathscr{L} on a connected closed 3-manifold M. We first give a very simple criterium which guarantees that the foliation is riemannian. We say that a differential form of degree 1, with complex values, is a *basic holomorphic* 1-form if it is locally the pullback of a holomorphic 1-form by the projection on a local leaf space.

Lemma 2.1 If there exists a non trivial basic holomorphic. 1-form, then \mathscr{L} is riemannian.

Proof. Let ω be a basic holomorphic 1-form and assume first that ω has no singularity. We can define a hermitian metric g on the normal bundle (of complex dimension 1) in such a way that the length of a vector v is the modulus of $\omega(v)$. Since ω is basic, the same is true for g, i.e. \mathscr{L} is riemannian.

In general, the singular locus of ω is transversely isolated, i.e. is a finite union of compact leaves L_1, \ldots, L_n of \mathscr{L} (which are of course circles). Again, we can construct a hermitian metric g on the normal bundle but g vanishes along these leaves L_i . Consider the holonomy h_i of the leaf L_i ; this is the germ of a holomorphic diffeomorphism in the neighborhood of a fixed point in a small transverse disc D_i . By choosing a suitable local coordinate in D_i , we can assume that the restriction of ω to D_i is $z^k dz$ for some integer k > 0in the neighborhood of 0. The invariance condition of ω by h_i means that $h_i^k(z)h_i'(z) = z^k$ so that $h_i^{k+1}(z) - z^{k+1}$ is a constant. Evaluating at the origin, we see that this constant vanishes so that h_i is actually the germ of a rigid rotation of finite order. Therefore, \mathscr{L} is riemannian in the neighborhood of L_i , i.e. we can find a saturated neighborhood of L_i in which \mathscr{L} admits a transverse invariant (non degenerate) metric g_i . We can now multiply g_i by a bump function depending only on the modulus of z in order to obtain a transverse invariant "metric" g'_i for \mathscr{L} which is non degenerate in the neighborhood of L_i but vanishes outside of some other tubular neighborhood of L_i . The sum of the g'_i and g is therefore everywhere non degenerate and is a transverse invariant metric. This shows that \mathscr{L} is riemannian.

Recall that M. Brunella proved the existence of a harmonic atlas. This means that there is a covering of M by a finite number of open sets U_i , whose intersections are connected and simply connected, equipped with diffeomorphisms $\Psi_i : U_i \to V_i = \Psi_i(U_i) \subset \mathbf{D} \times \mathbf{R}$ such that:

- In each U_j, the foliation ℒ is the pull-back by Ψ_j of the foliation of **D** × **R** whose leaves are the lines {★} × **R**.
- Changes of coordinates $\psi_{ij} = \psi_i \circ \psi_j^{-1}$ have the following form on their domain of definition $V_{ij} = \psi_j (U_i \cap U_j)$:

$$\psi_{ij}: (z,t) \in V_{ij} \mapsto (\phi_{ij}(z), t+h_{ij}(z)) \in V_{ji},$$

where ϕ_{ij} is holomorphic and h_{ij} is harmonic.

Let H_{ij} be a holomorphic fonction whose real part is h_{ij} . Define:

$$egin{aligned} & \widehat{V}_j \ = \ V_j imes \mathbf{R} \subset \mathbf{D} imes \mathbf{R} imes \mathbf{R} \simeq \mathbf{D} imes \mathbf{C} \ & \widehat{V}_{ij} \ = \ V_{ij} imes \mathbf{R} \subset \mathbf{D} imes \mathbf{R} imes \mathbf{R} \simeq \mathbf{D} imes \mathbf{C} \ & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & &$$

Unfortunately, the Ψ_{ij} do not necessarily define a cocycle, i.e. $\Psi_{ij} \circ \Psi_{jk}$ does not necessarily coincide with Ψ_{ik} . Therefore, we cannot in general define a complex surface X like M. Brunella in the "rational case". The main idea which will guide our discussion is that when one glues the open sets \hat{V}_j together using the Ψ_{ij} , one gets however some kind of "singular object" X which projects naturally onto M and which is not a complex manifold "only in the direction of $\partial/\partial s$ ". We shall not try to give a precise meaning to the previous sentence (in a suitable category...). We shall only recall that tensors on the "surface" X which are invariant under the translations along $\partial/\partial s$ can be defined with no ambiguity. In the next section, using this heuristic idea, we shall give the precise definitions of these tensors on X invariant by $\partial/\partial s$.

3 Some sheaves on M

We first define a fibre bundle \mathscr{T} with fiber \mathbb{C}^2 on M. Consider the complex tangent bundle of each \widehat{V}_j . This is a holomorphic vector bundle with fiber \mathbb{C}^2 on which there is a natural action of the translations τ_{σ} (for $\sigma \in \mathbb{R}$) that we shall call *vertical*:

$$\tau_{\sigma}: (z,t+i.s) \in \widehat{V}_{i} \mapsto (z,t+i.(s+\sigma)) \in \widehat{V}_{i}.$$

The quotient of \hat{V}_j by the free action of these translations can be canonically identified with V_j so that we get a natural fiber bundle on V_j , with fiber \mathbb{C}^2 . Since the Ψ_{ij} define a cocycle "up to vertical translations", we get therefore a fibre bundle on M (which is obtained from the V_j by gluing with the ψ_{ij}). This is the announced bundle \mathcal{T} .

We shall show that, although M is not a complex manifold, most properties of the cohomology of complex manifolds can be generalized to M. We follow the notations of [4] of which we quickly survey Sect. 15 and point out the modifications which are necessary in our situation.

We denote by **T** the dual bundle to \mathscr{T} and by $\overline{\mathbf{T}}$ the conjugate bundle of **T**. If p and q are two integers (smaller than or equal to 2), we consider the vector bundle $\Lambda^{p}(\mathbf{T}) \otimes \Lambda^{q}(\overline{\mathbf{T}})$, tensor product of exterior powers. Sections of this bundle are called *forms of type* (p,q) on M. Local sections define a sheaf denoted by $\mathscr{A}^{p,q}$.

Locally, a form ω of type (p,q) defined on V_j is identified with a form $\hat{\omega}$ of type (p,q), in the usual sense, of the complex surface \hat{V}_j , invariant under

vertical translations. Since the decomposition $d = \partial + \overline{\partial}$ of the exterior differential is of course invariant under vertical translations, and since these operators commute with the biholomorphisms Ψ_{ij} , we get well defined operators, ∂ and $\overline{\partial}$

$$\hat{\partial} : \mathscr{A}^{p,q} \to \mathscr{A}^{p+1,q}$$
$$\overline{\partial} : \mathscr{A}^{p,q} \to \mathscr{A}^{p,q+1} .$$

The sum of the $\mathscr{A}^{p,q}$ with p+q=r is denoted by \mathscr{A}^r . The kernel of $\overline{\partial}: \mathscr{A}^{p,0} \to \mathscr{A}^{p,1}$ is the sheaf $\Omega(\Lambda^p(\mathbf{T}))$ of germs of holomorphic p-forms on M. Since a holomorphic function on $\widehat{V_j}$ invariant under vertical translations is in fact a function which depends only on the variable z and is holomorphic in this variable, the sheaf of germs of holomorphic 0-forms is identified with the sheaf \mathcal{O} of functions on M which are constant along the leaves and which are transversely holomorphic.

If we consider each \hat{V}_j and a version of Dolbeault's theorem which is equivariant under the action of vertical translations, we get the following resolution analogous to the classical one:

$$0 \to \Omega(\Lambda^p(\mathbf{T})) \to \mathscr{A}^{p,0} \to \mathscr{A}^{p,1} \to \cdots \to \mathscr{A}^{p,q} \to \cdots$$

Hence, Dolbeault's theorem holds in our context. More precisely, the q-th cohomology group $H^{p,q}(M)$ of M with values in the sheaf $\Omega(\Lambda^p(\mathbf{T}))$ can be identified with:

$$Z^{p,q}/\overline{\partial}(\mathscr{A}^{p,q-1}),$$

where, of course, $Z^{p,q}$ denotes the global forms of type (p,q) which are $\overline{\partial}$ -closed. The dimension of $H^{p,q}(M)$ will be denoted by $h^{p,q}$ (we shall see that it is finite). Note that $H^2(M; \mathcal{O}) = H^{0,2}(M)$.

We now show how to extend Serre's duality and Hodge's theory in our context. The main point is to define a "fundamental class", i.e. to be able to "integrate" a (2,2)-form. So, let us consider such a form ω . In an open set V_j , this form corresponds to a (2,2)-form $\widehat{\omega}_j$ in the classical sense of \widehat{V}_j , invariant under vertical translations. The interior product of $\widehat{\omega}_j$ by the vector field $\partial/\partial s$ is a 3-form on \widehat{V}_j , basic for $\partial/\partial s$, i.e. which is a pull-back of some 3-form $\widetilde{\omega}_j$ on V_j . Clearly, these 3-forms $\widetilde{\omega}_j$ are compatible on the intersections of the V_j , i.e. they define a global 3-form $\widetilde{\omega}$ on M. By convention, we define the integral of ω , denoted by $\int \omega$, as the integral of $\widetilde{\omega}$ on M.

The simple (but crucial) observation is that Stokes' theorem can be extended with no difficulty:

Lemma 3.1 If α is a form of type (2,1) and if $\omega = d\alpha (= \overline{\partial} \alpha)$, when $\int \omega$ vanishes.

Proof. We can assume that α has a compact support contained in some V_j . We consider the corresponding 3-form $\hat{\alpha}_j$ in \hat{V}_j , invariant under vertical translations, and whose differential is the form $\hat{\omega}_j$. Since $\hat{V}_j = V_j \times \mathbf{R}$, we can embed V_j in \hat{V}_j as $V_j \times \{s_0\}$. By definition, the integral of $d\alpha$ is equal to the integral of the

On transversely holomorphic flows II

interior product $i_{\partial/\partial s} \hat{\omega}_j$ on $V_j \times \{t_0\}$ (which is indeed independent of s_0). As $\hat{\alpha}_j$ is invariant under vertical translations:

$$i_{\partial/\partial s} d\widehat{\alpha}_i + di_{\partial/\partial s} \widehat{\alpha}_i = 0$$
,

so that $i_{\partial/\partial s} d\hat{\alpha}_j$ is an exact form. On the other hand, the support of the restriction of $i_{\partial/\partial s} d\hat{\alpha}_j$ à $V_j \times \{s_0\}$ is compact since α has a compact support contained in V_j . Hence, the lemma follows from usual Stokes' theorem.

Therefore, the integration of the exterior product defines linear maps:

$$\iota: H^{p,q}(M) \otimes H^{2-p,2-q}(M) \to \mathbf{C}$$

Let us now introduce some hermitian metric on **T**. This enables us to define, as usual, anti-isomorphisms:

and the operator:

$$\vartheta = -\#\overline{\partial}\,\#:\mathscr{A}^{p,q} \to \mathscr{A}^{p,q-1}$$

The operators ϑ and $\overline{\vartheta}$ are adjoint for the scalar product:

$$(\alpha,\beta) = \int (\alpha \wedge \#\beta)$$

because of 3.1 and for the same reason as in the classical case. The Laplace operator $\Box = \vartheta \overline{\partial} + \overline{\partial} \vartheta$ is elliptic since, locally, it coincides with the usual Laplace operator acting on forms which are invariant under vertical translations.

Therefore, we get the finite dimensionality of cohomology groups $H^{p,q}$ and Hodge decomposition:

$$\mathscr{A}^{p,q} = \overline{\partial} \mathscr{A}^{p,q-1} \oplus \vartheta \mathscr{A}^{p,q+1} \oplus \mathcal{B}^{p,q}$$

where $B^{p,q}$ denotes the space of \Box -harmonic forms, i.e. the intersection of the kernels of ϑ and $\overline{\vartheta}$. According to Dolbeault's theorem, mentioned above, $B^{p,q}$ is identified with $H^{p,q}(M)$. In the same way we get Serre's duality, i.e. the isomorphism between $H^{p,q}(M)$ and $H^{2-p,2-q}(M)$.

4 Proof of the theorem

We can now prove the theorem. We assume now that \mathscr{L} is not riemannian and we shall prove that $H^2(M; \mathcal{O}) = 0$.

According to Serre's duality, we know that $h^{0,2} = h^{2,0}$ and therefore it suffices to show that $h^{2,0} = 0$, i.e. that there is no non trivial holomorphic 2-form on M.

Let us start by observing that any holomorphic 1-form on M is closed. This is a well known fact for any holomorphic 1-form in the classical sense on a

complex compact surface (see [1] page 115) and the proof only uses Stokes' theorem, for which we have proved the analogous version 3.1.

Let ω be a holomorphic 2-form on M and $\widehat{\omega}_j$ be the corresponding holomorphic 2-form on \widehat{V}_j . By contracting with the vertical holomorphic vector field in \widehat{V}_j , we get a holomorphic 1-form $\widehat{\alpha}_j$ in \widehat{V}_j . In other words, we construct a holomorphic 1-form α on M. By construction, $\partial/\partial s$ is in the kernel of $\widehat{\alpha}_j$. Since we observed that α is necessarily closed, the forms $\widehat{\alpha}_j$ are obtained by pull-back of some forms α_j in V_j which are basic for \mathscr{L} (a closed form, vanishing on the leaves of a foliation, is a basic form). Hence, these forms α_j define a global basic holomorphic form for \mathscr{L} . Since we assumed that \mathscr{L} is not riemannian, there is no non trivial form by 2.1. Hence ω vanishes.

References

- 1. Barth, W., Peters, C., Van de Ven A.: Compact complex surfaces, Springer, Berlin (1984)
- Brunella, M.: On transversely holomorphic flows, I. Probab. Theory Relat. Fields, 106, 265–279 (1996)
- Carrière, Y.: Flots riemanniens, in Structures transverses des feuilletages, Astérisque 116, 31–52 (1984)
- 4. Hirzebruch, E.: Topological methods in algebraic geometry, Grundlehren der mathematischen Wissenschaften 131, Springer, Berlin (1978)