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ENS Éditions, Lyon, 2017
viii+ 302 pp. ISBN: 978-2-84788-939-0

REVIEWED BY SERGEI TABACHNIKOV

Consider two graphs of real polynomials that pass through the origin.
Intersect the graphs with a vertical line slightly left of the y-axis and move the
line to the right until it is slightly right of the y-axis. Follow the intersection
points of the line with the graphs: you obtain a permutation of two points,
either trivial or non-trivial.

It is obvious that both possibilities can be realized by choosing appropri-
ate polynomials, for example, P1(x) = 0, P2(x) = x2 for the trivial permuta-
tion, and P1(x) = −x, P2(x) = x for the non-trivial one.

Now consider the case of three polynomials, see Figure 1.1 Once again,
choosing the polynomials appropriately, all six permutations of three points
can be realized.

But for four polynomials, one has a surprise: out of 24 permutations of
four points, only 22 are realizable in this way. This amazing observation
is due to Maxim Kontsevich, who shared it with Étienne Ghys in 2009 (at
a boring administrative meeting), and which is the starting point of the
‘promenade’ described in this unusual book.

Here is a pictorial table of contents, color-coded according to the difficulty
of the topics, similarly to color-coding of downhill ski slopes, Figure 3.

The promenade starts with Ghys’s solution to the general problem: to
describe the permutations of n objects realizable by graphs of n polynomials
passing through the origin (this occupies the first four chapters, see also [1]).
These permutations are called polynomial interchanges.

1All the illustrations are taken from the book under review.
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Figure 1: The six permutations of three points.
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Figure 2: A forbidden permutation (of course, its inverse is also forbidden).
Can you prove that this permutation is not realizable by graphs of polyno-
mials?

Figure 3: Landscape of the Four Seasons (Eight Views of the Xiao and Xiang
Rivers), by Soami, early 16th century.
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The first observation is that the only obstruction is the permutation de-
picted in Figure 2 and its inverse: a permutation π is a polynomial inter-
change if and only if it does not contain one of the two forbidden permuta-
tions, that is, there do not exist four indices 1 ≤ i1 < i2 < i3 < i4 ≤ n such
that

π(i2) < π(i4) < π(i1) < π(i3) or π(i3) < π(i1) < π(i4) < π(i2).

How many polynomial interchanges are there? Here are the first 10 values:

1, 2, 6, 22, 90, 394, 1806, 8558, 41586, 206098.

This is a well-studied sequence, called the large Schröder numbers; they
appear in The Online Encyclopedia of Integer Sequences [10] as A006318.
These numbers, except the first one, are even; their halves are called the little
Schröder numbers (A001003). One of Ghys’s theorems is that the number of
polynomial interchanges is equal to the respective large Schröder number.

The nth little Schröder number is the number of ways to insert paren-
theses in a string of n + 1 symbols (the parentheses must be balanced, the
number of letters inside a pair of parentheses must be at least two, and paren-
theses enclosing the whole string are ignored). For example, here are all the
11 possibilities for n = 3:

abcd, (ab)cd, a(bc)d, ab(cd), ((ab)c)d, a(b(cd)), (ab)(cd), (a(bc))d, a((bc)d), (abc)d, a(bcd).

A wealth of information about Schröder numbers includes their asymptotic
growth and the generating function. The asymptotic is as follows:

C
(3 + 2

√
2)n

n
√
n

, where C ≈ 0.4.

Using the Stirling formula for n!, one sees that the proportion of the poly-
nomial interchanges among all permutations tends to zero as n→∞.

Amazingly, the little Schröder number 103,049 appears in the following
passage by Plutarkh (about 2,000 years ago):

Chrysippus says that the number of compound propositions that
can be made from only ten simple propositions exceeds a million.
(Hipparcus, to be sure, refuted this by showing that on the affir-
mative side there are 103,049 compound statements, and on the
negative side 310,952).
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See [9], and also [3] if you are interested in the “negative side” – which
appears to be unrelated to polynomial interchanges.

What I have described so far – and a sketchy description it is – is only
the beginning. The ultimate goal of the book is to extend the results from
graphs of polynomials to real algebraic curves.

In a neighborhood of a point, such a curve consists of a number of
branches, each homeomorphic to a segment. Each branch intersects a small
circle centered at the point twice, and this yields a chord diagram: an even
number of points on a circle, grouped in pairs, see Figure 4.

a a
b

bc

c

Figure 4: An algebraic curve with three branches and its chord diagram.

The fact that each branch that enters a disc must exit from it is central to
Gauss’s first proof of the Fundamental Theorem of Algebra; Gauss asserted,
but did not prove this fact. Ghys writes:

The ‘proof’ is given in a footnote: it is a typical example of a
proof by intimidation:

... As far as I know, nobody has raised any doubts about

this. However, should someone demand it then I will un-

dertake to give a proof that is not subject to any doubt, on

some other occasion.

Nobody has raised doubts and he will prove it on some other
occasion” , !

A chapter is devoted to a proof of Gauss’s claim, and the proof is by no
means obvious.

Back to the main problem studied in the book: to describe the chord
diagrams that correspond to algebraic curves; the ones that do are called
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Figure 5: Is this chord diagram analytic?

analytic chord diagrams. For example, what about the chord diagram in
Figure 5?

In the words of the author, the following theorem is a highlight in the
promenade: A chord diagram is analytic if and only if it does not contain
the sub-chord diagrams depicted in Figure 6.

Cn

Figure 6: The obstructions to being analytic (n ≥ 5).

Unlike the case of graphs of polynomials, the number of basic obstructions
is infinite (it includes the family of diagrams Cn).

The exposition in the book is very far from being a beeline to the main
result2: it includes many a detour. Just to mention a few: Newton’s “The
Method of Fluxions and Infinite Series”, Möbius and his band, Hopf fibration,
Milnor’s theory of singular points of complex hypersurfaces [7], the geometry
of associahedron, introduction to operards3, Gauss coding of planar curves,
Gauss theory of linking numbers, the Kontsevich universal knot invariant...

To give a couple of pictorial examples, Figures 7 and 8 are taken from
the chapter on the Möbius band and the Hopf fibration.

2But it is not a random walk either. To me, as a dog owner, it resembles a trajectory
of an off leash dog: one gets to the goal, but not before having thoroughly explored a
neighborhood of the path.

3“Everything you always wanted to know about operads but were afraid to ask”.
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Figure 7: Möbius regular pentagon.

Figure 8: Hopf circles in a neighborhood of one of them, represented by a
line.

I hope, the reader’s appetite is whetted enough. Let me now address the
genre of the book, its unique features, the philosophy and motivation of its
author.

There is a huge difference between written and oral presentation of math-
ematics. This book is probably closer to the latter than the former; I’d
describe it as an engaging colloquium talk, spanning a 300 page book.

For example, when giving a colloquium, you will be excused to say that
something should be “nice” without saying exactly what “nice” means [6].
In the chapter on operads, Ghys describes this notion and says that operads
satisfy ... some axioms.

“I don’t want to write down the formulas expressing these axioms
since I would be unable myself to read the formulas that I wrote.
I prefer to give first an example...”

The book is lavishly illustrated, including a full-page picture at the open-
ing of every chapter. Ghys makes an innovative use of the wide margins:
they play the role of footnotes for references and comments, but also contain
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mathematical drawings, photographs and portraits, historical and biograph-
ical snippets, etc.

The reader clearly hears the singular voice of the author, who takes the
opportunity to make a joke, to share his philosophical, educational, and
political views, or just to wink at you. Just a few examples:

• The proof of a proposition that took three pages ends with a TeX
symbol for the end of proof, preceded by “Ouf!”

• In the section on linking numbers in astronomy, Ghys talks about the
linking of the trajectory of the Earth γ and a planet γ′. “For simplicity,
I assume that γ and γ′ are disjoint ,”.

• In the chapter Möbius and his band, Ghys presents a quotation, in
French, from the psychoanalyst Jacques Lacan involving Möbius band
and written in a heavy psychoanalytic/literary theory jargon. On the
margins, one finds a comment: “I am unable to translate into English
(or even understandable French)” accompanied with Figure 9.4

Figure 9: Comment to a quotation from Lacan.

Ghys believes that the mathematical books are too expensive and that
they should be essentially free. The copyright page says:

The text and the illustrations without the symbol ? have been
produced by Étienne Ghys who has waived all copyright and re-
lated or neighboring rights. You can copy, modify, and distribute
them, even for commercial purposes, all without asking permis-
sion.

The pdf file of the book can be freely downloaded, for example, from the
author’s web site http://perso.ens-lyon.fr/ghys/home/.

4The reader who wishes for more is referred to chapter 2 of [8].
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Ghys is one of the main players in popularization of mathematics, and
the book under review should be considered in this context. His other work
in this direction include the mathematical films “Dimensions” and “Chaos”
[4, 5] and the web magazine “Images des Mathématiques” [11].

Regretfully, our “publish or perish” culture is not very conducive to pop-
ularization. Ghys makes a strong case for changing this culture in [2]:

In short, a mathematician answering the traditional question
from a colleague “What’s your field?” should not feel anymore
ashamed when he or she replies “I work on popularization of
mathematics”.

This vision should be attractive to the readers of our magazine as well.
Let me finish by citing from the preface of the book under review:

I wrote this “petit livre” with one specific reader in mind: my-
self, when I was an undergraduate... To be very specific, I lim-
ited the prerequisites to my own background when I passed the
“agrégation” examination, exactly forty years ago ,! I vividly
remember that I had (and I still have) great difficulties reading
long mathematical treatises, full of technical details, and that I
preferred looking at pictures. I have now learned that precision
and details are frequently necessary in mathematics, but I am
still very fond of promenades. I did try to imagine what could
have been my own reactions faced with this book, as a beginner.

And indeed, after the first draft of the book was finished, its author asked an
undergraduate student, Christopher-Lloyd Simon, to become a test reader.
Simon did more than refereeing the book, he contributed a new idea that
made a complete solution of the problem possible!

This unique book is a trailblazer for a new way of communicating math-
ematics. Among other things, it projects a strong feeling of unity of math-
ematics. It is highly recommended to mathematicians of all ages and all
sophistication levels.
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