Given a transversely orientable, C^∞, codimension 1 foliation \mathcal{F} on a closed orientable manifold M^n, when does there exist a Riemannian metric on M such that all leaves of \mathcal{F} are totally geodesic submanifolds? The answer was known in dimension 3 [Y. Carriere and the author, An. Acad. Brasil. Cienc. 53 (1981), no. 3, 427–432; MR0663239 (83m:57019)]. Here it is proved in any dimension, namely, that such a metric exists if and only if either \mathcal{F} is transverse to the orbits of a locally free circle action (generalized Seifert fibration), or \mathcal{F} is differentiably conjugate to a “model foliation”; these model foliations, explicitly constructed by the author, are a generalization of the well-known Anosov foliations on T^2-bundles over the circle: in particular, they are transverse to the fibers of a torus bundle, and on each fiber they induce a linear foliation with dense leaves. There is a generalization of the theorem to noncompact manifolds, provided either $\pi_1 M$ is finitely generated or one considers only analytic foliations.

The proof relies heavily on the fact that, if \mathcal{F} is totally geodesic, then the orthogonal foliation \mathcal{F}^\perp is Riemannian. It is known that to $(\mathcal{F}, \mathcal{F}^\perp)$ is naturally associated a principal $\text{SO}(n-1)$-bundle $p: \hat{M} \rightarrow M$ such that the closures of the orbits of $[p^{-1}(\mathcal{F})]^\perp$ define a fibration of \hat{M} by tori. One of the main steps in the proof consists in showing that, if \mathcal{F} is not transverse to a circle action, then the structure group of this fibration can be reduced to a discrete group (possibly after changing the metric on M).

Reviewed by Gilbert Levitt

© Copyright American Mathematical Society 1985, 2006