The authors propose to generalize the notion of topological entropy of a flow to the case of a foliation \mathcal{F} on a closed manifold M. To do this, a kind of parametrization is indispensable and a Riemannian metric g on M is adopted for this purpose. Thus, given \mathcal{F} and g, there is defined a numerical invariant $h(\mathcal{F}, g)$ called the geometric entropy. However, its vanishing is independent of the choice of g. The authors show that $h(\mathcal{F}, g) = 0$ implies the existence of transverse invariant measures of \mathcal{F}. In the case of codimension-one foliations, they also show that $h(\mathcal{F}, g) = 0$ if and only if \mathcal{F} does not have resilient leaves.

Reviewed by Shigenori Matsumoto