Let \mathcal{F} be a transversally orientable foliation of codimension 1 on a complete, orientable Riemann manifold M. The authors show that if M is compact and 3-dimensional, then the foliation is geodesible if and only if either it is transverse to a Seifert fibering, or it is obtained as follows: An element A of $\text{SL}_2(\mathbb{Z})$ with trace greater than 2 is used to construct a torus bundle M over the circle, and \mathcal{F} arises from one of the eigenspaces of A. Along the way, the authors show that the universal cover of a totally geodesic, codimension 1 foliation of any dimension is a product. Hence, if M is compact and \mathcal{F} has a compact leaf, then M fibers over the circle and \mathcal{F} is transverse to a generalized Seifert fibering.

Reviewed by Bruce L. Reinhart