MathSciNet Mathematical Reviews on the Web

Previous | Up | Next Article

MR896095 (90c:57035) 57S30 (57R30 57R32 57R50 58D05 58F18) Ghys, Étienne (F-LILL); Sergiescu, Vlad (F-LILL)

Sur un groupe remarquable de difféomorphismes du cercle. (French) [On a remarkable group of diffeomorphisms of the circle]

Comment. Math. Helv. 62 (1987), no. 2, 185–239.

The authors study the group G of piecewise linear homeomorphisms of the circle \mathbf{R}/\mathbf{Z} which send \mathbf{Q}_2/\mathbf{Z} onto itself and have singular points only on \mathbf{Q}_2/\mathbf{Z} , where \mathbf{Q}_2 is the ring of dyadic numbers. For any element g of G, there exists a positive integer N such that g restricted to the intervals $[k \cdot 2^{-N}, (k+1) \cdot 2^{-N}]$, $k \in \mathbf{Z}$, is of the form $x \longmapsto 2^n \cdot x + p \cdot 2^q$, $n, p, q \in \mathbf{Z}$.

The authors show the existence of a homeomorphism h such that hGh^{-1} is contained in the group of C^{∞} diffeomorphisms of S^1 ; hence there is a representation of G in $\text{Diff}^{\infty}_+(S^1)$. As for the uniqueness, they show that any representation $\varphi: G \longrightarrow \text{Diff}^2_+(S^1)$, is semiconjugate to the inclusion $G \subset \text{Homeo}(S^1)$.

The authors determine the rational cohomology ring of BG (as well as those of other related classifying spaces) as follows: $H^*(BG; \mathbf{Q}) = \mathbf{Q}[\alpha, \chi]/\alpha \cdot \chi = 0$, $|\alpha| = |\chi| = 2$, where α corresponds to the Euler class and χ is explicitly written down as a 2-cocycle (the discrete Godbillon-Vey cocycle). They note that, though the discrete Godbillon-Vey cocycle is similar to the usual Godbillon-Vey cocycle, the usual Godbillon-Vey class pulled back by any homomorphism of G to $\mathrm{Diff}^2_+(S^1)$ is zero.

They show that the representations $\varphi: G \longrightarrow \text{Diff}^{\infty}_{+}(S^1)$ have several interesting dynamical properties. For example, there are the ones which have exceptional minimal sets. They also give an explicit example of C^{∞} -foliated S^1 -bundles over a surface with an exceptional minimal set and with nontrivial Euler class.

Reviewed by Takashi Tsuboi

© Copyright American Mathematical Society 1990, 2006