MR799078 (87d:57021) 57R30 (58H10)
Ghys, Étienne (F-LILL)

Groupes d’holonomie des feuilletages de Lie. (French) [Holonomy groups of Lie foliations]

Following A. Haefliger’s point of view [see J. Differential Geom. 15 (1980), no. 2, 269–284; MR0614370 (82j:57027)], to a foliation \mathcal{F} on a manifold M is associated an equivalence class $[\mathcal{F}]$ of pseudogroups (a representative of which is the pseudogroup \mathcal{F} induced by holonomy on a complete transversal submanifold). A natural problem is to study what sort of pseudogroup is this holonomy pseudogroup if M is a closed manifold.

In this paper, the author studies the case where (M, \mathcal{F}) is a \mathfrak{g}-foliation on a closed manifold [E. Fedida, “Feuilletages du plan; feuilletages de Lie”, Thèse, Univ. Louis Pasteur, Strasbourg, 1973; BullSocMathFrance 110 (1974):2599; see Differential topology, foliations and Gelfand-Fuks cohomology (Rio de Janeiro, 1976), 183–195, Lecture Notes in Math., 652, Springer, Berlin, 1978; see MR 80a: 57012]; if G is the simply connected Lie group with \mathfrak{g} as Lie algebra, then \mathcal{F} is equivalent to a subgroup Γ of G. This “holonomy group” of (M, \mathcal{F}) is a quotient of the fundamental group $\pi_1(M)$. Hence Γ is finitely generated. Moreover, as M fibers over G/Γ, this homogeneous space is compact.

The author obtains a new property of such a subgroup Γ, involving the notion of “real cohomological dimension” of a CW-complex. If $\text{rcd}(X)$ denotes this dimension, and if Γ is a group, then by definition, $\text{rcd}(\Gamma) = \text{rcd}(K(\Gamma, 1))$. The principal result of the author is the inequality $\text{rcd}(\Gamma) \geq \dim G - \dim K$, where K is a maximal compact subgroup of G. Using this property, the author shows that, if G is the affine group of \mathbb{R}, and Γ is generated by elements $(a_1 b_1, \cdots, a_l b_l)$, a necessary condition in order that Γ may be the holonomy group of a \mathfrak{g}-Lie foliation is that $a_1, b_1, \cdots, a_l, b_l$ be algebraically dependent over \mathbb{Q}.

Reviewed by P. Molino

© Copyright American Mathematical Society 1987, 2006