AMERICAN MATHEMATICAL SOCIETY MathSciNet Mathematical Reviews on the Web

Previous Up Next Article

MR799078 (87d:57021) 57R30 (58H10) Ghys, Étienne (F-LILL)

Groupes d'holonomie des feuilletages de Lie. (French) [Holonomy groups of Lie foliations] *Nederl. Akad. Wetensch. Indag. Math.* **47** (1985), *no.* 2, 173–182.

Following A. Haefliger's point of view [see J. Differential Geom. **15** (1980), no. 2, 269–284; **MR0614370** (82j:57027)], to a foliation \mathfrak{F} on a manifold M is associated an equivalence class $[\mathfrak{H}]$ of pseudogroups (a representative of which is the pseudogroup \mathfrak{H} induced by holonomy on a complete transversal submanifold). A natural problem is to study what sort of pseudogroup is this holonomy pseudogroup if M is a closed manifold.

In this paper, the author studies the case where (M,\mathfrak{F}) is a \mathfrak{g} -foliation on a closed manifold [E. Fedida, "Feuilletages du plan; feuilletages de Lie", Thèse, Univ. Louis Pasteur, Strasbourg, 1973; BullSig(110) 1974:2599; see *Differential topology, foliations and Gel'fand-Fuks cohomology* (Rio de Janeiro, 1976), 183–195, Lecture Notes in Math., 652, Springer, Berlin, 1978; see MR 80a: 57012]; if G is the simply connected Lie group with \mathfrak{g} as Lie algebra, then \mathfrak{H} is equivalent to a subgroup Γ of G. This "holonomy group" of (M,\mathfrak{F}) is a quotient of the fundamental group $\pi_1(M)$. Hence Γ is finitely generated. Moreover, as M fibers over $G/\overline{\Gamma}$, this homogeneous space is compact.

The author obtains a new property of such a subgroup Γ , involving the notion of "real cohomological dimension" of a CW-complex. If $\operatorname{rcd}(X)$ denotes this dimension, and if Γ is a group, then by definition, $\operatorname{rcd}(\Gamma) = \operatorname{rcd}(K(\Gamma, 1))$. The principal result of the author is the inequality $\operatorname{rcd}(\Gamma) \ge \dim G - \dim K$, where K is a maximal compact subgroup of G. Using this property, the author shows that, if G is the affine group of **R**, and Γ is generated by elements $\begin{pmatrix} a_1 & b_1 \\ 0 & 1 \end{pmatrix}, \dots, \begin{pmatrix} a_l & b_l \\ 0 & 1 \end{pmatrix}$, a necessary condition in order that Γ may be the holonomy group of a g-Lie foliation is that $a_1, b_1, \dots, a_l, b_l$ be algebraically dependent over **Q**.

Reviewed by P. Molino

© Copyright American Mathematical Society 1987, 2006