MR1259430 (95d:57009) 57M50 (20H10 30F99 57M60 57R30 58F15 58F18) Ghys, Étienne (F-ENSLY-PM)

Rigidité différentiable des groupes fuchsiens. (French) [Differentiable rigidity of Fuchsian groups]

Inst. Hautes Études Sci. Publ. Math. No. 78 (1993), 163–185 (1994).

Let Γ_g be the fundamental group of a closed oriented surface of genus $g \ge 2$. In the paper under review, the author considers representations $\Phi: \Gamma_g \to \text{Diff}_+^r(S^1)$ into the orientation-preserving C^r -diffeomorphisms of the circle. For the usual presentation of Γ_g with generators a_1, b_1, \dots, b_g , one chooses lifts \widetilde{A}_i and \widetilde{B}_i of $\Phi(a_i)$ and $\Phi(b_i)$ to diffeomorphisms of **R**, and defines the Euler number $\text{eu}(\Phi)$ to be the integer $\widetilde{A}_1 \widetilde{B}_1 \widetilde{A}_1^{-1} \cdots \widetilde{B}_g^{-1}$. J. Milnor and J. Wood proved that $\text{eu}(\Phi)$ is at most 2g - 2, and $\text{eu}(\Phi) = 2g - 2$ if Φ is an imbedding with image a discrete subgroup of PSL(2, **R**). Up to conjugacy, such imbeddings parameterize the Teichmüller space of the surface.

The author's main theorem says that if $r \ge 3$ and $eu(\Phi) = 2g - 2$, then there is a diffeomorphism of the circle, of class C^r , which conjugates f to an imbedding onto a discrete cocompact subgroup of PSL(2, **R**). The existence of a homeomorphism conjugating Φ to have values in PSL(2, **R**) is a result of **S**. Matsumoto [Invent. Math. **90** (1987), no. 2, 343–358; MR0910205 (88k:58016)]. The author also notes that any two imbeddings as discrete cocompact subgroups of PSL(2, **R**) are conjugate by a homeomorphism of S^1 , but are conjugate by a C^1 -diffeomorphism only when they are conjugate in PSL(2, **R**), and hence represent the same point of Teichmüller space.

The proof of the main theorem involves examination of Anosov diffeomorphisms of the torus and Anosov flows on 3-manifolds. In particular, the author proves that an Anosov flow of class C^r ($r \ge 2$) on a closed 3-manifold whose stable and weakly unstable leaves are of class $C^{1,1}$ must be C^r -equivalent to either a quasi-Fuchsian flow or to the suspension of a diffeomorphism of the torus. In the final section the author gives an application of the main theorem to holomorphic deformations of Fuchsian groups.

Reviewed by Darryl McCullough

© Copyright American Mathematical Society 1995, 2006