A codimension-1 foliation \mathcal{F} of a closed oriented Riemannian 3-manifold M is called umbilical if all its leaves are totally umbilical, i.e., if for each point $x \in M$ the second quadratic form on the leaf \mathcal{F}_x at the point x is proportional to the induced metric on the tangent space to \mathcal{F}_x, or, equivalently, if the holonomy of the orthogonal 1-dimensional foliation \mathcal{N} acts conformally on leaves of \mathcal{F}. It can easily be shown that the class of foliations which are umbilical for a certain metric on M coincides with the class of transversely holomorphic foliations. The purpose of this paper is to classify such foliations.

The authors obtain a complete solution of this problem by giving an exhaustive list of classes of such foliations. In particular, any umbilical foliation with dense leaves either corresponds to a Seifert fibration, or is the foliation determined by an algebraic hyperbolic automorphism of the 2-dimensional torus, or else is just a linear foliation of the 3-dimensional torus.

The proof is based on using the notion of a harmonic measure of a foliation due to L. Garnett [J. Funct. Anal. 51 (1983), no. 3, 285–311; MR0703080 (84j:58099)]. Namely, for any foliation of a compact Riemannian manifold M there exists a probability measure on M whose leafwise densities are harmonic functions of the leafwise Laplacians. For codimension-1 foliations one can also define conditional measures of the harmonic measure on the leaves of the orthogonal foliation \mathcal{N}. Taking the values of these conditional measures on arcs of \mathcal{N} joining two leaves of \mathcal{F} gives rise to functions on the leaves of \mathcal{F} measuring “distance” between leaves of \mathcal{F} in the orthogonal direction. Since for umbilical foliations the holonomy of \mathcal{N} acts conformally on leaves of \mathcal{F}, in this case the “distance” functions are leafwise harmonic.

This fact is then used (this is the crucial point of the proof) to show that if \mathcal{F} is an umbilical foliation of M with dense leaves, then the lifts of \mathcal{F} and \mathcal{N} to the universal cover of M are product foliations, which implies that \mathcal{F} belongs to one of the three classes mentioned above. The case when \mathcal{F} has an exceptional minimal set is treated by using the nucleus theorem, and the case when \mathcal{F} has compact leaves by using a surgery technique.

Reviewed by Vadim A. Kaĭmanovich

© Copyright American Mathematical Society 1995, 2006