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Abstract—We investigate the problem of memory reuse in order to reduce the memory needed to store an array variable. We develop

techniques that can lead to smaller memory requirements in the synthesis of dedicated processors or to more effective use by

compiled code of software-controlled scratchpad memory. Memory reuse is well-understood for allocating registers to hold scalar

variables. Its extension to arrays has been studied recently for multimedia applications, for loop parallelization, and for circuit synthesis

from recurrence equations. In all such studies, the introduction of modulo operations to an otherwise affine mapping (of loop or array

indices to memory locations) achieves the desired reuse. We develop here a new mathematical framework, based on critical lattices,

that subsumes the previous approaches and provides new insight. We first consider the set of indices that conflict, those that cannot be

mapped to the same memory cell. Next, we construct the set of differences of conflicting indices. We establish a correspondence

between a valid modular mapping and a strictly admissible integer lattice—one having no nonzero element in common with the set of

conflicting index differences. The memory required by an optimal modular mapping is equal to the determinant of the corresponding

lattice. The memory reuse problem is thus reduced to the (still interesting and nontrivial) problem of finding a strictly admissible integer

lattice of least determinant. We then propose and analyze several practical strategies for finding strictly admissible integer lattices,

either optimal or optimal up to a multiplicative factor, and, hence, memory-saving modular mappings. We explain and analyze previous

approaches in terms of our new framework.

Index Terms—Program transformation, memory size reduction, admissible lattice, successive minima.
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1 INTRODUCTION

WE propose a mathematical framework and heuristics
for solving the problem of mapping from array or

loop indices of a given scheduled program to a set of

memory locations as small as possible for the intermediate

and final results of the program. The mapping reuses

memory locations by storing several elements of an array in

one location. To do so does not violate program semantics if

the elements that share a memory location never simulta-

neously hold live values under the given schedule. We give

a lattice-based mathematical framework that subsumes

previous approaches and gives new insights and we apply

our model for finding guaranteed space-saving mappings.

We consider the class of linear storage allocations and

represent the constraints imposed by the program seman-

tics in terms of a set D of differences of conflicting indices

(Section 2). Our results are based on a correspondence

between valid linear allocations and integer lattices � such

that D \ � ¼ f~00g (strictly admissible lattices for D). We

study a natural equivalence relation on linear allocations:

Two allocations are equivalent if they are equal up to a

renaming of the memory locations they use. Our first result

is to establish that, in each equivalence class, there is a

modular mapping (an allocation, into a multidimensional

array, expressed as an affine function, followed by modulo

operations) that requires the smallest (among all allocations

of this class) array size and array dimension (Section 3,

Theorem 1). Then, through lattice theory and geometric

reasoning, this equivalence leads us to new lower and

upper bounds and to an optimal allocation construction

(Section 3.4). The third aspect of our contribution is new

guaranteed approximation heuristics that unify most

previously existing ones [1], [2], [3] and their analysis

(Section 4).

For illustration,wewill apply our results onadetailed case

study (Section 7): The code in Fig. 1 accesses a 4D array

Aðbr; bc; r; cÞ, in two pipelined communicating loops that

write every “row” Aðbr; bc; r; �Þ and read every “column”

Aðbr; bc; �; cÞ. We assume that each operation of S writes all

elements of a row in “parallel,” i.e., at the same “macro-time”

ð64� br þ bcÞ � 8þ r (the loop is scheduled sequentially as it

is written) and each operation of T reads all elements of a

column at macro-time ð64� br þ bcÞ � 8þ cþ �, where � ¼
8 is such that dependences are respected. In this example,

our problem is to find a linear allocation to an intermediate

buffer, as small as possible, for storing the entries of A

between corresponding write and read instructions. A

typical modular mapping solution here is given by

ðbr mod 2; bc mod 2; rmod 8; cmod 8Þ, i.e., by a temporary

storage in a 4D buffer of size 256 (obtained using [3]). We

will see that various other solutions can be built and apply

our heuristics for constructing 1D mappings (i.e., imple-

mented with only one mod) such as br þ 2bc þ 4rþ 32cmod

256 or an optimal solution ðrmod 4; 16ðbr þ bcÞ þ 2rþ cmod

28Þ of size 112. For this optimal size, there are two

equivalence classes (symmetry in c and r), leading to 2D

solutions, with no equivalent 1D solution.
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Our methods can be applied to automatic hardware
synthesis1 for reducing the size of buffers. They can also be
used by compilers to make efficient use of limited software-
managed scratchpad storage. Several heuristics have been
proposed to reduce the memory needed by a scheduled
program (see Section 5), but (as stated in [12]) until now
there has been no satisfactory theory that relates the
interplay of scheduling (i.e., when statements can be
executed) and storage (i.e., where their results can be stored).
De Greef et al. [1] propose working with the array indices,
choosing one canonical linearization of the array (i.e., one
permutation of its axes), then following this by a modulo
operation that wraps the set of “virtual” memory locations
into a smaller set of actual memory locations. Lefebvre and
Feautrier [3] propose working with the loop rather than
array indices and wrapping with a modulo operation
applied to each loop index. For example, the result of
statement S in iteration ði; jÞ is stored in a dedicated arrayAS

at location ASðimod bi; jmod bjÞ, where bi and bj are chosen
to guarantee correctness and minimize storage. Quilleré
and Rajopadhye [2] also use a dedicated array AS , but the
loop indices first undergo an affine mapping before a
modulo operation is applied to one of the resulting array
indices. More recently, Thies et al. [12], extending the work
of Strout et al. [13], consider wrapping with a modulo
operation in a single dimension and how to find a good one.
A novel aspect is that they obtain memory reductions valid
for any schedule that respects the dependences of the
program.

All these techniques use mappings that are special cases
of the modular mappings we study in this paper: storage
allocations that access multidimensional arrays with an
affine function followed by a modulo operation in each
dimension. Thies et al., aware of the limitations of their
technique, conclude by mentioning the need for a technique
able to consider the “perfect storage mapping [that] would
allow variations in the number of array dimensions, while still
capturing the directional and modular reuse of the occupancy
vector and having an efficient implementation.” This is exactly
our goal here: to develop a mathematical framework that
allows us to capture all suitable, space-saving storage
allocations, to define optimality, to propose heuristics, and
to discuss the quality of (ours and others) heuristics and
measure them by this standard (see Sections 5 and 6).

The paper is organized as follows: In Section 2, we model
the problem of memory reuse in a scheduled program. We

focus on linear allocations and define their validity via a set
of conflicting indices. Section 3 is concerned with the
correspondence between valid allocations and strictly
admissible lattices, including an optimal construction. Most
of these results are obtained under the very practical
assumption that the set of differences of conflicting indices
is represented or approximated as the set of integer points
in a polytope K. We derive several bounds and show,
especially, that any valid modular mapping needs at least
VolðKÞ=2n locations. In Section 4, we introduce heuristics
that use less than cnVolðKÞ locations (cn depends on the
dimension n but not on K); hence, they are optimal up to a
multiplicative factor. These heuristics rely either on arrays
of smallest dimension (Theorem 1) or on 1D mappings
(Corollary 1). After a description of previous approaches in
Section 5, we relate them to our results with a discussion in
Section 6. Section 7 is the announced detailed case study,
before concluding in the final section.

Nota. The reader may refer to [14] for a more
comprehensive document, including all proofs, and more
detailed examples and discussions.

2 INDICES AND MEMORY ALLOCATION

Here, we introduce the array memory reuse problem. We
define the basic object we need to build from the scheduled
program, the set C of pairs of conflicting indices corre-
sponding to data that may not share the same memory
location. Then, we introduce a general class of space-saving
storage allocation mappings.

2.1 The Set of Conflicting Indices

We are interested in finding a storage-saving mapping �Að~iiÞ
from the index space of a single array A to a set of storage
locations indexed by addresses.

Some authors ignore the arrays of the given program and
take the view that what must be stored and communicated
(from definitions to uses) are the values created by program
execution. Every value is represented by the statement S that
produced it and the iteration vector~ii of the surrounding loops.
Thus, this transformation canbeviewedand implementedby
the use of a big virtual array dedicated to the statement S in
which each element is written once. They then seek to reduce
the memory required by choosing an allocation map �S from
iteration vectors to array indices in a (smaller) multidimen-
sional array AS . The elements of AS are mapped to memory
locations without further reuse. This appears to allow
mappings of values to memory that are not constrained by
the programmer’s choice of loop index to array index map,
but, rather, can be whatever is best for the given program.
To use it, however, all right-hand side array references must
be replaced with references to AS in such a way that the
correct element is accessed. And, to do this requires exact
dependence analysis, which is not generally feasible.

We can sidestep this question; our approach is equally
applicable whether or not we use single-assignment code.
The program we consider may be the original program or it
may have undergone preliminary program transformations
and optimizations, including the change of some arrays and
statements to single-assignment formas above. In either case,
the transformed program makes array references, the arrays
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Fig. 1. DCT-like example, with two pipelined loops.

1. See, e.g., the HP Labs PICO project [4], [5] (now a product of a new
company, Synfora [6]), the IMEC Atomium project [7], [1], [8], the Compaan
project [9], [10], and the Alpha project [11], [2].



must be stored in memory, and, if we are given the program
schedule, we can take advantage of memory reuse to
minimize the actual storage requirement. Single assignment
code should offer us ample opportunities to find such reuse,
but it does not change anything about our techniques.

Thus, without loss of generality, for us, data are identified
by array indices.

2.2 Schedules and Conflicting Array Indices

Next, we assume given a scheduling function, �, which
assigns to each operation u a “virtual” execution time, i.e., an
element of a totally ordered set ðT ;�Þ. The schedule may
express parallelism—some operations are simultaneously
scheduled. The operation u will be computed strictly before
the operation v iff (if and only if) �ðuÞ � �ðvÞ. A valid schedule
respects all dependences: In particular, if v uses a value
computed by u, then �ðuÞ � �ðvÞ. Traditionally, ðT ;�Þ is the
set of integers with the order� or ZZd with the lexicographic
order (for a multidimensional schedule), and the function
�, when restricted to operations u ¼ ðS;~iiÞ, is an affine
function of ~ii. But, these restrictions are not essential: Our
theoretical results apply no matter what the schedule.

We first characterize the indices corresponding to array
elements that can be mapped to the same memory location.

Definition 1 (Conflicting indices). The array indices ~ii and ~jj
conflict (denoted by~ii ffl ~jj) if the corresponding array elements
are simultaneously live under the schedule �. (By convention
we say, too, that ~ii ffl~ii.)

Define CS ¼ fð~ii;~jjÞ j~ii ffl ~jjg as the set of all pairs of

conflicting indices. Note that this set is a multidimensional
generalization of the interference graph for register alloca-
tion. The well-known quantity MAXLIVE (the largest
number of values simultaneously live) is equal to the size
of the largest set S such that S � S � CS; any such S is a set
of mutually conflicting indices. Define DS ¼ f~ii�~jj j~ii ffl ~jjg
as the conflicting index difference set. Because ffl is
symmetric, DS is 0-symmetric (x 2 DS if and only if
�x 2 DS); because ffl is reflexive, 0 2 DS.

Let us see how we can define the relation ffl exactly in
the special case in which the operation ðS;~iiÞ writes to
location ASð~iiÞ. Denote by IS the set of iterations for which
ðS;~iiÞ produces a result to be stored in memory and that will
be used later. For each iteration vector ~ii 2 IS , let LðS;~iiÞ be
the last operation that reads the value computed by the
operation ðS;~iiÞ. Then, the relation ffl is defined by:

~ii ffl ~jj ,
~ii 2 IS; ~jj 2 IS

�ðS;~iiÞ � �ðLðS;~jjÞÞ
�ðS;~jjÞ � �ðLðS;~iiÞÞ:

8<
:

In the simple case of a 1D schedule,~ii ffl ~jjwhen the intervals
½�ðS;~iiÞ; �ðLðS;~iiÞÞ	 and ½�ðS;~jjÞ; �ðLðS;~jjÞÞ	 overlap.

As a practical matter, we recommend using polyhedra (or

a union of polyhedra) to represent the point sets that arise. In

the common case, when the schedule � is piecewise affine,

when IS can be described as all integer points in a polytope,

and when all accesses to arrays are affine, then~ii 7! LðS;~iiÞ is
piecewise affine (see [3], [2]) and can be obtained with

standard techniques to compute lexicographic minima or

maxima in polytopes. Furthermore, CS can be represented

as all integer points in a finite union of polytopes (when

LðS;~iiÞ is piecewise affine) or simply a polytope (when

LðS;~iiÞ is affine). As noted in [2], it may be interesting to first

decompose IS into disjoint subdomains (each operation

ðS;~iiÞ will then write in a different array, depending on the

subdomain ~ii belongs to) on which LðS;~iiÞ is affine so that

the corresponding CS for each subdomain can be repre-

sented by the integer points in a polytope. And, as we show

in Section 4, storage allocation heuristics can be shown to

perform well for polytopes.
When exact analysis is not possible (or not desired), we

can fall back on an approximation C to CS, as long as it is a
super-approximation, i.e., CS � C. For example, when
reasoning with array indices, instead of considering exact
lifetimes, we can say that an array element is live from the
first time it is written to the last time it is read (even if it is
dead for some parts of this period and is written again).
With such a definition, there is no need to precompute any
quantity similar to LðS;~iiÞ. Indeed, suppose, to simplify, that
the program has only two statements, S and T , that, for
each~ii 2 IS , ðS;~iiÞwrites to Aðfð~iiÞÞ and that, for each ~kk 2 IT ,
ðT; ~kkÞ reads from Aðgð~kkÞÞ a value computed by S. Then,
even if f and g are not one-to-one, we can define an
approximation C for CS as

fð~aa;~ccÞ j~ii;~jj 2 IS; ~kk; ~ll 2 IT ; ~aa ¼ fð~iiÞ ¼ gð~kkÞ; ~cc ¼ fð~jjÞ ¼ gð~llÞ;
�ðS;~iiÞ � �ðT; ~kkÞ; �ðS;~jjÞ � �ðT;~llÞ; �ðS;~iiÞ � �ðT;~llÞ;
�ðS;~jjÞ � �ðT; ~kkÞg;

i.e., Að~aaÞ and Að~ccÞ are both written and both read later, so
they should not share the same location.

To conclude this discussion, we assume that the set of

conflicting indices (respectively, index difference set) is

represented by a set C (respectively, D) which is exact or a

super-approximation. For bounds and heuristics, we con-

sider the simplest case in which D is equal to the set,

denoted by K


, of all integer points within a 0-symmetric

polytope K.

2.3 Memory Allocation

Given a scheduling function �, the array memory allocation
problem is to determine an allocation function that maps
the elements of an array to a set of memory locations that is
as small as possible. We first define linear allocations, which
are the allocation functions we consider. We show them to
be equivalent to modular mappings, which have a simple
and usable form. We show that the correctness of a linear
allocation can be determined by its behavior on the
conflicting index difference set D: In fact, its correctness
can be determined simply by considering the intersection
of D and its kernel. Then, we give some general lower
bounds on the storage required by a valid linear allocation.

2.3.1 Allocation Functions

We seek an allocation function � that specifies for each
array element index (a n-dimensional integer vector), where
the corresponding values will be stored in some dedicated,
hopefully quite small, array of dimension p. We will get
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there eventually, when we discuss modular mappings. But,
we start with some more general mappings that turn out to
be, in fact, not really more general. Note that n now denotes
the dimension of the program array whose elements we are
mapping to memory.

Standard array index to memory mappings map large
arrays to large amounts of memory. On the contrary, we
consider mappings whose target space is small:

Definition 2. An allocation (or mapping) � of size m is a

function � : ZZn ! M, where M � ZZp is a finite set of m

elements.

The allocations � : ZZn ! M� and � : ZZn ! M� are equiva-

lent if � ¼ � 
 � for some bijection � : �ðZZnÞ ! �ðZZnÞ.
Equivalent allocations are identical up to a renaming of
the set of elements they map to, hence equivalent surjective
allocations have the same size.

As a practical matter, we think it necessary to restrict the
form of the allocation function as follows:

Definition 3. A linear allocation � of size m is a morphism

� : ZZn ! ðM;�Þ, where ðM;�Þ is a finite ZZ-module (i.e.,

finite Abelian group) of m elements.

The kernel of a morphism � is kerð�Þ ¼ f~ii j �ð~iiÞ ¼ 0g,
where 0 is the identity element of M. With elementary
morphism theory, it can be shown that two linear
allocations are equivalent if and only if they have the same
kernel (see [14]). For example, imod 2 has the kernel 2ZZn, as
does the equivalent linear allocation 2imod 4. The latter,
viewed as a mapping into the group ZZ=4ZZ ¼ f0; 1; 2; 3g, is
not surjective, which is why its size (4) is not the same as the
size of the former (2).

We now introduce the mappings we use in practical
storage optimization, and that were used by the previous
approaches (see Section 5), the modular mappings.

Definition 4. A modular mapping ðM;~bbÞ, defined by a p� n

integer matrixM and a positive integer vector~bb of dimension p,

maps the index~ii to �ð~iiÞ ¼ M~iimod~bb (the modulo operation is

applied componentwise) in a p-dimensional array of shape ~bb.

A modular mapping may reduce the dimensionality of the
data set; this occurs when M has fewer rows than columns.
Note, too, that, when some components of ~bb are equal to 1,
we can forget about them and the corresponding row(s)
of M, and reduce p.

A modular mapping reuses memory in two ways. First,
if ~ii�~jj is in the null space of M, then the corresponding
array elements are mapped identically. Second, if
Mð~ii�~jjÞ ~00 mod~bb, then the corresponding array elements
are likewise mapped to the same memory location.
Technically, however, the first condition is a special case
of the second.

Amodular mapping is a linear allocation. The target set is
the finite “rectangle” M ¼ ZZ=b1ZZ� ZZ=b2ZZ� � � � � ZZ=bpZZ
and its size is the product of the elements of ~bb: m ¼

Q
i bi. If

we use a modular mapping, this is how much storage we
need. The number of elements of the target actually usedmay
be smaller than this, in otherwords, amodularmappingmay
ormaynotbe surjective.Weshall show in thenext section that
every linear allocation is equivalent to a family of modular
mappings, at least one of which is a surjection.

2.3.2 C-Valid Allocations

We now characterize valid allocations, i.e., those that

preserve the program semantics. Following Section 2.1, we

assume that the constraints to respect are specified by a set

C � ZZn � ZZn of pairs of potentially conflicting indices. The

mapping � is C-valid if ð~ii;~jjÞ 2 C, ~ii 6¼ ~jj ) �ð~iiÞ 6¼ �ð~jjÞ. It is

immediate that if � and � are equivalent allocations, � is

C-valid iff � is C-valid. For linear allocations, this validity

requirement can be expressed in terms of D rather than C. A
linear allocation � is C-valid iff ~dd 2 D, ~dd 6¼ 0 ) �ðdÞ 6¼~00. We

thus have the following characterization.

Proposition 1. A linear allocation � is C-valid iff
D \ ker� ¼ f~00g.

From these definitions, we can derive some lower
bounds on the storage size achievable by a C-valid allocation
and by a C-valid linear allocation: minfsizeð�Þ j � is C-validg
� MAXLIVE ¼ maxfCardðSÞ j S � S � Cg (CardðSÞ is the
number of integer points in S) since all points in such a set S
are simultaneously live and must be mapped to different
locations. If � is a linear C-valid allocation and there is a set S
such that S � S � D, then � is also ðS � SÞ-valid, hence:

minfsizeð�Þ j� is C-validg � maxfCardðSÞ jS � S � Dg: ð1Þ

Example 1. Consider the code fragment in Fig. 2 and suppose
that we may reuse the memory for A, i.e., A is not “live-
out” from the code fragment. Suppose that the two loops
are scheduled sequentially as written, but that the second
loop is pipelined, with respect to the first one, one clock
cycle later. In other words, for all i; j, �ðS; ði; jÞÞ ¼ ði; jÞ,
and �ðT; ði; jÞÞ ¼ ðiþ 1; 0Þ i f j ¼ N � 1, o therwise
�ðT; ði; jÞÞ ¼ ði; jþ 1Þ. We can also use a 1D schedule
�ðS; ði; jÞÞ ¼ Niþ j and �ðT; ði; jÞÞ ¼ Niþ jþ 1. This
kind of pipelined schedule typically occurs when
compiling communicating parallel processors or hard-
ware blocks, the values of A being placed in an
intermediate buffer whose access function and size are
to be designed.

If we consider that a value is dead only at the end of
the read in T , then each array element is live during two
cycles and only two values are live at the same time. We
therefore only need two memory cells or registers to
store them. The mapping Aði; jÞ 7! Niþ jmod 2 (plus a
base address in memory) is a valid mapping that
requires two memory cells, but how can a compiler
automatically find such a mapping?

In Fig. 3, we pictorially represent, for some particular
index vector~ii (in black), all other index points ~jj (in gray)
that correspond to operations ðS;~jj) executed after the
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Fig. 2. Example 1: the second loop starts one cycle after the first.



operation ðS;~iiÞ, but before the time at which the value
written by ðS;~iiÞ is read, i.e., the iterations for which
~ii ffl ~jj. For ði; jÞ with j < N � 1, Sði; jþ 1Þ should not
write in the same location as Sði; jÞ (case on the left) and
Sðiþ 1; 0Þ should not write in the same location as
Sði;N � 1Þ (case on the right). In this example, the
iteration space for S and the array space for A are
perfectly aligned (statement S at iteration ði; jÞwrites inA
at location ði; jÞ), therefore, Fig. 3 can be interpreted in
terms of array locations: For Aði; jÞ (in black), the other
points (in gray) represent the array elements that should
not be mapped to the same memory address as Aði; jÞ.

We see that there are only five different vectors in DS,
ð0; 0Þ, ð0; 1Þ, ð1; 1�NÞ, and their negations (see the set
DS in Fig. 4 as well as a polytope K such that DS ¼K



).

In gray, some regularly spaced points are represented;
these are the elements in the kernel of the modular
mapping ði; jÞ 7! ðimod 2; jmod 2Þ, whose intersection
with DS is equal to f~00g and which is thus valid. In Fig. 5,
we represent a super-approximation D to DS. Now, the
mapping ði; jÞ 7! ðimod 2; jmod 2Þ is no longer valid.
Actually, since S ¼ fð0; 0Þ; ð0; 1Þ; . . . ð0; N � 1Þg is such
that S � S � D, any valid linear allocation requires at
least N memory cells. Thus, with this apparently slight
approximation, we lose an order of magnitude (when N
is large) in memory size.

3 INTEGER LATTICES AND LINEAR ALLOCATIONS

For the rest of the paper, we restrict ourselves to the study
of linear allocations. We rely on a lattice-based approach
that leads to a unified framework for studying previously
proposed allocation mechanisms and introducing new ones.
Let ~aa1; . . . ;~aan be n linearly independent points in IRm. The

set � of points ~xx ¼ u1~aa1 þ � � � þ un~aan, where u1; . . . ; un are
integers, is called a lattice of rank n. The system of points
ð~aa1; . . . ;~aanÞ is a basis of �; for n ¼ m, detð~aa1; . . . ;~aanÞ, a
quantity that does not depend on the choice of a basis for �,
is called the determinant of �, denoted by dð�Þ. We write
~xx ¼ A~uu, where A is the matrix with column vectors
~aa1; . . . ;~aan and � ¼ AZZn. Lattices are useful to us since, as
we will see, they are in correspondence with equivalence
classes of linear allocations. The C-valid linear allocations
further correspond to a special class of lattices that we call
strictly admissible lattices for D.

An integer matrix U is unimodular if its determinant has
absolute value one or, alternatively, if it has an integer
inverse. Unimodular matrices are isomorphisms of ZZn: If U
is unimodular, then ZZn ¼ UZZn. Given a matrix M of rank n
in ZZn�n, there exist a unimodular matrix U and an upper
triangular matrix H such that H ¼ MU ; moreover, H can be
chosen such that 0 � hi;j < hi;i for all j > i. The matrix H is
called the Hermite normal form [15] of M, it is not changed
if M is multiplied on the right by a unimodular matrix.
Given M 2 ZZn�n of rank n, there exist two unimodular
matrices U1 and U2 and an integer diagonal matrix S ¼
diagðs1; . . . ; snÞ such that S ¼ U1MU2 and si divides siþ1, for
1 � i < n. The diagonal factor S is called the Smith form
of M [15], it is not changed if M is multiplied on either side
by a unimodular matrix.

3.1 Kernels and the Representation of Linear
Allocations

The kernel of a linear allocation � from ZZn to M is a
sublattice � of ZZn called the underlying lattice of �. The
rank of � is n for, otherwise, the image of ZZn under �would
be infinite and we know it is not.

Proposition 2. Let � � ZZn be a lattice of rank n. One can
compute a modular mapping ðU;~ssÞ with kernel �, with U
unimodular in ZZn�n, ~ss such that si divides siþ1, and
dð�Þ ¼

Qn
i¼1 si. Moreover, any linear allocation is equivalent

to such a modular mapping.

Proof. Consider a matrix A 2 ZZn�n whose columns are a
basis of �: � ¼ AZZn. Write S ¼ U1AU2, the Smith form
of A, and let U ¼ U1 and ~ss such that S ¼ diagð~ssÞ. Then,
U~xxmod~ss ¼ 0 iff there exists ~uu 2 ZZn such that U~xx ¼ S~uu,
iff there exists ~vv 2 ZZn (with ~vv ¼ U2~uu) such that
~xx ¼ U�1

1 SU�1
2 ~vv ¼ A~vv. In other words, ðU;~ssÞ is a modular

mapping whose kernel is �. Since A and S are
unimodular equivalent, then dð�Þ ¼ detS ¼

Qn
i¼1 si.
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Fig. 3. Conflicting iterations for the code of Fig. 2, for N ¼ 9.

Fig. 4. The exact set DS for Example 1. Fig. 5. An approximation D ¼K



of the set DS.



The second statement of the proposition is proven by
considering � ¼ kerð�Þ for a linear allocation �. Then,
ðU;~ssÞ has kernel � and is thus equivalent to �. (NOTA.
For a modular mapping �, kerð�Þ can be computed with
integer matrix computations, as in [16].) tu

As already mentioned, for a modular mapping ðM;~bbÞ,
the rows of M corresponding to bi ¼ 1may be omitted since

the corresponding dimension of the storage array is not

used. Proposition 2 thus shows that the study of linear

allocations � : ZZn ! M reduces to the study of (surjective)

modular mappings ~ii 7! U~iimod~ss, where U 2 ZZp�n can be

completed into a unimodular matrix and where ~ss has no

unit entries. For a linear allocation �, the construction of

Proposition 2, with � ¼ kerð�Þ, computes an equivalent

modular mapping of the form ðUp;~sspÞ, where Up 2 ZZp�n is

formed by the last p rows of U and ~ssp is given by the

nonunit entries of ~ss. The following theorem shows that this

strategy leads to a modular mapping that uses the fewest

dimensions and the least storage.

Theorem 1. Let � be a linear allocation. The modular mapping

ðUp;~sspÞ given by the construction of Proposition 2, with

� ¼ kerð�Þ, requires the smallest storage size dð�Þ among all

linear allocations equivalent to � and the fewest array

dimensions p among all modular mappings equivalent to �.

Proof. Let ðU;~ssÞ be the modular mapping of Proposition 2
built from the kernel � of �. By construction, U�1S, with
S ¼ diagð~ssÞ, is a basis of �. The size of ðU;~ssÞ is dð�Þ and,
as U is unimodular, it is surjective. Elementary group
theory shows that the size of a linear allocation �0,
equivalent to � (i.e., with underlying lattice �), defined
from ZZn to an abelian group M, is a multiple of dð�Þ as
dð�Þ is the number of elements in �0ðZZnÞ, which is a
subgroup of M. Therefore, ðU;~ssÞ requires the smallest
storage size.

Let ðM;~bbÞ be a modular mapping equivalent to �. We

first show that B ¼ diagð~bbÞ and S ¼ diagð~ssÞ are such that

B ¼ PSQ for integer matrices P and Q in ZZn�n. Write

S~bb ¼ diagð~bbSÞ ¼ U1BU2, the Smith form of B. Then,

ðN;~bbSÞ, with N ¼ U1M, is also equivalent to �. Indeed,
~xx 2 kerððN;~bbSÞÞ iff N~xxmod~bbS ¼ 0 iff there exists ~uu 2 ZZn

such that N~xx ¼ S~bb ~uu iff there exists ~uu 2 ZZn such that
M~xx ¼ BU2~uu iff there exists ~vv 2 ZZn (with ~vv ¼ U2~uu) such

that M~xx ¼ B~uu, thus iff ~xx 2 kerððM;~bbÞÞ ¼ �. Now, let

H ¼ NV , with V unimodular, be the Hermite form of N .

Since H is upper triangular and S~bb is in Smith form with

diagonal entries satisfying the divisibility property, each

column of NV S~bb is equal to 0 modulo ~bbS , i.e., each

column of V S~bb belongs to �. Hence, there exists R 2 ZZn�n

such that V S~bb ¼ ðU�1SÞR, i.e., S~bb ¼ V �1U�1SR. Using
S~bb ¼ U1BU2, we get that B ¼ PSQ for P and Q in ZZn�n.

From [14, Lemma 1], we conclude that ~bb must have more

unit entries than~ss. Therefore, ðUp;~sspÞ requires the fewest

array dimensions. tu

Recall the equivalent modular mappings imod 2 (which
is the one built for the kernel 2ZZ) and 2imod 4, and note
that the latter’s storage usage is a multiple of the former’s.

3.2 Strictly Admissible Integer Lattices

Let K be an arbitrary set in IRn. A lattice is strictly

admissible for K if it does not contain a point other than~00

in K. The quantity inffdð�Þ j � strictly admissible for Kg is

the critical determinant �ðKÞ of K. We also define the

quantity we are interested in:

�ZZðKÞ ¼ inffdð�Þ j � � ZZn strictly admissible for Kg:

While �ðKÞ may not be attained, �ZZðKÞ is an integer

and, thus, there always exists a strictly admissible integer

lattice � such that dð�Þ ¼ �ZZðKÞ. Thanks to Propositions 1

and 2, we have:

Proposition 3. A linear allocation is C-valid iff its underlying

lattice is strictly admissible for D. A strictly admissible

lattice � for D is the underlying lattice of a C-valid modular

mapping that uses an array of dð�Þ memory locations.

Proposition 3 affords us dual views of the allocation

problem. In Section 4.1, we shall build a strictly admissible

integer lattice for D and deduce a valid mapping. In

Section 4.2, we build the modular mapping directly,

working with the matrix M and the vector ~bb. In the

remainder of the paper, we focus on the crux of the

problem, the study of �ZZðKÞ for a 0-symmetric convex

body K with positive volume, i.e., when the set of

conflicting differences DS is represented or approximated

by a set D ¼K


, the integer points in K. We seek

mechanisms that are robust enough to handle even extreme

cases well, for example, obtained with “skewed” schedules

as in [17]. For computational reasons, we assume that K is a

rational polytope, i.e., defined by integer linear inequalities.

Also, to simplify the presentation of the heuristics and their

performance, we assume that K contains n linearly indepen-

dent integer points. This allows us to talk about the volume

VolðKÞ of K and to get upper bounds in terms of this

volume. Without this admittedly technical assumption,

such bounds are impossible since �ZZðKÞ is a positive

integer while the n-dimensional volume of K, even if it may

be positive, could be arbitrarily small. In the general case,

we can make a preliminary change of basis (at least

conceptually) and work in the smallest vector subspace

that contains all integer points in K.

3.3 Lower Bounds on �ZZðKÞ and Minkowski’s First
Theorem

Many theoretical results exist for �ðKÞ (see [18] for an

extensive study), but it is an open problem to be able to

compute �ðKÞ for most bodies K. We may wonder if the

combinatorial nature of �ZZðKÞ (integer lattices instead of

general lattices in IRn) makes the problem easier. Thanks,

however, to Proposition 4 below, an algorithm for �ZZðKÞ
would allow us to get arbitrarily accurate approximations

to �ðKÞ.
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Proposition 4 ([14, Proposition 5]). For a bounded star body2K,

lim
�!1

�ZZð�KÞ
�ð�KÞ ¼ 1:

Our goal is then to adapt to �ZZðKÞ well-known lower

and upper bounds for �ðKÞ. Recall the simple lower

bound in (1), Section 2.3.2. In terms of strictly admissible

lattices, this means that, for any set S such that S � S � K,

�ZZðKÞ � CardðSÞ. We may argue similarly for a

0-symmetric bounded convex body K in IRn. Let � � ZZn

be a strictly admissible lattice for K, then 2� is strictly

admissible for 2K and K


�K



� K �K ¼ 2K. Thus,

dð2�Þ � CardðK


Þ and dð�Þ � CardðK



Þ=2n. It follows that

�ZZðKÞ � CardðK


Þ=2n.

We can get similar inequalities using volumes, thanks

to Minkowski’s first theorem [19], which states that if � is

a lattice of IRn and K a 0-symmetric bounded convex

body with VolðKÞ > 2ndð�Þ, K contains a nonzero lattice

point of �. Thus, if � is strictly admissible for K,

dð�Þ � VolðKÞ=2n. This shows that �ZZðKÞ � VolðKÞ=2n.
This may be applied to our original problem, i.e., in terms

of the set of conflicting indices. Let S ¼ K


S for a

polytope KS such that KS �KS � K, where D ¼K


. Then,

�ZZðKÞ � VolðKS �KSÞ=2n and, because of the Brunn-

Minkowski theorem (see [18, p. 12]) , we get

�ZZðKÞ � VolðKSÞ.
For an upper bound, we could hope to adapt the

Minkowski-Hlawka theorem [20], which states that
�ðKÞ � VolðKÞ. But, the construction relies on rational
lattices and it is not clear whether it can be generalized to
�ZZðKÞ. However, in Section 4, we build strictly admissible
lattices�with dð�Þ=VolðKÞupper boundedby a function ofn
only.

3.4 Optimal Construction

Here, we use an oracle that determines the strict

admissibility for K of a candidate lattice �. When K is

a polytope, this may be done with integer linear

programming; alternatively, if all elements of K



can be

enumerated, we can solve integer linear systems to check

whether � intersects K only in ~00. Given such an oracle,

�ZZðKÞ can be found by exhaustive search of candidate

lattices. Indeed, thanks to the Hermite form (see [15]), we

can generate all integer lattices with given determinant d by

generating all nonnegative upper triangular matrices, with

determinant d, and such that hi;j < hi;i for j > i. The

number HnðdÞ of lattices that need to be generated is equal

to
Qn�1

j¼1 ð�kþj � 1Þ=ð�j � 1Þ when d ¼ �k for a prime � and, if

d ¼ pq, p and q relatively prime, then HnðdÞ ¼ HnðpÞHnðqÞ
(see [15, Theorem II.4]). If we find no strictly admissible

lattice with determinant d, we continue the search with the

value dþ 1. The procedure will stop with an optimal

solution having determinant less than VolðKÞ multiplied by

a function of n.

Though not practical for bodies with large volumes and

high dimensions, this search can be implemented for small

sets D and it will give a C-valid linear allocation that

requires the least possible storage, �ZZðDÞ. This is how we

found the optimal modular allocation in the case study

introduced in Section 1. With the original 4D problem

formulation, the number of lattices from d ¼ 1 to the

optimal d ¼ 112 is already large, equal to 86; 416; 644, and

checking them all with integer linear programming (ILP) to

find an optimal solution takes roughly two days. With the

3D representation, however (see details in Section 7), we

generated the 941; 901 lattices and checked them with ILP in

roughly 30 minutes. We did not make any effort yet to try to

speed up this exhaustive search.

4 MEMORY ALLOCATION HEURISTICS

We propose heuristics that build strictly admissible integer
lattices � for a given polytope K. We arrive at lattices such
that dð�Þ=VolðKÞ is upper bounded by a function of n only,
i.e., at heuristics that are optimal up to a multiplicative factor
(see Section 3.3). These heuristics are all based on a scaling
scheme. We start with a set of n linearly independent
integer vectors and the corresponding lattice (or its dual set)
is then scaled to a strictly admissible lattice. As we are going
to see, several techniques may be used for determining
valid scaling factors. Using the correspondence of Proposi-
tion 3, the heuristics are given either in terms of strictly
admissible lattice or modular mapping constructions. Their
qualities are essentially established by considering suffi-
ciently small scaling factors. Indeed, these factors determine
the determinant of the lattice, hence the size of the
allocation (Proposition 3).

For basic notions and results on convex bodies, dual sets,
and successive minima, please refer to [18]. Recall that K �
IRn is a 0-symmetric closed bounded convex body, which
contains n linearly independent integer vectors. In the
following, we identify points and vectors and, for a set A of
vectors, we denote by VectðAÞ the corresponding vector
space.

4.1 Using the Successive Minima

Appropriate vectors and scaling factors may be constructed

using the central notion of successive minima of K with

respect to ZZn (we adapt to �ZZðKÞ a technique that Rogers

developed for �ðKÞ, see [18, Theorem 18.1]). The function

F ð~xxÞ ¼ inff� > 0 j ~xx 2 �Kg defines a norm such that

F ð�~xxÞ ¼ j�jF ð~xxÞ, called the gauge function of K. The set K

is the set of points whose norm is less than or equal to one.

For 1 � i � n, the ith minimum �iðKÞ of K with respect

to ZZn is the smallest value � such that at least i linearly

independent integer points satisfy F ðxÞ � �, i.e.,

�iðKÞ ¼ inff� > 0 j dimðVectð�K \ ZZnÞÞ � ig. Since K con-

tains n independent integer points, we have �iðKÞ � 1, for

1 � i � n. Note that, for a point ~xx 6¼~00 in K and 	 > 1=F ð~xxÞ,
the point 	~xx is outside K. The principle of the heuristic

below is to use scaling factors greater than the 1=�iðKÞ in

obtaining a strictly admissible lattice.
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Heuristic 1.

. Choose n positive integers ð�iÞ1�i�n such that �i is a
multiple of �iþ1, for i < n, and dimðLiÞ � i� 1,
where Li ¼ VectðK=�i \ ZZnÞ.

. Choose a basis ð~aa1; . . . ;~aanÞ of ZZn such that
Li � Vectð~aa1; . . . ;~aai�1Þ.

. Define � as the lattice generated by ð�i~aaiÞ1�i�n.

Theorem 2. The lattice � computed by Heuristic 1 is strictly
admissible for K. If each �i is the smallest possible power of 2,
then dð�Þ

Qn
i¼1 �iðKÞ � 2n and dð�Þ � n! VolðKÞ.

The proof of Theorem 2 for upper bounding the product of
the different �i and the size of the allocation relies on an
upper bound for

Qn
i¼1 1=�iðKÞ that involves VolðKÞ (see [14,

Theorem 3]), which shows how the geometry of K is taken
into account in our process.

Example 1 (continued). The two successive minima of K

(see Fig. 4) are �1ðKÞ ¼ �2ðKÞ ¼ 1. With �1 ¼ �2 ¼ 2 in
Heuristic 1, we get L1 ¼ L2 ¼ f~00g since K=2 \ ZZn ¼ f~00g.
Thus, whatever the choice of a basis ð~aa1;~aa2Þ of ZZn, the
lattice generated by 2~aa1 and 2~aa2 is strictly admissible.
This shows that, for any unimodular matrix U , the
allocation �ð~xxÞ ¼ U~xxmod~bb is valid when ~bb ¼ ð2; 2Þ.
Actually, this was obvious since nonzero vectors in DS

are not multiple of 2, while U~xxmod~bb ¼ 0 iff ~xx ¼ 2U�1~yy

for some integer vector ~yy, which means kerð�Þ ¼ 2ZZ2.

4.2 Heuristics Based on Gauge Functions

The previous construction scales a basis whose axes depend
on the successive minima. The next construction may be
preferred for computational aspects; it is based on
“successive widths” of K and, hence, does not require the
computation of the minima.

Successive widths of K are defined through
K� ¼ f~yy 2 IRn j ~yy:~xx � 1 for all ~xx 2 Kg, the dual body, where
~yy:~xx is the inner product of~yy and ~xx. For example, the unit ball
scaled to have radius r has, as its dual, the unit ball scaled to
radius 1=r; the dual of the “unit-rectangle” fz j jzij � 1g is
the generalized diamond shape (an octahedron in 3D)
fz j

P
jzij � 1g. With our assumptions on K, we have

ðK�Þ� ¼ K.
Using duality (see [21] and its annotated version [22]),

the gauge function of K� is

F �ð~yyÞ ¼ inff� > 0 j ~yy 2 �K�g ¼ supf~yy:~xx j ~xx 2 Kg:

Furthermore, for n linearly independent integer vectors
ð~cc1; . . . ;~ccnÞ, one can define K�

i , the projection of K� along
~cc1; . . . ;~cci�1 into Vectð~cci; . . . ;~ccnÞ. In other words, ~yy ¼ �i~cci þ
. . .þ �n~ccn 2 K�

i i ff there are �1; . . . ; �i�1 such that
�1~cc1 þ . . .þ �i�1~cci�1 þ~yy 2 K�. The gauge function asso-
ciated to K�

i is defined by

F �
i ð~yyÞ ¼ supf~yy:~xx j ~xx 2 K; ~cc1:~xx ¼ . . . ¼~cci�1:~xx ¼ 0g; 1 � i � n:

For a geometrical intuition of Heuristic 2 below, note that
supf~yy:~xx j ~xx 2 Kg ¼ F �

1 ð~yyÞ ¼ F �ð~yyÞ can be interpreted as half
of the width of K in the direction ~yy. We use scaling factors
�i > F �

i ð~cciÞ for constructing lattice points outside K.

Heuristic 2.

. Choose a set of n linearly independent integer
vectors ð~cc1; . . . ;~ccnÞ.

. Compute the values F �
i ð~cciÞ ¼ supf~cci:~xx j ~xx 2 K;~cc1:~xx ¼

. . . ¼~cci�1:~xx ¼ 0g; 1 � i � n.
. Choose n integers �i such that �i > F �

i ð~cciÞ.
. Let M be the matrix with row vectors ð~cciÞ1�i�n and ~bb

the vector such that bi ¼ �i.

This heuristic generalizes the successive modulo princi-
ple of Lefebvre and Feautrier [3] (see Section 5.2) to any set
of n linearly independent integer vectors.

Theorem 3. The kernel � of the modular mapping ðM;~bbÞ built
by Heuristic 2 is strictly admissible for K. If ð~cciÞ1�i�n is a
basis of ZZn, the smallest choice for ð�iÞ1�i�n leads to
dð�Þ ¼

Qn
i¼1ðbF �

i ð~cciÞc þ 1Þ. Furthermore, if F �
i ð~cciÞ � 1 for

all 1 � i � n, i.e., the successive widths of K in the directions
~cci are more than 1, then dð�Þ � ðn!Þ2 VolðKÞ.

Here, the quality of the heuristic is established from the
facts that F �

i ð~cciÞ � 1, for all i, and that
Qn

i¼1 F
�
i ð~cciÞ is upper

bounded (see the proof in [14]). These conditions indicate
how the choice of ð~cc1; . . . ;~ccnÞ must depend on the geometry
of K� and K. Vectors such that the successive widths are
“not too small” and “not too big” should be preferred.

This may be relaxed by precomputing an appropriate
basis from any given basis ð~cc1; . . . ;~ccnÞ of ZZn. We may use
the generalized basis reduction of [21]. Given a basis
ð~cciÞ1�i�n for ZZn, the reduction algorithm of [21] outputs a
reduced basis ð~rriÞ1�i�n for K�, which is then used in
Heuristic 2. According to [21, Theorem 3], a reduced basis
satisfies, for 0 < 
 < 1=2:

�iðK�Þð1=2� 
Þi�1 � F �
i ð~rriÞ � �iðK�Þð1=2� 
Þi�n: ð2Þ

With 
 ¼ 1=4, this leads to a mapping of size dð�Þ �
ðnþ 1Þ2nðn�2Þðn!Þ2VolðKÞ [14].

Furthermore, if, similarly to Heuristic 1, the successive
minima of K� are available, we may build an ad hoc basis
ð~cc1; . . . ;~ccnÞ of ZZn, leading to a guaranteed performance
dð�Þ � ðn!Þ2VolðKÞ. We may also demonstrate a guaranteed
bounding box mechanism (as defined in Section 5.1) for K on
particular basis [14].

Example 1 (continued). Working in K� amounts to
computing the successive widths of the set K depicted
in Fig. 4. The width of K=2 in the direction of ~cc1 ¼ ð1; 0Þ
is F �ð~cc1Þ ¼ F �

1 ð~cc1Þ ¼ �1ðK�Þ ¼ 1, thus �1 ¼ 2. Then, for
~cc2 ¼ ð0; 1Þ, we get F �

2 ð~cc2Þ ¼ �2ðK�Þ ¼ 1, leading to the
valid mapping of size 4, ðimod 2; jmod 2Þ. Considering
the canonical basis in the opposite order, i.e., with ~cc1 ¼
ð0; 1Þ and ~cc2 ¼ ð1; 0Þ, leads to F �ð~cc1Þ ¼ N � 1, hence
�1 ¼ N , which is clearly too big. Precisely, since
F �
2 ð~cc2Þ � 1, Heuristic 2 has no guaranteed performance

for this particular basis. But, we see from (2) that the
basis is not reduced since F1ð~cc1Þ � �1ðK�Þ=ð12 � 
Þ ¼ 2

1�
 .
It can be reduced to ~rr1 ¼~cc1 þN~cc2 ¼ ðN; 1Þ with
F �ð~rr1Þ ¼ 1, for a scaling factor 2. Then, with ~rr2 ¼~cc2, we
get F �

2 ð~rr2Þ < 1 for a scaling factor 1, which leads to the
mapping ðNiþ jmod 2; imod 1Þ, i.e., the optimal and
1D mapping Niþ jmod 2.
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From a practical point of view, we point out that
Heuristic 2 can be slightly modified to define a valid
1D mapping [14]. There is no obvious such mechanism for
Heuristic 1.

Corollary 1. If ðM;~bbÞ is a valid modular mapping built by
Heuristic 2, the 1D modular mapping defined by ð~cc1 þ b1~cc2 þ
b1b2~cc3 þ . . .þ b1 � � � bn�1~ccnÞ:~ii mod

Qn
i¼1 bi is also valid.

In [14], we investigate several other aspects of the
heuristic design. We study in particular a heuristic dual to
Heuristic 2 (i.e., working directly in K) and we propose a
polynomial-time heuristic based on the LLL lattice basis
reduction [23].

5 A SURVEY OF THE LITERATURE

In this section, we describe in more detail the papers
mentioned in Section 1 to highlight their underlying
concepts and illustrate their limitations. The goal of this
paper is indeed to be able to 1) understand why/when
these approaches work/fail and 2) possibly derive better
solutions and/or handle more general cases.

5.1 De Greef et al.: Memory Reduction

In [1], De Greef, Catthoor, and De Man, working in the
Atomium project [7], identified the need for memory
reduction techniques for embedded multimedia applica-
tions. Their method is based on an analysis of the array
addresses used in the program to be optimized. They
introduce two techniques, an inter-array storage optimiza-
tion, which refers to the relative position of different arrays
in memory, and an intra-array storage optimization, which
refers to the internal organization of an array in memory.
Let us describe the idea of the intra-array storage
optimization since this is the technique we want to
analyze.

First, the schedule of the program is linearized in someway
(note that this is not always possible), assigning to each
operation u a virtual integer time �ðuÞ. Then, for each array
accessed in the program, a canonical linearization is chosen.
For an n-dimensional array, they consider 2nn! canonical
linearizations, n! choices for the order in which dimensions
are considered, 2n choices depending whether each dimen-
sion is traversed backward or forward. So, for a 2D arrayA of
size ðM;NÞ, there are eight canonical linearizations: Aði; jÞ
can be mapped in memory to a base address (that we ignore
hereafter) plus �Ni� j or �i�Mj. Then, they compute, for
each time t, the maximal address difference ja1 � a2j, where
a1 and a2 are twomemory addresses that contain a live value
at time t and they define b to be themaximal difference for all
possible t. Finally, theywrap thearray linearizationmodulo b,
which is indeed correct since two values simultaneously live
at a given time t can never be mapped to the same location.
This corresponds to a window of b successive addresses that
are never shared by values simultaneously live.

Example 1 (continued). To make the discussion shorter, we
consider only two (among the eight) linearizations of A,
the column-major order and the row-major order, and we
assume that A is a square array of sizeN . For the column-
major order, Aði; jÞ is mapped to iþNj and the maximal

address difference is for t ¼ Ni and equal toNðN � 1Þ � 1
(see Fig. 3 and details in [14]). This leads to the mapping
Aði; jÞ 7! ðiþNjÞmodNðN � 1Þ, with only a slight mem-
ory reduction compared to the original array. For the row-
major order, where Aði; jÞ is mapped toNiþ j, things are
much better sincemapping and time are “aligned.”At any
time t, the addresses t and t� 1 contain a live value.Weget
b ¼ 2 and the mapping Aði; jÞ 7! Niþ jmod 2, which
requires only two memory cells.

In the previous example, the method of De Greef et al.
finds an optimal solution (with memory size 2). However,
this is just because the array addresses are traversed by the
schedule exactly as one of the canonical mappings, both in
terms of directions and size. For example, if the array A was
an array of size M > N instead of N (the loop bounds), the
maximal address difference for the row-major order would
be M �N þ 1 (for the two live values Aði; 0Þ and
Aði� 1; N � 1Þ) for a memory size M �N þ 2 instead of 2.
Thus, considering the linearizations of the original arraywith
respect to its full size, even if only part of the array is
computed, is a limitation. Also, even if all values of the array
are computed, there is no reason (except a practical con-
sideration) for the schedule to be aligned with a canonical
linearization of the array, especially after compiler-generated
loop transformations or data layout optimizations.

Later, aware of some of these limitations, Tronçon,
Bruynooghe, Janssens, and Catthoor (also from the Ato-
mium project) proposed in [8] to compute in the original
n-dimensional space of array indices, an n-dimensional
bounding box (i.e., n moduli computed separately as the
maximal index address difference in each dimension,
defining an n-dimensional rectangular window), instead of
a 1D window (i.e., the modulo b) in the linearized space of
addresses. We will not further discuss this bounding box
mechanism since it is subsumed by Lefebvre and Feautrier’s
successive modulo approach, explained in the next section.

5.2 Lefebvre and Feautrier: Storage Management

Lefebvre and Feautrier in [3], concerned with automatic
parallelization of static control programs, developed a
technique of partial data expansion, which (even if not the
original goal) can also be used for memory reduction. Like
De Greef et al., they use inter-array optimization (based on
graph coloring). We focus here on the heart of their
approach, their intra-array storage optimization. They
completely ignore the array to which a statement writes in
the original program. They instead first rewrite the program
so that each statement S, surrounded by n loops, now
writes to an n-dimensional dedicated array AS . More
precisely, each operation u ¼ ðS;~iiÞ writes to array element
ASð~iimod~bbÞ, where ~bb is a positive integer vector of
dimension n (thus, a particular modular mapping ðM;~bbÞ
with M the identity matrix). The corresponding memory
size is

Q
i bi.

Given a statement S, the components of ~bb are computed
as follows: Lefebvre and Feautrier first compute the
(lexicographically) maximal time “delay” DðSÞ between
the write at operation ðS;~iiÞ and its last read. While they do
not formulate it exactly this way, they consider that ~ii and ~jj
are conflicting when what they call the utility spans
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½�ðS;~iiÞ; �ðS;~iiÞ þDðSÞ	 and ½�ðS;~jjÞ; �ðS;~jjÞ þDðSÞ	 intersect.
This, in general, is a super-approximation of the relation ffl
(and the setsCS andDS) we introduced in Section 2.2.When
these time utility spans do not intersect, ðS;~iiÞ and ðS;~jjÞ can
indeed store their results in the same memory location since
one of these results is dead before the other one is computed.
Then, each bi is computed successively: b1 is set to 1 plus the
maximal difference j1 � i1 for all~ii,~jj such that~ii ffl ~jj.With this
choice, all operations ðS;~iiÞ and ðS;~jjÞ such that~ii ffl ~jjwillwrite
in different locations since they do not evenwrite in the same
“row” (i.e., first dimension) of the array AS , except possibly
when j1 ¼ i1. These remaining conflicting iterations are
handled with the other dimensions: b2 is set to 1 plus the
maximal difference j2 � i2 for all ~ii, ~jj such that ~ii ffl ~jj and
j1 ¼ i1. The process goes on until all ~ii, ~jj such that ~ii ffl ~jj are
considered. If the process stops before bn, the remaining bi
are set to 1 or, equivalently, the corresponding array
dimensions are simply removed. Note that, unlike the De
Greef et al. approach, dimensions are not considered in
their n! possible orders: The successive moduli are always
computed from the outermost to the innermost loop of the
original program.

This approach subsumes the bounding box approach
proposed in [8], which defines bk as the maximal difference
jk � ik among all ~ii, ~jj such that ~ii ffl ~jj, but without the
constraints j1 ¼ i1; . . . ; jk�1 ¼ ik�1. Note that this successive
modulo mechanism is exactly our Heuristic 2 in Section 4.2,
but in the particular case where the basis ð~cc1; . . . ;~ccnÞ is given
by the indices of the original program. Let us come back
now to our running example.

Example 1 (continued). Note that, with the technique of
Lefebvre and Feautrier, it is irrelevant that the array is
accessed in the original program as Aði; jÞ. If A is one-
dimensional and accessed as AðNiþ jÞ or if Aði; jÞ is
replaced in both loops by Aðfði; jÞÞ with an injective
function fði; jÞ, their memory reduction technique gives
the same result since only the writing and reading
iterations are significant.

With Fig. 3, we see that the successive modulo
approach defines b1 ¼ 2, i.e., 1 plus the maximal
difference for the first dimension between two conflict-
ing iterations. Then, it remains to consider all conflicting
iterations with the same loop counter i and the maximal
difference in terms of the loop counter j. We get b2 ¼ 2,
for the mapping ðS;~iiÞ 7! Aðimod 2; jmod 2Þ with size 4,
a bit worse, but of same order as what we found before.
Note that our Corollary 1 shows that the mapping
ðS;~iiÞ 7! Aðiþ 2jmod 4Þ is also valid.

We could do the same study with the equivalent 2D
schedule given in Section 2.3. But now, if, for this schedule,
we define the utility spans with the quantity DðSÞ
explained previously, this overconstrains the problem
and leads to a much less interesting memory reduction.
Indeed, DðSÞ, the maximal “time” difference between a
write and its last read, is now equal to ð1; 1�NÞ (see
Fig. 3 on the right): b1 is still equal to 2, but now any two
indices whose difference is less than ð1; 1�NÞ are
considered to be conflicting, for example, ði; 0Þ and
ði;N � 1Þ, and we get b2 ¼ N for a memory size equal to
2N , which is much worse!

Now, suppose that the code of Fig. 2 is scheduled, not
as written, but with the schedule iþNj for the first loop
and iþNjþ 1 for the second (i.e., apply a loop
permutation ði; jÞ 7! ðj; iÞ on each loop and initiate the
second loop one clock cycle after the first one). The
conflicting iterations are the same as those depicted in
Fig. 3, except that the two axes should be permuted.
Now, we get b1 ¼ N , then b2 ¼ 2 for a memory size
b1b2 ¼ 2N . Here, the successive modulo mechanism is
applied with the axes in the wrong order!

Admittedly, the schedules we use in Example 1, whether
one-dimensional with parameter N or only piecewise affine
and multidimensional are not part of the model assumed by
Lefebvre and Feautrier. These examples reveal two diffi-
culties with the Lefebvre/Feautrier technique. First, the
approximation to CS and DS based on utility spans
determined by DðSÞ is affected by the use of a multi-
dimensional schedule, whereas the actual sets CS and DS
are not and this can lead to a considerable overestimation of
DS. Second Lefebvre and Feautrier prescribe both the basis
and the order, namely, the natural basis and order given by
the program, in which to look for successive moduli. But, as
we have shown here, it can be quite important to carefully
choose both the basis and the order in which its elements
are selected.

5.3 Quilleré and Rajopadhye: Memory Usage
Optimization

In [2], Quilleré and Rajopadhye studied the problem of
memory reuse for systems of recurrence equations, a
computation model used to represent simple algorithms
to be compiled into circuits. They propose using an
approach similar to Lefebvre and Feautrier’s approach,
i.e., placing the result of an equation S for vector ~ii (a
concept similar to an operation ðS;~iiÞ for a program) in a
dedicated array AS , but in array element ASðfð~iiÞÞ, where f
is a linear access function. Their goal is to find an affine
function f into a linear space of smallest dimension (what
they call a “projection”), independent of the parameters
such as N in the previous examples. The number of
dimensions they obtain is linked to the depth d � 1 of
DðSÞ, i.e., one plus the number of leading zeros in DðSÞ.
Compared to the two previous approaches, it is a bit more
complicated to explain it in a short paragraph without
losing accuracy (see their original paper [2] or [14] for more
details). We can just say that, basically, their approach
exploits the fact that conflicting indices ~ii ffl ~jj lie in a
subspace of dimension n� dþ 1 (and, in general, “thin” in
one dimension) to define an ðn� dþ 1Þ-dimensional map-
ping as a projection onto this subspace (plus a modulo in
the “thin” dimension). This projection can be obtained by
reasoning in a basis defined from the schedule, i.e., so that,
after this change of basis, the linear part of the schedule is
the identity.

They also mention the use of moduli in all dimensions,
but only with a brief analysis and more with a bounding
box mechanism in mind, as in [8], than with a successive
modulo mechanism, as in [3]. So, in our opinion, their main
contribution was rather to show the interest to work, not
necessarily in the basis of the original loop indices (as
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Lefebvre and Feautrier do), but in a different basis and, in
particular, in a basis built from the schedule. We point out,
however, that to apply Quilleré and Rajopadhye’s techni-
que, we need that the schedule expresses a basis, which is
not always the case. For example, the basis that corresponds
to the schedule ði; jÞ 7! ðNiþ jÞ, which we used for
Example 2, is “hidden” because this is the linearized
version of the schedule �ði; jÞ ¼ ði; jÞ. This is typically the
case for pipelined codes scheduled with very skewed
linearized schedules, as those developed in [17]. Also, the
Quilleré and Rajopadhye technique relies on the hypotheses
that the iteration domain is full-dimensional and writes a
value at each iteration. If the schedule traverses an iteration
domain larger (in size and/or in dimension) than the
subdomain where the writes occur, the basis given by the
schedule is not necessarily the right one in which to project.
In other words, to handle more general cases, we need to
better understand what is the right basis (if any) in which
all these memory reuse mechanisms should be applied. This
has been our direction of work in Section 4.

5.4 Early Work on Parallel Memories and Templates

Linear allocation is not new: It was introduced in 1971 by
Budnik and Kuck [24], who were concerned with memory
skewing schemes for defining data layout allowing parallel
accesses to memory by codes that make repeated accesses to
a pattern of nearby data elements. Budnik and Kuck called
these templates; they are also known as stencils. This
concept was studied in more detail by Shapiro [25], then
Wijshoff and van Leeuwen (see, in particular, [26]) and
others. The validity constraints for this purpose are
different than for memory reuse. This perhaps explains
why this work on linear allocation has been forgotten in the
previously discussed papers (including ours [5]). We think
it important, however, to briefly present the similarities and
differences between the two contexts.

A skewing scheme s is a mapping from ZZn to ½0;m� 1	,
whichmaps indices of array elements tommemory locations.
A template T is a finite subset T ¼ f~00;~tt1; . . . ;~ttlg of ZZn and an
instance T ð~xxÞ of T , ~xx 2 ZZn, is T ð~xxÞ ¼ f~xx;~xxþ~tt1; . . . ; ~xxþ~ttlg.
We defined valid allocations with respect to a set C of index
pairs. The validity of skewing schemes, initially related to
parallel memory accesses, is defined with respect to a
template T and a set � (in general, � ¼ ZZn). A scheme s is
ðT;�Þ-valid when, for any ~xx 2 �, the restriction of s to T ð~xxÞ
is an injection. For a linear skewing scheme, one can also
define a set of conflicting differencesDT ¼ f~ii�~jj j~ii; ~jj 2 Tg.
Then, a skewing scheme s is ðT;ZZnÞ-valid iff kerðsÞ \DT ¼
f~00g as in Proposition 1, which shows a correspondence
between linear allocations and linear skewing schemes. Our
optimization techniques can be used to derive linear skewing
schemes valid for templates expressed as or approximatedby
polytopes. Conversely, we may hope to reuse results of the
theory of linear skewing schemes when D is equal to the
difference set of a template T , i.e., D ¼ T � T . Unfortu-
nately, the main results of this theory are for templates of
small sizes and the theory focuses on the mathematical
properties of such allocations (properties that have inspired
us in Section 3), but not on the algorithmic aspects of how to
build them. Indeed, since a template is small and described
by extension, it was considered to be easy to find the

optimal allocation (see [27] and Section 3 hereafter). This is
not satisfying for us when the size of D can be large, when it
is specified by some representation whose size does not
depend on the number of points it contains (e.g., polytope),
and when it is parameterized. However, one spectacular
result developed at this time [28] is that, in 2D, when the
template T is a polyomino (i.e., a rook-wise connected set of
integer points) of size m, an optimal valid skewing scheme
requires exactly m memory cells iff T tessellates the plane
and iff there is a valid linear skewing scheme requiring m
memory cells. Also in [29], lower and upper bounds on the
optimal allocation are studied, for several complex template
shapes, but only in dimension 1, while we mainly work in
higher dimensions.

We may also point out that the theory of skewing
schemes considers nonlinear allocations (e.g., diamond
schemes [30] and multiperiodic schemes [31]), and a more
general notion of validity based on template collections,
but, still, no practical investigations that we could apply to
nonlinear allocations. In conclusion, beyond the connection
between memory allocations and skewing schemes, the
validity constraints, the size and representation of index
sets, and complexity issues are quite different.

6 GENERAL DISCUSSION

Our allocation constructions rely both on the choice (or
computation) of a working basis and on scaling. Our
main contribution is to show that the resulting allocation
size can be guaranteed for particular bases. Conversely, a
bad choice of basis may lead to an allocation size
arbitrarily large with respect to the volume of K. For
instance, in the following variant of Example 1, we ensure
a constant allocation size, while previous heuristics may
lead to sizes of order more than N .

Example 2. We keep the code of Example 1, but with the
iteration domain of Fig. 6 and traversed sequentially
with successive diagonals, i.e., with the multidimen-
sional schedule ði� j; iÞ, the second loop still initiated
one clock cycle later. We get the set DS in Fig. 7, with
vertices ð1; 1Þ, ðN � 1; NÞ, and their opposites. The
Lefebvre-Feautrier heuristic would use the basis
fð1; 0Þ; ð0; 1Þg) and choose �1 ¼ N þ 1, �2 ¼ 1, with a
memory size of order N . The technique of De Greef et al.
loses two orders of magnitude (size of order N2). But, the
mapping ðimod 2; jmod 2Þ is still valid (found by
Heuristic 1, for example).

In addition to revealing that the choice of the basis is a
key point for performance, our study helps in under-
standing the properties of a “good” working basis. At the
cost of knowing the successive minima, or a reduced basis,
we are always able to compute an adequate choice.
Applying this strategy to the body of Example 2 overcomes
the difficulties that lead other heuristics to sizes in N or N2

and allows us to find an allocation of size Oð1Þ.
However, it may be prohibitive to rely on successive

minima or generalized basis reduction. Therefore, it is
essential to also point out that previously known heuristics
may lead to satisfying allocations, in practice. In Section 5,we
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have seen that theseheuristics choosebases (or linearizations)
related either to the array indices (De Greef et al.), to the loop
indices of the initial program (Lefebvre and Feautrier), or to
the scheduling function (Quilleré and Rajopadhye).With our
framework, we can analyze these different choices. In
particular, the performance is guaranteed as soon as the
choice is adequate with respect to K. In practice, for hand-
written programs, access functions to arrays are simple,
scheduling functions (i.e., loop transformations) are not too
complicated, and the (possibly sub)domain where iterations
write in memory is not too skewed, therefore the set of
conflicting differences DS is not too skewed with respect to
the basis given by the array indices, the loop indices, or the
schedule, and heuristics can work.

Furthermore, if the loops are scheduled with a multi-
dimensional sequential schedule �ð~iiÞ ¼ ð~cc1:~ii; . . . ;~ccn:~iiÞ, one
can consider the vectors~cci to be a good basis for a heuristic
in K�. It is indeed often true that all F �

i ð~cciÞ are equal to 0 for
the first dimensions, then are larger than 1 for the remaining
dimensions (see, in [2], the fact that DS is flat for the
dimensions given by the depth and, in general, contains
some nonzero integer vectors for all remaining dimensions).
In that case, our study shows that mixing the techniques of
Quilleré and Rajopadhye [2]—for choosing the adequate
basis—and of Lefebvre and Feautrier [3]—for choosing the
modulo vector—guarantees the performance. For more
complex cases, our approach would first identify the
subspace in which DS lies, then apply Heuristic 1 or
Heuristic 2 in a well-chosen basis.

Example 2 (continued). For the set DS in Fig. 7, if we
follow the schedule, i.e., consider the basis
f~cc1;~cc2g ¼ fð1;�1Þ; ð1; 0Þg, we retrieve the set DS of
Fig. 4 and get the mapping ði� jmod 2; imod 2).
Actually, we even saw (Heuristic 1) that �1 ¼ �2 ¼ 2 is
valid whatever the basis, thus the lattice depicted as gray
points in Fig. 7 is also valid.

Concerning the way moduli are computed, Heuristic 1
first computes the moduli (the different �i), then a suitable
basis for these moduli. Heuristic 2 follows the successive
modulo technique of Lefebvre and Feautrier. The technique
of De Greef et al. is to work with a particular linearization
and compute a unique modulo. When this linearization is
good, performance is better. Hence, an alternative solution
could be to first try to reduce the dimension of the problem,
then to compute the moduli (see Section 7).

Actually, we do obtain linearizations with Heuristic 2.
Indeed,wederive inCorollary1a1Dmodularmapping, i.e., a
linear access function with a single modulo, with guaranteed

performance.This is important inpractice for limiting the cost
of the access function. If we do not use the derived mapping,
but blindly linearize themultidimensional array of size

Q
i bi,

then, for example in 2D, from a mapping ði; jÞ 7! ðimod
b1; jmod b2Þ obtained by a successive modulo approach, we
could get a linearized access to memory of the form
ði; jÞ 7! base addressþ ðimod b1Þ þ b1ðjmod b2Þ instead of
the simplest form ði; jÞ 7! base addressþ ðiþ b1jÞmod b1b2,
which is also valid (though not equivalent) and saves a
modulo. Note also that, in all heuristics we developed, we
can choose moduli that are powers of 2, which, in practice,
may also be important.

We conclude this general discussion by treating an
example for a general set K. The following shows that, even
for simple codes, it may happen that the exact set of
conflicting differences DS is not equal to the set of integer
points in its convex hull. However, we can still use
Heuristic 1 (valid for any set) to get a strictly admissible
lattice for DS. We can also choose a particular basis and
apply Heuristic 2. For this example, Heuristic 1 always
gives a good mapping, while Heuristic 2 gives a good
mapping if we choose the basis given by the schedule. In
general, even if these heuristics derive valid mappings (or
strictly admissible lattices), we do not know their perfor-
mance for general sets.

Example 3. Consider the code of Example 1, but traversed
with the schedule �ði; jÞ ¼ ðiþ j; jÞ for the first loop, the
second loop starting one clock cycle later again. Fig. 8
gives DS in the original basis: It contains ð1;�1Þ, all
vectors ðp; p� 1Þ for 0 � p < N , and their opposites.
Heuristic 1 shows that, in any basis, the modulo vector
ð2; 2Þ is valid since dimðDSÞ ¼ 2, but dimð�DSÞ ¼ 0 for
� < 1 (i.e., �1ðDSÞ ¼ �2ðDSÞ ¼ 1). Thus, the mapping
ðimod 2; jmod 2Þ is valid (its kernel is in gray). The
successive modulo approach (Heuristic 2) applied in the
original basis leads to b1 ¼ N , then b2 ¼ 1, for a memory
of size N . In the basis of the schedule (see Fig. 9) , we get
b1 ¼ b2 ¼ 2, for the mapping ðiþ jmod 2; jmod 2Þ, which
is equivalent to ðimod 2; jmod 2Þ.

7 DETAILED CASE STUDY

We illustrate the interest of modular mappings with a more
involved and fully detailed example, in four dimensions,
similar to the DCT benchmark, but where some details are
abstracted so as to make the discussion simpler. The code
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accesses a four-dimensional array Aðbr; bc; r; cÞ, in two
pipelined communicating loops, the first one writing each
“row” Aðbr; bc; r; �Þ of the array successively, the second
reading each “column” Aðbr; bc; �; cÞ successively (see the
code given in the introduction, Fig. 1). Here, to make things
simpler, we assume that each operation of S writes all
elements of a row in “parallel,” i.e., at the same “macro-time”
ð64� br þ bcÞ � 8þ r (in other words, the loop is scheduled
sequentially as it iswritten), and each operation of T reads all
elementsof a columnatmacro-time ð64� br þ bcÞ � 8þ cþ �,
where � is such that dependences are respected. (In a fully
detailed implementation, S and T are formed of several
“micro-statements,” each one accessing one element of A
instead of eight. These micro-statements can be software
pipelined, as done in [4], taking into account the available
resources, in particular load-store units, possibly leading to a
different � for each micro-statement.)

For all dependences to be respected, � must be such that
ð64� br þ bcÞ � 8þ cþ � � ð64� br þ bcÞ � 8þ rþ 1 (in a
more accurate model again, the delay 1 may be replaced
by a larger quantity, depending on the delay for accessing
the communicating buffer where the values created by the
first loop are to be stored), i.e., � � r� cþ 1 for all
0 � r; c < 8. For the rest of this case study, we pick the
smallest possible value for �, i.e., � ¼ 8.

We now need to decide how we want to represent the
values that are going to be stored in the intermediate buffer.
We can identify each operation of S by the loop indices
ðbr; bc; rÞ of the surrounding loops, but, as each operation
of S writes eight values, we need an extra index to
distinguish the different values. In other words, we identify
each created value by its indices ðbr; bc; r; cÞ, as in the
original array. As in Example 1, reasoning with loop or
array indices is similar (except that we need an extra
dimension for loop indices) because the array accesses are
aligned with the loop indices.

We can now define the polytope K, with respect to the
representation ðbr; bc; r; cÞ, as the set of all ð�br; �bc; �r; �cÞ
satisfying the following inequalities (with � ¼ 8):

�br ¼ br � b0r; �bc ¼ bc � b0c; �r ¼ r� r0; �c ¼ c� c0

0 � br; b
0
r; bc; b

0
c � 63; 0 � r; r0; c; c0 � 7;

64� 8� �br þ 8� �bc þ r� c0 � �;
64� 8� �br þ 8� �bc þ c� r0 � ��:

8>><
>>:

From this representation, it is clear that K is a 0-symmetric
polytope (it is even linearly parameterized by �, which
would make a parametric derivation of memory allocations

possible). To get an idea of the shape of K, consider an
element of the form Aðbr; bc; 0; 0Þ. It is written at time 8�
ð64� br þ bcÞ and read eight iterations later, thus it conflicts
withall elements of thenext eightwritten rows.Anelementof
the formAðbr; bc; 7; 0Þ,written at time8� ð64� br þ bcÞ þ 7, is
read at the next iteration and, thus, conflicts only with the
elements of the next written row. The next written row(s)
can be written by S at the same iterations of the br and bc
loops (i.e., for �br ¼ �bc ¼ 0), but can also be written at the
next iteration of the bc loop (and the same iteration of the br
loop), or, extreme case (when bc ¼ 63), at the next iteration
of the br loop and the very first iteration of the bc loop (i.e.,
for �br ¼ 1 and �bc ¼ �63). The set K is in dimension 4, but,
for clarity, it is better represented as the union of five two-
dimensional parts. The central part corresponds to the
particular values �br ¼ �bc ¼ 0 and is depicted in Fig. 10. It is
the square of all ð0; 0; �r; �cÞ, where �7 � �r; �c � 7; it
corresponds to a memory of eight full rows, i.e.,
64 elements. The set depicted in Fig. 11 corresponds to
two parts, the set of all ð�r; �cÞ for �br ¼ 0 and �bc ¼ 1, and for
�br ¼ 1, �bc ¼ �63. Its symmetric with respect to 0 is the set
of all ð�r; �cÞ for �br ¼ 0 and �bc ¼ �1, and for �br ¼ �1,
�bc ¼ 63. These five pieces form the whole setK. To get yet a
better view of the set K, consider again the set depicted in
Fig. 4. It is also a representation of the projection of K onto
the first two components �br and �bc. In other words, for the
two first indices, the situation is similar to Example 1.

We can now derive modular allocations. If we apply
Heuristic 2 in the canonical basis,we find successively �br ¼ 2
and �bc ¼ 2 (as for Example 1), then we need to consider the
set of Fig. 10 and we get �r ¼ 8, and, finally, �c ¼ 8. This
leads to the mapping ðbr mod 2; bc mod 2; rmod 8; cmod 8Þ
with a memory size equal to 256. This is exactly what
Lefebvre and Feautrier would find since, here, we picked
the basis given by the schedule, which is also the basis of
the original code. However, if the original code was written
with the bc loop outside the br loop, but scheduled the same
way with the br loop outside, then Lefebvre and Feautrier
would consider the index bc first and find, successively,
�bc ¼ 64, �br ¼ 1, �r ¼ 8, and �c ¼ 8, for a memory size equal
to 4; 096. Again, the choice of basis and the order in which
we evaluate each F �

i for Heuristic 2 are important.
Following our linearization mechanism for Heuristic 2

(Corollary 1), we can find a linear allocation with the
same memory size as the mapping ðbr mod 2; bc mod
2; rmod 8; cmod 8Þ we just found; this is the mapping
br þ 2bc þ 4rþ 32cmod 256.
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As for Example 1, we also see that we could follow the

schedule more closely, with the index t ¼ 64br þ bc (i.e.,

coalescing the two outer loops) so as to try to find a modular

allocation with a memory size equal to 2 instead of 4 for the

two outermost indices. If we redefine K with the indices

ðt; r; cÞ instead of ðbr; bc; r; cÞ, we get a three-dimensional

space with three two-dimensional parts, the central part of

Fig. 10 for t ¼ 0, the part of Fig. 11 for t ¼ 1, and its symmetric

with respect to 0 for t ¼ �1. Since K is now a three-

dimensional space instead of a four-dimensional space, we

are more likely to gain a factor 2 (as in the worse case of the

heuristics). Indeed, we find, successively, �t ¼ 2, �r ¼ 8, and

�c ¼ 8, and the mapping ðtmod 2; rmod 8; cmod 8Þ, or,

equivalently, ðbc mod 2; rmod 8; cmod 8Þ, with memory size

128, half of what we found before. The linearized version is

bc þ 2rþ 16cmod 128. Here, we could also consider the

indices in the opposite order, with the same result, �c ¼ 8,

�r ¼ 8, and �t ¼ 2. Then, the linearized version is

cþ 8rþ 64tmod 128, which is a particular linearization of

the original array, modulo 128, solution that De Greef et al.

would have found in this particular case (again, by “luck”

because the schedule is aligned with the array accesses).
Actually, the maximal distance between conflicting in-

dices, in the linearized representation cþ 8rþ 64bc þ 4096br,

is not127but120, thereforeDeGreef et al.wouldeven find the

mapping cþ 8rþ 64bc þ 4096br mod 121 or, equivalently,

cþ 8rþ 64bc þ 103br mod 121. Can we do better? To answer

this question, we can search, as suggested in Section 3.4,

for the smallest (in determinant) strictly admissible integer

lattice for K, generating triangular matrices for the basis of

the lattices we try. The numbers involved here are small

enough to make this search practical (see the number of

lattices given in Section 3.4). We find that the smallest

possible determinant is 112 and that there are two

equivalence classes (i.e., two lattices) that achieve this: In

4D, these are the lattice generated by the vectors

ð1; 0; 0; 12Þ; ð0; 1; 0; 12Þ; ð0; 0; 4; 20Þ; ð0; 0; 0; 28Þ and, due to

the symmetry in c and r, the lattice generated by the

vectors ð1; 0; 0; 20Þ; ð0; 1; 0; 20Þ; ð0; 0; 4; 12Þ; ð0; 0; 0; 28Þ. We

finally get a corresponding mapping with minimal dimen-

sion thanks to Theorem 1. For example, for the first lattice,

we can write (Smith form) U1MU2 ¼ S:

U1 ¼

1 0 0 0

0 1 0 0

0 0 1 0

�12 �12 �5 1

0
BBB@

1
CCCA U2 ¼

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0
BBB@

1
CCCA

M ¼

1 0 0 0

0 1 0 0

0 0 4 0

12 12 20 28

0
BBB@

1
CCCA S ¼

1 0 0 0

0 1 0 0

0 0 4 0

0 0 0 28

0
BBB@

1
CCCA

and, from the left matrix, we get the allocation
ðrmod 4;�12ðbr þ bcÞ � 5rþ cmod 28Þ, with many equiva-
lent mappings such as ðrmod 4; 16ðbr þ bcÞ þ 2rþ cmod 28Þ.
This is a 2D allocation with no equivalent 1D version. The
best 1D allocation needs one more memory cell, with
memory size 113, for example, the al locat ion
60br þ 8bc þ 42rþ cmod 113, i.e., 8tþ 42rþ cmod 113, or
the more “natural” allocation 64tþ 8rþ 3cmod 113.

8 CONCLUSION

Several important questions remain, both from theoretical
and practical viewpoints.

With our assumptions, restricting to 1D mappings
(which are important in practice) is still optimal up to a
multiplicative factor (Corollary 1). We also showed how to
build a mapping with minimal number of dimensions
among equivalent mappings (Theorem 1). But, how much
exactly do we lose with 1D mappings as opposed to
multidimensional mappings? For the example in Section 7,
we only lose one cell.

Can we better exploit the fact that the set of conflicting
differences D may not be any 0-symmetric convex body K,
but comes from a scheduled program? We already mentioned
that an “often-quite-good” strategy in the case of a
sequential multidimensional affine schedule and when the
mapping is expressed in terms of loop indices is to mix the
two techniques of [3] and [2], i.e., build the moduli as
Lefebvre and Feautrier do, but on the basis of the schedule
as done by Quilleré and Rajopadhye. Can we identify
classes of programs, i.e., give reasonable assumptions,
where we can be sure that a simple-to-compute choice of
basis will give good performance?

Can we derive better heuristics to approximate �ZðKÞ, in
theory (i.e., improve the bound n!VolðKÞ) and in practice? In
particular, maybe there are better heuristics based on the
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Fig. 10. K part for ð�br; �bcÞ ¼ ð0; 0Þ. Fig. 11. K part for ð�br; �bcÞ ¼ ð0; 1Þ and ð�br; �bcÞ ¼ ð1;�63Þ.



construction of a strictly admissible (possibly rational) lattice
that could be converted into a strictly admissible integer
lattice?

In which cases can modular allocations be arbitrarily bad
compared to MAXLIVE? In general, how bad can be the
optimal modular allocations compared to MAXLIVE, i.e.,
what do we lose with modular allocations compared to
general allocations? Of course, if the program is completely
irregular, using modular allocations is obviously subopti-
mal. But, what can we say for an affine program, for
example, with reasonable assumptions?

A complete study remains to be done to better understand
the impact of the different approximations used to build D
and the linkwithdependences and schedules. In particular, it
is also important to be able to handle not only polytopes, but a
union of polytopes. This paper is just the first step to address
all these questions: We only focused on the mathematical
framework and its general properties. Future work needs to
address more specific theoretical questions as well as
strategies for practical implementations.
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Mathématiques” in 1992 and the PhD degree
in computer science in 1993 from the �EEcole
Normale Supérieure de Lyon, France. He is a
research scientist with the French National
Council for Scientific Research (CNRS). His
main scientific interests are in mathematical
tools, automatic program transformations, and
optimizations for parallelizing compilers and for
compiler-based tools used to automatically

synthesize hardware accelerators. He is a member of the IEEE
Computer Society.

Rob Schreiber is a research scientist at Hewlett
Packard Laboratories (HP). He studied mathe-
matics and computer science at Cornell and
Yale Universities, was a postdoctoral research
fellow at the California Institute of Technology,
and has been a faculty member at Stanford
University and the Rensselaer Polytechnic In-
stitute. At HP, Rob was one of the lead
developers of PICO, a tool for hardware synth-
esis from high-level specifications. His research

interests are in high-performance computer architecture, programming,
and algorithms.

Gilles Villard received the PhD degree from the
Institut National Polytechnique of Grenoble. He
became a research scientist with the French
National Center for Scientific Research (CNRS)
in 1990. He arrived at the �EEcole Normale
Supérieure de Lyon in 2000 and has headed
the CNRS-INRIA-LIP project Arénaire on Com-
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