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1 Introduction

The computation of the determinant of an n×n matrix A of numbers or poly-
nomials is a challenge for both numerical and symbolic methods. Numerical
methods, such as Clarkson’s algorithm [10, 7] for the sign of the determinant
must deal with conditionedness that determines the number of mantissa bits
necessary for obtaining a correct sign. Symbolic algorithms that are based on
Chinese remaindering [6, 17, Chapter 5.5] must deal with the fact that the
length of the determinant in the worst case grows linearly in the dimension of
the matrix. Hence the number of modular operations is n times the number of
arithmetic operations in a given algorithm. Hensel lifting combined with ra-
tional number recovery [14, 1] has cubic bit complexity in n, but the algorithm
can only determine a factor of the determinant, namely the largest invariant
factor. If the matrix is similar to a multiple of the identity matrix, the running
time is again that of Chinese remaindering.

The techniques developed in [32] for computing the characteristic poly-
nomial of a sparse matrix lead to a speedup for the general, dense determi-
nant problem. For integer matrices, the bit complexity was shown [16] to
be n3.5+o(1)(log ‖A‖)2.5+o(1), where log ‖A‖ measures the length of the en-
tries in A and the exponent adjustment by “+o(1)” captures missing log
factors (“soft-O”). The algorithms of [32, 16] are randomized of the Monte
Carlo kind—always fast, probably correct—and can be further speeded by a
Strassen/Coppersmith-Winograd sub-cubic time matrix multiplication algo-
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rithm. Note that Clarkson’s algorithm and its new variants are in the worst
case quartic in n.

An entirely different method, based on an algorithm in [33], was first de-
scribed for dense matrices with polynomial entries [22]. For integer matrices
the resulting randomized algorithm is of the Las Vegas kind—always correct,
probably fast—and has worst case bit complexity (n3.5 log ‖A‖)1+o(1) and again
can be speeded with sub-cubic time matrix multiplication. We give a descrip-
tion of this algorithm in Section 2 below. That algorithm was originally put
to a different use, namely that of computing the characteristic polynomial and
adjoint of a matrix without divisions, counting additions, subtractions, and
multiplications in the commutative ring of entries.

By considering a bilinear map with two blocks of vectors rather than a
single pair of vectors, Wiedemann’s algorithm can be accelerated [11, 23, 30,
31]. This technique can be applied to our fast determinant algorithm, and
results in a worst case bit complexity of (n3+1/3 log ‖A‖)1+o(1), again based on
standard cubic time matrix multiplication. We discuss this modification and
its mathematical justification in Section 3. Serendipitously, blocking can be
applied to our original 1992 division-free algorithm, and a similar improvement
of the division-free complexity of the determinant is obtained (see Section 4),
thus changing the status of a problem that has now been open for over 9 years.

In this extended abstract we do not consider the use of fast matrix mul-
tiplication algorithms. By using the algorithms in [13, 12] the bit complexity
for the determinant of an n× n matrix with integer entries can be reduced to
O(n2.698(log ‖A‖)1+o(1)), and the division-free complexity of the determinant
and adjoint of a matrix over a commutative ring to O(n2.698) ring operations.
These exponents have purely mathematical interest and no impact for the com-
putation of a determinant on a computer. We shall also hide the exponents of
the log n and loglog ‖A‖ factors in the “+o(1)” of the exponents. In Section 2
we shall address the impact of those factors on the practicality of our meth-
ods. In general, the precise exponents of these logarithms are dependent on the
actual computational model, such as multi-tape Turing machine, logarithmic
random access machine, hierarchical memory machine, etc.

2 Wiedemann’s algorithm with baby steps/giant steps

Already in his original paper Wiedemann proposes a method for computing
the determinant of a sparse matrix [33]. The algorithm is based on a sequence
of bilinear projections of the powers of the input matrix. For vectors u, v ∈ Kn,
where K is an arbitrary field, and the input matrix A ∈ Kn×n consider the
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sequence of field elements

a0 = uTrv, a1 = uTrAv, a2 = uTrA2v, a3 = uTrA3v, . . . (1)

The minimal polynomial of A, denote by fA, linearly generates {ai}i=0,1,....
By the Berlekamp/Massey algorithm we can compute in n1+o(1) arithmetic
operations a minimal linear generator for the sequence {ai}i=0,1,... [5], which
must be a factor of fA. Hence the Berlekamp/Massey algorithm requires at
most 2n elements of the sequence (1). Wiedemann now randomly perturbs
(“preconditions”) A and chooses random u and v. Then with high probabil-
ity the characteristic polynomial of A, det(λI − A), is equal to the minimal
recurrence polynomial of {ai}i=0,1,....

The above approach is originally intended for sparse matrices, where the
Krylov sequence Av, A2v, . . . can be computed efficiently. In [22] the following
baby steps/giant steps approach is introduced for computing (1).

Let r = d√2n e and s = d2n/re.
Step 1. For j = 1, 2, . . . , r − 1 Do v[j] ← Ajv;

Step 2. Z ← Ar;

Step 3. For k = 1, 2, . . . , s Do (u[k])Tr ← uTrZk;

Step 4. For j = 0, 1, . . . , r − 1 Do
For k = 0, 1, . . . , s Do akr+j ← (u[k])Trv[j].

We shall analyze the method for A ∈ Zn×n and shall denote by ‖A‖ the
infinity matrix norm: ‖A‖ = max1≤i≤n

∑n
j=1 |ai,j |, where ai,j is the integer in

row i and column j of A. Hence the maximal bit length of any entry in A,

min
1≤i,j≤n

{β : |ai,j | < 2β , β ≥ 1} ≤ 1 + log(‖A‖+ 1). (2)

In order to avoid zero or undefined logarithms, we shall simply define ‖A‖ > 1
whenever it is necessary.

The costly steps in bit complexity in the above method are Steps 2 and
Steps 3. The power Ar is computed by binary exponentiation in n3+o(1) integer
operations. Since ‖Ar‖ ≤ ‖A‖r the lengths of the integers involved in Step 2 are
(
√

n log ‖A‖)1+o(1). In Step 3 the lengths can be as much as (n log ‖A‖)1+o(1),
but now the number of integer operations is less: s matrix-time-vector products
yielding a total of O(n2.5). Therefore, both steps can be performed in

(n3.5 log ‖A‖)1+o(1) bit operations, (3)
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and Steps 1 and 4 are dominated by this cost.
The complete determinant algorithm needs a random preconditioner, ran-

dom projections, and the Berlekamp/Massey algorithm. Already Wiedemann’s
original preconditioners, based on Beneš permutation networks and column-
wise scaling [33, Chapter V], and random projections (see also [23, Section 3])
achieve the overall bit complexity (3), because they increase log ‖A‖ only
by an additive term of order (log n)O(1). Note that the arithmetic cost of
the Berlekamp/Massey algorithm is essentially linear, on input coefficients of
length (n log ‖A‖)1+o(1).

William J. Turner at North Carolina State University has implemented
the complete determinant algorithm for (dense) integer matrices in Maple 6.
The implementation is based entirely on residue arithmetic and the Chinese
remainder algorithm. In Steps 1 and 2, the entries of v[j] and Z are first
computed for as many moduli as are necessary for recovery of the actual in-
teger values, that is no more than (

√
n log ‖A‖)1+o(1). Steps 3, 4, and the

Berlekamp/Massey algorithm is done for as many primes as are necessary for
the recovery of the determinant. We use Hadamard’s inequality to bound the
magnitude of the determinant. Hence no more than (n log ‖A‖)1+o(1) moduli
are needed. Furthermore, residue base extension is used for obtaining the re-
mainders of the entries of v[j] and Z with respect to the new moduli. Note that
the implementation does not compute with arbitrary precision integers until
the very last Chinese remainder step for the determinant. Therefore there are
no log factors of any practical significance induced by the manipulation of the
intermediate long integers. We like to add that, theoretically, the input matrix
could be reduced modulo all (n log ‖A‖)1+o(1) primes in (n3 log ‖A‖)1+o(1) bit
operations using Chinese remainder operations based on tree evaluation and
FFT-based integer multiplication [2, Section 8.11].

There now exists an extensive theory on Wiedemann-like precondition-
ers [9]. For example, it is shown that random column scaling, that is, pre-
multiplication by a diagonal matrix whose entries are uniformly sampled for
the set of cardinality O(n2) is sufficient for non-singular matrices. However,
such a preconditioner increases the magnitude of the determinant and slows
the algorithm considerably in practice, as William Turner has observed. A pre-
conditioner like the one in [24, Proposition 1], but where the right multiplier
is also a unit (lower) triangular (Toeplitz) matrix, can be shown to yield with
high probability a matrix with distinct eigenvalues. That preconditioner does
not affect the determinant, but its practical efficiency still needs to be tested.

Our algorithm is Las Vegas: unlucky preconditioning or unlucky projec-
tions yield minimal generators of degree < n and can be discarded. The
infallibility can be extended to singular inputs. First we note that the pre-
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conditioners always preserve non-singularity. Thus even if the projections are
unlucky and the minimal linear generator for (1) is a proper factor of the
minimal polynomial, the minimal generator cannot be divisible by λ. Note
that modulo a prime that might actually happen, in which case we know that
that prime divides the determinant. Since the preconditioners naturally pre-
serve singularity, the minimum generator of (1) for a singular matrix is with
high probability divisible by λ, because it is with high probability equal to
the minimum polynomial of the matrix. It is this condition that certifies sin-
gularity. In the Chinese remainder setting we encounter a λ factor in the
minimum linear generator for so many primes that the Hadamard bound is
covered. With bounded probability our algorithm may fail to compute the
determinant, namely if the minimal linear generator for (1) is of degree < n
but not divisible by λ for almost all primes. We add that if one only needs a
certificate for singularity, it is slightly faster to compute a non-zero solution to
the linear system Ax = 0 [25].

Sub-cubic matrix multiplication algorithms can be employed to improve
the theoretical complexity of the above approach. Already in [22] the exponent
(n3.188 log ‖A‖)1+o(1) is proven. The version of the paper posted at http:
//www.math.ncsu.edu/~kaltofen/ has a note added in 1995 that shows how
to reduce the exponent to (n3.0281 log ‖A‖)1+o(1), which was already below the
complexity achieved in [16]. In order to go significantly below this bound we
need to employ another technique, which we shall discuss next.

3 Acceleration by blocking

Coppersmith [11] first introduce blocking to the Wiedemann method. In our
description we also take into account the interpretation in [30, 31], where the
relevant literature from multivariable control theory is cited.

For the “block” vectors X ∈ Kn×l and Y ∈ Kn×m consider the sequence
of l ×m matrices

B[0] = XTrY, B[1] = XTrAY, B[2] = XTrA2Y, B[3] = XTrA3Y, . . . (4)

As in the unblocked Wiedemann method, we seek linear generating polyno-
mials. A vector polynomial

∑d
i=0 c[i]λi, where c[i] ∈ Km, is said to linearly

generate the sequence (4) from the right if

∀ j ≥ 0:
d∑

i=0

B[j+i]c[i] =
d∑

i=0

XTrAi+jY c[i] = 0m.

For the minimum polynomial of A, fA(λ), and for the µ-th unit vector in Km,
e[µ], fA(λ)e[µ] ∈ (K[λ])m = Km[λ] is such a generator because it already gen-
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erates the Krylov sequence {AiY [µ]}i≥0, where Y [µ] is the µ-th column of Y .
We can now consider the set WA,Y

X of all such right vector generators. This
set forms a K[λ]-submodule of the K[λ]-module K[λ]m and contains m linearly
independent (over the field of rational functions K(λ)) elements, namely all
fA(λ)e[µ]. Furthermore, the submodule has an (“integral”) basis over K[λ],
namely any set of m linearly independent generators such that the degree in λ
of the determinant of the matrix formed by those basis vector polynomials as
columns is minimal. The matrices corresponding to all integral bases clearly are
right equivalent with respect to multiplication from the right by any unimod-
ular matrix in K[λ]m×m, whose determinant is by definition of unimodularity
a non-zero element in K. Thus we can pick a matrix canonical form for this
right equivalence, say the Popov form, and obtain a unique minimum matrix
generating polynomial for (4), denoted by FA,Y

X (λ) ∈ Km×m[λ] = (K[λ])m×m.

The minimum matrix generating polynomial is computed from the se-
quence (4) by a block version of the Berlekamp/Massey algorithms [11] or its
variants, like by a matrix Padé approximation [4], by a matrix Euclidean algo-
rithm [29], or by a block Toeplitz solver following the classical Levinson-Durbin
approach [23]. The latter most easily elucidates the advantage of blocking: the
number of sequence elements needed can be much shorter. Let d = dn/me,
ν = m(d + 1), e = dν/le, and let µ = le. Then the columns in FA,Y

X (λ)
correspond to solutions of the µ× ν block Toeplitz system




B[d] . . . B[1] B[0]

B[d+1] B[d] B[2] B[1]

...
. . .

...
B[d+e+1] . . . B[e−1]







c[d]

c[d−1]

...
c[0]


 = 0µ. (5)

We have d+e−1 < n/l+n/m+2m/l+1. That there are m linearly independent
solutions follows from rank considerations.

As with the unblocked Wiedemann projections, unlucky projection block
vectors X and Y cause a drop in the maximal degree of the minimum matrix
generator, which is in Popov form and its degree is to be taken as a vector
of column degrees, or equivalently a drop in the maximal rank of the block
Toeplitz matrix in (5). It is possible to both characterize the maximal degree
vector/maximal rank and to establish conditions under which the block vectors
X and Y preserve them. We shall do this in Theorem 1 below.

A relationship between the minimum polynomial fA(λ) and det(FA,Y
X (λ))

follows from the theory of realizations of multivariable control theory. The
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basis is the matrix power series

XTr(I − λA)−1Y = XTr
(∑

i≥0

Aiλi
)
Y =

∑
i≥0

B[i]λi.

For the minimum matrix generator

FA,Y
X (λ) = C [d]λd + · · ·+ C [0] ∈ Km×m[λ]

we then have

XTr(I − λA)−1Y (C [d] + · · ·+ C [0]λd) = G(λ) ∈ K[λ]m×m

which yields the matrix Padé approximation

XTr(I − λA)−1Y = G(λ)(C [d] + · · ·+ C [0]λd)−1. (6)

In control theory, the left side of (6) is called a realization of the rational matrix
on the right side of (6). Clearly, the reverse polynomial of fA(λ) is a common
denominator of the rational entries of the matrices on both sides. If the least
common denominator of the left side matrix in (6) is actually det(I − λA),
then it follows from degree considerations that det(FA,Y

X (λ)) = α ·det(λI−A)
for a non-zero element α in K. Our algorithm uses the matrix preconditioners
discussed in Section 2 and random projections to achieve this determinantal
equality.

We shall make the relationship between λI−A and FA,Y
X (λ) more explicit.

For a matrix H(λ) ∈ (K[λ])ν×ν we consider the Smith normal form, which
is an equivalent diagonal matrix over K[λ] with diagonal elements s1(λ), . . .,
sφ(λ), 1, . . ., 1, 0, . . . , 0, where si are the invariant factors of H, that is, non-
constant monic polynomials with the property that si is a (trivial or nontrivial)
polynomial factor of si−1 for all 2 ≤ i ≤ φ. Because the Smith normal form of
the characteristic matrix λI−A corresponds to the canonical forms (Frobenius,
Jordan) for similarity to A, the largest invariant factor of λI−A, s1(λ), equals
the minimum polynomial fA(λ).
Theorem 1 Let A ∈ Kn×n, X ∈ Kn×l, Y ∈ Kn×m and let s1, . . . , sφ denote
all invariant factors of λI − A. Suppose that l ≥ min{m,φ}. Then for all
i, the i-th invariant factor of FA,Y

X (λ) divides si. Furthermore, there exist
matrices U ∈ Kn×l and V ∈ Kn×m such that for all i the i-th invariant factor
of FA,V

U (λ) is equal to si. In the latter case,

degλ(det(FA,V
U (λ))) = deg(s1) + · · ·+ deg(smin{m,φ}) ≤ n (7)

which is also the maximal rank of the block Toeplitz matrix on the left side
of (5).
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The existence of such U, V establish maximality of the matrix generator for
symbolic X and Y , and via the Schwartz/Zippel lemma for random projection
matrices. If K is a small finite field, Wiedmann’s analysis has been generalized
in [31]. The degree formula (7) already shows the superiority of blocking over
our original solution of Section 2. If the number of invariant factors satisfies
φ ≤ m, we can omit preconditioning of our input matrix A from our algorithm,
which we shall—at last—present now.

Let the blocking factors be l = m = dnσ e where σ = 1/3.

Step 1. Precondition A such that with high probability det(λI−A) = s1(λ) · · ·
smin{m,φ}, where s1, . . . , sφ are the invariant factors of λI−A. Note that
any of the preconditioners of Section 2 would be sufficient.

Step 2. Select random X,Y ∈ Sn×m, where S is a set of integers of cardi-
nality nO(1), and compute the sequence B[i] = XTrAiY for all 0 ≤ i <
2n/m + 3 = O(n1−σ).

Step 3. Compute the minimal matrix generator FA,Y
X (λ) for {B[i]}i≥0.

Step 4. Compute the leading and constant coefficients of ∆(λ) = det(FA,Y
X (λ)).

If deg(∆) < n and ∆(0) 6= 0 then return “failure” else return det(A) =
∆(0)/(leading coefficient of ∆).

For Step 2 we utilize our baby steps/giant steps technique of Section 2.
Let the number of giant steps be s = dnτ e, where τ = 1/3, and let the number
of baby steps be r = d(2n/m + 3)/se = O(n1−σ−τ ).

Substep 2.1 for j = 1, 2, . . . , r − 1 Do V [j] ← AjY ;

Substep 2.2 Z ← Ar;

Substep 2.3. For k = 1, 2, . . . , s Do (U [k])Tr ← UTrZk;

Substep 2.4. For j = 0, 1, . . . , r − 1 Do
For k = 0, 1, . . . , s Do B[kr+j] ← (U [k])TrV [k].

The substeps above can be carried out either by Chinese remaindering or
by arithmetic on arbitrarily long integers using FFT-based integer multipli-
cation. Substep 2.2 costs n3+o(1) arithmetic operations on integers of length
(r log ‖A‖)1+o(1). Substep 2.3 costs O(smn2) arithmetic operations on inte-
gers of length (r s log ‖A‖)1+o(1). Again Substeps 2.1 and 2.4 are dominated
by this cost, which is (n1+1/3 log ‖A‖)1+o(1).
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Steps 3 and 4 in the main algorithm are performed by Chinese remainder-
ing, so that the intermediately computed scalars stay bounded in length. In
particular, the size growth analysis in the block Berlekamp/Massey algorithm
for fields of characteristic 0 has to our knowledge not been carried out. The Chi-
nese remainder approach introduces a slight complication. Some prime moduli
pi may yield a minimum matrix generating polynomial that trigger the failure
condition in Step 4 and thus provide no value for det(A) mod pi, even when the
preconditioning and projections were lucky over the integers. It is clear from
the above analysis that this can happen only if the rank of the block Toeplitz
matrix in (5) is smaller modulo pi. Since a maximal non-zero minor of the inte-
gral block Toeplitz matrix is of length no more than (n1+2/3 log ‖A‖)1+o(1), we
may choose random prime moduli pi = (n log ‖A‖)O(1) and avoid such unlucky
modular reduction with high probability.

Now Steps 3 and 4 are performed for sufficiently many prime moduli pi that
capture the integral determinant through Chinese remaindering, by Hadamard’s
bound no more than (n log ‖A‖)1+o(1). For each prime the cost of the block
Berlekamp/Massey algorithm is O(m3(n/m)2) residue operations [11]. The
computation of the leading and constant coefficient of ∆ is only O(m3) residue
operations. Overall, the bit complexity of Step 3 is again (n3+1/3 log ‖A‖)1+o(1).
Theorem 2 Our algorithm computes the determinant of any matrix A ∈ Zn×n

with (n3+1/3 log ‖A‖)1+o(1) bit operations. Our algorithm utilizes (n1+1/3 +
n log ‖A‖)1+o(1) random bits and either returns the correct determinant or it
returns “failure,” the latter with probability of no more than 1/2.

As stated in the Introduction, by use of sub-cubic matrix multiplication
algorithms the worst case bit complexity of the block algorithm can be brought
below cubic complexity in n. We note that taking the n2 entries of the input
matrix modulo n prime residues is already a cubic process in n, so our speedup
must proceed differently. For one, we compute those remainders for the integral
entries in B[i], which are O(mn) integers of length (r s log ‖A‖)1+o(1). Again
asymptotically fast tree-like remaindering can be applied on those entries [2].
The exponent that is given in the Introduction, namely 2.697263, requires the
use of the Knuth/Schönhage half-GCD algorithm in Step 3, now applied to
matrix polynomials. In order for that algorithm to be applicable, the matrix
polynomial remainder chain must be normal, that is, none of the leading co-
efficients must be singular matrices. It can be shown that our randomizations
also produce a normal chain with high probability. FFT-based multiplication
algorithms for matrix polynomials are described in [8]. Finally, we not only
employ the the Coppersmith/Winograd matrix multiplication algorithm but
also Coppersmith’s fast methods for rectangular matrices [12] (we seem not to
need the results in [19]). A Maple 6 worksheet that contains the exponent cal-
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culations is posted at http://www.math.ncsu.edu/~kaltofen/. With matrix
multiplication exponent 2.375477 the optimal value for the blocking factor is
σ ≈ 0.507 and for the giant stepping τ ≈ 0.172.

4 Improved division-free complexity

Our baby steps/giant steps algorithm with blocking of Section 3 can be em-
ployed to improve the division-free complexity of the determinant of [22]. Here
we consider a matrix A ∈ Rn×n, where R is a commutative ring with a unit
element. At task is to compute the determinant of A by ring additions, subtrac-
tions and multiplications. Blocking can improve the number of ring operations
from n3.5+o(1) [22] to n3+1/3+o(1), and with subcubic matrix multiplication
from O(n3.0281) [22, note added in version posted on web] to O(n2.6973). Our
algorithm combines the blocked determinant algorithm with the elimination of
divisions technique of [22]. Our computational model is either a straight-line
program/arithmetic circuit or an algebraic random access machine [21]. Fur-
ther problems are to compute the characteristic polynomial and the adjoint
matrix of A.

The main idea of [22] follows [27] and for the input matrix A computes
the determinant of the polynomial matrix L(z) = M + z(A − M), where
M ∈ Zn×n is an integral matrix whose entries are indepent of the entries in A.
For ∆(z) = det(L(z)) we have det(A) = ∆(1). All intermediate elements are
represented as polynomials in R[z] or as truncated power series in R[[z]] and the
“shift” matrix M determines them in such a manner that whenever a division
by a polynomial or truncated power series is performed the constant coefficients
are ±1. For the algorithm in Section 3 we not only pick M but also concrete
projection block vectors X ∈ Zn×m and Y ∈ Zn×m. No randomization is
necessary, as M is a “good” input matrix (φ = m), and X and Y are “good”
projections.

The matrices M , X and Y are block versions of the ones constructed in
[22]. Suppose that the blocking factor m is a divisor of n, the dimension of A.

This we can always arrange by padding A to
[

A 0
0 I

]
. Let d = n/m and let

ai =
(

i

bi/2c
)

, ci = −(−1)b(d−i+1)/2c
(b(d + i)/2c

i

)
,
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and let

C =




0 1 0 . . . 0

0 0 1
. . . 0

...
...

. . . . . . 0
0 0 0 1
c0 c1 . . . cd−2 cd−1




, v =




a0

a1

...

ad−1




.

We show in [22] that for the sequence ai = eTr
1 Civ, where eTr

1 =
[
1 0 . . . 0

] ∈
Z1×d is the first d-dimensional unit (row) vector, the Berlekamp/Massey algo-
rithm divides by only ±1. We define

M =




C 0 . . . 0

0 C
. . . 0

... 0
. . .

...
0 . . . 0 C


 ∈ Zn×n,

X =




e1 0 . . . 0

0 e1
. . . 0

... 0
. . .

...
0 . . . e1


 ∈ Zn×m, Y =




v 0 . . . 0

0 v
. . . 0

... 0
. . .

...
0 . . . v


 ∈ Zn×m.

By construction, the algorithm for computing the determinant of Section 3
performed now with the matrices X,M, Y results in a minimum matrix gen-
erator

FM,Y
X (λ) = (λd − cd−1λ

d−1 − · · · − c0)Im,

where Im is an m × m identity matrix. Furthermore, this generator can be
computed from the sequence of block vectors B[i] = aiIm by a matrix Euclidean
algorithm (c.f. [15]) in which all leading coefficient matrices are equal to ±Im.

The arithmetic cost for executing the block baby steps/giant steps algo-
rithm on the polynomial matrix L(z) = M+z(A−M) is related to the bit com-
plexity of Section 3. Now the intermediate lengths are the degrees in z of the
computed polynomials in R[z]. Therefore, the matrices XTrL(z)iY ∈ Rm×m

can be computed for all 0 ≤ i < d + 3 in n3+1/3+o(1) ring operations. In
the matrix Euclidean algorithm for Step 3 we perform trunctated power se-
ries arithmetic module zn+1. The arithmetic cost is (d2m3n)1+o(1) ring op-
erations for the classical Euclidean algorithm with FFT-based power series
arithmetic. For the latter, we employ a division-free FFT-based polynomial
multiplication algorithm [8]. Finally, in Step 4 of Section 3 the determinant

11



of F
L(z),Y
X (λ) is to be computed division-free in trunctated power series arith-

metic over R[z, λ] mod (zn+1, λn+1). For this last step we can use our original
division-free algorithm [22] and achieve arithmetic complexity (m3.5n2)1+o(1).
We have proven the following theorem.
Theorem 3 Our algorithm computes the characteristic polynomial of any ma-
trix A ∈ Rn×n with (n3+1/3)1+o(1) ring operations in R. By the results in [3]
the same complexity is obtained for the adjoint matrix, which can be symboli-
cally defined as det(A)A−1.

It is of some mathematical interest to speed our result via subcubic matrix
multiplication algorithms. Again, Steps 3 and 4 of the algorithm in Section 3
are at issue. Step 3 is easier than in the integer case, since the matrix poly-
nomial remainder chain is known to be normal at z = 0. The number of ring
operations for Step 3 shrinks to (dmωn)1+o(1), where ω is the exponent for
square matrix multiplication. However, Step 4 creates a problem for the case
that we wish to compute the entire characteristic polynomial of A, that is,
det(FL(1),Y

X (λ)). A preliminary straight-forward implementation of Step 4 ob-
tains a division-free complexity for the characteristic polynomial of O(n2.80652)
(σ = 0.34, τ = 0.23).

5 Conclusion

Our methods apply to entry domains other than the integers, like polynomial
rings and algebraic number rings. We would like to add that if the entries are
polynomials over a finite field, there are different techniques possible [26]. Our
determinant algorithm for integer matrices may be extended to a Monte Carlo
method for computing the integral Smith normal form of an integral matrix
by the techniques described in [18].

The reduction of the bit complexity of an algebraic problem below that
of its known algebraic complexity times the bit length of the answer should
raise important considerations for the design of generic algorithms with ab-
stract coefficient domains [20] and for algebraic lower bounds for low complex-
ity problems [28]. We demonstrate that the interplay between the algebraic
structure of a given problem and the bits of the intermediately computed num-
bers can lead to a dramatic reduction in the bit complexity of a fundamental
mathematical computation task.
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