
Cost prediction for load-balancing:
application to Algebraic Computations

J.L. Roeh, A. Vermeerbergen and G. Villard

Laboratoire LMC-IMAG, 46 Av. F. Viallet,
F38031 Grenoble C6dex

e.m. flroch@imag fr, vermeer@mistral.imag fr, gvillard@imag fr
Abstract

A major feature of Computer Algebra, and more generally of non-numerical computa-
tions, is the dynamical and non-predictable behaviour of the executions. We then understand
that statical analysis should imperatively be completed by dynamical analysis in order to
reach the best distribution of the tasks among the processors. In this paper, we present a new
load-balancing system for parallel architectures with great numbers of processors. Being
well suited for Computer Algebra and based on the notion of granularity, it is original in the
sense that it takes into account the tasks complexity as a consistent information in order to
achieve efficiency.

1 Introduction

Algebraic computations are intrinsically dynamic: in most cases, the effective cost of a
computation cannot be predicted. The main reason is that the intermediate coefficients
growth is difficult to estimate precisely since it relies on a lot of parameters. Therefore, the
taking into account of a small number of these parameters, in order to characterize the inputs
(as it is done from a practical point of view), leads to too large and often unrealistic upper
bounds on the results. For instance, a matrix multiplication may be efficiently parallelized
on 64 processors using a block repartition [9]. If the input data are well conditioned, i.e., at
the level of the algorithm the basic operations have almost the same cost, this parallelization
is efficient. However, in general, the basic operations are not equivalent. For instance, some
coefficients may be polynomials with 1000 monomials, while others may be small integers
or even zeros. Although it is useful, the static repartition is insufficient.
Consequently, even if the considered problem is highly paralle! (A/'C class), the static
parallelization of a general algebraic algorithm is a difficult issue. Indeed, given a number
of processors, a good parallelization consists in equitably distributing the work load, so as
to guarantee the best possible processors use. But this work load is related to the inputs and
cannot be statically determined. A dynamic load-balancing mechanism is thus necessary
to decide how the parallelism has to be exploited (i.e., at which level of granularity it is
needed to work, which computations need to be distributed...) in order to decrease the total
computation time [1].
In the framework of Computer Algebra, we show how the cost of an algorithm at its current
level of granularity (assuming that all the operations have the same cost), is a consistent
information which the load-balancer has to take into account in order to achieve efficiency.
This fundamental property leads to the specification of a new load-balancer, based on tasks
complexity, and dedicated to computer algebra. This approach is different from the ones
which do not take into account the cost of tasks to be distributed [1,6, 10].

468

Moreover, our target model suffers no limitation: we assume that a large number of pro-
cessing units are available (more than one thousand). This number imposes two constraints
to a load-balancing mechanism:

- it leads to thiner granularities. A new general methodology is thus needed to develop
high-level parallel applications. At a given level of granularity, the design should take
advantage of previous improvements obtained at lower granularity levels. We show
how a load-balancer taking into account tasks granularity can satisfy this condition.

- In order to ensure coherence in the distribution, a global control is needed. Even if the
former is centralized, its management must be distributed to avoid bottlenecks. The
solution we chose consists in using a classical token-ring strategy [2].

Load-balancing characteristics and specifications given in this paper are dedicated to com-
puter algebra algorithms, but the system is designed for any target architecture (as far
as it includes many processors). The described specifications may be implemented on
either distributed memory machines, shared memory machines or workstation networks.
Two groups of parameters (corresponding to either machine-dependent characteristics or to
algorithm-dependent properties) are used to achieve adequation between the load-balancer
and the target architecture. An evaluation is in progress on a 128 transputers network [14].
Our target domain of computer algebra are arithmetic, linear algebra [13] and lattice basis
reduction.

2 Algebraic Computations Requirements

This section intends to point out the specific characteristics and requirements of Algebraic
Computations. These are mainly the dynamic behaviour of the executions and the fact that
at a given level of granularity, a static parallelization is both irrelevant and incomplete.

2.1 Parallelization Driven by a High Level Cost

The execution cost of an algebraic algorithm strongly relates to its inputs, which are often
very complex to describe. For example, let us consider a generic algorithm for matrix
multiplication with coefficients in a commutative ring 7~. Its cost may only be described by
the number of operations performed in ~ : this cost is thus related to the sole dimension of
the input matrices, assuming that basic operations in the ring 7~ are performed in constant
time. However, the effective time spent for two given entry matrices, with coefficients
in a given ring, actually corresponds to the number of binary operations performed. For
instance, the effective cost of a matrix multiplication may only be due to the product of two
coefficients, which cost can be distinguished only at a lower granularity level.
For instance, let 7~ = Z[X]: the effective cost depends on the dimensions of two matrices,
on the number of monomials in each polynomial coefficient, and on the size of the integer
coefficients of each monomial. If the multiplication to is the following:

P O O , . . O N I
o QO ,..o /
0 0 1 . . . 0] •
: : : - . :

o o o . . : i /

P 0 0 . . .0 '~
OQO...o /

o o o . . : i /

with
P = IO00!X 1~ + 1

lOOO X* Q E2i=o

469

then the effective cost will mainly results from the multiplication of large integers, i.e.
1000! x 1000! and the product of large polynomials, i.e. Q x Q.
This is a major remark in computer algebra: it means that, most of the time, the cost
of a high level computation cannot be predicted. In the example, the main operations
needed to parallelize are the multiplication of integers and the product of polynomials;
in these operations, the parallelism involved concerns lower granularity operations. This
parallelism, related to the inputs, cannot be found statically in the algorithm, but rather
dynamically when this algorithm is to be applied on specific data.
Nevertheless, the cost of an algorithm, evaluated at a given level of granularity, constitutes
a significant information. If this cost is high enough, then a parallelization of the algorithm
at this level may be worth doing. If it is low, no parallelization should be useful at this level
-because of communication overheads- though lower level operations may be efficiently
performed in parallel (such as in the above, for example). Let us notice that this cost could
be automatically evaluated [8].

2.2 Levels of Parallelization: An Example

Let us consider the following recursive algorithm for matrix product over a ring 7~:
MatrixMultiplication (M 6/g rxn, N 6 ~nxn) __=

if (r == I) return(VectorMatrixProd(M, N))
else

MH : -- the r /2 first rows of M ; ML : = the r /2 last rows of M
RH :=MatrixMultiplication(Mn, N) (I)
RL := MatrixMultiplication(ML, N) (2)

return(Mat rixMultiplication(RH, RL))
Let T(r, n) be the cost of this computation, assuming that computations in 7~ are performed
in constant time. The cost of the sequential execution for two n x n matrices is Tseq(n, n) =
2.T, eq(-~, n). Computations (1) and (2) may easily be performed in parallel: the first splitting
of the recursion involves two processors, and thus the cost of the total parallel execution
is: Tvar (n , n) = Tpar (~ , n) + Tcom (M H , M L , N, R H , R L). A more precise definition of
Teom relates to the parallel model:

- On a shared-memory architecture, Tcom corresponds to the time spent in accessing the
shared data (for instance, protected by semaphores). Thus, T, om may be assumed to be
a machine-dependent constant, but independent on the size of the shared data.

- On a distributed memory architecture, T, om corresponds to the time needed for com-
municating data from one processor to another (point to point communication, between
neighbour processors or performed by a router). Thus T,o,n may be assumed to be a
linear function in the size of the shared data.

On both models, T~om is at most linear in the size of the shared data. As T, eq here is a super-
linear function and Tcom is linear, itexists n0 so that: n > no ~ Tp~r (n, n) < Tseq (n, n).
Parallel execution of sub-multiplications (1) and (2) will be interesting if: Tp~r(n, n) <
T, ,q(n, n). if n < no, a parallel execution of both sub-multiplications will be interesting
only if the operations performed in R (considered as basic operations at the level of the
algorithm) can themselves efficiently be performed in parallel. In this case, the benefit
brought by parallelism is not due to parallel execution of (1) and (2), but by the inherent
parallelism of (1) and (2).

470

A simple way to exploit parallelism at every granularity level is to perform the operations in
7~ using similar recursive algorithms. This process is repeated and controlled by the effective
cost of the operations at the current granularity level. Thus, it automatically decreases the
granularity, exploiting parallelism at each level where gains can be guaranteed.

2.3 Theoretical Overhead

The overhead of this scheduling strategy may be theoretically evaluated if enough processors
are available. Let us consider a problem involving n entries, which may be split into p
instances of the same problem, each involving ~ entries (the time of the lifting process is
assumed to be a constant). Let us denote 7"//the time of the direct parallelization of this
problem, involving nl~ P processors. On a shared memory model, the total overhead of the
load-balancing will be log k n for a parallel execution involving n l~ P processors, and the
total parallel time will be T / / + log k n. On a distributed memory model, this total execution
time will be T// log k n.
As an example, if we consider Gaussian elimination, the overall cost of our strategy will be
n log n using n 2 processors, which is within a log n factor of the best known parallelization.
Morerover, on the one hand the dynamic strategy avoids useless computations (of zeros, for
instance), and on the other hand it is well suited to a direct computation.

3 Load-Ba lanc ing : High-Level Specif icat ions

The specific requirements of Algebraic Computations presented above and the related top-
down approach for the granularity, led to the main choices we have made for the load-
balancer. In the following, these high-level specifications are presented both from the
user's point of view and from the machine designer's point of view. The user manages the
parallelism ati ts own level of granularity, usually a coarse one. In other words, the user
specifies a static mapping of his coarse granularity tasks which is relevant at this level. The
inherent parallelism to the arithmetic operations called by the user, although appropriate
to a static mapping because of its lower granularity, is then automatically exploited by the
load-balancer.
To express the dynamic paraUelization, several choices are possible [3, 5, 10]. As far as al-
gebraic computation is concerned, mainly by independent AND parallelism (modular com-
putations, distributed computations) and OR parallelism (probabilistic algorithms, several
strategies with no deterministic choice) [11], we have chosen, in order to express parallelism,
to use Fork (OR-parallelism) primitives and Fork-Join (AND-Parallelism) primitives, well
suited for an effective computation. In any case, this choice is not restrictive: any primitive
allowing dynamic process creation and Rendez-Vous is convenient. A peculiar choice does
not modify the general specification of the presented load-balancer.
In order to stick to the framework of the remote processes activations, we have increased
the usual Fork and Join functionalities. In this section, we will use two new functions,
RemThreadFork and RemJoin, which stand for Fork and Join on possibly distinct processors.
They will be described in detail in section 5.

3.1 User Application
The user will manage the parallelism of its application at two levels: he starts by writing a
distributed application using the usual rules and parallel language facilities to communicate.

471

These communications will transit onto the user network (see section 4 for a description of
the different networks of the load-balancer). At this level, we indeed offer the possibility to
completely cona'ol the data distribution, the synchronization points and the data exchanges.
This corresponds to the highest level of granularity, with a relevant user mapping. Between
two data transfers, the user may then exploit a parallelism also inherent to the arithmetic
operations he calls, but too difficult to map because of its lower granularity. The example
in section 3.2 below shows how to operate in this case, i.e., how to call the load-balancer.
Our approach is illustrated in figure 1: the user statically maps its application on its private
network, his processes may then call the load-balancer.

Initial] User a p p l i c a t i o ~ LibrarT C a l l s ~

Internal Library Results Calls
Figure 1 : General behaviour of a user application

3.2 Describing Load-Balancing : the Granularity Threshold

We have seen how the parallel processes are activated. We now show how the cost predictions
are taken into account in order to dynamically allow the load-balancer to decrease the
granularity and reach the more convenient one. Let us take a typical example. We can write
a function which will realize the product of two quantities a and b.

mul(*res,a,b)
case ugdeeision(mul,a,b)
seq : /* Sequentially on this processor */

seqmul(&res,a,b)
par :

aH = high weights of a ; al = low weights of a
taskH = DefRemThread(fork,mul,ArithmCost(mul,aH,b),

CommCost(aH,b), *resH, aH, b ,
comm. for resH, comm. for aH, comm. for b)

myfork = DefFork(1)
/* Computations on high and low weights are done
in parallel, probably on distinct processors */

RemThreadFork(myfork,taskH)
mul(&res,al,b)
RemJoin(myfork)
add(&res,resH, resl)

endcase

From the weights of a and b, a prediction will be done during the execution for the cost of
the operation. The weight of an operand is a relevant information on it, much cheaper to
manipulate than the operand itself, e.g. the binary length for an integer, the dimension for a
matrix, the depth for an expression tree. . . This prediction will allow the evaluation of a user
granularity decision (u g d e c i s i o n in the example) to s e q if it is not worthwhile running
the parallel algorithm instead of the sequential one, and to p a r in the other case. In other
words, the prediction may be formulated by using the notion of threshold : on this side of

472

a given user granularity threshold (the details are given in section 4), the product -a t this
level of granularity- will be made sequentially; beyond, part of the work will be taken on
by the load-balancer. Let us yet notice that if the function parameters are known, the user
granularity threshold may be statically computed (unlike the other thresholds involved in
the load-balancer (section 4)).

3.3 Parameterizing the Load-Balancer

A general purpose load-balancer will behave differently according to the current application
and the current machine: adjusting some basic parameters from some relevant criteria. As
it is, the ones that have to be considered, are not known for Computer Algebra applications:
our work consists in pointing them out and proving their relevance. In order to do so, the
load-balancer must allow the consideration of the largest possible number of situation. A
good solution is to parameter the load-balancer as much as possible. This will be done at
three main stages, from the user level to the run-time system level:

- the load-balancer must let the user adjust the behaviour of the automatism, being given
its own problem and its own knowledges.

- The hardware and software costs of the machine may considerably influence the decision
whether to export a given task or not.

- During execution, the arithmetic load of the processors and the communication load of
the network have also to influence the exportation decisions.

The decisions related to the first point will obviously belong to the user: he will guide
the load-balancer behaviour via its own user granularity thresholds previously introduced.
Relating to the other two points, the machine threshold and the load threshold will be detailed
in section 4 in order to take into account both hardware and software characteristics of the
machine and the loads of the system. These three thresholds are intended to dynamically
lead the system to better tasks distributions.

3.4 Control and Communicat ions

We terminate this section on the high-level specifications of the load-balancer with some
basic principles. They have been applied in order to distribute a global control and to
simplify the aspects of the different communications which take place.

Control Unit
Interface

Operative Unit

Figure 2 : Abstract view of the load-balancer.
In an abstract manner, a load-balancer is composed of three main parts. The same division
will be used in order to distinguish three main types of communication (in addition to the
user communications). The three main parts of an abstract load-balancer are,

- a Control Unit taking the mapping decisions,
- an Operative Unit receiving orders from the Control Unit, appling them and executing

the user application.
- a Control/Operative Interface linking the Control Unit and the Operative Unit. Via

this interface, the Control Unit sends orders and the Operative Unit sends the loads
measurements.

473

This division is directly implemented by our load-balancer (section 4). Indeed, we have
divided the processes in controllers and workers, and the communications will transit onto
the following inter-processes "parallel networks":

- the user network on which transit the messages explicitly communicated by the user,
- the network dedicated to the global control, i.e., to the management of the resources :

the token network,
- the mapping network which plays the role of the interface between the controllers and

the workers,
- the network used by the workers to exchange the data (parameters and results) of the

exported tasks : the inter-workers network.

The reader will refer to figure 3 for a global view of these different networks. The position
of our scheduler in the taxonomy[4] is dynamic, adaptive, heuristic and it has an interme-
diate position between centralized and distributed control. Note that we do not stick to this
terminology, as our scheduler is not load-balancing in the sense of[4].

User Network ~ ~

Token Network (Broadcasting clusters load)

[

[

"" Controllers " ' . ?

Mapping NetWork (r e q u e s t s only)]

Inter-Workers NetWork (data only)]

Figure 3 : Global view of the logical architecture

4 Logical Architecture of the Load-Balancer
We may now detail the logical architecture of the load-balancer. The algorithms of the
principal tasks which are involved will be given in the next section which will be concerned
by the balancer implementation on a distributed architecture. We have processors and
processes which execute on the former.

4.1 Global View
We introduce here a classification of the different processors and processes of the balancer.
The processors differ in the processes they execute and the networks they belong to.

474

Processors. Processors are of two types: the controllers and the workers. To each controller
a cluster of workers is associated, being divided into two groups:

- the global workers, also called global resource, are ready to receive the tasks from any
other worker.

- the local workers, also called local resources, which will only receive tasks from the
processors of the same cluster or from themselves.

These two latter notions will allow to establish and test the influence of proximity relations
between the processors.
Processes. In the same way, we point out three types of process:

- the resource managers, managing the arithmetic requests and transmitting the informa-
tions concerning the mapping of the exported tasks,

- the arithmeticprocesses.

The following sections give details and describe the overall behaviour of the different
processes during the execution.

4.2 Distr ibut ing a Global Control

As previously noticed, the state of the global resources is kept up-to-date by the circulation of
a token between the different controllers. This token encodes the number of global workers
ready to be allocated for some extra work: it indicates to the controller to which cluster the
workers belong. The following points are always satisfied:

- at a given time, only one processor has the token and can modify it,
- a processor allocates a global resource only when it gets the token; in this case, the

only field of the token which is modified is the one corresponding to the cluster of the
allocated worker.

Given those assumptions, the management of the global resources is particularly simple: a
controller receiving a request of global resource from its cluster waits for the token. Once
the operation is performed, it may allocate an available global worker, and consequently
modifies the token before sending it to the next controller.

4.3 Control lers and Workers

The controllers : they are dedicated to the management of the resources. In order to do so,
they concurrently execute a global resource manager and a local resource manager. The
first manager allocates resources only at each reception of the token, whereas the second
one may always allocate some (provided a local worker is available): it itself manages the
corresponding informations.
The workers : they execute the exported arithmetic operations. Notice that a worker is
not only passive (reception of orders): since the operation it has been asked to execute may
involve remote thread activations, the worker may become producer -act ive- and ask for
the exportation of its tasks. F o r the parameters and results exchanges, the global workers
use the inter-workers network while the local ones communicate within themselves using
the intra-cluster mapping network.

475

4.4 Processes and Interconnections

In the present section, we are concerned by more general descriptions about their behaviours.
The global resource managers : on the one hand, the global resource manager has to
receive the requests from the local resource manager, to wait for the token, to modify it
for the resource allocation, and finally to answer to the request by communicating with the
mapping process which is associated to it. The global resource manager is thus connected
on the token network and has two other links: a first one able to receive the requests and
a second one able to answer to them. On the other hand, when receiving the token, the
manager compares it to its old value, to know if one of the workers of its cluster has been
allocated. If yes, it gets in touch with the concerned worker via the mapping processes so
that the connection between workers can be established.
The local resource managers : in an analogous way, the local resource manager has
to receive the request from the local mapping process. And, whether there is an available
local processor or not, it directly answers to the mapping process or relays the request to the
global resource manager.
The mapping processes : placed on all the processors of the network, their role is to
collect the resource requests from the user application and from the exported processes, to
relay those requests to the resource managers, to get the corresponding answers, and finally
to inform the source processor and the one chosen for the exportation of their respective
identification (so that they can subsequently exchange their data).
The user or exported processes : these are all the processes which may ask for a
resource to export some arithmetic tasks. We have yet seen that the requests are sent to the
mapping processes. The answers may then be either the identification of a found worker or
a negative answer. Once they are virtually connected by their respective mapping process,
these application processes only communicate via their inter-workers network (in order to
exchange parameters and results).

4.5 Global Description of Remote Process Activation

We are now ready to give an overall description of a remote process activation from the
resource request to the reception of the operation result (assuming a free resource is available
in the network). After a call toRemThreadFork (section 5), the father process (i.e., which has
called the activation) will go on executing on the same processor. Concurrently, the requests
are sent to the resources-management processes to find other processors for the execution
of the sons arithmetic tasks. If those tasks have arithmetic costs which are high enough
(depending on the overall load) and if other processors have been found to be unemployed,
the corresponding works are exported. Otherwise, the sons will also execute on the original
processor. After that, theReto Join synchronization (section 5) simply consists in a transfer of
the operation results between the processes concerned. Seven main steps are distinguished.

1. The source process asks for a request to its mapping process, and waits for an answer.
2. The mapping process relays the request to the mapping process of the controller and

then to the local resource manager.
3. If a local resource is available the local resource manager sends its answer via the

mapping processes, otherwise it relays the request to the global manager.
4. If it is in touch, the global manager waits for the token, takes a decision and sends its

answer via the mapping processes.

476

5. The mapping processes establish the connection between the source process and the
chosen destination resource.

6. The source and the destination resource exchange the parameters of the exported oper-
ation.

7. The source and the destination resource exchange the result of the exported operation.

In the situation where no free resource is found in the network the global manager simply
sends a negative answer to the source process which then itself executes the work which
could have been exported.

4.6 Thresholds

We have seen at section 3.2 and 3.3 that to use the notion of threshold is a good way to
formulate the predictions and the exportation decisions. These decisions are taken at three
different levels, to each level corresponds a particular threshold.

The granularity threshold : as presented in section 3.2, the user may use a threshold
to decide whether to export an operation or not. For instance, after a study of the
theoretical cost of his parallelization he may force the system to reach a desired level of
granularity, to find the best compromise between arithmetic and communication costs
before beginning the exportations. In order to do so, the user will write a user granularity
decision function, according to the arithmetic operations he uses and the argument types
he manipulates. Using constants delivered by the system (as elementary computation,
communication or memory management cost) and given an operation and a type, this
function will return p a r or s e q indicating whether the work may be parallelized or
not.

The machine thresholds : a lot of characteristics of the machine, both hardware and
software, must statically influence the behaviour of the load-balancer. We may point
out for example:

- the ratio of the atomic communication cost over the arithmetic one, If it increases,
such a ratio will clearly decrease the volume of remote processes.

- The distances in the network. The global manager and the local manager must
have different thresholds if the local resources are reachable at a low cost compared
to the global resources one.

- The ratio of the process creation cost over the arithmetic one. The remarks are the
same than above.

- The different arithmetic units capabilities. The availability of some dedicated or
powerful arithmetic units must lead to thresholds depending on the types of the free
resources.

Those characteristics will be taken into account by using system-defined constants and,
as previously, a machine-granularity-decision function.

The load thresholds : The decisions and the parameters we have discussed above rely on
statically defined data. This will be completed by dynamically assigned parameters
to take into account mainly the load of the system. During execution, the load of the
networks (the volume of routed data) and the arithmetic load of the processors should
clearly influence the balancer behaviour and allow to take the final exportation decisions.

Calibrating the load threshold : Among the three types of threshold mentioned above,
both the granularity and the machine ones can be determined in a deterministic way
in the general case. The former is a function issued from concerns about algorithms

477

complexity and the later is a set of physical constants that can be determined by a
series of preliminary tests. This is not the case of the load threshold in our general
context: network load cannot be predicted during the execution. This problem can
be tackled by using the temporal locality hypothesis on the network load, that is to
say, the network load varies slowly and continuously with time. This method has
already been successfully assumed in close contexts. For example, this hypothesis in
used in [15] on communication costs and task executions time in a bi-processors to
feed exact equations giving the frequency for load-balancer invocations. In our first
implementation, we locally estimate an expected communication cost by using routers
statistics. This local estimation is expected to be satisfying enough and meets the
stability requirement of [7]. However, our model has an intrinsic global state stored in
the token.

5 Implementation on a Distributed Architecture

The model we propose for load-balancing is designed for any parallel architecture. For
instance, it could be easily implemented on shared memory computers: they are well
suited for a global management of resources or to private data exchanges between pairs of
processors. In the same way, the distributed memory architectures naturally provide the
notion of network and the facilities for the management of many communicating processes.
Furthermore, this second model does not lead to any serious limitation concerning the
number of processors: this is the reason why (PAC [11, 12] has privileged this alternative)
all the implementation part of the paper will rely on a distributed memory model.

5.1 Target Model and Mapping

Our abstract-machine model consists in processes communicating by using a message-
passing protocol using s e n d and r e c e i v e functions with the appropriate processes iden-
tifier (receiver or sender). The processes presented at section 4.4 are gathered together and
simultaneously executed on processors. This mapping of the processes on the processors
satisfies the two following rules: 1) One mapping process is placed on each processor, 2)
If a global (resp. local) resource manager is placed on a processor, a local (resp. global)
resource manager is placed on the same processor. These two rules don't lead to any serious
limitation, the processes may be combined in many ways and mapped on many topologies.
For instance, one may choose to map any number of controllers and workers on a given pro-
cessor, and may fix any ratio between the numbers of local and global resources, depending
on the different costs. The reader will refer to the section 6 for a detailed example of an
implementation of the balancer on a 2-dimensional torus topology.

6 Evaluation

The evaluation of the model presented in this paper is currently under progress on a 128-
processors computer [14]. Tests will be soon available, concerned with linear algebra
problems [13] and lattice basis reduction. For the sake of simplicity the target topology is
a 2 dimensioned torus of P • Q processors which has to be viewed as P horizontal rings
and Q vertical rings. One of the P horizontal rings is both the user network and the token
network. Each node of this ring is thus a controller and the corresponding vertical ring

478

gives the cluster of his workers. Consequently the mapping processes may be connected
essentially using those vertical rings, and the messages for the inter-workers network will be
routed using all the torus links except those of the controller ring. Besides its simplicity and
its regularity, such a topology allows to easily implement deadlock-free routing algorithms
for the three system networks, and the two dimensions offers a lot of different situations for
each value of P and Q [13].

7 Conclusion

We have presented a new load-balancing system, well suited to Computer Algebra. An
application written with our model of Remote process activation, and based at each granu-
larity level on previous developments at lower granularity levels, will automatically execute
at its best granularity on any given architecture. This has been made possible simply by
considering the tasks complexity as a consistent information, and always by taking into
account the machine constants. Besides, this model is general enough in order to to find
other applications in other domains.

References
1. G. Bernard, D. Steve, and M. Simatic. Placement et migration de processus dans les syst~mes

re6partis faiblement coupl6s. TSI, 10 (5):375-392, 1991.
2. D.P. Bertsekas and J.N. Tsitsiklis. Parallel and distributed computation. Prentice-Hall, 1989.
3. G. Booth. Software engineering with Ada. Benjamin-Cummings Publishing Company, 1983.
4. T. Casavant and J. G. Kuhl. A taxonomy of scheduling in general-purpose distributed computing

systems. IEEE Transactions on Software Engineering, 14(2):141-154, February 1988.
5. K. Clark and S. Gregory. Parlog: Parallel programming in logic. In J.S. Kowalik, editor, Par-

allel Computation and Computers for Artificial Intelligence, pages 109-130. Kluwer Academic
Publishers, 1988.

6. A. Beaumont et al. Flexible Scheduling of OR-Parallelism in Aurora: The Bristol Scheduler. In
PARLE'91, pages 403-420, Eindhoven, The Netherlands, 1991, Springer-Verlag, LNCS 506.

7. D. Ferrari and S. Zhou. An empirical investigation of load indices for load-balancing applications.
In P.J. Courtois and G. Latouche, editors, PERFORMANCE '87. Elsevier Science Publishers B.V.
(North-Holland), 1988.

8. Ph. Flajolet and J.S. Vitter. Average-case analysis of algorithms and data structures. In J. van
Leuwen, editor, Handbook of Theoretical Computer Science, pages 431-524. Elsevier, 1990.

9. G. Fox and al. Solving problems on concurrent processors. Prentice-Hall, 1988.
10. R.H. Halstead. Parallel computing using multilisp. In J.S. Kowalik, editor, Parallel Computation

and Computers for Artificial Intelligence, pages 21-49. Kluwer Academic Publishers, 1988.
11. J.L. Roch. The PAC System and its Implementation on Distributed Architectures. In Computer

with Parallel Architectures : T. Node, ed. D, Gassilloud, J.C. Grossetie, Kluwer Ac. Pub., 199 I.
12. J.L. Roch, F. Siebert, P. S6n6chaud, and G. Villard. Computer Algebra on a MIMD machine.

ISSAC' 88, LNCS 358 and in SIGSAM Bulletin, ACM, 23/11, p.16-32, 1989.
13. F. Siebert and G. Villard, PAC : First experiments on a 128 t~ansputers Meganode. In Interna-

tional Symposium on Symbolic and Algebraic Computation, Bonn Germany, 1991.
14. Telmat. TNode Overview. Technical Report Doc-1.02-3.2, Telmat Informatique, 1990.
15. M.C. Wikstrom, J.L. Gustafson, and G.M. Prabhu. A meta-balancer for dynamic load balancers.

Technical Report TR91-04, Iowa State University/Ames, Iowa 50011, January 1991.

This article was processed using the lATEX macro package with LLNCS style

