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Abstract

Kaltofen has proposed a new approach in (Kaltofen, 1992) for computing matrix determinants
without divisions. The algorithm is based on a baby steps/giant steps construction of Krylov
subspaces, and computes the determinant as the constant term of the characteristic polynomial.
For matrices over an abstract ring, by the results of Baur and Strassen (1983), the determinant
algorithm, actually a straight-line program, leads to an algorithm with the same complexity
for computing the adjoint of a matrix. However, the latter adjoint algorithm is obtained by
the reverse mode of automatic differentiation, hence somehow is not “explicit.” We present an
alternative (still closely related) algorithm for the adjoint that can be implemented directly,
without resorting to an automatic transformation. The algorithm is deduced partly by applying
program differentiation techniques “by hand” to Kaltofen’s method, and is completely described.
As a subproblem, we study the differentiation of the computation of minimum polynomials of
linearly generated sequences, and we use a lazy polynomial evaluation mechanism for reducing
the cost of Strassen’s avoidance of divisions in our case.

Key words: matrix determinant, matrix adjoint, matrix inverse, characteristic polynomial,
exact algorithm, division-free complexity, Wiedemann algorithm, automatic differentiation.

1. Introduction

Kaltofen has proposed in (Kaltofen, 1992) a new approach for computing matrix deter-
minants. This approach has brought breakthrough ideas for improving the upper bound
on the complexity of computing determinants without divisions over an abstract ring (see
(Kaltofen, 1992; Kaltofen and Villard, 2005)). Building upon these foundations, the algo-
rithm of Kaltofen and Villard (2005) computes the determinant of a matrix of dimension
n in O(n2.7) additions, subtractions, and multiplications.
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The same ideas also lead to the currently best known bit complexity estimate of
Kaltofen and Villard (2005) for the problem of computing the characteristic polynomial.

We consider the straight-line programs of Kaltofen (1992) for computing the determi-
nant over abstract fields or rings (with or without divisions). Using the reverse mode of
automatic differentiation (see Linnainmaa (1970, 1976), and (Ostrowski et al., 1971)), a
straight-line program for computing the determinant of a matrixA can be (automatically)
transformed into a program for computing the adjoint matrix A∗ of A. This principle,
stated by Baur and Strassen (1983, Cor. 5), is also applied by Kaltofen (1992, Sec. 1.2)
for computing A∗. Since the adjoint program is derived by an automatic process, little
is known about the way it computes the adjoint. The only available information seems
to be the determinant program itself, and the knowledge we have on the differentiation
process. Neither the adjoint program can be described, or implemented, without resort-
ing to an automatic differentiation tool.

The approach of Kaltofen (1992) leads to a determinant algorithm without divisions by
first giving an algorithm working with divisions. We follow the same idea. By studying the
differentiation of Kaltofen’s determinant algorithm over an abstract commutative field K

step by step, we produce an “explicit” adjoint algorithm with divisions in Section 6. The
latter is then extended to a division-free adjoint algorithm in Section 7.

We recall the determinant program over an abstract field K in Section 2. The most
simple parts of the program are differentiated by applying “by hand” the automatic
program differentiation mechanism that we review in Section 3. However, this strategy
appears to be quite complicated and tedious for the more complex parts of the program
for which we proceed analytically instead. In particular, one of the steps of the determi-
nant program is computing the constant term of the minimum polynomial of a linearly
generated sequence. We differentiate the corresponding formula by an analytical study in
Section 4, and propose a concrete implementation. The determinant algorithm also uses
a Krylov subspace construction, which consists in vector times matrix, and matrix times
matrix products. These simplest parts of the program are differentiated in Section 5 in a
way directly related to the automatic differentiation process. Sections 4 and 5 lead us to
the description of a corresponding new adjoint program over a field, in Section 6. The al-
gorithm we obtain somehow calls to mind the matrix factorization of Eberly (1997, (3.4)).
We note that our objectives are similar to Eberly’s ones, whose question was to give an
explicit inversion algorithm from the parallel determinant algorithm of Kaltofen and Pan
(1991).

Our motivation for studying the differentiation and resulting adjoint algorithm, is the
importance of the determinant approach of Kaltofen (1992), and Kaltofen and Villard
(2005), for various complexity estimates. Recent advances around the determinant of
polynomial or integer matrices (see Eberly et al. (2000); Kaltofen and Villard (2005);
Storjohann (2003, 2005)), and matrix inversion (see Jeannerod and Villard (2006), and
Storjohann (to appear)) also justify the study of the general adjoint problem.

For computing the determinant without divisions over an abstract commutative ring R,
Kaltofen applies the avoidance of divisions of Strassen (1973) to his determinant algo-
rithm over a field. We apply the same techniques. From the adjoint algorithm of Section 6
over a field, we deduce an adjoint algorithm over an arbitrary ring R in Section 7. The
avoidance of divisions involves computations with truncated power series. A crucial point
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Determinant over K −→ avoidance of divisions −→ Determinant over R

↓

differentiation
↓

Adjoint over K −→ avoidance of divisions −→ Adjoint over R

Fig. 1. Approach followed for designing the division-free adjoint algorithm

in Kaltofen’s approach is a “baby steps/giant steps” scheme for reducing the correspond-

ing power series arithmetic cost. Since we use the reverse mode of differentiation (see

Section 3), the flow of computation is modified, and the benefit of the baby steps/giant

steps is partly lost for the adjoint. This asks us to introduce an early, and lazy polynomial

evaluation strategy for not increasing the complexity estimate.

Our adjoint algorithm over a field is obtained by differentiating Kaltofen’s determinant

algorithm. However, as illustrated at Figure 1, the adjoint algorithm over a ring that we

propose, using the avoidance of divisions of Strassen (1973), does not correspond to the

one that could be obtained by differentiating Kaltofen’s algorithm over a ring directly.

It has been unclear to us how to obtain an explicit version of the latter.

The division-free determinant algorithm of Kaltofen (1992) uses O (̃n3.5) operations

in R. The adjoint algorithm we propose has essentially the same cost, we also discuss

some aspects of its space complexity at Section 8. Our study may be seen as a first step

for the differentiation of the more efficient algorithm of Kaltofen and Villard (2005). The

latter would require, in particular, to consider asymptotically fast matrix multiplication

algorithms that are not discussed in what follows.

Especially in our matrix context, we note that interpreting programs obtained by

automatic differentiation, may have connections with the interpretation of programs de-

rived using the transposition principle. We refer for instance to the discussion of Kaltofen

(2000, Sec. 6) or Bostan et al. (2003). To our knowledge, apart from the already noted

link with the work Eberly (1997), there exists no other study or interpretation of the

differentiation of determinant programs.

Cost functions. We let M(n) be such that two univariate polynomials of degree n over

an arbitrary ring R can be multiplied using M(n) operations in R. The algorithm of

Cantor and Kaltofen (1991) allows M(n) = O(n log n log log n). The function O(M(n))

also measures the cost of truncated power series arithmetic over R (see (Sieveking, 1972;

Kung, 1974; Cantor and Kaltofen, 1991)). For bounding the cost of polynomial gcd-type

computations over a commutative field K we define the function G. Let G(n) be such

that the extended gcd problem (see (von zur Gathen and Gerhard, 1999, Chap. 11)) can

be solved with G(n) operations in K for polynomials of degree 2n in K[x]. The recur-

sive Knuth/Schönhage half-Gcd algorithm (see (Knuth, 1970; Schönhage, 1971; Moenck,

1973)) allows G(n) = O(M(n) log n). The minimum polynomial of degree n, of a linearly

generated sequence given by its first 2n terms, can be computed in G(n) + O(n) oper-

ations, (see (von zur Gathen and Gerhard, 1999, Algorithm 12.9) and Section 4.2). We

will often use the notation O˜ that indicates missing factors of the form α(log n)β , for

two positive real numbers α and β.
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2. Kaltofen’s determinant algorithm over a field

Kaltofen’s determinant algorithm extends the Krylov-based method of Wiedemann
(1986). The latter approach is successful in various situations. We refer especially to the
algorithms of Kaltofen and Pan (1991) and Kaltofen and Saunders (1991) around exact
linear system solution that have served as basis for subsequent works. We may also point
out the various questions investigated by Chen et al. (2002), and references therein.

Let K be a commutative field. We consider A ∈ Kn×n, u ∈ K1×n, and v ∈ Kn×1. We
introduce the Hankel matrix H =

(

uAi+j−2v
)

1≤i,j≤n
∈ Kn×n, and let hk = uAkv for

0 ≤ k ≤ 2n− 1. We also assume that H is non-singular:

detH = det

















uv uAv . . . uAn−1v

uAv uA2v . . . uAnv
...

. . .
...

...

uAn−1v . . . . . . uA2n−2v

















6= 0. (1)

In the applications, (1) is ensured either by construction of A, u, and v, as in (Kaltofen,
1992; Kaltofen and Villard, 2005), or by randomization (see the above cited references
around Wiedemann’s approach, and (Kaltofen, 1992; Kaltofen and Villard, 2005).

A key idea of Kaltofen (1992) for reducing the division-free complexity estimate for
computing the determinant, is to introduce a “baby steps/giant steps” strategy in the
Krylov subspace construction. With baby steps/giant steps parameters s = ⌈√n⌉ and
r = ⌈2n/s⌉ (rs ≥ 2n, the notation ⌈x⌉ stands for smallest integer greater than or equal
to x) we consider the following algorithm.

Algorithm Det (Kaltofen, 1992)

Input: A ∈ Kn×n, u ∈ K1×n, v ∈ Kn×1

step i. v0 := v; For i = 1, . . . , r − 1 do vi := Avi−1

step ii. B := Ar

step iii. u0 := u; For j = 1, . . . , s− 1 do uj := uj−1B

step iv. For i = 0, 1, . . . , r − 1 do

For j = 0, 1, . . . , s− 1 do hi+jr := ujvi

step v. f := the minimum polynomial of {hk}0≤k≤2n−1

detA := (−1)nf(0)

Output: detA.

Note that Algorithmm Det is straight-line, we mean has no branching, apart possibly
from the computation of the minimum polynomial. We will apply automatic differenti-
ation for straight-line programs to all parts of Algorithmm Det but to step v that we
will treat analytically. In (Kaltofen, 1992) the determinant algorithm is called on specific
inputs A, u and v such that actually no branching occur.

We omit the proof of the next theorem that establishes the correctness and the cost
of Algorithm Det, and refer to Kaltofen (1992). We may simply note that the sequence
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{hk}0≤k≤2n−1 is linearly generated. In addition, if (1) is true, then the minimum polyno-
mial f of {hk}0≤k≤2n−1, the minimum polynomial of A, and the characteristic polynomial
of A coincide. Hence (−1)nf(0) is equal to the determinant of A.

Theorem 1. If A ∈ Kn×n, u ∈ K1×n, and v ∈ Kn×1 satisfy (1), then Algorithm Det

computes the determinant of A in O(n3 log n) operations in K.

Via an algorithm that can multiply two matrices in Kn×n in time O(nω), and a
doubling approach for computing the ui’s and the vi’s (see (Borodin and Munro, 1975,
Cor. 6.1.5) or (Keller-Gehrig, 1985)) an implementation using O(nω log n) operation may
be derived. For the matrix product we may set for instance ω = 2.376 using the algorithm
of Coppersmith and Winograd (1990).

In the rest of the paper we work with a cubic matrix multiplication algorithm. Our
study has to be generalized if fast matrix multiplication is introduced.

3. Backward automatic differentiation

The determinant of A ∈ Kn×n is a polynomial ∆ in K[a1,1, . . . , ai,j , . . . , an,n] of the
entries of A. We denote the adjoint matrix by A∗ such that AA∗ = A∗A = (detA)I. As
noticed by Baur and Strassen (1983), the entries of A∗ satisfy

a∗j,i =
∂∆

∂ai,j
, 1 ≤ i, j ≤ n. (2)

The reverse mode of automatic differentiation allows to transform a program which
computes ∆ into a program which computes all the partial derivatives in (2). Among the
rich literature about the reverse mode of automatic differentiation we may refer to the
seminal works of Linnainmaa (1970, 1976) and Ostrowski et al. (1971). For deriving the
adjoint program from the determinant program we follow the lines of Baur and Strassen
(1983) and Morgenstern (1985). We also refer to the adjoint code method of Gilbert et al.
(1991, Sec. 4.1.2).

Apart from the minimum polynomial computation, Algorithm Det is a straight-line
program over K. For a comprehensive study of straight-line programs see for instance
(Bürgisser et al., 1997, Chap. 4). We assume that the entries of A are stored initially
in n2 variables δi, −n2 < i ≤ 0. Then we assume that the algorithm is a sequence of
arithmetic operations in K, or assignments to constants of K. Let L be the number of
such operations. We assume that the result of each instruction is stored in a new variable
δi, hence the algorithm is seen as a sequence of instructions

δi := δj op δk, op ∈ {+,−,×,÷}, − n2 < j, k < i, (3)

or
δi := c, c ∈ K, (4)

for 1 ≤ i ≤ L. Note that a binary arithmetic operation (3) where one of the operands is a
constant of K can be implemented with the aid of (4). For any 0 ≤ i ≤ L, the determinant
may be seen as a rational function ∆i of δ−n2+1, . . . , δi, such that

∆0(δ−n2+1, . . . , δ0) = ∆(a1,1, . . . , an,n), (5)

and such that the last instruction gives the result:

detA = δL = ∆L(δ−n2+1, . . . , δL). (6)
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The reverse mode of automatic differentiation computes the derivatives (2) in a back-

ward recursive way, from the derivatives of (6) to those of (5). For any 0 ≤ i ≤ L the

quantities δ−n2+1, ..., δi are considered to be algebraically independent variables, and ∆i

is interpreted as a new straight-line program with inputs δj for −n2 < j ≤ i. Using (6)

we start the recursion with

∂∆L

∂δL
= 1,

∂∆L

∂δl
= 0, − n2 < l ≤ L− 1.

Then, writing

∆i−1(δ−n2+1, . . . , δi−1) = ∆i(δ−n2+1, . . . , δi) = ∆i(δ−n2+1, . . . , g(δj , δk)), (7)

where g is given by (3) or (4), using the chain rule we have

∂∆i−1

∂δl
=
∂∆i

∂δl
+
∂∆i

∂δi

∂g

∂δl
, − n2 < l ≤ i− 1, (8)

for 1 ≤ i ≤ L. Depending on g several cases may be examined. For instance, for an

addition δi := g(δj , δk) = δj + δk, (8) becomes

∂∆i−1

∂δj
=
∂∆i

∂δj
+
∂∆i

∂δi
,

∂∆i−1

∂δk
=
∂∆i

∂δk
+
∂∆i

∂δi
, (9)

with the other derivatives (l 6= j or k) remaining unchanged. In the case of a multipli-

cation δi := g(δj , δk) = δj × δk, (8) gives that the only derivatives that are modified

are
∂∆i−1

∂δj
=
∂∆i

∂δj
+
∂∆i

∂δi
δk,

∂∆i−1

∂δk
=
∂∆i

∂δk
+
∂∆i

∂δi
δj . (10)

We see for instance in (10), where δk is used for updating the derivative with respect

to δj , that the recursion uses intermediary results of the determinant algorithm. For the

adjoint algorithm, we will assume that the determinant algorithm has been executed

once, and that the δi’s are stored in n2 + L memory locations (also see Section 8).

Recursion (8) gives a practical means, and a program, for computing the N = n2

derivatives of ∆ with respect to the ai,j ’s. For any rational function Q (resp. polynomial

P ), in N variables δ−N+1, . . . , δ0 the corresponding general statement is:

Theorem 2. [Baur and Strassen (1983)] Let P be a straight-line program computing Q

(resp. P ) in L operations in K (resp. R). One can derive an algorithm ∂P that computes Q

(resp. P ) and the N partial derivatives ∂Q/∂δl (resp. ∂P/∂δl) in less than 5L operations

in K (resp. R).

Combining Theorem 2 with Theorem 1 gives the construction of an algorithm ∂Det

for computing the adjoint matrix A∗ (see (Baur and Strassen, 1983, Corollary 5)). The

algorithm can be generated automatically via an automatic differentiation tool. 1 How-

ever, it seems unclear how it could be programmed directly, and, to our knowledge, it

has no interpretation of its own.

1 We refer for instance to http://www.autodiff.org
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4. Differentiation of the minimum polynomial constant term computation

Here and in next section we apply the backward recursion (8) to Algorithm Det of
Section 2 for deriving the algorithm ∂Det. We assume that A is non-singular, hence
A∗ is non-trivial. By construction, the flow of computation for the adjoint is reversed
compared to the flow of Algorithm Det, therefore we start with the differentiation of
step v. Section 5 will then focus on differentiating step iv to step i.

For computing the derivatives of step v we first give an analytical interpretation of
the derivatives in Section 4.1, then we propose a corresponding implementation for their
evaluation in Section 4.2. As underlined in the introduction, another approach could be
to directly apply automatic differentiation to a concrete implementation of step v, we
mean to a particular minimum polynomial algorithm. However, in this case, the question
of providing an “explicit” algorithm would remain open.

4.1. Constant term differentiation: interpreting the problem

At step v, Algorithm Det computes the constant term of the minimum polynomial f
of the linearly generated sequence {hk}0≤k≤2n−1. Let λ be the first instruction index at
which all the hk’s are known. We apply the recursion until step λ, globally, we mean that
we compute the derivatives of ∆λ. After the instruction λ, the determinant is viewed as
a function ∆v of the hk’s only. Following (7) we have

det(A) = ∆λ(δ−n2+1, . . . , δλ) = ∆v(h1, . . . , h2n−1).

Hence we may focus on the derivatives ∂∆v/∂hk, 0 ≤ k ≤ 2n − 1, the remaining ones
are zero.

Using assumption (1) we know that the minimum polynomial f of {hk}0≤k≤2n−1 has
degree n, and if f(x) = f0 + f1x+ . . .+ fn−1x

n−1 + xn, then f satisfies

H

















f0

f1
...

fn−1

















=

















h0 h1 . . . hn−1

h1 h2 . . . hn

...
. . .

...
...

hn−1 . . . . . . h2n−2

































f0

f1
...

fn−1

















= −

















hn

hn+1

...

h2n−1

















, (11)

see, e.g., (Kaltofen, 1992), or (von zur Gathen and Gerhard, 1999, Algorithm 12.9) to-
gether with (Brent et al., 1980). Applying Cramer’s rule we see that

f0 = (−1)n det

















h1 h2 . . . hn

h2 h3 . . . hn+1

...
. . .

...
...

hn . . . . . . h2n−1

















/detH,

hence, defining HA =
(

uAi+j−1v
)

1≤i,j≤n
= (hi+j−1)1≤i,j≤n ∈ Kn×n, we obtain

∆v =
detHA

detH
. (12)
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Let K̃u and Kv be the Krylov matrices

K̃u = [uT , ATuT , . . . , (AT )n−1uT ]T ∈ K
n×n, (13)

and

Kv = [v,Av, . . . , An−1v] ∈ K
n×n. (14)

Since H = K̃uKv, assumption (1) implies that both K̃u and Kv are non-singular. Hence,
using that A is non-singular, we note that HA = K̃uAKv also is non-singular.

For differentiating (12), let us first specialize (2) to Hankel matrices. We denote by
(∂∆/∂ai,j)(H) the substitution of the entries of H for the ai,j ’s in ∂∆/∂ai,j , for 1 ≤
i, j ≤ n. From (2) we have

h∗j,i =
∂∆

∂ai,j
(H), 1 ≤ i, j ≤ n.

Since the entries of H are constant along the anti-diagonals, we deduce that

∂ detH

∂hk
=

∑

i+j−2=k

∂∆

∂ai,j
(H) =

∑

i+j−2=k

h∗j,i =
∑

i+j−2=k

h∗i,j , 0 ≤ k ≤ 2n− 2.

In other words, we may write

∂ detH

∂hk
= σk(H∗), 0 ≤ k ≤ 2n− 2, (15)

where, for a matrix M = (mij)1≤i,j≤n, we define

σk(M) =
∑

i+j−2=k

mij , 0 ≤ k ≤ 2n− 2.

The function σk(M) is the sum of the entries in the anti-diagonal of M starting with
m1,k+1 if 0 ≤ k ≤ n − 1, and mk−n+2,n if n ≤ k ≤ 2n − 2. Shifting the entries of H for
obtaining HA we also have

∂ detHA

∂hk
= σk−1(H

∗
A), 1 ≤ k ≤ 2n− 1. (16)

Since H does not contain h2n−1 and HA does not contain h0, (15) and (16) are trivial for
k = 2n−1 (or higher values of k) and k = −1, respectively. Hence we define σ2n−1(M) =
σ−1(M) = 0. Now, differentiating (12), together with (15) and (16), leads to

∂∆v

∂hk
=

(∂ detHA/∂hk)

detH
− (∂ detH/∂hk)

detH

detHA

detH
=

(∂ detHA/∂hk)

detHA

detHA

detH
−σk(H−1)∆v

and, consequently, to






∂∆v/∂hk =
(

σk−1(H
−1
A ) − σk(H−1)

)

∆v, 0 ≤ k ≤ 2n− 1,

∂∆v/∂hk = 0, k ≥ 2n.
(17)

4.2. Constant term differentiation: concrete implementation

For implementing (17), we study the computation of the anti-diagonal sums σk of H−1

and H−1
A . We first use the formula of Labahn et al. (1990) for Hankel matrices inversion.
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The minimum polynomial f of {hk}0≤k≤2n−1 is f(x) = f0 + f1x+ . . .+ fn−1x
n−1 + xn,

and satisfies (11). Let the last column of H−1 be given by

H [g0, g1, . . . , gn−1]
T = [0, . . . , 0, 1]T ∈ K

n. (18)

Applying (Labahn et al., 1990, Theorem 3.1) with (11) and (18), we know that

H−1 =

















f1 . . . fn−1 1
... . .

.
. .

.

fn−1 . .
.

0

1



























g0 . . . gn−1

. . .
...

0 g0











−

















g1 . . . gn−1 0
... . .

.
. .

.

gn−1 . .
.

0

0



























f0 . . . fn−1

. . .
...

0 f0











. (19)

For deriving an analogous formula for H−1
A , using the notations of (13) and (14), we first

recall that H = K̃uKv and HA = K̃uAKv. Multiplying (11) on the left by K̃uAK̃−1
u gives

HA [f0, f1, . . . , fn−1]
T = −[hn+1, hn+2, . . . , h2n]T . (20)

We also notice that

HAH
−1 =

(

K−1
u ATKu

)T
,

and, using the action of AT on the vectors uT , . . . , (AT )n−2uT , we check that HAH
−1 is

the companion matrix

HAH
−1 =

















0 1 0
...

. . .

0 . . . 0 1

−f0 −f1 . . . −fn−1

















.

Hence the last column [g∗0 , g
∗
1 , . . . , g

∗
n−1] of H−1

A is the first column of H−1 divided by

−f0. Using (19) for determining the first column of H−1, we get

[g∗0 , g
∗
1 , . . . , g

∗
n−1]

T = −g0
f0

[f1, . . . , fn−1, 1]T + [g1, . . . , gn−1, 0]T . (21)

Applying (Labahn et al., 1990, Theorem 3.1), now with (20) and (21), we obtain

H−1
A =

















f1 . . . fn−1 1
... . .

.
. .

.

fn−1 . .
.

0

1



























g∗0 . . . g
∗
n−1

. . .
...

0 g∗0











−

















g∗1 . . . g∗n−1 0
... . .

.
. .

.

g∗n−1 . .
.

0

0



























f0 . . . fn−1

. . .
...

0 f0











. (22)

From (19) and (22) we see that computing σk(H−1) and σk−1(H
−1
A ), for 0 ≤ k ≤ 2n−1,

reduces to computing the anti-diagonal sums for a product of triangular Hankel times

9



triangular Toeplitz matrices. Let

M = LR =

















l0 l1 . . . ln−1

l1 . .
.

. .
.

... . .
.

0

ln−1

































r0 r1 . . . rn−1

. . .
. . . rn−2

0
. . .

...

r0

















.

We have

mi,j =

i+j−2
∑

s=i−1

lsri+j−s−2, 1 ≤ i+ j − 1 ≤ n, (23)

and

mi,j =

n−1
∑

s=i−1

lsri+j−s−2, n ≤ i+ j − 1 ≤ 2n− 1. (24)

For 0 ≤ k ≤ 2n − 2, σk(M) is defined by summing the mi,j ’s such that i + j − 2 = k.

Using (23) we obtain

σk(M) =
∑k+1

i=1 mi,k−i+2 =
∑k+1

i=1

∑k
s=i−1 lsrk−s

=
∑k

s=0(s+ 1)lsrk−s, 0 ≤ k ≤ n− 1,

hence

(

n−1
∑

s=0

lsx
s+1)′(

n−1
∑

s=0

rsx
s) mod xn =

n−1
∑

k=0

σk(M)xk. (25)

In the same way, using (24) with k̄ = k − n+ 2, we have

σk(M) =
∑n−k̄+1

i=1 mi+k̄−1,n−i+1 =
∑n−k̄+1

i=1

∑n−k̄+1
s=i ls+k̄−2rn−s

=
∑n−1

s=k̄−1(s+ n− k) lsrk−s, n− 1 ≤ k ≤ 2n− 2,

and

(

n
∑

s=1

rn−sx
s)′(

n−1
∑

s=0

ln−s−1x
s) mod xn =

n−1
∑

k=0

σ2n−k−2(M)xk. (26)

It remains to apply (25) and (26) to the structured matrix products in (19) and (22),

for computing the σk(H−1) and σk(H−1
A )’s. Together with the minimum polynomial f =

f0+. . .+fn−1x
n−1+xn, let g = g0+. . .+gn−1x

n−1 (see (18)), and g∗ = g∗0 . . .+g
∗
n−1x

n−1

(see (21)). We may now combine, respectively (19) and (22), with (25), for obtaining

f ′g − g′f mod xn =
n−1
∑

k=0

σk(H−1)xk, (27)

and

f ′g∗ − (g∗)′f mod xn =
n−1
∑

k=0

σk(H−1
A )xk. (28)
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Defining also rev(f) = 1+fn−1x+ . . .+f0x
n, rev(g) = gn−1x+ . . .+g0x

n, and rev(g∗) =

g∗n−1x+ . . .+ g∗0x
n, the combination of, respectively, (19) and (22), with (26), leads to

rev(g)′rev(f) − rev(f)′rev(g) mod xn =

n−1
∑

k=0

σ2n−k−2(H)xk, (29)

and

rev(g∗)′rev(f) − rev(f)′rev(g∗) mod xn =

n−1
∑

k=0

σ2n−k−2(HA)xk. (30)

From (27)-(30) we may now derive an algorithm for computing the anti-diagonal sums.

We first reduce the computation of f and g to the following version of the Extended

Euclidean Algorithm, where q(i) is the quotient resulting from the Euclidean division of

r(i−1) by r(i).

Algorithm EEA - Extended Euclidean Algorithm

Input: r(0) ∈ K[x], r(1) ∈ K[x], d ∈ N

t(0) := 0; t(1) := 1; i:=1

While deg r(i) ≥ d do

r(i+1) := r(i−1) − q(i)r(i)

t(i+1) := t(i−1) − q(i)t(i)

i:=i+1

Output: r := r(i), t := t(i).

Following von zur Gathen and Gerhard (1999, Algorithm 12.9), the minimum polyno-

mial f of {hk}0≤k≤2n−1 is obtained as follows:

r, t :=EEA(x2n, h2n−1 + h2n−2x+ . . .+ h0x
2n−1, n)

f := t/tn.
(31)

Using the approach of Brent et al. (1980, Sec. 6) we know that computing the polynomial

g, whose coefficients are given by the last column of H−1, reduces to:

r, t :=EEA(x2n−1, h2n−2 + h2n−3x+ . . .+ h0x
2n−2, n)

g := t/rn−1.
(32)

Once f and g are known, the next procedure returns

σ =
2n−1
∑

k=0

σk(H−1)xk, and σA =
2n−1
∑

k=0

σk−1(H
−1
A )xk−1,

hence two polynomials whose coefficients are the quantities involved in (17).

11



Algorithm Anti-diagonal sums

Input: {hk}0≤k≤2n−1

step i. Compute f and g using (31) and (32)

step ii. [g∗0 , g
∗
1 , . . . , g

∗
n−1]

T = − g0

f0

[f1, . . . , fn−1, 1]T + [g1, . . . , gn−1, 0]T

step iii. σ(L) := f ′g − g′f mod xn /* (27) */

σ
(L)
A := f ′g∗ − (g∗)′f mod xn /* (28) */

σ(H) := rev
(

rev(g)′rev(f) − rev(f)′rev(g) mod xn−1
)

/* (29) */

σ
(H)
A := rev

(

rev(g∗)′rev(f) − rev(f)′rev(g∗) mod xn−1
)

/* (30) */

Output: σ(L) + xn−2σ(H), σ
(L)
A + xn−2σ

(H)
A .

For the sake of completeness we have included the computation of f in the anti-
diagonal sums computation. Actually, with the automatic differentiation approach, since
we assume that algorithm Det has been executed once (see Section 3), f is known and
stored, and should not be recomputed.

Proposition 3. Assume that the minimum polynomial f and the Hankel matrices H and
HA are given. The anti-diagonal sums σk(H−1) and σk(H−1

A ), for 0 ≤ k ≤ 2n−1, hence
the derivatives of step v through (17), can be computed in G(n) + O(M(n)) operations
in K.

Proof. Using (32) the polynomial g is computed in G(n) +O(n) operations. From there,
the execution of Algorithm Anti-diagonal sums costs O(M(n)). 2

5. Differentiating dot products, matrix times vector and matrix products

Once the derivatives of step v are known, those of step iv to step i can be computed
recursively using the chain rule (8).

5.1. Differentiation of the dot products

For differentiating step iv, ∆ is seen as a function ∆iv of the uj ’s and vi’s. The entries
of uj are used for computing the r scalars hjr, h1+jr, . . . , h(r−1)+jr for 0 ≤ j ≤ s − 1.
The entries of vi are involved in the computation of the s scalars hi, hi+r, . . . , hi+(s−1)r

for 0 ≤ i ≤ r − 1.
In (8), the new derivative ∂∆i−1/∂δl is obtained by adding the current instruction

contribution to the previously computed derivative ∂∆i/∂δl. Since all the hi+jr’s are
computed independently according to

hi+jr =

n
∑

l=1

(uj)l(vi)l,

it follows that the derivative of ∆iv with respect to an entry (uj)l or (vi)l is obtained by
summing up the contributions of the multiplications (uj)l(vi)l. Since all ∂∆v/∂(uj)l and
∂∆v/∂(vi)l are zero, (10) leads to

∂∆iv

∂(uj)l
=

r−1
∑

i=0

∂∆v

∂hi+jr
· (vi)l, 0 ≤ j ≤ s− 1, 1 ≤ l ≤ n, (33)
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and

∂∆iv

∂(vi)l
=

s−1
∑

j=0

∂∆v

∂hi+jr
· (uj)l, 0 ≤ i ≤ r − 1, 1 ≤ l ≤ n. (34)

By abuse of notations (of the sign ∂), we let ∂uj be the n × 1 vector, respectively
∂vi be the 1 × n vector, whose entries are the derivatives of ∆iv with respect to the
entries of uj , respectively vi. Note that because of the index transposition in (2), it is
convenient, here and in the following, to take the transpose form (column versus row)
for the derivative vectors. Defining also

∂H =

(

∂∆v

∂hi+jr

)

0≤i≤r−1, 0≤j≤s−1

∈ K
r×s,

we deduce, from (33) and (34), that

[∂u0, ∂u1, . . . , ∂us−1] = [v0, v1, . . . , vr−1] ∂H ∈ K
n×s. (35)

and
















∂v0

∂v1
...

∂vr−1

















= ∂H

















u0

u1

...

us−1

















∈ K
r×n. (36)

Identities (35) and (36) give the second step of the adjoint algorithm. In Algorithm Det,
step iv costs essentially 2rsn additions and multiplications in K. Here we have essen-
tially 4rsn additions and multiplications using basic loops (as in step iv) for calculating
the matrix products, we mean without an asymptotically fast matrix multiplication al-
gorithm.

5.2. Differentiation of the matrix times vector and matrix products

The recursive process for differentiating step iii to step i may be written in terms
of the differentiation of the basic operation (or its transposed operation)

q := p ·M ∈ K
1×n, (37)

where p and q are row vectors of dimension n, and M is an n × n matrix. Let l be
such that (37) starts at the lth instruction of the determinant program. By recursion, we
assume that the derivatives of ∆l are known. We let ∂p and ∂q be the column vectors of
the derivatives of ∆l with respect to the entries of p and q, and ∂M be the n×n matrix
whose transpose gives the derivatives of ∆l with respect to the mij ’s. Following the lines
of previous section for obtaining (35) and (36), we see that differentiating (37) amounts
to updating ∂p and ∂M according to







∂p := ∂p+M · ∂q ∈ Kn,

∂M := ∂M + ∂q · p ∈ Kn×n,
(38)

where notations ∂p and ∂M are re-used for the new derivatives.
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Differentiation of step iii. The differentiation (38) of (37) directly allows to differentiate

uj := uj−1B.

We start from the values ∂uj ’s of the derivatives of step iv computed with (35), and,
since the derivatives of step v and step iv with respect to the bij ’s are zero, from
∂B = 0. This gives:







∂uj−1 := ∂uj−1 +B · ∂uj ,

∂B := ∂B + ∂uj · uj−1, j = s− 1, . . . , 1.
(39)

Differentiation of step ii. For B := Ar, we show that the backward recursion leads to

∂A :=

r
∑

k=1

Ar−k · ∂B ·Ak−1. (40)

Here, the notation ∂A stands for the n× n matrix whose transpose gives the derivatives
∂∆ii/∂ai,j . We may show (40) by induction on r. For r = 1, ∂A = ∂B is true. If (40) is
true for r− 1, then let C = Ar−1 and B = CA. Using (38), and overloading the notation
∂A, we have







∂C = A · ∂B ∈ Kn×n,

∂A = ∂B · C ∈ Kn×n.

Hence, using (40) for r − 1, we establish that

∂A = ∂A+
∑r−1

k=1A
r−k−1 · ∂C ·Ak−1,

= ∂B · C +
∑r−1

k=1A
r−k−1 · (A · ∂B) ·Ak−1

= ∂B ·Ar−1 +
∑r−1

k=1A
r−k · ∂B ·Ak−1 =

∑r
k=1A

r−k · ∂B ·Ak−1.

Any specific approach for computing Ar will lead to an associated program for com-
puting ∂A. Let us look, in particular, at the case where step ii of Algorithm Det is
implemented by repeated squaring, in essentially log2 r matrix products. Consider the
recursion

A1 := A

For k = 1, . . . , log2 r do A2k := A2k−1 ·A2k−1

B := Ar

that computes B := Ar. The associated program for computing the derivatives is

∂Ar := ∂B

For k = log2 r, . . . , 1 do ∂A2k−1 := A2k−1 · ∂A2k + ∂A2k ·A2k−1

∂A := ∂A1,

(41)

and costs essentially 2 log2 r matrix products.
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Differentiation of step i. We apply the differentiation (38) of (37) for differentiating

vi := Avi−1,

starting from the values of the ∂vi’s computed with (36), and from ∂A computed with (40).
We get:







∂vi−1 := ∂vi−1 + ∂vi ·A,
∂A := ∂A+ vi−1 · ∂vi, i = r − 1, . . . , 1.

(42)

Now, ∂A is the n×n matrix whose transpose gives the derivatives ∂∆i/∂ai,j = ∂∆/∂ai,j ,
hence from (2) we know that A∗ = ∂A. step iii and step i both cost essentially r (≈ s)
matrix times vector products. From (39) and (42) the differentiated steps both require r
matrix times vector products, and 2rn2 +O(rn) additional operations in K.

6. The adjoint algorithm over a field

We call Adjoint the algorithm obtained from the successive differentiations of Sec-
tions 4 and 5 . We keep the notations of previous sections. We use in addition U ∈ Ks×n

and V ∈ Kn×r (resp. ∂U ∈ Kn×s and ∂V ∈ Kr×n) for the right sides (resp. the left sides)
of (35) and (36).

Algorithm Adjoint (∂Det)

Input: A ∈ Kn×n non-singular, and the intermediary data of Algorithm Det

All the derivatives are initialized to zero

step i∗. /* Requires detA, H and HA, see (17) */

∂H := (∂∆v/∂hi+jr)i,j using Anti-diagonal sums

step ii∗. /* Requires the uj’s and vi’s, see (35) and (36) */

∂U := V · ∂H
∂V := ∂H · U

step iii∗. /* Requires B = Ar, see (39) */

For j = s− 1, . . . , 1 do

∂uj−1 := ∂uj−1 +B · ∂uj

∂B := ∂B + ∂uj · uj−1

step iv∗. /* Requires the powers of A, see (40) or (41) */

A∗ :=
∑r

k=1A
r−k · ∂B ·Ak−1

step v∗. /* See (42) */

For i = r − 1, . . . , 1 do

∂vi−1 := ∂vi−1 + ∂vi ·A
A∗ := A∗ + vi−1 · ∂vi

Output: The adjoint matrix A∗ ∈ Kn×n.
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The cost of Adjoint is dominated by step iv∗, which is the differentiation of the ma-
trix power computation. As we have seen with (41), the number of operation is essentially
twice as much as for Algorithm Det. The code we give allows an easy implementation.

We note that if the product by detA is avoided in step i∗ (see (17)) , then the
algorithm computes the matrix inverse A−1. We may put this into perspective with the
algorithm given by Eberly (1997). With K̃u and Kv the Krylov matrices of (13) and (14),
Eberly has proposed a processor-efficient inversion algorithm based on

A−1 = KvH
−1
A K̃u. (43)

To see whether a baby steps/giant steps version of (43) would lead to an algorithm similar
to Adjoint deserves further investigations.

7. Adjoint computation without divisions

Now let A be an n × n matrix over an abstract commutative ring R. As shown by
Kaltofen (1992), the determinant algorithm of Section 2 (with divisions) may be trans-
formed into an algorithm for computing the determinant using only operations in R

(without divisions). By application of Theorem 2, the differentiation of the latter al-
gorithm gives an algorithm without divisions for computing the adjoint using O (̃n3.5)
operations in R. However it is unclear to us how to propose an explicit version of this
division-free algorithm.

As illustrated by Figure 1 in the introduction, we rather transform Algorithm Ad-

joint, using the same means as Kaltofen for his determinant algorithm, for obtaining a
division-free adjoint algorithm. The transformation uses truncated power series manip-
ulations and we need to introduce a lazy evaluation scheme for ensuring the complexity
bound O (̃n3.5).

Kaltofen’s algorithm for computing the determinant of A without divisions applies
Algorithm Det on a well chosen univariate polynomial matrix Z(z) = C + z(A − C)
where C ∈ Z

n×n, with the following dedicated choice of projections u = ϕ ∈ Z
1×n and

v = ψ ∈ Z
n×1. Defining

αi =

(

i

⌊i/2⌋

)

, βi = −(−1)⌊(n−i+1)/2⌋

(⌊(n+ i)/2⌋
i

)

,

we take

ϕ =
[

1 0 . . . 0
]

, C =























0 1 0 . . . 0

0 0 1
. . . 0

...
...

. . .
. . . 0

0 0 0 1

β0 β1 . . . βn−2 βn−1























, ψ =























α0

α1

...

αn−1























. (44)

The algorithm uses Strassen’s avoidance of divisions (see (Strassen, 1973; Kaltofen,
1992)). Since the determinant of Z is a polynomial of degree n in z, the arithmetic
operations over K in Det may be replaced by operations on power series in R[[z]] modulo
zn+1. Once the determinant of Z(z) is computed, the evaluation (detZ)(1) = det(C +
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1× (A−C)) gives the determinant of A. The choice of C,ϕ and ψ is such that, whenever
a division by a truncated power series is performed the constant coefficients are ±1.
Therefore the algorithm necessitates no divisions. Note that, by construction of Z(z),
the constant terms of the power series involved when Det is called with inputs Z(z), ϕ
and ψ, are the intermediary values computed by Det with inputs C,ϕ and ψ.

The cost for computing the determinant of A without divisions is then deduced as
follows. In step i and step ii of Algorithm Det applied to Z(z), the vector and ma-
trix entries are polynomials of degree O(

√
n). The cost of step ii dominates, and is

O(n3M(
√
n) log n) = O (̃n3

√
n) operations in R. step iii, iv, and v cost O(n2

√
n) op-

erations on power series modulo zn+1, that is O(n2M(n)
√
n) operations in R. Hence

detZ(z) is computed in O (̃n3
√
n) operations in R, and detA is obtained with the same

cost bound.
A main property of Kaltofen’s approach (which also holds for the improved blocked

version of Kaltofen and Villard (2005)), is that the scalar value detA is obtained via
the computation of the polynomial value detZ(z). This property seems to be lost with
the adjoint computation. We are going to see how Algorithm Adjoint applied to Z(z)
allows to compute A∗ ∈ Rn×n in time O (̃n3

√
n) operations in R, but does not seem to

allow the computation of Z∗(z) ∈ R[z]n×n with the same complexity estimate. Indeed,
a key point in Kaltofen’s approach for reducing the overall complexity estimate, is to
compute with small degree polynomials (degree O(

√
n)) in step i and step ii. However,

since the adjoint algorithm has a reversed flow, this point does not seem to be relevant
for Adjoint, where polynomials of degree n are involved from the beginning.

Our approach for computing A∗ over R keeps the idea of running Algorithm Adjoint

with input Z(z) = C + z(A − C), such that Z∗(z) has degree less than n, and gives
A∗ = Z∗(1). In Section 7.1, we verify that the implementation using Proposition 3, needs
no divisions. We then show in Section 7.2 how to establish the cost estimate O (̃n3

√
n).

The principle we follow is to start evaluating polynomials at z = 1 as soon as computing
with the entire polynomials is prohibitive.

7.1. Division-free Hankel matrix inversion and anti-diagonal sums

In Algorithm Adjoint, divisions may only occur during the anti-diagonal sums com-
putation. We verify here that with the matrix Z(z), and the special projections ϕ ∈
Z

1×n, ψ ∈ Z
n×1, the approach described in Section 4.2 for computing the anti-diagonal

sums requires no divisions. Equivalently, since we use Strassen’s avoidance of divisions,
we verify that with the matrix C and the projections ϕ,ψ, the approach necessitates no
divisions. As we are going to see, this a direct consequence of the construction of Kaltofen
(1992).

Here we let hk = ϕCkψ for 0 ≤ k ≤ 2n − 1, r(0)(x) = x2n, and r(1)(x) = h0x
2n−1 +

h1x
2n−2 + . . .+ h2n−1. The Extended Euclidean Algorithm (see Section 4.2) with these

specific inputs r(0) and r(1) leads to a normal sequence, and after n− 1 and n steps, we
get (see (Kaltofen, 1992, Sec. 2)):

s(n)r(0) + t(n)r(1) = r(n) (45)

with
deg s(n) = n− 2,deg t(n) = n− 1,deg r(n) = n,

and
s(n+1)r(0) + t(n+1)r(1) = r(n+1)
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with
deg s(n+1) = n− 1,deg t(n+1) = n,deg r(n+1) = n− 1.

The polynomial t(n+1) is such that

t(n+1) = ±xn + intermediate monomials + 1 = ±f, (46)

with f the minimum polynomial of {hk}0≤k≤2n−1 (see (31)). The polynomial r(n) also
has leading coefficient ±1. By identifying the coefficients of degree 2n−1 ≥ k ≥ n in (45),
we obtain:

H

















t
(n)
0

t
(n)
1

...

t
(n)
n−1

















=

















h0 h1 . . . hn−1

h1 h2 . . . hn

...
. . .

...
...

hn−1 . . . . . . h2n−2

































t
(n)
0

t
(n)
1

...

t
(n)
n−1

















= ±

















0

0
...

1

















. (47)

Therefore t(n) = ±g with g the polynomial involved in Algorithm Anti-diagonal sums

(see (18)) in addition to f .
Since C,ϕ, and ψ are such above application of the Extended Euclidean Algorithm

necessitates no divisions (see (Kaltofen, 1992, Sec. 2)), we see that both f and g may be
computed with no divisions. The only remaining division in the algorithm for Proposi-
tion 3 is at (21). From (46), this division is by f0 = 1. It may seem somehow fortuitous
that, in the same way as for Algorithm Det, the input C,ϕ, ψ identified by Kaltofen
(1992) introduces no other divisions than by ±1 in Algorithm Anti-diagonal sums.

However, since ∂(a/b)
∂a = 1/b and ∂(a/b)

∂b = −a/b2, we may first note that differentiation
should not introduce divisions other than by ±1. We may also note that our algorithm
is derived from identity (17) that has been obtained analytically.

7.2. Lazy polynomial evaluation and division-free adjoint computation

We run Algorithm Adjoint with input Z(z) ∈ R[z]n×n, and start with operations
on truncated power series modulo zn+1. Using Section 7.1 we know that any division is
by a power series having constant term ±1, hence all the operations are in R. We keep
the assumption that Algorithm Det has been executed, and that its intermediate results
have been stored.

Using Proposition 3, step i∗ requires O(G(n)) operations in K. Taking into account
the truncated power series operations this gives O(G(n)M(n)) = O (̃n2) operations in R

for computing ∂H(z) of degree n in R[z]r×s. step ii∗, step iii∗, and v∗ cost O(n2
√
n)

operations in K, hence O(n2M(n)
√
n) = O (̃n3

√
n) operations in R for the division-free

version. The cost analysis of step iv∗, using (41) over power series modulo zn+1, leads to
log2 r matrix products, hence to the time bound O (̃n4), greater than the target estimate
O (̃n3

√
n). We recall that we work with a cubic matrix multiplication algorithm. As

noticed previously, step ii of Algorithm Det only involves polynomials of degree O(
√
n),

while the reversed program for step iv∗ of Algorithm Adjoint, relies on ∂B(z) whose
degree is n.

Since only Z∗(1) = A∗ is needed, our solution, for restricting the cost to O (̃n3
√
n), is

to start evaluating at z = 1 during step iv∗. However, since power series multiplications
are done modulo zn+1, this evaluation must be lazy. The fact that matrices Zk(z), 1 ≤
k ≤ r− 1, of degree at most r− 1 are involved, enables the following. Let a and c be two
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polynomials such that deg a + deg c = r − 1 in R[z], and let b be of degree n ≥ r − 2 in

R[z]. Considering the highest degree part of b, and evaluating the lowest degree part at

z = 1, we define bH(z) = bnz
r−2 + . . . + bn−r+2 ∈ R[z] and bL = bn−r+1 + . . . + b0 ∈ R.

We then remark that
(

a(z)b(z)c(z) mod zn+1
)

(1) =
(

a(z)(bH(z)zn−r+2 + bL)c(z) mod zn+1
)

(1)

=
(

a(z)bH(z)c(z) mod zr−1
)

(1) + (a(z)bLc(z)) (1).
(48)

For modifying step iv∗ accordingly, we follow the definition of bH and bL, and first

compute ∂BH(z) ∈ R[z]n×n of degree r − 2, and ∂BL ∈ Rn×n. Applying (48), we arrive

to:

Z ′ :=
(
∑r

k=1 Z
r−k(z) · ∂BH(z) · Zk−1(z) mod zr−1

)

(1)

+
(
∑r

k=1 Z
r−k(z) · ∂BL · Zk−1(z)

)

(1).
(49)

In Algorithm Adjoint without divisions below we implement (49) using (41) twice.

The notation “modzn+1” indicates an execution over truncated power series.

Algorithm Adjoint without divisions

Input: A ∈ Rn×n

Z(z) = C + z(A− C); u := ϕ; v := ψ /* See C in (44) */

/* The intermediary data of Algorithm Det(Z, u, v) mod zn+1

are available */

All the derivatives are initialized to zero

step i-iii∗ of Adjoint(Z) mod zn+1

step iv∗. /* Uses the powers of Z, application of (49) to loop (41) */

∂BH :=quo(∂B, zn−r+2) /* Division quotient */

∂BL :=rem(∂B, zn−r+2) /* Division remainder */

∂BL := ∂BL(1)

For k = log2(r), . . . , 1 do

∂BH := Z2k−1 · ∂BH + ∂BHZ
2k−1

mod zr−1

∂BL :=
(

Z2k−1 · ∂BL + ∂BLZ
2k−1

)

(1)

Z ′ := ∂BH(1) + ∂BL

step v∗. /* See (42) */

For i = r − 1, . . . , 1 do

∂vi−1 := ∂vi−1 + ∂vi · Z mod zn+1

Z ′ := Z ′ + vi−1 · ∂vi mod zn+1

A∗ = Z ′(1)

Output: The adjoint matrix A∗ ∈ Rn×n.

The modification of step iv∗ leads to an intermediary value Z ′ ∈ Rn×n before step v∗

using O (̃n3M(r)) = O (̃n3
√
n) operations in R. The value is updated at step v∗ with
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power series operations, and a final evaluation at z = 1 in time O (̃n2rM(n)) = O (̃n3
√
n).

Since only step iv∗ has been modified, we obtain the following result.

Theorem 4. Let A ∈ Rn×n. Algorithm Adjoint without divisions computes the

matrix adjoint A∗ in O (̃n3
√
n) operations in R.

8. Space complexity

In general, backward differentiation increases memory requirements. We have used in

Section 3 the assumption that all the intermediary quantities of the initial program are

stored during the forward phase for subsequent use during the backward phase. This

leads to the theoretical bounds O (̃n3) and O (̃n3.5) on the number of memory locations

(field and ring elements) for Algorithms Adjoint and Adjoint without divisions.

However, using the adjoint code approach, the algorithms keep the same structure

as Algorithm Det, which minimizes the number of memory locations used. The largest

memory cost of Algorithm Adjoint is for step iv∗, and using (41) we actually see that

only log r matrix powers need to be stored. Hence Algorithm Adjoint can be imple-

mented using O(n2 log n) memory locations. In Algorithm Adjoint without divisions

O(n3) locations are required for storing ∂B (whose degree is n), which dominates the

cost of the program.

9. Concluding remarks

We have developed an explicit algorithm for computing the matrix adjoint using only

ring arithmetic operations. The algorithm has complexity estimate O (̃n3.5). It represents

a practical alternative to previously existing solutions for the problem, that rely on auto-

matic differentiation of a determinant algorithm. Our description of the algorithm allows

direct implementations. It should help understanding how the adjoint is computed using

Kaltofen’s baby steps/giant steps construction. Still, a full mathematical explanation de-

serves to be investigated. In particular, we have no interpretation of the differentiation of

the map from {hk}0≤k≤2n−1 to the minimum polynomial. We have proposed and algo-

rithm for the evaluation of (17), but interpreting the differentiation of one of the existing

algorithms for computing the minimum polynomial remains to be accomplished. Our

work also has to be generalized to the block algorithm of Kaltofen and Villard (2005)

(with the use of fast matrix multiplication algorithms) whose complexity estimate is cur-

rently the best known for computing the determinant, and the adjoint without divisions.
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