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Abstract

Computation of the sign of the determinant of a matrix and the determinant itself is a challenge for both
numerical and exact methods. We survey the complexity of existing methods to solve these problems when the
input is an n×n matrix A with integer entries. We study the bit-complexities of the algorithms asymptotically in
n and the norm of A. Existing approaches rely on numerical approximate computations, on exact computations,
or on both types of arithmetic in combination.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Computing the sign or the value of the determinant of an n× n matrix A is a classical problem.
Numerical methods are usually focused on computing the sign via an accurate approximation of
the determinant. Among the applications are important problems of computational geometry that
can be reduced to the determinant question; the reader may refer to [11,12,9,10,46,45] and to the
bibliography therein. In symbolic computation, the problem of computing the exact value of the
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determinant is addressed for instance in relation to matrix normal forms problems [42,29,24,50] or
in computational number theory [17].

In this paper we survey the known major results for computing the determinant and its sign and
give the corresponding references. Our discussion focuses on theoretical computational complexity
aspects. For an input matrix A∈Zn×n with the in@nity matrix norm ‖A‖, we estimate the worst
case bit-complexity in terms of n and ‖A‖. If ai; j denotes the integer in row i and column j of A,
A= (ai; j)16i; j6n, then ‖A‖=max16i6n

∑n
j=1 |ai; j| and any entry in A has bit-length bounded by

min
16i; j6n

{� : |ai; j|¡ 2�; �¿ 1}6 1 + log(‖A‖+ 1):

In algebraic complexity—i.e. when counting the number of operations in an abstract domain—we
refer to Strassen [52] and Bunch and Hopcroft [13] for the reduction of the problem of computing
the determinant to matrix multiplication. Conversely, Strassen [53] and Bunch and Hopcroft [13]
reduce matrix multiplication to matrix inversion, and Baur and Strassen reduce matrix inversion to
computing the determinant [7]. See also link with matrix powering and the complexity class GapL
following Toda, Vinay, Damm and Valiant as explained in [3], for example. Valiant’s theorem shows
that the determinant is universal for formulas [54].

For integer matrices, computing the sign of the determinant is at least not harder than computing
its value. We try to identify the diMerences between these two problems even if it is not known
whether the two complexities are asymptotically diMerent in the worst case. Numerical methods must
deal with condition numbers that inNuence the precision of the computations. Symbolic methods are
confronted with intermediate coeOcient growth and invariant structure of the matrix that directly
inNuence the costs. We show some techniques for devising algorithms sensitive to these conditions,
and we state either the worst case bit-complexities bounds or bounds depending on some additional
properties. This implies discussion on algorithms adapted to certain favorable situations, i.e., on
classes of input matrices that require much lower running time than for the worst case inputs.

The known upper estimates for the bit-complexity of the sign or the determinant is progressively
decreasing. In particular, for the determinant the bit-complexity is known to be below the algebraic
complexity times the maximum bit-size of the output (see [34,25,37] and Section 6). This motivates
us to focus on the sequential time complexity rather than on other aspects such as memory resources,
parallel time or practical considerations. We discuss deterministic and randomized algorithms. The
usage of random bits leads to Monte Carlo algorithms where the answer is with controllably high
probability correct but not certi@ed (known to be correct); and to Las Vegas algorithms where the
answer is always correct and produced quickly with high probability.

The paper is organized as follows. Section 2 recalls classical approximate and exact results about
the determinant. Section 3 discusses the sign computation using numerical methods based on Noating
point numbers. The complexity, because of the precision required for intermediate values, is quite
directly driven by the condition number. A typical problem is to have algorithms sensitive to this
quantity. Symbolic algorithms on integers frequently rely on Chinese remaindering. In Section 4
exact computation approach with randomization enables complexity estimates sensitive to the size
of the determinant. The same approach may also be reduced to constant precision computations for
determining the sign. In Sections 5 and 6 we focus on other exact methods. Existing fast algorithms
fall into two categories. The @rst category takes advantage of linear system solving, a problem whose
worst case bit-complexity is currently lower than the complexity of the determinant. The second
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category relies on Krylov–Lanczos–Wiedemann approaches combined with “baby-steps, giant-steps”
strategy to control the integer size growth and hence the cost. In particular, Section 5 deals with
the Smith normal form which somehow currently “expresses” the diMerence between binary system
solution and determinant. Section 6 is concerned with improved worst case bounds and presents the
known asymptotically fastest algorithms. In Section 7 we brieNy consider computations for matrices
with sparse high precision numbers under a distinct model of computation. The last section is our
conclusion with some discussion of previous results.

We assume that multiplying two arbitrary n × n matrices over a ring R costs O(n!) operations
in R. Using standard multiplication gives ! = 3 while asymptotically fast matrix multiplication
allows ! = 2:376 [20] and special exponents if the input matrices are rectangular [19,33]. The
bit-complexity of multiplying a pair of l-bit integers or Noating point numbers is O(l2) using the
straightforward algorithm or O∼(l) with a fast algorithm [48]. Here and in the following we will
use the soft “O” notation, that is, for any exponent e1, O∼(ne1) denotes O(ne1(log n)e2) for some
constant exponent e2. Unless speci@ed otherwise we use the classical cubic complexity algorithm
for matrix multiplication and the essentially linear FFT-based one for the numbers. Our model of
computation is a random access machine under the logarithmic cost criterion [2, Section 1.3]. The
algorithms discussed here can be also implemented on a multi-tape Turing machine, perhaps with a
poly-logarithmic slow-down. The worst case bit-cost for computing the sign of the determinant of an
n× n matrix A with in@nity norm ‖A‖ is denoted by Sn;‖A‖, the worst case bit-cost for computing
the determinant is Dn;‖A‖. Hence we have Sn;‖A‖6Dn;‖A‖. For adaptive algorithms (see de@nition
2) these functions are bounded also in terms of some quantities other than n and ‖A‖, e.g., the size
of the determinant, the condition number, the orthogonal defect or the number of invariant factors,
in which case we write the matrix as an argument, namely Sn;‖A‖(A);Dn;‖A‖(A).

2. Classical results on sign and determinant computation

In constant precision computation, the condition number of the determinant plays a central role.
Following Higham [32, Problem 13.15], we de@ne this number as follows:

log conddet A= logmax
i; j

|ai; j(A−1)i; j|6 log(�(A)‖A‖); (1)

where

�(A) =
∏n

i=1 ‖ai;∗‖2
|det A| (2)

denotes the orthogonality defect of A. Thus the logarithm of the condition number may be as large
as O∼(n log ‖A‖). For error estimation we can use the numerical rule of thumb [32, p. 10]:

forward error . condition number × backward error

and may also take logarithm on both sides. The consequence is the well-known fact that if one uses
a constant precision arithmetic, the output precision for the determinant satis@es:

precision . log conddet A+ log(backward error):

For accurate computations (with a low relative error for certifying the sign) on badly conditioned
matrices (having small determinants compared to ‖A‖ for instance) this implies that it is potentially
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necessary to compute with O∼(n log ‖A‖)-bit numbers. We assume that the logarithm of the backward
error—say for computing the determinant from a LU or a QR decomposition—is in O(log� n +
log ‖A‖) for some � [32, Chapter 9]. With a matrix decomposition using O(n3) arithmetic operations,
the bit-cost for the sign is thus bounded by

Sn;‖A‖ =O∼(n3 · n log ‖A‖) = O∼(n4 log ‖A‖): (3)

This theoretical formula may be of weak interest numerically. As soon as a family of matrices with
a small condition number and an algorithm ensuring a small backward error are considered, the
asymptotic bit-cost is in O∼(n3 log‖A‖).
In symbolic computation, most of the diOculties in reducing the bit-complexity are due to the

impact of the size of the determinant. We know by Hadamard’s inequality [30, Theorem 16.6] that

log |det A|6 (n=2) log n+ n log ‖A‖;
therefore, representing the determinant may require up to O∼(n log ‖A‖) bits. A detailed analysis of
the average accuracy of Hadamard’s bound can be found in [1]. Once a bound is found, the deter-
minant can be computed by Gaussian elimination with the sizes of intermediate integers controlled
by exact division or by Bareiss’s more sophisticated method [6]. Another approach [26,14] is to
use matrix arithmetic modulo primes and Chinese remaindering (on this technique see [2, Theorem
8.9] or [8, Problem 4.2]). The cost for the exact computation of the determinant, based on the fast
reduction of the matrix entries modulo several primes, is [30, Chapter 5]:

Dn;‖A‖ =O∼(n3 · n log ‖A‖) = O∼(n4 log ‖A‖): (4)

If fast matrix multiplication is available these estimates can be decreased. Fast multiplication can be
plugged into block algorithms, we refer to Demmel and Higham [22] or Higham [32, Chapter 22]
for numerical approaches. For algebraic and symbolic aspects we refer to Bini and Pan [8, Chapter
2]. The bit-cost of computing the determinant is

Dn;‖A‖ =O∼(n!+1 log ‖A‖)¡O(n3:376 log ‖A‖):

Remark 1. A sub-problem of the computation of the sign or the determinant is to determine whether
a matrix is invertible or not—whether the determinant is nonzero or not. This can be done by
testing singularity modulo a randomly chosen prime number p. If p is chosen in a suOciently
large set (large with respect to n and log ‖A‖), this leads to a randomized Monte Carlo algorithm
(non certi@ed) for testing singularity using O∼(n3 log log ‖A‖ + n2 log ‖A‖) bit-operations. One can
choose p in a set of primes having O(log n+log log ‖A‖) bits (see [31, Section 3.2]). This technique
may also be applied to Monte Carlo rank computations and is related to the randomization of Section
4. A singularity certi@cate based on system solution will be given in Remark 3.

3. Numerical computation of the sign

As opposed to using exact arithmetics, specialized algorithms based on Noating point operations
have been intensively studied for computing the sign of algebraic expressions in general and of the
determinant in particular. As seen above, using a small precision may support correct answer for
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special classes of matrices or on the average but a high precision is needed in the worst case. An
interesting problem is to conceive adaptive algorithms that automatically take into account these
variations of the precision.

Here is our attempt to de@ne this paradigm of algorithm design.

De�nition 2. An algorithm is adaptive (input-sensitive, output-sensitive, introspective) if its com-
plexity is asymptotically below its worst case complexity for a nontrivial subset of its inputs.

In the @eld of algebraic computing, important examples are Lenstra’s elliptic curve integer fac-
torization algorithm or Zippel’s sparse polynomial interpolation algorithm. Others utilize a so-called
“early termination” test. We discuss early termination for Chinese remaindering in Section 4.

One of the @rst specialized numerical method for the determinant, which adapts the mantissa
length of Noating point numbers, is due to Clarkson [16] (see also [11,12]). His algorithm works
in two steps. From the input matrix A, the @rst step is to accurately compute a matrix B which
columns are “more orthogonal” than those of A. The process iteratively follows the Gram-Schmidt
orthogonalization but remains in a lattice and keep the sign of the determinant unchanged. For a
better comparison with the exact methods, it is interesting to note that this process uses ideas from the
Lenstra, Lenstra and LovTasz basis reduction algorithm [39]. Using good properties of B, especially a
low orthogonality defect, the second step consists in computing the sign of the determinant by LU
decomposition. The @rst step involves computations with the precision of at most log ‖A‖ + O(n)
bits [12]. The arithmetic cost depends on the orthogonality defect �(A) of A (see (2)) which is,
similarly to the condition number, in O∼(n log ‖A‖). When A is invertible, the defect bounds the
number of iterations of the @rst step of the algorithm. The overall cost is given by

Sn;‖A‖(A) = O∼((n3 + n2 log�(A))(n+ log ‖A‖)): (5)

We may notice that using Remark 1, the invertibility can be easily tested. In the re@ned algorithms
of BrUonnimann and Yvinec [11,12], even for singular matrices the bit-cost satis@es:

Sn;‖A‖ =O∼(n4 log ‖A‖+ n3 log2 ‖A‖): (6)

The @rst step of Clarkson’s approach is output sensitive since its cost depends on the magnitude of
the determinant. Favorable inputs are matrices with “not too small” determinants, for instance with

log�(A) = O(n): (7)

In these cases the algorithm requires only O∼(n4 + n3 log ‖A‖) bit-operations. From (1), this corre-
sponds to matrices such that the condition number satis@es log conddet A = O(n + log ‖A‖) and not
�(n log ‖A‖) as in the worst case. Likewise, the lattice algorithm of BrUonnimann et Yvinec [12]
generalizes to high dimensions the method of Avnaim et al. [4] for dimensions 2 and 3, to yield a
bit-complexity bound similar to (6).

To achieve better complexity bounds for well conditioned matrices, arithmetic @ltering has been
much studied, especially for algebraic geometry problems (see the introduction). The idea is to
rapidly evaluate the sign of the determinant using fast Noating point computations and then to certify
the sign using an error bound or some other fast certi@cates [28,38,45]. Existing @lters/certi@cates rely
on computed or estimated round-oM errors and distances to singular matrices. In particular, evaluations
of latter distances with a machine epsilon �=O(log n) allows the @lters in [38,45] to work correctly
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for well conditioned matrices. If the condition number is small—say log conddet A=O(log n)—then
the rank is certi@ed using O∼(n3 log ‖A‖) operations. More generally, with a singularity test as in
Remark 1 and as suggested by Pan in [45, p. 715], by repeatedly doubling the precision, this leads
to the theoretical bound

Sn;‖A‖(A) = O∼(n3(log conddet A+ log ‖A‖)) = O∼(n4 log ‖A‖): (8)

As one could naturally expect, this is highly sensitive to the condition number.

4. Chinese remaindering

Approaches based on computations modulo a collection of primes, together with the reconstruction
of integers using Chinese remaindering, are common in symbolic computation. In a way analogous to
numerical algorithms that are sensitive to the condition number, Chinese remaindering leads to exact
algorithms that are sensitive to the determinant. Here and in subsequent sections the techniques need
randomizations. The idea is to compute residues of the determinant modulo primes and to reconstruct
the integer value of the determinant “on the Ny” (via Newton’s method, mixed radix representations).
The approach enables acceleration depending on the size of the determinant. Once the reconstructed
value remains stable for a relatively small number of consecutive primes then the determinant is
correct with constant probability on any input. The corresponding bit-cost is:

Dn;‖A‖6O∼(n3 log |det A| log log ‖A‖+ n2 log ‖A‖+ log2 |det(A)|): (9)

On this early termination technique the reader is referred to the detailed study in BrUonnimann et
al. [10] and to Emiris [27] for remarks on success probabilities. Even if the output is not certi@ed
(Monte Carlo algorithm), this gives very good results especially for small determinants [10, Tables
2 & 3]. The log2 |det (A)| term in (9) could be reduced by doubling the number of moduli in each
Chinese remainder update before checking if the result changes.

For the computation of the sign only, the authors of [10] also propose an implementation of Chi-
nese remaindering with constant precision numbers such as usual Noating point ones (via Lagrange’s
method). The technique generalizes the one in [5] for integer division. However, in sign computa-
tions, the integer reconstruction is not the bottleneck and theoretical costs here remain bounded as
in (4).

5. Exact determinant and linear system solution

The @rst type of fast exact algorithms for computing the determinant exploits Cramer’s rule and
the relations between solving linear systems and determinant computation. Both under algebraic
complexity models and the worst case bit-complexity it remains an open question whether linear
system solution is equivalent or strictly easier asymptotically than the determinant computation [7,
p. 328]. For solving a linear system exactly over the rationals, we refer to the p-adic approach
(Hensel’s lifting) proposed by Moenck and Carter [40], then by Dixon [23]. The bit-complexity for
solving Ax = b with b∈Zn and ‖b‖6 ‖A‖ is bounded by

Ln;‖A‖ =O∼(n3 log ‖A‖): (10)



E. Kaltofen, G. Villard / Journal of Computational and Applied Mathematics 162 (2004) 133–146 139

Hence, using classical matrix multiplication, exact system solution in the worst case has the asymp-
totic cost of numerical determinant computation for well conditioned matrices (see Section 2). Fur-
ther, as shown by Mulders and Storjohann [41, Lemma 5.7], fast matrix multiplication techniques
can be used and give:

Ln;‖A‖ =O∼(nf(!) log ‖A‖); with f(!) ≈ 2:76: (11)

In [51], for an abstract commutative @eld K , Storjohann shows that if A and b have polynomial
entries of degree d in K[x] then the linear system Ax = b may be solved in O∼(n!d) operations in
K . An extension of this result to the integer case could achieve Ln;‖A‖ =O∼(n! log ‖A‖) (see [51,
Section 14] and the discussion at the end of Section 6).

Pan has proposed, in [43, Appendix] and in [44], a way to compute the determinant of A using
denominators of solutions to random systems:

Ax = b; b a random vector: (12)

Since the bit-cost of system solution is low, this idea should represent a gain. However, under the
inNuence of the invariant structure of the matrix—the Smith normal form [42]—the gain does not
appear directly in the worst case. As experimentally studied by Abbott et al. [1] the gain is clear on
the average and in some propitious cases. Abbott et al. proceed in two phases. At @rst one solves
several random systems (12) to compute a large divisor � of the determinant. The second phase
@nds the missing factor (det A)=� using classical Chinese remaindering. With (10), the two phases
lead to the bit-cost bound

Dn;‖A‖(A) = O∼
(
n3

(
log

∏n
i=1 ‖ai;∗‖
|�| + log ‖A‖

))
: (13)

This is (4) in the worst case. Similarly to the discussion in Section 3, advantageous cases are those
of matrices leading to large |�|. For random matrices, heuristic arguments in [1, Assumption 1] (see
also some related expected values in [25, Section 6]) give

log
∏n

i=1 ‖ai;∗‖
|�| =O(n):

This may be compared to (7). For such matrices the cost becomes O∼(n4 + n3 log2‖A‖). Using
randomization, one can go further on sensitivity aspects. Indeed [1, Section 4], when solution vectors
x are vectors of reduced rational fractions then

� | sn and log
∏n

i=1 ‖ai;∗‖
|�| = log�(A) + log

|det A|
sn

+ log
sn
|�| ; (14)

where sn is the Smith largest invariant factor of A (largest nonzero diagonal entry of the Smith
form). The term in log(sn=|�|) introduced by (14) in the cost (13) is limited to O(1) [1, Lemma
1]. The term in �(A) can be avoided by the early termination randomized strategy seen in Section
4. This leads to a Monte Carlo algorithm with bit-cost bound:

Dn;‖A‖(A) = O∼
(
n3

(
log

|det A|
|sn| + log ‖A‖

))
: (15)

This can be compared to (8): the structural parameter (det A)=sn plays a role analogous to conddet A in
the numerical computations. For random integer matrices with log ‖A‖¿ 3 log n, where the entries are
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uniformly distributed, the expected value of sn is det A (by [25, Corollary 6.3] the expected number
of nontrivial diagonal entries of the Smith form is one). Thus the average cost for computing the
determinant satis@es:

E(Dn;‖A‖) = O∼(n3 log ‖A‖) (16)

using a randomized Monte Carlo algorithm.

Remark 3. System solution also provides a certi@cate for matrix singularity. Following Remark 1
we work with a random prime p. Without loss of generality, assume that the input matrix A has
rank r modulo p and that its leading r × r principal minor Ar is nonzero modulo p. With high
probability, r is also the rank of A over Q and if r ¡n then the solution vector u to the linear
system

Aru= A(1; :::; r); r+1 (17)

should be a vector in the nullspace of A. The singularity certi@cate computes r modulo p, solves
system (17) over Q and check whether Au= 0.

6. Exact determinant: better worst case bounds

All previously shown algorithms have bit-costs bounded like

bit-cost. arithmetic cost × output maximum size (18)

with approximate equality always attained in the worst case. We are going to see two diMerent ideas
that actually lead to much smaller worst case complexity estimates. Even based on the straightforward
cubic matrix multiplication algorithm those new algorithms bring the exponent of n below 4.

The @rst approach is, again, to take advantage of solving linear systems and to look at the Smith
normal form. Using arguments similar to those of previous section and from [25, Section 2], several
solutions of linear systems with random right-hand side vectors are suOcient to compute the largest
entry sn of the Smith normal form of A. The use of system solution can be extended to computing the
determinant by applying the same technique iteratively to perturbations of A. This approach—initially
proposed in [56] for computing the characteristic polynomial of a sparse matrix—is developed in the
integer case by Eberly et al. [25]. The resulting randomized Monte Carlo algorithm is sensitive to
the size of the determinant and to a parameter #(A), the number of distinct invariant factors, which
characterizes the Smith form. The number of distinct invariant factors satis@es

#(A) = O(
√

|det A|)6O∼(
√
n log ||A||):

Together with (25), the corresponding cost (see [25]) is bounded by

Dn;‖A‖(A) = O∼(#(A) n3 log ‖A‖) =O∼(
√

|det A| n3 log ‖A‖)
=O∼(n3:5 log1:5‖A‖): (19)

In fact, the algorithm in [25] computes both the determinant and the Smith normal form at the same
bit-cost bound. Another variant based on system solution has been designed to take advantage of fast
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matrix multiplication [25, Section 5]. The determinant is computed as the product of large invariant
factors—using denominators of system solutions—and of smaller invariant factors—using a direct
algorithm for the Smith form [49].

Since #(A) is small on the average [25, Corollary 6.3]:

E(#) = O(log n); (20)

which shows that (16) was already established using (19).
To yield strict inequality in the bit-cost bound (18), the Smith form approach has focused on

the parameter #(A). Another strategy has been applied earlier on polynomial matrices by Kaltofen
[34] and can be carried over to the integer matrix case. The idea is to perform a large amount
of precomputation with shorter integers by applying Shanks’s “baby-steps, giant-steps” principle to
Wiedemann’s determinant algorithm [57]. The number of arithmetic operations on integers of length
O∼(n log ‖A‖) is suOciently reduced, and one obtains a Las Vegas (certi@ed) randomized algorithm
with

Dn;‖A‖ =O∼(
√
n (n3 log ‖A‖)) = O∼(n3:5 log ‖A‖) (21)

bit-complexity [34,37]. Unlike in Kaltofen’s 1992 paper, the integer matrix case requires random-
ization. The algorithm has a Chinese-remainder based implementation and can be made sensitive
to |det A|. For instance, if log |det A|=O(n1−$ log ‖A‖), where 06 $6 1, the Monte Carlo running
time [36] in bit-operations using standard matrix multiplication is

Dn;‖A‖(A) = O∼(
√

log |det A| log||A|| n3) = O∼(n3+1=2−$=2 log ‖A‖): (22)

With asymptotically fast rectangular matrix product procedures, the cost of the algorithm becomes
[34]:

Dn;‖A‖¡O∼(n3:03 log ‖A‖): (23)

As initially conceived, the approach also leads to similar bounds for the division-free complexity of
the determinant over an abstract commutative ring R. The determinant of a matrix in Rn×n can be
computed in

Dn;R =O∼(n3:5) (24)

additions, substractions and multiplications in R (without divisions) or in O(n3:03) ring operations
if a fast matrix product is employed. The previously known division-free determinant complexity
was using Strassen’s technique for division removal [53]. Similarly to (4) or (18), the best known
cost bound in R had been the product O∼(n!+1) of arithmetic cost times the size (degree of the
determinant of a degree one matrix polynomial).

By preconditioning the input matrix (in an algebraic sense [57,15]), Wiedemann’s algorithm @rst
reduces the problem of computing the determinant to the problem of computing the minimum poly-
nomial. Then the latter polynomial is computed Xa la Krylov-Lanczos. Kaltofen and Villard improve
bounds (21) and (23) by exploiting block projections during the Krylov-Lanczos step. See [18,35,55]
on some earlier applications of block Krylov-Lanczos and Wiedemann algorithm to other compu-
tational problems. Blocking further reduces the operation count on large numbers and achieves the
bit-cost

Dn;‖A‖ =O∼(n3+1=3 log ‖A‖)
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with straightforward arithmetics or, using fast polynomial arithmetic including the half GCD algo-
rithm on matrix polynomials [37],

Dn;‖A‖ =O∼(n3+1=5 log ‖A‖): (25)

The same asymptotic bounds in n work for the Smith normal form and the division-free determinant
complexity. Asymptotically fast square and rectangular matrix multiplication can also be exploited
and give

Dn;‖A‖6O(n2:698 log ‖A‖)
for the worst case bit-complexity of the Las Vegas randomized computation of the determinant. As
noticed by Pan, this asymptotically fast approach also allows for extension of Kaltofen’s adaptative
techniques (22), see [36, p. 143].

In addition to these improvements of bound (18) on the complexity of computing the determinant
we may also mention the work of Storjohann for polynomial matrices over an abstract commutative
@eld K [51]. Using Hensel’s lifting (Section 5) for the solution of linear systems AX =B with B an
n× m matrix, Storjohann computes the determinant and the Smith normal form of an n× n matrix
of degree d over K[x] in O∼(n!d) operations in K . The algorithm proceeds by repeatedly solving
linear systems with matrix right-hand sides of increasing column dimension m, each system leading
to a group of invariant factors of decreasing sizes. Even if the integer case is quite diMerent than
the polynomial case one may think that this approach and the corresponding complexity will be
extended to integer matrices [51, Section 14].

7. Matrices of sparse numbers

In numerical computation, rather than studying the complexity with respect to log ‖A‖, one may
model the size of the entries of A using a mantissa size sx and an exponent size ex. Following
Priest [47] and using sparse high precision numbers, in the course of the algorithms we represent
the numbers as list of pairs (mantissa, exponent). The length of such lists may be arbitrarily large,
and the cost of an arithmetic operation +;−;× in this set of numbers is polynomial in the size of
the operands. Under this model, the problem of the determinant is addressed by Demmel and Koev
in [21]. The complexity classes are diMerent from those of the “classical” model in the previous
sections. Indeed, under this model the algorithms we have seen so far all require exponential time.
Assuming, for instance, ex = log log ‖A‖, all the cost functions we have seen have the form nk(2ex)l

for some integers k and l. Furthermore, the straightforward method which computes the determinant
using recursive minor expansions performs at a cost polynomial in sx and ex but exponential in n.
Hence the question is left open whether it is possible to accurately compute the determinant—and
thus its sign—in time polynomial in sx, ex and n [21, Section 12].
The general answer is not known but the answer is “yes” for a class F of matrices whose determi-

nant (viewed as a polynomial in the entries of A) admits a special factorization (see [21, Theorem 3]).
This class includes a signi@cant range of structured matrices. In terms of the bit-complexity model,
the study proves that the cost of accurate computations on those matrices is related to log log ‖A‖
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rather than to log ‖A‖. In particular one has

S̃n;‖A‖ = polynomial(n; log log cond A) = polynomial(n; log log ‖A‖);
where S̃n;‖A‖ is the sign computation complexity for input matrices in F.

8. Discussion

Focusing on the exponents of n, we recapitulate the diMerent complexity estimates in Table 1.
Concerning the worst case exponent of n, the record value has been progressing from 4 to 3 + 1

5
(with classical matrix multiplication). It is natural to hope for further evolutions independently of
the choice of the underlying arithmetic. As noticed at the end of Section 6, one may hope that the
estimate O∼(n! log ‖A‖) will be achieved for the bit-complexity of the sign and the determinant.

Apart from the worst case situations, the heuristic arguments in [1] and the probability analysis
in [25] show that Pan’s linear system based approach is the symbolic companion piece to numerical
results. Indeed, the numerical sign estimate O∼(n3 log ‖A‖) for well conditioned matrices somehow
corresponds to the symbolic determinant estimate O∼(n3 log ‖A‖) for small values of #(A). However,
one can also possibly identify here a diMerence between sign and determinant computation. A small
condition number does not seem to imply a small number #(A) of distinct invariant factors and
vice versa. Another advantageous situation for exact computations is the case of small determinants
where Chinese remaindering performs very well. One wonders if eventually no bad, i.e., supercubic,
worst case inputs are left.

Missing aspects in this paper concern memory complexity, practical costs (log factors are hidden
in our soft-O notation) and discussions for particular classes of matrices such as structured or sparse
ones. We have seen that computing the determinant of an integer matrix has strong links with
computing the Smith normal form. For matrix polynomials, this shows that further studies may also

Table 1
Estimates for the bit-complexity of the sign and the determinant. Exponents of n in O∼ functions for A∈Zn×n with !=3
and b= log ‖A‖

Method Worst case Propitious case

Class. numerical—(3) n4b n3b
Class. exact—(4) n4b —
Certi@ed sign (n3 + n2 log�(A)) (n+ b)
Sn;‖A‖(A)—(5) n4b+ n3b2 n4 + n3b
Filters n3(log conddet A+ b)
Sn;‖A‖(A)—(8) n4b n3b
Chinese remainders n3 log |det A| log b+ n2b
Dn;‖A‖—(9) n4b n3 log b+ n2b
Linear systems n3(log(|det A|=|sn|) + b)
Dn;‖A‖—(15) n4b n3b
Smith form #(A)n3b6

√
log |det A| n3b

Dn;‖A‖—(19), (20) n3+1=2b1+1=2 E(Dn;‖A‖)6 n3b
Division-free—(25), (22) n3+1=5b

√
b log |det A| n3
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involve links with eigenvalues problems such as the characteristic polynomial and the Frobenius
normal form computation.

We conclude that in the case of the determinant, speedup can be achieved by exploiting the
interplay of the algebraic structure with the bits of the intermediately computed integers. Such could
be the case when computing the values of other polynomials, for instant, resultants.
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