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Abstract

A probabilistic algorithm is presented to find the de-
terminant of a nonsingular, integer matrix. For a matrix
A n n the algorithm requires O n3 5 logn 4 5 bit oper-
ations (assuming for now that entries in A have constant
size) using standard matrix and integer arithmetic. Us-
ing asymptotically fast matrix arithmetic, a variant is de-
scribed which requires O n2 e 2 log2 n loglogn bit oper-
ations, where two n n matrices can be multiplied with
O ne operations. The determinant is found by computing
the Smith form of the integer matrix, an extremely useful
canonical form in itself. Our algorithm is probabilistic of
the Monte Carlo type. That is, it assumes a source of ran-
dom bits and on any invocation of the algorithm there is a
small probability of error.

1 Introduction

One of the most fundamental invariants of a square ma-
trix is the determinant. Applications for computing the de-
terminant of a matrix are numerous. For integer matrices
alone they include computational number theory [4], com-
putational group theory [9], and computational geometry
[2, 3]. In this paper we present a new algorithm for the
determinant which is faster than any previously known. For
a matrix A n n this algorithm requires

O n3 logn log A 2 log detA log2 n
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bit operations using standard matrix arithmetic, where
A maxi j Ai j . Since, by Hadamard’s bound, detA
O n logn log A , this cost is at worst O n3 5 logn
log A 2 5 log2 n bit operations, though the sensitivity to
the size of the determinant can be beneficial.
We will consider only the exact computation of the de-

terminant of an integer matrix. Computing cost will be
counted in bit operations (and hence will reflect both the
number of integer operations and the size of integers in-
volved). The fastest previously known method for com-
puting the determinant of an integer matrix uses the Chi-
nese remainder algorithm and matrix arithmetic modulo
primes. For a matrix A n n, this requires O n4 logn
log A logn loglog A n2 log2 A bit operations,
and is deterministic (see Abbott et al. [1]). The best known
Monte Carlo algorithm requires O n3 log detA logn
loglog A log2 detA bit operations (see below).
It is well known that every nonsingular integer matrix

is equivalent to a matrix in Smith canonical form. That is,
there exist unimodular X Y n n (i.e., detX , detY 1)
such that

S XAY
sn 0

0
. . .

s1

n n (1)

and si si 1 for 1 i n. S is called the Smith normal form
of A and s1 sn 0 the invariant factors of A. Once
we have the Smith form, the determinant of A is s1s2 sn
(and this is how our algorithm for the determinant pro-
ceeds). The Smith normal form also has many applications
in computational number theory and group theory [4] as
well as computations in homology theory (e.g., Dumas &
Saunders [7]). The best known deterministic algorithm to
compute the Smith form of an integer matrix is by Storjo-
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hann [18] and requiresO n4 log A n3 log2 A bit oper-
ations (ignoring poly-logarithmic factors). When the matrix
is sparse the algorithms of Giesbrecht [12, 13] do substan-
tially better, but are comparable when the matrix is dense.
In this paper we present an algorithm which requires

O n3 logn log A 2 log detA log2 n bit operations
for dense matrices, or O n3 5 logn log A 2 5 log2 n bit
operations in the worst case (i.e., independent of the magni-
tude of the determinant), using standard matrix arithmetic.
Using similar methods and asymptotically fast matrix

arithmetic, we derive an asymptotically faster algorithm for
computing the Smith form and determinant. Suppose that
two n n over an arbitrary ring can be multiplied with
O ne operations in . Using standard matrix arithmetic
gives e 3, while the best known algorithm of Copper-
smith & Winograd [5] allows e 2 376. Our algorithm for
the Smith form and determinant then requires

O n2 e 2 logn log A 3 2 logn 1 2

loglogn loglog A

bit operations.
In Section 6 we examine the cost of our algorithm when

computing the determinant and Smith form of a “random”
integer matrix. In particular, we show that if the entries a
matrix are chosen uniformly and randomly from an inter-
val R a a 1 a h 1 for any integer a and
h 2, the expected number of non-trivial (i.e., not equal
to 1) invariant factors is O logh n . This is consistent with
previous experimental evidence (and, perhaps, “folklore”)
that the number of invariant factors is small but is, to our
knowledge, the first proof of this sort of bound. In this case,
our algorithm for the Smith form and determinant will re-
quireO n3 logn log A 2 log n logh n bit operations.

1.1 An Overview of the Algorithm

The algorithm itself is relatively simple. It employs some
analogous ideas for computation of the Frobenius form of
a sparse matrix over an abstract field developed by Villard
[20] and adapts them to Smith forms over the integers. The
algorithm consists of three main ideas:
1. The largest invariant factor sn of any matrix can be
computed with an expected number of O n 3 logn
log A 2 bit operations. This is done by solving the
equationAx b for randomvectors b n 1. With ap-
propriate random selection of b, it can be proven that
the GCD of the denominators of the entries in the so-
lution vector x is the largest invariant factor of A with
high probability. We solve for x using p-adic lifting to
obtain the desired cost. This is discussed in Section 2.

2. We show that we can capture the kth invariant fac-
tor of A by means of random perturbations of A. Let

B n n be an appropriately constructed random ma-
trix with rank k. If the largest invariant factor of
A B is mn, then with sufficiently high probability
gcd mn sn sn k. This is discussed in Section 3.

3. The number of distinct invariant factors s1 sn of
A is at most log detA or O n logn log A .
This will allow us to do what amounts to a binary
search for the distinct invariant factors, which requires
O log detA logn computations of the kth invari-
ant factor by means of (1) and (2) above. This leads
to the total expected cost of our Smith form and deter-
minant algorithms. The completed algorithm and its
analysis is discussed in Section 4.

1.2 Previous Algorithms

The best known methods for computing the determi-
nant are fraction free Gaussian elimination and homomor-
phic imaging. The latter (which is asymptotically faster)
simply computes the determinant modulo a collection of
small (typically word-sized) primes and reconstructs the in-
tegral determinant via the Chinese remainder theorem. By
Hadamard’s bound, the product of these primes must have
O n logn log A bits to ensure correctness. The al-
gorithm obtained will requireO n4 logn log A logn
loglog A n2 log2 A bit operations (see [1]).
By using asymptotically fast matrix multiplication we

can obtain a better exponent, though practicality quickly
vanishes. Using fast matrix arithmetic, the above homomor-
phic imaging scheme to compute the determinant requires
O ne 1 logn log A logn loglog A n2 logn
log A 2 bit operations.
Monte Carlo algorithms for the determinant have the ad-

vantage that their cost is sensitive to the size of the deter-
minant. The idea is to compute the determinant modulo a
collection of small random primes in sequence and build
the integer determinant as the residues are obtained. Once
the determinant remains stable modulo a small number of
random primes, it is straightforward to bound the proba-
bility that the obtained determinant is the correct one. A
Monte Carlo algorithm is easily obtained which requires
O n3 log detA logn loglog A log2 detA bit op-
erations. On any input, on any invocation, the algorithm is
correct with constant probability.
The algorithm of Kaltofen [14] computes the deter-

minant of a n n matrix over an arbitrary ring with
O n3 5 logn loglogn ring operations. A careful analy-
sis of this algorithm for integer inputs reveals that this
algorithm also requires O n3 5 logn log A logn
loglog A loglogn logloglog A bit operations, us-
ing asymptotically fast integer arithmetic. Using asymptot-
ically fast matrix arithmetic one should obtain further im-
provements [15].
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2 Computing the Largest Invariant Factor of
an Integer Matrix

Consider the following Monte Carlo type probabilistic
algorithm to compute the largest invariant factor sn of an in-
teger matrix A n n. The method is essentially the same
as that of Abbott et al. [1], which is derived from the algo-
rithm of Pan [17] for polynomial matrices.

Algorithm: LargestInvariantFactor
Input: A n n;
Output: sn , the largest invariant factor of A;
(1) M : 6 2n log2 n log2 A ; L : 0 M 1 ;
(2) s 0n : 1;
(3) For k from 1 to 2 do
(4) Choose random b k Ln 1;
(5) Solve Ax k b k for x k n 1 ;
(6) Let t kn : lcm denom x k

1 denom x k
n ;

s kn : lcm s k 1
n t kn ;

where x k
j is the jth entry in x j and denom x k

j
is its denominator;

od;
(7) Return s 2n .

THEOREM 2.1. The algorithm LargestInvariant-
Factor always returns a factor of the largest invariant fac-
tor sn of A. The algorithm returns sn with probability at least
1 3 on any input matrix A.

PROOF. In [1] it is shown that in any iteration k, t kn is a
factor of sn, whence s

k
n is always a factor of sn. It is also

shown that for any prime p s k
n ,

Prob ordp t kn ordp sn
1
M

M
p

By repeating this twice,

Prob sn s 2n -
p sn

Prob ordp sn ordp s
2
n

-
p sn
p prime

Prob
ordp sn ordp t 1n

ordp sn ordp t
2
n

-
p sn
p prime

1
M

M
p

2

-
p sn
p prime

1
p

1
M

2

-
p sn
p prime

1
p2

1
M -

p sn
p prime

1
p

1
M2 -

p sn
p prime

1

1
2

1
M

1
2

1
3

1
5

log2 sn
7

log2 sn
M2

2 3

THEOREM 2.2. The algorithm LargestInvariant-
Factor requiresO n3 logn log A 2 bit operations on
input A n n.

PROOF. The dominant cost in each iteration of the main
loop is the solution of the linear system in step (5), which we
do with p-adic lifting [10, 6, 19, 16]. Each iteration requires
O n3 logn log A 2 bit operations. Two iterations are
sufficient.

3 Computing the kth Invariant Factor with
Random Rank k Perturbations

In this section we show that we can compute the kth in-
variant factor of a matrix A n n by adding an appropri-
ately generated random rank k matrix B to A. With suf-
ficiently high probability the GCD of the largest invariant
factor of A B with the largest invariant factor of A is the
kth largest invariant factor of A. The proof of this is non-
trivial and will require a number of lemmas. Throughout
we assume that A n n, s1 sn 0 are the invariant
factors of A, and that m1 mn are the invariant factors of
A B.

LEMMA 3.1. If B has rank at most k then si divides mi k for
1 i n k.

PROOF. The proof of an analogous result of [20], Lemma
2.1, for matrices whose entries are polynomials over a field
carries over to the above result without change.

In order to develop an efficient method to compute s n k,
it will be useful to bound the probability that the highest
power of a prime p dividing the largest invariant factor of
A B is the same as that dividing sn k, when the above ma-
trix B is computed as the product B UV , whereU n k

and V k n, whose entries are uniformly and indepen-
dently chosen from the set of integers between 0 and ` 1,
and for a positive integer ` to be determined later. A suit-
able bound will be derived in the next three subsections. It
will be used, in the final subsection, to produce a reliable
Monte Carlo algorithm to compute sn k.

3.1 A Sufficient Determinantal Condition

To begin, an additional assumption will be made —
namely, that A S is in Smith normal form as in equation
(1). Once again, let p be prime, let h ord p sn k 1, so that
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h 0 and

A phD1 0
0 D2

D1

p hsn 0
. . .

0 p hsn k 1

D2

sn k 0
. . .

0 s1

By the choice of h, both D1 and D2 are integer matrices.

Suppose we partition U and V so that U U1
U2

and V

V1 V2 , whereU1 V1 k k, andU2 Vt
2

n k k.
Finally, let m be a positive integer such that the deter-

minant of A is not divisible by pm. Since none of the en-
tries of the diagonal matrix D2 is divisible by ph 1, there
exists a diagonal matrix E2 with integer entries such that
D2E2 E2D2 phI pmF2 for yet another (diagonal) inte-
ger matrix F2.

LEMMA 3.2. Suppose A is in Smith form (1), and that both
of the following conditions are satisfied:

detU1 0 mod p;
det U1 V1 V2E2U2U1D1 phD1 0 mod p,
where U1 is an integer matrix such that
U1U1 I pmU for an integer matrix U .

Then gcd p mn sn k 1.

PROOF. We will show that these conditions imply a
stronger result, namely, that gcd p m i k si 1 for all i
such that 1 i n k. By Lemma 3.1, si divides mi k
for all such i, so that detD2 .n k

i 1 si divides .
n k
i 1 mi k,

which in turn divides the determinant of A UV . Let
bA U V det A UV detD2 ; clearly, the result now
follows if

ordpbA U V 0 (2)

The remainder of this proof will serve to establish this iden-
tity.
If A,U andV have the decompositions given above, then

A UV phD1 U1V1 U1V2
U2V1 D2 U2V2

Since detU1 0 mod p, matrices U1 and U with the
properties mentioned in the final condition in the statement
of the Lemma do exist,

I 0
U2U1 I A UV

U1V1 phD1 U1V2
phU2U1D1 pmX2 1 D2 pmX2 2

for integer matrices X2 1 and X2 2, and

I 0
U2U1 I A UV I 0

E2U2U1D1 I

U1 V1 V2E2U2U1D1 phD1 U1V2
pmY2 1 D2 pmX2 2

U1 V1 V2E2U2U1D1 phD1 U1V2
0 D2

pmZ

for another pair of integer matrices Y2 1 and Z. Therefore

det A UV

det U1 V1 V2E2U2U1D1 phD1 U1V2
0 D2

mod pm

(3)

Let

A U1 V1 V2E2U2U1D1 phD1 U1V2
0 D2

Then, since det U1 V1 V2E2U2U1D1 phD1 0 mod p,

ordp detA ordp det U1 V1 V2E2U2U1D1 phD1
ordp detD2

ordp detD2
ordp detA m

and it follows by equation (3) that

ordp det A UV ordp detA

so that

ordp bA U V ordp det A UV ordp detD2
ordp detA ordp detD2
ordp det U1 V1 V2E2U2U1D1 phD1

ordp detD2 ordp detD2
0 ordp detD2 ordp detD2
0

as required.

3.2 Special Case: p Divides `

Suppose now that p divides `. To eliminate the assump-
tion (used in Lemma 3.2) that A is in Smith normal form,
note that there always exist unimodular integer matrices L
and R such that A LSR, where S is in Smith form as in
(1). Now, the invariant factors of A UV are identical to
those of S UV if U L 1U and V VR 1. Assuming
once again that p divides `, one can argue that the matrices
U and V are chosen under the same probability distribution
asU and V . The next result now follows.
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LEMMA 3.3. Suppose p divides `, and that the entries of
U n k and V k n are selected uniformly and inde-
pendently from the set of integers between 0 and ` 1. Let
B UV . Then gcd p mn sn k 1 with probability at least
2
25 if p 2 and with probability at least 1 1 p 1 2 if
p 3.

PROOF. As noted above we may assume without loss
of generality that A is in Smith normal form and that
Lemma 3.2 is applicable. This lists two conditions that, to-
gether, imply that gcd mn sn k 1.
The first of these conditions is that detU1 is not congru-

ent to 0 modulo p. It is well known that if the entries of an
n n matrix are chosen uniformly from the finite field p
with p elements for any prime p, then the matrix is nonsin-
gular with probability at least 1 4 if p 2 and with prob-
ability at least 1 p 1 if p 3. A slightly more careful
approximation shows that the probability is at least 15 2 if
p 2 — see, for example, [8] for details. Thus, the first
condition is satisfied with probability at least 15 2 if p 2
and at least 1 p 1 if p 3, and the result will follow
if the same bounds can be established for the conditional
probability that the second condition is satisfied when the
first is.
Suppose, therefore, that the first condition is satisfied, so

that the matrixU1 U1 mod p with entries in p is nonsin-
gular. SinceU1U1 I mod p, it is sufficient to work in p
and to bound the probability that the matrix

V1 V2E2U2U1
1
D1 phU1

1
D1

is nonsingular: When the first condition is satisfied, the sec-
ond condition is equivalent to the condition that the deter-
minant of this matrix is nonzero in p. Now, it suffices to
note that for any choice ofU2 andV2, and for uniformly and
randomly chosenV1, the above matrix is uniformly and ran-
domly chosen from k k

p . The result therefore follows from
the bounds, that a randomly chosen square matrix with en-
tries in p is nonsingular, that have been given above.

3.3 The General Case

In order to eliminate the assumption that p divides `, we
will consider two independent types of trials of the process
sketched above, involving two choices of `.
The second type of trial will use a value `2

2n2 log2 n log2 A and will be discussed later. The
first type of trial will use an even value `1 21n2`2
21n2 2n2 log2 n log2 A .
Suppose now that p is a prime that is less than or equal

to `2; then `1
p 21n2, so that

1 p
`1

2n2
1 1

21n2
2n2 9

10

and, similarly,

1 p
`1

2n2
1 1

21n2
2n2 11

10

Suppose the entries of integer matricesU andV are cho-
sen uniformly and independently from the set of integers
between 0 and `1, and consider any pair of matrices (of the
same sizes)U andV with entries between 0 and p 1. Since
p does not necessarily divide `1, the probability that

U U mod p and V V mod p (4)

may depend on the choice of U and V . However, if an in-
teger _ is uniformly chosen between 0 and `1 1, then for
any given integer b such that 0 b p 1, the probability
that _ b mod p is at least `1 p

p`1
1
p 1 p

`1
and at most

`1 p
p`1

1
p 1 p

`1
. Consequently the ratio of the probabil-

ity that equation (4) is satisfied, when p `2, to the proba-
bility that the equation is satisfied in the case that p divides
`1, is at least

1 p
`1

2nk
1 p

`1

2n2 9
10

and at most

1 p
`1

2nk
1 p

`1

2n2 11
10

In combination with Lemma 3.3, this implies the following.

LEMMA 3.4. Let `1 be as defined above and suppose p is a
prime such that p `2. If the entries of matricesU n k

and V k n are selected uniformly and independently
from a set of integers between 0 and `1 1, and B UV ,
then gcd p mn sn k 1 with probability at least

2
25 if p 2,
1
5 if p 3,
1
2 if p 5,
1 11

5 p 1 if p 7.

In order to simplify the required mathematics, it will be
useful to consider sets of five independent trials. The fol-
lowing is a trivial consequence of the above lemma and the
fact that 11 5 p 1 5 2 p 1 4 whenever p 7.

COROLLARY 3.5. Let `1 be as defined above, suppose p
is a prime such that 7 p `2, and suppose the entries
of matricesU1 U2 U3 U4 U5 n k andV1 V2 V3 V4 V5
k n are selected uniformly and independently from a set

of integers between 0 and `1 1. Let Bi A UiVi and
suppose Bi has largest invariant factor mi n for 1 i 5.
Then

gcd p m1 n
sn k

m2 n
sn k

m3 n
sn k

m4 n
sn k

m5 n
sn k

1
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with probability at least 1 2
p 1

4
.

Of course, these probabilities are quite low when p is
small. However, a constant number of independent trials
can be used to boost the probability of success.

LEMMA 3.6. Let `1 be as defined above, and suppose the
entries of Ui n k and Vi k n are integers selected
uniformly and independently between 0 and ` 1 1, for
1 i 15. Let mi 1 mi 2 mi n be the invariant factors
of A UiVi for 1 i 15. Let

a gcd m1 n
sn k

m2 n
sn k

m15 n
sn k

Then the probability that a has a prime factor less than or
equal to `2 is less than 1

3 .

PROOF. Since `1 is even, it follows by Lemma 3.3 that the
probability that a is even is at most 23

25
15. It follows by

Lemma 3.4 that a is divisible by 3 (if `1 3) with proba-
bility at most 4

5
15, and that a is divisible by 5 (if `1 5)

with probability at most 1
2
15. Finally, it follows by Corol-

lary 3.5 that if p is a prime between 7 and `2, then the prob-
ability that p divides a is at most 2

p 1
12
. Thus the proba-

bility that a has a prime factor less than or equal to `2 is at
most

23
25

15 4
5
15 1

2
15

-
7 p `2
p is prime

2
p 1

12

23
25

15 4
5
15 1

2
15

-
p 7

p is odd

2
p 1

12

23
25

15 4
5
15 1

2
15

-
j 3

1
j12

1
3

as claimed.

A single trial using `2 is sufficient to filter out larger
primes:

LEMMA 3.7. Let `2 be as defined above and suppose the
entries of U16 n k and V16 k n are chosen uni-
formly and independently between 0 and ` 2 1. Let
m16 1 m16 2 m16 n be the invariant factors of A U16V16.
Then the probability that gcd sn m16 n sn k is divisible by
a prime that is greater than `2 is at most 1 n.

PROOF. Let p be a prime greater than `2, and (abusing
notation) consider K 0 1 `2 1 as a subset of `2
distinct values in the finite field p.
Suppose first that A is in Smith normal form. Then, by

Lemma 3.2, gcd p m16 n sn k 1 as long as two determi-
nantal conditions are satisfied.

The first of these conditions is that the determinant of
the leading k k submatrix of U16 is relatively prime to p
and, since the entries of (the residue mod p of)U16 are cho-
sen uniformly and independently from the above set K, it
can be argued by the Schwartz-Zippel lemma that this first
condition fails with probability at most k K n K
1 2n2 log2 n log2 A .
Suppose the first condition succeeds, and consider the

determinant used in the second condition, as a function of
the entries of the leading k k submatrix of V16: For every
choice of the remaining entries ofU16 andV16, this determi-
nant is a nonzero function with total degree at most k in the
entries of the leading k k submatrix of V16, so it follows
once again by the Schwartz-Zippel lemma that the proba-
bility that the first condition succeeds and the second fails
is at most 1 2n2 log2 n log2 A .
The condition that A is in Smith normal form can be

eliminated, as usual, by noting that A LSR for unimod-
ular matrices L and R and for a matrix S in Smith normal
form, so that

A U16V16 L S L 1U16 V16R 1 R

We must now consider determinantal conditions involving
L 1U16 and V16R 1, where L and R are fixed unimodular
matrices depending only on A. The first determinantal con-
dition is that the leading k k submatrix of L 1U16 has a
determinant relatively prime to p. Once again, since the
entries of this submatrix are (at most) linear in the entries
of U16, it can be argued that this condition fails with prob-
ability at most 1 2n2 log2 n log A . The second con-
dition involves the determinant (mod p) of a k k matrix
as well. Once again, assuming that the first condition suc-
ceeds, it can be observed that this determinant is a nonzero
function of the entries of V16, for every possible choice
of U16. Since each entry of the submatrix (whose determi-
nant one must check) is at most linear in the entries of V16,
the Schwartz-Zippel can be applied, once again, to establish
that the probability that the second condition fails when the
first succeeds is at most 1 2n2 log2 n log2 A . Thus,
the probability that gcd p m16 n sn k is different from 1 is
at most 1 n2 log2 n log2 A for any prime p `2.
Since log2 sn log2 detA n log2 n log2 A , there

are at most n log2 n log2 A distinct primes p that di-
vide sn. Thus the probability that there exists any prime
p `2 dividing gcd sn m16 n sn k is at most 1 n.
Obviously, no prime p that is relatively prime to sn can

divide gcd sn m16 n sn k , so this implies the desired result.

3.4 Computing an Invariant Factor

THEOREM 3.8. Suppose n 6 and let `1 and `2 be as de-
fined in Subsection 3.3, above. Suppose that the entries of

6



Ui n k and Vi k n are chosen uniformly and inde-
pendently from the set of integers between 0 and ` 1 1, for
1 i 15, and that the entries ofU16 n k andV16 k n

are chosen uniformly and independently from the set of in-
tegers between 0 and `2 1.
Let mi 1 mi 2 mi n be the invariant factors of the ma-

trix A UiVi for 1 i 16. Then

gcd sn m1 n m2 n m16 n sn k

with probability at least 1 2.

PROOF. Since sn k divides sn, and mi n is divisible by sn k
for 1 i 16, the above condition is satisfied if

gcd sn
m1 n
sn k

m2 n
sn k

m16 n
sn k

gcd gcd sn
m16 n
sn k

gcd m1 n
sn k

m15 n
sn k

1

The desired probability now follows from Lemmas 3.6
and 3.7.

In the sequel we will assume that a Monte Carlo algo-
rithm OneInvariantFactor, on input A and k, com-
putes sk as suggested in the above theorem. Since `0 `1
are small, the number of bit operations used is O n3 logn
log A 2 – see Theorem 2.2 and note that a constant num-
ber of trials of the required algorithms suffice to reduce the
failure probability to 1 2.

4 Computing the Smith form and determi-
nant

In this section we present the algorithm for the Smith
form of an integer matrix A n n. This will also give
an algorithm for computing the determinant once we have
computed its sign.
As we noted earlier, the algorithm is essentially a binary

search for the distinct invariant factors, using the algorithm
LargestInvariantFactor to capture the largest in-
variant factor, and the perturbation theory described in Sec-
tion 3, which isolates an arbitrary invariant factor as the
greatest common divisor of the largest invariant factor of
A and a constant number of perturbed matrices.
A key point is that A has a small number of distinct in-

variant factors:

THEOREM 4.1. Any A n n has at most
3 log2 detA O n1 2 logn log A 1 2 distinct

invariant factors.

PROOF. Suppose A has invariant factors s1 sn 0
with s j s j 1 for 1 j n. Let si1 siµ be the distinct
invariant factors of A in increasing order. We know

.
1 j µ

si j .
1 j n

s j detA

As well 2si j si j 1 for 1 j µ so si j 2 j 1 for 1 j µ
and

.
1 j µ

si j 2-1 j µ j 1 2µ µ 1 2 2µ
2 3

for µ 1. Thus log2 detA µ2 3 and µ 3log2 detA .

The algorithm InvariantFactors recursively com-
putes the invariant factors of A. It maintains a list m
m1 mn of the invariant factors known so far, with
mi si, the ith invariant factor (with high probability), or
mi , if it has not yet been computed. The complete algo-
rithm is invoked by

InvariantFactors A 1 n s1 sn ; (5)

where s1 gcd1 i j n Ai j is the first invariant fac-
tor of A, and sn is the last (largest) invariant factor
of A, computed correctly with probability at least 1
1 2n using LargestInvariantFactor(A) (called
log2 2n times to achieve the desired probability). We as-
sume that s1 sn (otherwise we are done – all the invariant
factors are the same).

Algorithm: InvariantFactors
Input: A n n;

i j ;
m m1 mn n 1 with mi m j
the ith and jth invariant factors of A respectively
and mi m j;

Output: m n, such that mk sk is the kth in-
variant factor of A for i k j;

(1) If i 1 j return m;
(2) m : i j 2 ;
(3) Let mm : OneInvariantFactor A m , the mth

invariant factor of A (computed correctly with proba-
bility at least 1 1 2n );

(4) If mm mi
(5) Then For : i 1 to m 1 do m : mm;
(6) Else m : InvariantFactors A i m m ;
(7) If mm m j
(8) Then For : m 1 to j 1 do m : mm;
(9) Else m : InvariantFactors A m j m ;
(10) Return m;

THEOREM 4.2. Given any A n n, the algorithm In-
variantFactors computes all the invariant factors of
A correctly with probability at least 1 2 on any invo-
cation as in (5). The algorithm requires O n3 logn
log A 2 log detA log2 n bit operations. In the worst
case (i.e., insensitive to the size of the determinant of A) it
requires O n3 5 logn log A 2 5 log2 n bit operations.

7



PROOF. We first address the issue of correctness. Clearly,
when it fills in any invariant factor, it does so correctly with
probability at least 1 1 2n . On output, every element
of m is an invariant factor. Thus, with probability 1 2 the
algorithm correctly computes the entire Smith form.
To see the complexity, we first note that we compute the

mth invariant factor of A in Step (3) using the technique
described in Theorem 3.8. It requires a constant number
of calls to LargestInvariantFactor on very small
perturbations of A, and hence each can be executed with
O n3 logn log A 2 bit operations.
The algorithm is essentially doing a binary search for

each of the points at which the invariant factors change.
There are O log detA such points, so the total number
of evaluations of step (3) is O log detA logn . Since
OneInvariantFactor returns correctly with probabil-
ity at most 1 2, we must run it 1 log2 n times and use
the smallest value returned to achieve probability of correct-
ness greater than 1 1 2n .

Once we have computed the invariant factors of A, detA
is simply their product d s1 sn, up to the sign. To de-
termine the sign of the determinant, find a prime p greater
than 2 which does not divide detA – a random prime with
6 loglog detA O logn loglog A bits will satisfy
this with probability at least 1 2 (see, e.g., Giesbrecht [11]).
Compute detA mod p and check whether detA d mod p
or detA d mod p. This can be done with O n3 logn
loglog detA 2 bit operations, which is dominated by the
time required for InvariantFactors. Notice that this
also gives a fast check that the proposed determinant from
InvariantFactors is correct: if detA d mod p
then our computation for the determinant is incorrect and
should be repeated.

THEOREM 4.3. Given any A n n, we can compute detA
correctly with probability at least 1 2 on any invocation
of the algorithm discussed above. The algorithm requires
O n3 logn log A 2 log detA log3 n bit operations
using standard matrix arithmetic. In the worst case (i.e.,
insensitive to the size of the determinant of A) it requires
O n3 5 logn log A 2 5 log3 n bit operations.
The determinant can be checked for correctness with

probability at least 1 2 (on any invocation of the check) us-
ing O n3 logn loglog detA 2 bit operations.

5 An asymptotically faster algorithm

If asymptotically fast matrix arithmetic is available, we
can exploit it through a tradeoff to the algorithm of Storjo-
hann [18] for computing the Smith form over d for some
integer d. More specifically, we use the method described in
Sections 2 and 3 to compute all the invariant factors larger

than some pre-determined bound C. We then compute the
remaining invariant factors by computing the Smith form of
A modulo the first invariant factor which is smaller than C
using Storjohann’s algorithm.

Algorithm: FastInvariantFactors
Input: A n n;
Output: m m1 mn n, where mi is the ith invari-

ant factor of A;
(1) Let

C : exp n2 e 2 logn log A 3 2

logn loglog A 1 2 ;

(2) i : n 1;
(3) Repeat
(4) i : i 1;
(5) mi : OneInvariantFactor A i , the ith

invariant factor of A (computed correctly with
probability at least 1 1 2n );

(6) Until mi C;
(7) Compute the Smith form of A mod m i using the algo-

rithm of Storjohann [18] and extract invariant factors
m1 mi 1 ;

(8) Return m m1 mn .

THEOREM 5.1. Given any A n n, the algorithm
FastInvariantFactors computes all the invariant
factors of A correctly with probability at least 1 2 on
any invocation. The algorithm requires O n2 e 2 logn
log A 3 2 log n 1 2 loglogn loglog A bit opera-
tions.
PROOF. To see that the algorithm works we note that by
the same argument as in Theorem 4.2 that mn mi are
correctly computed with probability at least 1 2 (where m i
is the largest invariant factor smaller than C). The integer
pre-images of the invariant factors of A mod m i are exactly
those of A up to a unit in mi. By normalizing with a GCD
with mi (as done in [18]), we obtain the desired invariant
factors m1 mi 1 of A.
To determine the complexity of this algorithm, we

note that Ci detA nn A n, so we need to perform
O n logn log A logC iterations of the loop (3)-(6).
By the analysis of the previous section, this requires

T1 O
n logn log A

logC
n3 logn log A 2 logn

bit operations, and the probability that all those invariant
factors computed are correct is at least 1 2.
In step (6), Storjohann’s algorithm requires O ne oper-

ations with integers in mi, each of which has O logC bits.
The cost of this step is thus

T2 O ne logC log logC log loglogC
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bit operations, using fast integer arithmetic.
With the selectedC, the total cost of the algorithm is

T1 T2 O n2 e 2 logn log A 3 2 log n 1 2

loglogn loglog A

as specified.

6 On the Expected Number of Invariant Fac-
tors

In this section we consider the expected number of in-
variant factors of an n n matrix whose entries are chosen
uniformly and independently from a small finite set. Sup-
pose, in particular, that a , h 2 and

R a a 1 a 2 a h 1 (6)

is a set containing h contiguous integers. Suppose the en-
tries of an n n matrix A are chosen uniformly and inde-
pendently from R. We will show that the expected number
of nontrivial invariant factors of A is then in O logh n .
It will be useful to consider two kinds of events. For 1

i n, let Depi denote the event that the first i columns of A
are linearly dependent (over the rationals), and let MDep i
denote the event that there exists at least one prime p such
that the submatrix including the first i columns of A mod p
has rank at most i 2, in the field p of integers mod p.
Since a set of vectors of size one is only linearly depen-

dent if the vector in the set is the zero vector, the probability
of event Dep1 is at most h n and the probability of event
MDep1 is zero, whence

P Dep1 MDep1 h n (7)

Suppose now that 2 i n and that neither the event
Depi 1 nor the event MDepi 1 is satisfied. Then the first
i 1 columns of the matrix A are linearly independent, and
there exists a set Ri 1 of i 1 rows such that the submatrix
ARi 1 including the entries of A in the first i 1 columns
and the rows in Ri 1 is nonsingular. Consider any choice
of entries of A in the rows in Ri 1 and in column i, and let
ARi 1 be the i 1 i submatrix of A including entries in
these rows and the first i columns. The entries of A in the
remaining rows and in column i are selected independently
of the entries of ARi 1 , one another, and of all other entries
of A. Thus if 1 j n, j Ri 1, and v j is the vector of
dimension i including entries in the first i columns of row j
of A, then this vector is a linear combination of the rows
of ARi 1 with probability at most h 1, because there is only
choice of the final entry of v j achieving this condition for
any choice of the first i 1 entries. Consequently, since

there are n i 1 rows that do not belong to Ri 1, the prob-
ability that the first i columns of A are linearly dependent is
at most hi n 1. That is,

P Depi Depi 1 MDepi 1
1
h

n i 1 (8)

Next, note that if p is any prime that does not divide
the determinant of ARi 1 then the first i 1 columns of the
matrix A mod p are clearly linearly independent (over the
finite field p), so the submatrix of A mod p including the
first i columns clearly has rank at least i 1 over the field
of integers mod p. Thus the eventMDep i can only occur if
there exists a prime p dividing the determinant of ARi 1 such
that the submatrix including the first i columns of A mod p
has rank at most i 2 over p.
In order to bound the probability that this occurs, it will

be useful to consider primes p h and primes p h sepa-
rately.

LEMMA 6.1. Let h 2 and i n 1, and suppose that
the event MDepi 1 is false. The probability that there ex-
ists any prime p h such that the submatrix of A mod p
including the first i columns has rank at most i 2 is at most
2 3 n i 2 2 3 1 2 n i.

PROOF. The required analysis depends on the size h; if
h 2 then no such prime p exists and the result is trivial, so
the case that h 3 is the first nontrivial one.
In this case, the only prime p to consider is p 2. Since

the event MDepi 1 did not occur, the submatrix including
the first i 1 columns of A mod 2 has rank at least i 2. If
it has maximal rank i 1 then the submatrix including the
first i columns of A mod 2 has rank at least i 1 as well and
the eventMDepi could not arise. On the other hand, if it has
rank i 2 then there exists a set Ri 2 of i 2 rows of A such
that the i 2 i submatrix of A mod 2 including entries
in rows from Ri 2 and the first i columns has full rank. For
each row j Ri 2, if v j is the vector of dimension i includ-
ing the first i entries of row j, then the probability that v j is a
linear combination of the rows of the above submatrix is at
least 23 , since there is only one choice (mod 2) for the final
entry of v j achieving this condition, for each choice of the
initial entries, and since this choice is made with probability
at most 2 3 when p 2 and h 3. Since the entries of rows
are selected independently, it follows that the submatrix in-
cluding the first i columns of A mod 2 has rank less than or
equal to i 2 with probability at most 2

3
n i 2.

If h 4 then one must consider the primes p 2 and
p 3. For each prime, one can argue as above to obtain a
bound of “failure” of 2

4
n i 2, so the probability that there

exists any prime p h 4 such that the rank of the sub-
matrix with the first i columns of A mod p is too small is at
most 2 1

2
n i 2, and this is less than or equal to 2

3
n i 2

whenever i n 1.
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Similar analyses yield the bounds 3
5

n i 2 2
5

n i 2

when h 5 and 1
2

n i 2 1
3

n i 2 2
5

n i 2 when h
6. Each of these is less than or equal to 2

3
n i 2 whenever

i n 1.
Finally, if h 7 and i n 1 then it follows by a similar

analysis that the relevant probability is at most

4
7

n i 2 3
7

n i 2
-
5 p

p is odd

2
p 1

n i 2

2
3

n i 2 1
2

n i
c 2 1

2
3

n i 2 2
3

1
2

n i

as needed to complete the proof.

Now, if p is a prime that is greater than or equal to h
that divides the determinant of ARi 1 , then the probability
that the submatrix including the first i columns of A mod p
has rank at most i 2 is at most 1

h
n i 2, since the like-

lihood that a given entry of this matrix assumes any fixed
value, mod p, is either 0 or 1h . The determinant of ARi 1 is a
nonzero integer with absolute value at most

i 1 !hi 1 i 1 h i 1

and the number of primes p h that divide this determinant
is at most

logh i 1 h i 1 i 1 1 logh n

Therefore, when neither of the events Dep i 1 or MDepi
arise, the probability that there exists a prime p h such
that the submatrix including the first i columns of A mod p
has rank at most i 2 over p is at most

i 1 1 logh n 1
h

n i 2 n 1 logh n 1
h

n i 2

It now follows by the definition of the eventMDep i that

P MDepi Depi 1 MDepi 1

2
3

n i 2 2
3

1
2

n i n 1 logh n 1
h

n i 2

(9)

Now, equations (8) and (9) imply that if 1 i n 1
then
P Depi MDepi Depi 1 MDepi 1

2
3

n i 2 2
3

1
2

n i 1
h

n i 1 n 1 logh n 1
h

n i 2

(10)

This clearly implies (by the definition of conditional
probability) that

P Depi MDepi Depi 1 MDepi 1

2
3

n i 2 2
3

1
2

n i 1
h

n i 1 n 1 logh n 1
h

n i 2

(11)

as well. Thus if n 2 then

P MDepi P
i

j 1
Dep j MDep j

h n
i

-
j 2

3 2
3

n j 1 n3 1
h

n j 2

h n 3 2
3

n i 1 i 2

-
h 0

2
3

h n3 1
h

n i 2 i 2

-
h 0

1
h

h

h n 9 2
3

n i 1 n3 1
h

n i 1

THEOREM 6.2. If the entries of an n n matrix A are cho-
sen uniformly and independently from the set R shown in
equation (6), then the probability that A has at least j non-
trivial invariant factors is at most

h n 9 2
3

j 1 n3 1
h

j 1

PROOF. The claim is trivial if j 3, since the given prob-
ability bound exceeds one in this case. Suppose, therefore,
that j 4.

If A has at least j nontrivial invariant factors then there is
some prime p dividing the largest j invariant factors, so that
A mod p is equivalent to a diagonal matrix with at least j
zeroes on its diagonal. Therefore A mod p has rank at most
n j over p. Clearly, then, the submatrix including the
first n j 2 columns of A mod p has rank at most n j as
well, implying that the conditionMDepn j 2 is satisfied.

The claim now follows by the above probability bound
forMDepi, with i n j 2.

COROLLARY 6.3. If the entries of an n n matrix A are
chosen uniformly and independently from the set R shown
in equation (6), then the expected number of nontrivial in-
variant factors of A is in O logh n .

PROOF. It follows trivially by the previous claim that the
probability that A has at least j nontrivial invariant factors
is at most the minimum of 1 and

h n 9 2
3

j 1 n3 1
h

j 1

The expected number of nontrivial invariant factors is there-
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fore at most

-
j 3logh n

1
n

-
j 3logh n 1

h n 9 2
3

j 1 n3 1
h

j 1

-
j 3logh n

1
n

-
j 3logh n 1

h logh n

9
n

-
j 3logh n 1

2
3

j 1 n3
n

-
j 3logh n 1

1
h

j 1

3 logh n
n

-
j 1

1
n 9-

h 0

2
3

h

n3 1
h
3 logh n -

h 0

1
h

h

3 logh n 1 27 n3
n3

h
h 1

3 logh n 29 3logh n 32
O logh n

as required.

The algorithm InvariantFactors from Section 4
will quickly identify the non-trivial invariant factors. The
cost, as we have noted earlier, is dependent upon the num-
ber of distinct non-trivial invariant factors.

THEOREM 6.4. Let R a a 1 a h 1 for a
and h 2, and suppose that the n n matrix A is
chosen uniformly and randomly from R n n. The expected
cost of the algorithm InvariantFactors to find the
Smith form and determinant of A is O n3 logn log A 2

log n logh n .
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