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ABSTRACT
We reduce the problem of computing the rank and a null-
space basis of a univariate polynomial matrix to polynomial
matrix multiplication. For an input n×n matrix of degree d
over a field K we give a rank and nullspace algorithm using
about the same number of operations as for multiplying two
matrices of dimension n and degree d. If the latter multipli-
cation is done in MM(n, d) = O (̃nωd) operations, with ω
the exponent of matrix multiplication over K, then the algo-
rithm uses O (̃MM(n, d)) operations in K. For m×n matrices
of rank r and degree d, the cost expression is O (̃nmrω−2d).
The soft-O notation O˜ indicates some missing logarithmic
factors. The method is randomized with Las Vegas certi-
fication. We achieve our results in part through a combi-
nation of matrix Hensel high-order lifting and matrix min-
imal fraction reconstruction, and through the computation
of minimal or small degree vectors in the nullspace seen as
a K[x]-module.

Categories and Subject Descriptors: I.1[Symbolic and
Algebraic Manipulation]: Algorithms; F.2.1[Analysis
of Algorithms and Problem Complexity]: Numerical
Algorithms and Problems—Computations on matrices

General Terms: Algorithms

Keywords: linear algebra, polynomial matrix, matrix rank,
nullspace basis, minimal polynomial basis

1. INTRODUCTION
Two n × n univariate polynomial matrices over a field K,

whose entries have degree d at most, can be multiplied in
MM(n, d) = O (̃nωd) operations in K [7, 9] where ω is the ex-
ponent of matrix multiplication over K [8, Chapter 15]. For
M ∈ K[x]n×n of degree d we propose an algorithm that
uses about the same number of operations for computing
the rank r of M over K(x), and n − r linearly independent
vectors Ni in K[x]n such that NiM = 0, 1 ≤ i ≤ n − r.
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The cost of the algorithm is O (̃MM(n, d)) = O (̃nωd) op-
erations in K. If M is m × n of rank r, a more precise
and rank-sensitive expression of the cost is O (̃nmrω−2d)
(see Theorem7.3). The soft-O notation O˜ indicates miss-
ing logarithmic factors α(log n)β(log d)γ for three positive
real constants α, β, γ. We mention previous works on the
subject in Section 2. Our main idea is to combine matrix
lifting techniques [29, 30], minimal bases computation and
matrix fraction reconstruction [1, 15, 16], together with a
degree/dimension compromise for keeping the cost of the
computation as low as possible. Within the target complex-
ity, lifting used alone only allows to obtain few vectors of
large degrees, while minimal bases used alone only leadx to
an incomplete set of vectors of small degrees.

Our study extends the knowledge of the interaction be-
tween matrix multiplication and other basic linear algebra
problems on matrices over K[x]. The interaction is quite well
known for linear algebra over an abstract field. For instance
we refer to the survey [8, Chapter 16] for a list of problems
on matrices in Kn×n that can be solved in O(nω) or O (̃nω)
operations in K. Only recent results give an analogous view
(although incomplete) of the situation for polynomial matri-
ces. It is known that the following problems can be solved
with O (̃MM(n, d)) operations: linear system solution, de-
terminant, order d approximants, Smith normal form, and,
for a non-singular matrix, column reduction [15, 29, 30]. It is
possible to compute the inverse of a generic matrix in essen-
tially optimal time O (̃n3d) [16]. We may also consider the
problem of computing the Frobenius normal form, thus in
particular the characteristic polynomial, of a square matrix.
It does not seem to be known how to calculate the Frobe-
nius form in time O (̃MM(n, d)). The best known estimate
O (̃n2.7d) is given in [21] (see also [18]) with ω = 2.376 [11].

Hence, we augment the above list of problems solved in
O (̃MM(n, d)) with the certified computation of the rank and
a nullspace basis. This improvement is made possible by
combining in a new way the key ideas of [15, 16, 29]. For the
rank, the target complexity O (̃MM(n, d)) was only attain-
able by a Monte Carlo (non-certified) approach consisting
in computing the rank of M(x0) for x0 a random value inK.

In obtaining a certified value of the rank and a nullspace
basis within the target complexity, a difficulty is related
to the output size. For M ∈ K[x]2n×n of degree d and
rank n, Gaussian elimination (fraction free or using eval-
uation/interpolation) leads to a basis of n vectors of degrees
nd in K[x]2n in the worst-case, hence to an output size in
Θ(n3d). A complexity in O (̃nωd) must therefore rely on a
different strategy.
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We propose a sort of elimination scheme based on mini-
mal polynomial bases. A minimal basis of the nullspace as
K[x]-module is a basis with lowest possible degrees (all nec-
essary definitions are given in Section 3). For M ∈ K[x]2n×n

as above, the total size of a minimal basis of the nullspace is
in O(n2d) (see Theorem3.3). However, it is not known how
to reduce the problem of computing such a basis to that of
polynomial matrix multiplication. In the same context, min-
imal bases have been already used for computing the inverse
of a polynomial matrix in [16], but only the generic case has
been solved. Indeed, for a generic M ∈ K[x]2n×n, the de-
grees in a minimal basis of the nullspace are all equal to the
input degree d, and somehow, a basis is easy to compute in
O (̃MM(n, d)) operations [16, Section 4]. In the general case,
the vector degrees in a minimal basis may be unbalanced,
they range between 0 to nd. Known methods whose cost is
essentially driven by the highest degree do not seem to allow
our objective (see Section 2).

Our solution presented in Section 7 is to slightly relax
the problem, and to compute a small degree—rather than
minimal—nullspace basis in a logarithmic number of steps.
We rely on the fact that even in the unbalanced degree
case, the sum of the degrees remains bounded by nd (The-
orem3.3). Intuitively, at step k for 1 ≤ k ≤ log2 n, we com-
pute about n/2k nullspace vectors of degrees less than 2kd.
Algorithm Nullspace2n (Section 7), for the whole nullspace,
calls at most log2 n times Algorithm Nullspace minimal vec-
tors (Section 6), for nullspace vectors of bounded degree δ,
with increasing degree thresholds δ. To keep the cost as low
as possible, the degree increase requires to reduce the di-
mensions of involved matrices in the same proportion (see
(14)). We refer to an analogous degree/dimension com-
promise in [30, Section 17] for computing the Smith normal
form, and in [16, Section 2] for matrix inversion.

Algorithm overview. For a general view of the process,
including successive compressions of the problem into smaller
problems for reducing dimensions, consider

M =

[
A
B

]
∈ K[x]m×n (1)

with A square and non-singular. The rows of the matrix
[BA−1 −Im−n] give a basis of the nullspace of M . However,
as noticed previously a direct calculation of BA−1 would
be too expensive. Now, note that if [BA−1 − Im−n] =
S−1N , for S and N two appropriate polynomial matrices,
then the rows of S[BA−1 − Im−n] = N are also in the
nullspace. Considering polynomial matrices N and S in-
stead of [BA−1 −Im−n] will take advantage of minimal bases
properties, and allow us to manipulate smaller degrees.

For computing a nullspace basis we proceed the following
way. We deal with a small number of submatrices of the
initial input for reducing the problem to

M =

[
A
B

]
∈ K[x](n+p)×n, 1 ≤ p ≤ n, (2)

and introduce compressing matrices P ∈ K[x]n×p. The suc-
cessive choices of p are guided by the compromise with the
degree. For a given p, we start with a matrix lifting/fraction
reconstruction phase. We compute an expansion of H =
BA−1 in K[[x]]p×n using [29, 30] to sufficiently high order η,
and “compress” it to Hp = BA−1P ∈ K[[x]]p×p. A recon-
struction phase [1, 15] (see also the comments about coprime

factorization in Section 2) then gives

Hp = S−1Np = BA−1P. (3)

We prove that “good” choices of P imply that S, denom-
inator matrix for Hp, is also a denominator matrix for H
(Proposition 4.1) and that vectors in the nullspace of M can
be recovered (Proposition 5.4). Indeed, the computation of
S[H − Im−n] mod xδ+1 gives row vectors in the nullspace
of degrees bounded by δ (Proposition 6.4).

From a candidate Monte Carlo value r0 for the rank, in
log2 n steps of compression/uncompression (and choices of δ
and p) combined with matrix lifting/matrix fraction recon-
struction, we are able to compute candidate vectors for a
nullspace basis. A final multiplication certifies that the rank
is correct (i.e., r0 = r) and that a nullspace has actually been
computed (Section 7.2). Although for each degree thresh-
old δ we compute a minimal basis for the nullspace of (2), the
compression strategy unfortunately does not lead to a min-
imal basis for the whole nullspace of (1). However, we prove
that small degree vectors are obtained (Proposition 7.1).

Our algorithms are randomized of Las Vegas kind—always
correct, probably fast. Randomization is linked to the com-
pression stages where the matrices P are chosen at random.
We also use random matrices Q over K for linear indepen-
dence preconditioning [10], or random evaluation points x0

in K. Our results are proven for symbolic points x0 and ma-
trices P and Q. By evaluation [12, 34, 27], the same results
hold with high probability for random x0, P and Q ifK has
enough elements (Remark 7.4). The cost estimates might in-
crease by poly-logarithmic factors in the case of small fields
(with the introduction of an algebraic extension). We skip
the details here, and refer for instance to the techniques used
in [10, 19, 20] and to the references therein.

Complexity estimates. We study the cost of the algo-
rithms by bounding the number of field operations inK on
an algebraic random access machine. In [15] and [30], ad hoc
cost functions have been defined for matrix polynomial prob-
lems that can be reduced recursively to matrix polynomial
multiplication:

MM′(n, d) =

log2 d∑
i=0

2iMM(n, 2−id) (4)

and

MM(n, d) =

log2 n∑
i=0

4iMM(2−in, d) + n2(log n)B(d) (5)

where B(d) is the cost for solving the extended gcd problem
for two polynomial in K[x] of degree bounded by d.

The two techniques we combine are lifting and matrix
fraction reconstruction. Lifting for computing the expansion
of BA−1 to the order η (see Step (c) in Section 6) has cost

O(MM(n, d) + log(η/d)dpη/ndeMM(n, d)) (6)

operations in K [30, Proposition 15]. From the latter expan-
sion of BA−1 we will solve (3) (see Step (e) in Section 6) in

O(MM′(p, η) + ηMM(p)) (7)

operations in K [15, §2]. These rather technical complexity
notations has been proposed for capturing the reduction to
polynomial matrix multiplication. Both (6) and (7) concern
algorithms that work in a logarithmic number of stages, with
matrices whose dimensions and degrees are changing [15, 30].
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We will keep both (6) and (7) in O (̃MM(n, d)) by ret-
ricting pη to O(nd) (degree/dimension compromise). For
simplifying the cost results in this paper we consider either
that MM(n, d) = O(nωM(d)) [9], or, when the field K has at
least 2d + 1 elements [6, 7], MM(n, d) = O(nωd + n2M(d)).
Here M(d) is the number of operations in K required for mul-
tiplying two polynomials in K[x] of degree d. Hence, taking
M(d) = O(d log d log log d) [9], and B(d) = O(M(d) log d) [22,
26], we assume that

MM′(n, d) = O(MM(n, d) log d),

MM(n, d) = O((MM(n, d) + n2B(d)) log n).
(8)

If the assumption (8) is not made then some of our cost
results that use MM(n, d) are not valid. However, we state
our algorithms in terms of polynomial matrix multiplication;
precise complexity estimates in terms of the cost functions
(4) and (5) could be derived with some extra care.

2. PREVIOUS WORKS
The rank and a basis for the nullspace of a matrix M ∈

K[x]m×n of degree d and rank r may be computed by frac-
tion free Gaussian elimination in O (̃nmrω−1d) operations
inK [28, Chapter 2]. The same asymptotic estimate may also
be obtained using evaluation/interpolation techniques such
as Chinese remaindering [14, Section 5.5].

Therefore, compared to these classical approaches, we im-
prove the cost by a factor n in the worst-case (2n × n full
column-rank matrix).

An elimination strategy specific to polynomial matrices
is given in [24] that improves, asymptotically in the dimen-
sions, on O (̃nmrω−1d) , and computes the rank by a deter-
ministic algorithm in O(nmrd2) operations in K. But how
to incorporate matrix multiplication, and generalize the ap-
proach to computing the nullspace, is not known.

An alternative to the matrix over the polynomials ap-
proach above is to linearize the problem. A first type of
linearization is to consider a degree one matrix of larger
dimension with the same structural invariants (see the def-
inition of the Kronecker indices in Section 3) [4]. A degree
one matrix is a matrix pencil and an important literature
exists on the topic. A minimal nullspace basis of a pencil
may be computed through the calculation of the Kronecker
canonical form. To our knowledge, the best known complex-
ity for computing the Kronecker form of an m × n pencil
is O(m2n) [3, 23, 25]. Taking into account the dimension
increase due to the linearization we may evaluate that com-
puting a minimal basis of M would cost O((md)2(nd)) =
O(m2nd3). This approach is superior to ours concerning
the quality of the output basis which is minimal. However,
it is unclear how it can lead to the reduction to polynomial
matrix multiplication that we establish. A second alterna-
tive and different linearization of the problem is to associate
to M a generalized Sylvester matrix (i.e., a block-Toeplitz
matrix [5]) or another type of resultant. This has been heav-
ily used for control theory problems and in linear algebra.
A polynomial vector of degree δ in the nullspace of M may
be obtained from the nullspace of a block-Toeplitz of dimen-
sion about nδ. This leads to costs too high by a factor of
n when the degrees in a minimal nullspace basis are unbal-
anced. We are not aware of an approach based on successive
compression here that would allow to save a factor n and to
introduce polynomial matrix multiplication.

These two types of linearization correspond to two main

approaches—via state-space realizations or resultants— for
the problem of coprime matrix fraction description or co-
prime factorization [17, Chapter 6]. We see from (3) that we
will use a solution to the latter problem a logarithmic num-
ber of times. If all matrices involved are of degree d, then
we use the σ-basis algorithm of [1], and the corresponding
reduction to polynomial matrix multiplication of [15]. A so-
lution of the coprime factorization in case of unbalanced
degree, in a way similar to the block-Toeplitz approach, is
faced with the question of saving a factor n in the cost.
Known algorithms seem to have a cost driven only by the
highest degree in the factorization, rather than by the sum
of the involved degrees as we propose.

Our work is a derivation of an elimination scheme us-
ing minimal bases directly on polynomial matrices. Our
compression/uncompression strategy can be compared to
the techniques used for the staircase algorithm of [3, 25] for
preserving a special structure. We somehow generalize the
latter to the case of polynomial matrices for reducing the
factorization problem with input BA−1 to the polynomial
matrix multiplication.

3. PRELIMINARIES
We give here some definitions and results about minimal

bases [13] and matrix fraction descriptions that will be used
in the rest of the paper. For a comprehensive treatment we
refer to [17, Chapter 6]. For a matrix M ∈ K[x]m×n of rank r
and degree d, we call (left) nullspace the K(x)-vector space
of vectors v ∈ K(x)m such that vM = 0. We will compute a
basis of that space. The basis will be given by m−r linearly
independent polynomial vectors, and is related to the notion
of minimal basis of the nullspace seen as a K[x]-module.

Definition 3.1. A basis N1, . . . , Nm−r ∈ K[x]m with de-
grees δ1 ≤ . . . ≤ δm−r of the nullspace of M seen as a
K[x]-module is called a minimal basis if any other nullspace
basis with degrees δ′1 ≤ . . . ≤ δ′m−r satisfies δ′i ≥ δi for
1 ≤ i ≤ m− r.

In the rest of the text, basis will usually refer to the vector
space while minimal basis will refer to the module. The de-
grees δ1, . . . , δm−r are structural invariants of the nullspace.
They are called the minimal indices of the nullspace basis.
The minimal indices of a nullspace basis of M are called the
(left) Kronecker indices of M . A full row-rank polynomial
matrix N in K[x]l×m is called row-reduced if its leading row
coefficient matrix has full rank l. It is called irreducible if its
rank is full for all (finite) values of x (i.e., Il is contained in
the set of K[x]-linear combinations of columns of N). These
two definitions are used for characterizing minimal bases; we
refer to [17, Theorem6.5-10] for the proof of the following.

Theorem 3.2. The rows of N ∈ K[x](m−r)×m, such that
NM = 0, form a minimal basis of the nullspace of M if and
only if N is row-reduced and irreducible.

A key point for keeping the cost of the computation low is
the degree transfer between M and a minimal nullspace basis
N . The McMillan degree of M of rank r is the maximum of
the degrees of the determinants of r×r submatrices of M [17,
Exercise 6.5-9].

Theorem 3.3. The Kronecker indices of M ∈ K[x]m×n

of rank r satisfy
∑m−r

i=1 δi ≤ McMillan-deg M.
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The reader may refer to [2, Theorem5.1] for the latter bound.
As discussed in the introduction, Gaussian elimination is
far too pessimistic when it results in a nullspace basis with
size in Θ(n3d). Theorem3.3 shows that there exist mini-
mal bases with size in O(n2d) whose computation should be
cheaper.

We will use minimal bases in relation with left or right ma-
trix fraction descriptions. For H ∈ K(x)l×m, a left fraction
description, i.e. a pair (S, N) such that H = S−1N , with
S ∈ K[x]l×l and N ∈ K[x]l×m, is irreducible (or coprime), if
any non-singular polynomial matrix and left common divi-
sor U of S and N (S = US′ and N = UN ′ for polynomial
matrices S′ and N ′) is unimodular. We call (left) denomina-
tor matrix of H any non-singular polynomial matrix S such
that SH is a polynomial matrix N , i.e. such that (S, N) is
a (left) description of H. Analogous definitions hold on the
right.

Lemma 3.4. The rows of N = [N̄ −S], such that N̄M =
0, with S non-singular, form a basis for the nullspace of M
as a K[x]-module if and only if S−1N̄ is irreducible.

In Section 6 we will focus on computing only vectors of
degrees bounded by a given δ in a nullspace minimal ba-
sis. We define their number κ(= κ(δ)) = max{1 ≤ i ≤
m − r s.t. δi ≤ δ} (the Kronecker indices are arranged in
increasing order). Corresponding vectors are called κ first
minimal vectors in the nullspace.

4. MATRIX FRACTIONS AND NULLSPACE
We consider a matrix M = [AT BT ]T ∈ K[x](n+p)×n of

degree d as in (2) with A square n × n and invertible. Our
study here and in next section focuses on the case p ≤ n
which is the heart of the method, and where all difficulties
arise for establishing a cost sensitive to p (see Remark 6.6).

The rows of H = [H −Ip] = [BA−1 −Ip] form a nullspace
basis of M . Hence, for N a minimal nullspace basis, there
exists a transformation S in K(x)p×p such that SH = N .
With the special shape of H we deduce that S is a poly-
nomial matrix in K[x]p×p whose columns are given by the
last p columns of N . This leads to the following left matrix
fraction description of H:

H = [H − Ip] = [BA−1 − Ip] = S−1[N̄ −S] = S−1N. (9)

The left fraction description S−1N̄ and S−1N must be irre-
ducible by Lemma 3.4.

For reducing the cost of our approach we will introduce a
(random) column compression Hp of H given by

Hp = HP = BA−1P ∈ K(x)p×p (10)

with P ∈ K[x]n×p.
In order to be appropriate for computing the nullspace of

M , Hp must keep certain invariants of BA−1. Next propo-
sition establishes that there exists a P such that—on the
left—the description Hp = S−1(N̄P ) = S−1Np remains ir-
reducible. With the same P the proposition also shows the
existence—on the right—of a description whose denomina-
tor matrix has relatively small degree.

Proposition 4.1. Let A ∈ K[x]n×n be non-singular of
degree less than d and determinantal degree ν, and let B ∈
K[x]p×n. Assume that S ∈ K[x]p×p is any denominator of
a left irreducible fraction description of BA−1. Then there

exists a matrix P of degree less than d − 1 in K[x]n×p such
that

Hp = BA−1P = CT−1 (11a)

= S−1Np ∈ K[x]p×p (11b)

where CT−1 is a right irreducible description with T ∈ K[x]p×p

of degree less than dν/pe ≤ (n/p)d + 1, and where S−1Np is
a left irreducible description.

The proof of Proposition 4.1 [31] relies on the correspon-
dence between the formalism of minimum generating poly-
nomials introduced in [32, 33] and [21, Section 2], and matrix
fraction denominators.

Remark 4.2. Proposition 4.1 establishes fraction proper-
ties for a symbolic P . As a consequence of [31, Lemma4.1],
and [32, Corollary 6.4] or [21, Section 2], the same properties
hold for a random matrix P unless it forms a zero of a fixed
polynomial (for given A and B) of degree O(nd) in O(nd)
variables over K.

5. COMPRESSED MINIMAL BASES
We will compute a small basis for the nullspace of the in-

put matrix as a set of successive minimal bases of matrices
like in (2). The latter minimal bases are computed in two
main steps. We first compute an expansion of Hp = BA−1P
and reconstruct a corresponding fraction (3) with denomina-
tor S. Then, if P is such that Hp satisfies (11b), we know
that S[BA−1 − Ip] is a polynomial matrix N , which by con-
struction satisfies NM = 0.

In the spirit of the scalar polynomial case and of [1] for
the matrix case, the reconstruction may be done via Padé
approximation, and through the computation of particular
bases of the nullspace of [−Ip HT

p ]T . Indeed we have the

equivalence between S−1Np = Hp and [Np S] · [−Ip HT
p ]T =

0. Hence the purpose of this section is to identify the bases
of the nullspace of [HT

p −Ip]T that actually lead to minimal
bases N for M .

Through a conditioning of M let us first specify the lo-
cation of the leading degree terms in the latter bases (see
Theorem3.3).

Lemma 5.1. For M as in (2) there exist a matrix Q ∈
K(n+p)×(n+p) such that the McMillan degree of the top n×n
submatrix of QM is equal to the McMillan degree of QM
(and of M). This implies that if N is a minimal basis of the
nullspace of QM , then S = N·,n+1..n+p is row-reduced with
row degrees the Kronecker indices δ1, . . . , δp.

Remark 5.2. The property given by the multiplication
by Q in Lemma 5.1 will hold for a random Q over K (compare
to Remark 4.2).

In next sections, nullspace vectors vT for M are easily
obtained from nullspace vectors wT for QM , indeed vT =
wT Q satisfies vT M = wT QM = 0. This conditioning of
M—and implicitly of N—will alllow us to compute S, and
then deduce N , from a shifted minimal basis for the nullspace
of [−Ip HT

p ]T . Shifted bases are defined as usual minimal
bases by changing the notion of degree. For t̄ a fixed multi-
index in Zm, the t̄-degree of a vector v in K[x]m is

t̄-deg v = max
1≤i≤m

{deg vi − t̄i}. (12)
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Definition 5.3. A basis of a K[x]-submodule of K[x]m,
given by the rows of a matrix N , is called t̄-minimal if N
is row-reduced with respect to the t̄-degree. Equivalently, N ·
x−t̄ is row-reduced with respect to the usual degree (see [2,
Definition 3.1]).

For t̄ = [0, . . . , 0] the definition corresponds to the usual
definition of minimal bases. The value t̄ = [(d − 1)p, 0p]
below, where (d− 1)p and 0p respectively denote the values
d−1 and 0 repeated p times, is chosen from the degree d−1
of the compression matrix P of Proposition 4.1. This value
forces the row reduction in the last columns of the bases.

Proposition 5.4. Let M ∈ K[x](n+p)×n be of full rank
such that the matrix S, formed by the last p columns of a
minimal basis N for its nullspace, is row-reduced with row
degrees the Kronecker indices δ1, . . . , δp. Assume that P ∈
K[x]n×p satisfies (11). Let t̄ = [(d − 1)p, 0p] ∈ N2p. Then
[Np S] is a t̄-minimal basis for the nullspace of [−Ip HT

p ]T

if and only if N = S[BA−1 − Ip] = [N̄ − S] is a minimal
basis for the nullspace of M .

Most of the proof of Proposition 5.4 is technical for proving
the minimality [31], the main argument comes from (11b)
which allows to go from a basis to another. For compress-
ing matrices P which satisfy (11b), Proposition 5.4 estab-
lishes strong links between the nullspace of [−Ip HT

p ]T and

the one of M . In particular, [−Ip HT
p ]T and M have the

same Kronecker indices. For any given δ, there is a one-
to-one correspondence between the vectors of t̄-degree δ in
the nullspace of [−Ip HT

p ]T , and those of degree δ in the
nullspace of M . This is seen from the “S” common part of
the bases.

6. NULLSPACE MINIMAL VECTORS
We still consider a full column-rank matrix M of degree

d. Let δ be a fixed integer and κ(= κ(δ)) be the number
of vectors of degree less than δ in a minimal basis N of the
K[x]-nullspace of M . In this section we study the cost for
computing κ such vectors.

Algorithm Nullspace minimal vectors below starts with lift-
ing on a compressed matrix (Proposition 4.1). Then it par-
tially (subject to the degree threshold) computes a denom-
inator matrix S through a partial t̄-minimal basis computa-
tion. Using Proposition 5.4 the target nullspace vectors are
finally obtained.

We prove the algorithm and its cost in the rest of the
section. Step (a) is the conditioning seen in Section 5 to en-
sure the degree dominance of the last p columns of N . To-
gether with the randomized compression of Step (d) studied
in Proposition 4.1 this will allow the computation of S at
Step (e). Step (b) is a randomized choice for working with
a matrix A non-singular at x = 0. The latter condition is
required for computing at Step (c) the expansion of BA−1

by lifting [29, 30]. Step (e) partly reconstructs a description
S−1Np from a truncated expansion of Hp. The computation
is explained in Lemma6.3 below, and the selection of small
degree rows at Step (f) is justified. Our approach for the re-
construction is very close to the column reduction of [15, §3].
A degree less than δ in S corresponds to a t̄-degree (see (12))
less than δ in [Np S] (the compression using P increases the
degree in Np by d − 1), and to a degree less than δ in N .

Step (g) applies Proposition 5.4 for partly reconstructing the
nullspace of M , and Steps (h) and (i) certify the outputs.

Algorithm Nullspace minimal vectors (M ,δ)

Input: M ∈ K[x](n+p)×n of degree d,
a degree threshold δ,
M has full column-rank.

Output: κ = max{1 ≤ i ≤ p s.t. δi ≤ δ} independent
Ni ∈ K[x]n+p of degree δi in the nullspace of M .

(a) M := QM for a random Q ∈ K(n+p)×(n+p);
(b) M := M(x + x0) for x0 random in K;

A := M1..n,1..n;
if det A(0) = 0 then fail; /* probably rank M < n */
B := Mn+1..n+p,1..n;
η := δ + d + dnd/pe;

(c) H := expansion of BA−1 mod xη;
(d) Hp := HP for P random in K[x]n×p, deg P ≤ d− 1;

t̄ = [(d− 1)p, 0p] = [d− 1, . . . d− 1, 0, . . . , 0] ∈ N2p;
(e) L := [Np S] := a σ-basis with respect to

t̄ for [−Ip HT
p ]T of order η;

(f) κ := nb of rows of [Np S] of t̄-degree at most δ;
select κ rows Si of S by increasing degrees;

(g) Ni := Si[H − Ip] mod xδ+1, 1 ≤ i ≤ κ;
Ni(x) := Ni(x− x0)Q, 1 ≤ i ≤ κ;
λ := #{Ni s.t. NiM = 0};

(h) if λ 6= κ then fail; /* certification of κ */

N (δ) := the κ× (n + p) matrix formed by the Ni’s;

(i) if N (δ) is not row-reduced then fail; /*minimality */
else return κ and Ni, 1 ≤ i ≤ κ. �

The partial reconstruction of Np and S (i.e., of a t̄-minimal
basis at Step (e), and of the denominator matrix at Step (f))
is done using a minimal nullspace basis expansion—or σ-
basis [1]. We generalize [2, §4.2] and [15, §3] especially for
the partial computation aspects.

Definition 6.1. Let G be in K[[x]]q×p. Let t̄ be a fixed
multi-index in Zq. A σ-basis of (matrix-)order d with respect
to t̄ for G is a matrix polynomial L in K[x]q×q such that:

i) L(x)G(x) ≡ 0 mod xd;

ii) every v ∈ K[x]q such that v(x)G(x) = O(xd) admits
a unique decomposition vT =

∑q
i=1 αiLi where, for

1 ≤ i ≤ q, Li is the ith row of L, and αi ∈ K[x] is such
that deg αi + t̄-deg Li ≤ t̄-deg v.

The reader may notice that we have slightly adapted the
notion of order of the original Definition 3.2 of [1] for a fully
matrix point of view. We also use the notion of shifted de-
gree (see [2]) equivalently to the notion of defect used in [1,
Definition 3.1]. The following shows that a σ-basis to suffi-
ciently high order contains a minimal basis.

Lemma 6.2. Let us assume that a minimal nullspace basis
of G has κ vectors of t̄-degree at most δ, and consider a σ-
basis L with respect to t̄. For an approximation order greater
than δ + 1, at least κ rows in L have t̄-degree at most δ.

Next lemma identify the situation where a σ-basis will
give the exact information we need. We assume that we
are in the situation of Proposition 5.4, in particular S in
the minimal bases has row degrees δ1, . . . , δp, the Kronecker
indices of M and of [−Ip HT

p ]T . We fix a value δ and define
κ = max{1 ≤ i ≤ p s.t. δi ≤ δ}, and t̄ = [(d− 1)p, 0p] ∈ N2p.

313



Lemma 6.3. Let us assume we are in the situation of
Proposition 5.4. Let L be a σ-basis for [−Ip HT

p ]T , with
respect to t̄, and of order of approximation at least η =
δ + d + dnd/pe. Then exactly κ rows of L have t̄-degree
at most δ, are in the nullspace of [−Ip HT

p ]T , and have t̄-
degrees δ1, . . . , δκ.

Our proof of Lemma 6.3 is a modification of the one of [15,
Lemma3.7] for taking into account the degree threshold. We
use (11a) for fixing the approximation order.

Proposition 6.4. Let M ∈ K[x](n+p)×n be of full column-
rank with Kronecker indices δ1, . . . , δp. Algorithm Nullspace
minimal vectors with inputs M and δ ∈ N returns the quan-
tity κ = max{1 ≤ i ≤ p s.t. δi ≤ δ}, and κ first minimal
vectors of the nullspace of M . The algorithm is randomized,
it either fails or returns correct values (Las Vegas fashion).

For establishing Proposition 6.4 [31] we first verify that if
the random choices of x0, Q and P work as expected then
the result is correct. This is obtained from Lemma6.3 for the
nullspace of [−Ip HT

p ]T , and using the nullspace correspon-
dence of Proposition 5.4 for the nullspace of M . Then, the
certification of the outputs uses Lemma6.2 and the test (h)
for checking the value of κ. Using σ-bases properties we
also show that the reduceness at Step (i) is equivalent to the
minimality. Note that in any case, the computation of λ
ensures that the returned vectors are in the nullspace.

The algorithm may fail because the computed value κ is
too large. This will happen for bad choices of P , when
the nullspace of the compressed matrix (see (11b)), and
the approximating σ-basis (see (11a)), does not reflect the
nullspace of M correctly. Additionally, even for correct val-
ues of κ, the minimality may not be ensured without the
test at Step (i). Indeed, a bad choice of Q, depending on
P , may lead to a row reduction in the non-dominant part
of the basis (see Lemma5.1), and to a loss of minimality
(see Proposition 5.4). In the latter case, a correctly com-
puted value of κ may lead to a smaller value λ after the
truncation (g) of a non-minimal vector.

The cost of Algorithm Nullspace minimal vectors is essen-
tially given by (6) for the lifting and (7) for the σ-basis i.e
the reconstruction phase. It may be stated for arbitrary
values of p and δ [31]. We rather give below a complexity
estimate in the special case pδ/nd = O(1). The latter cor-
responds to the degree/dimension compromise that we will
realize for the whole nullspace computation in Section 7.
We also use (8) for simplifying the reduction to polynomial
matrix multiplication.

Corollary 6.5. Let M ∈ K[x](n+p)×n be of full column-
rank and degree d with 1 ≤ p ≤ 2n, and let d ≤ δ ≤ nd.
Minimal independent vectors in the nullspace of M , of de-
grees the Kronecker indices less than δ, can be computed by
a randomized Las Vegas (certified) algorithm in

O(MM(n, d) log(nd) + n2B(d) log n + nM(nd)) (13)

operations in K when pδ/nd = O(1).

We see that computing minimal vectors in the nullspace at
essentially the cost of multiplying two polynomial matrices
relies on the compromise between p and δ. Many vectors
of small degrees (large p and small δ) are computed using
lifting to a limited order and large matrix reconstruction.

Conversely, few vectors of large degrees (small p and large
δ) are computed from a high-order lifting and reconstruction
with matrices of small dimensions.

Remark 6.6. The random compression P is relevant for
p < n. Everything we saw is valid for any p, however, when
p ≥ n, one may work directly with Hp = H at Step (d).

7. NULLSPACE BASIS COMPUTATION
Corollary 6.5 which uses for (13) a compromise between

p and δ, does not directly allow a low-cost computation of
large degree vectors in a nullspace of large dimension. For
the latter situation, and for computing a whole set of lin-
early independent vectors in the nullspace of a matrix M
in K[x](n+q)×n, we need to successively restrict ourselves to
smaller nullspace dimensions (while increasing the degree).
Here we take the notation m = n + q for M as in (1). We
keep the notation p for submatrices (2), and successive com-
pressions, as in Sections 4-6 .

7.1 Full column-rank and n < m ≤ 2n case
Let M ∈ K[x](n+q)×n with 1 ≤ q ≤ n be of degree

d and rank n. The way we restrict ourselves to smaller
nullspaces is derived from the following observation. Let C
be in K(n+p)×(n+q) with 1 ≤ p ≤ q. If CM ∈ K[x](n+p)×n

also has full column-rank, then let δ1, . . . , δp be its Kro-
necker indices, and with the degree threshold δ = 2nd/p take
κ = max{1 ≤ i ≤ p s.t. δi ≤ δ}. Since

∑p
1 δi ≤ nd, at most

nd/δ = p/2, hence bp/2c, vectors in a minimal basis of the
nullspace of CM may have degrees more than δ, therefore
κ ≥ dp/2e. From at least p/2 minimal vectors D1, . . . , Dκ ∈
K[x]n+p of degrees at most 2nd/p in the nullspace of CM ,
we obtain κ corresponding vectors Ni = DiC ∈ K[x]n+q in
the nullspace of M .

Algorithm Nullspace2n, proven in Proposition 7.1 below,
uses above observation a logarithmic number of times. For
computing the whole nullspace, the algorithm generates a
sequence of decreasing dimensions p at Step (h). Following
the observation, each time the algorithm passes through the
“while loop” the dimension is divided by at least two, hence
at most O(log2 q) stages are necessary. This corresponds
to O(log2 q) calls to Nullspace minimal vectors with input
CM (for different matrices C). Each time the dimension
is decreased, the degree threshold is increased in the same
proportion at Step (b), we preserve the invariant

pδ/(nd) = 2 (14)

that will be used for applying the cost estimate (13).
The proof of Proposition 7.1 [31] checks that q vectors in

the nullspace are actually computed. Their linear indepen-
dency is ensured on the fly, and relies on the initial condi-
tioning with Q for working with a top n × n non-singular
submatrix. The vectors for updating the nullspace are com-
puted at Step (e) and Step (f) in the nullspace of MĪ,1..n,
with Ī = {1, 2, . . . , n, i1, i2, . . . , ip}. This is done through
the construction of the index selecting matrix C at Step (c)
which selects the corresponding rows of M . The choice of
the indices {i1, i2, . . . , ip} at Step (a), complements the in-
dex choices at Step (g) that are kept in I at Step (h) for
previous stages, and will provide the linear independency
by construction.

Another perhaps simpler strategy for ensuring indepen-
dency could be based on randomization.
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Algorithm Nullspace2n(M)

Input: M ∈ K[x](n+q)×n of degree d,
M has full column-rank and 1 ≤ q ≤ n.

Output: q “small” linearly independent polynomial
vectors in the nullspace of M .

M := QM for a random Q ∈ K(n+q)×(n+q);
if det M1..n,1..n(x0) = 0 for x0 random in K then fail;
I = {};
p := q;
while #I < q

(a) {i1, . . . , ip} := {n + 1, . . . , n + q} \ I;
(b) δ := 2nd/p;

(c) construct C ∈ K(n+p)×(n+q) with
Ci,i := 1, 1 ≤ i ≤ n,
Cn+j,ij := 1, 1 ≤ j ≤ p,
and Ci,j := 0 otherwise;

(d) M̄ := CM ∈ K[x](n+p)×n;
(e) {κ, {Di, 1 ≤ i ≤ κ}} :=

Nullspace minimal vectors (M̄, δ);

N
(δ)
i = DiC, 1 ≤ i ≤ κ;

(f) N (δ) := the matrix formed by the N
(δ)
i ’s;

(g) J := κ column indices greater than n + 1
such that N1..κ,J is non-singular;

(h) I := I ∪ J , p := p− κ;

(i) N := [NT (N (δ))T ]T ; /* nullspace update */

N := NQ;
return Ni, 1 ≤ i ≤ q. �

Each of the times the algorithm passes through the “while
loop”, the sum of the degrees of the computed vectors is
bounded by the sum nd of the Kronecker indices (these vec-
tors are minimal for the nullspace of the submatrix M̄).
Hence the sum of the degrees in output is less than nddlog2 qe.

Proposition 7.1. Let M ∈ K[x](n+q)×n with 1 ≤ q ≤
n be of full column-rank. Algorithm Nullspace2n computes
q linearly independent polynomial vectors in the nullspace
of M . If M has degree d then the sum of the degrees of
the output vectors is less than nddlog2 qe. The algorithm
is randomized, it either fails or returns correct values (Las
Vegas fashion).

The computed vectors Di’s are minimal in the nullspace
of CM but the minimality is not preserved in general for
the vectors Ni’s in the nullspace of M . The output basis
for the nullspace as K(x)-vector space may not be a basis
for the K[x]-module. However, Proposition 7.1 shows that if
the sum of the Kronecker indices is nd (the maximum pos-
sible), then the sum of the computed degrees is only within
dlog2 qe times the optimum. We notice also that the vectors
computed at the first stage are minimal vectors by Propo-
sition 6.4 (C = In+q), hence the algorithm reaches the op-
timum for a generic matrix M (the whole nullspace is com-
puted with p = q). It would be interesting to study the
loss of minimality compared to the Kronecker indices in the
general case.

Corollary 7.2. Let M ∈ K[x](n+q)×n be of full column-
rank and degree d with 1 ≤ q ≤ n, q polynomial vectors
whose degree sum is less than nddlog2 qe can be computed in

O((MM(n, d) log(nd) + n2B(d) log n + nM(nd)) log q) (15)

operations in K by a randomized Las Vegas (certified) algo-
rithm.

Since Algorithm Nullspace minimal vectors is called O(log q)
times, and since pδ/nd = 2, (15) is a consequence of (13).

7.2 General case
We now briefly give an idea of our method with a general

matrix M ∈ K[x]m×n of degree d. The details will be found
in [31, Section 7.2].

We compute the rank r of M and m− r linearly indepen-
dent and “small” polynomial vectors in the nullspace.

Our strategy first uses Monte Carlo (non-certified) ran-
domized techniques for computing a value r0 ≤ r, equal to
r with high probability (see Remark 7.4), and a full column-

rank matrix M̃ ∈ K[x]m×r0 of degree d whose nullspace con-
tains the nullspace of M . This requires, for Step (a) below,
the computation of the rank of M(x0) for x0 a random field

value, and the multiplication M̃ = MR for a random n× r0

matrix R over K. We then apply the results of previous
sections for computing m − r0 candidate independent vec-
tors in the nullspace of M̃ . We finally test by multiplication
whether these m−r0 vectors are actually in the nullspace of
M . A positive answer implies that r ≤ r0, therefore certifies
that r = r0, and that a correct nullspace representation has
been constructed.

For computing the candidate nullspace vectors, the case
m ≤ 2r0 has been treated in Section 7.1.

When m � r0, the sum of the Kronecker indices is at
most r0d, hence at most r0 vectors may have degrees greater
than d. We apply the technique of successive row indices
selection of Section 7.1 for computing m − 2r0 independent
vectors of degrees less than d. We work successively with
s = d(m − 2r0)/r0e submatrices M̃ (k) of M̃ of size 3r0 ×
r0, hence having at least r0 nullspace vectors of degree less
than d. This requires s calls to Algorithm Nullspace minimal
vectors at Step (c). We terminate by computing r0 vectors of
possibly higher degrees using the case m = 2r0, in one call
to Algorithm Nullspace2n with input a 2r0 × r0 submatrix
M̃ (s+1) of M̃ at Step (d).

Algorithm Nullspace(M)
Input: M ∈ K[x]m×n of degree d.
Output: r = rank M ,

m− r “small” linearly independent polynomial
vectors in the nullspace of M .

(a) Compute r0 and M̃ ∈ K[x]m×r0 ;
if m = r0 then return m and {};

(b) randomly ensure that the top r0 × r0 submatrix

of M̃ is non-singular or fail;
s := d(m− 2r0)/r0e;

(c) {Ni, 1 ≤ i ≤ m− 2r0} :=

Nullspace minimal vectors(M̃ (k), d) for 1 ≤ k ≤ s;
(d) {N ′

i , 1 ≤ i ≤ min{m, 2r0} − r0} :=

Nullspace2n(M̃
(s+1));

N := the matrix formed by the Ni’s and the N ′
i ’s;

(e) if NM 6= 0 then fail;
else return r0 and Ni, 1 ≤ i ≤ m− r0. �

As in Section 7.1, the successive index selections for con-
structing the submatrices of M̃ lead to linearly independent
nullspace vectors.

The proof of Theorem 7.3 [31] below takes into account (13)
for the s = O(m/r) calls to Nullspace minimal vectors, and (15)
for the call to Nullspace2n.
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Theorem 7.3. Let M ∈ K[x]m×n be of degree d. The
rank r of M and m− r linearly independent polynomial vec-
tors in the nullspace of M can be computed in

O(nmMM(r, d)/r2 + (m/r + log r)(MM(r, d) log(rd)
+ r2B(d) log r + rM(rd)))

hence O (̃nmrω−2d) operations in K by a randomized Las
Vegas (certified) algorithm. The degree sum of the computed
nullspace vectors is less than rddlog2 re+ (m− 2r)d.

For m ≤ 2r we have already commented after Proposi-
tion 7.1 the quality of the degree sum bound rddlog2 re. For
m � r, since the sum of the Kronecker indices is no more
than rd, we see that the bound we propose in Theorem7.3
is within a factor asymptotically m/r from the optimal.

Remark 7.4. We did not detail the probability analysis.
Random values in K occur for: the choice of the compressing
matrix P for Proposition 4.1; the choice of Q in Lemma 5.1
and as linear independence conditioning; a random shifting
or evaluation point x0 in all algorithms; the conditioning of
M into M̃ in Section 7.2. Our algorithms are deterministic
if random values are replaced by symbolic variables. For a
given input matrix M , the algorithm succeeds if the random
values do not form a zero of a fixed polynomial over K of
degree O(nd) in the latter variables. The probability of suc-
cess is at least 1− cnd/|R|, for a positive real constant c, if
the random values are chosen from a subset R of cardinal
|R| of K [12, 34, 27] (see also our comments in Introduction).

Concluding remarks
We compute a K(x)-nullspace basis of an input matrix over
K[x] as the union of few minimal K[x]-basis of submatrices
of the input matrix. It remains to compute a minimal basis
with an analogous complexity estimate. A possible direction
of work here is to ensure the irreducibility of the output basis
either on the fly or a posteriori.

Subsequent work may also concern the applicability of our
compression/uncompression scheme to other problems such
as questions about matrix approximants or block structured
matrices.

Computing a nullspace basis is added to the recent list of
problems that can be solved in about the same number of
operations as for multiplying two matrix polynomials. We
hope that this will help in making progress for the char-
acteristic polynomial [18, 21], and for (non-generic) matrix
inversion [16].
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Laboratoire LIP, ÉNS Lyon, France, 2005,
http://www.ens-lyon.fr/LIP/Pub

[32] G.Villard. A study of Coppersmith’s block Wiedemann
algorithm using matrix polynomials, Feb. 1997. RR 975-I-M
IMAG Grenoble, France.

[33] G.Villard. Further analysis of Coppersmith’s block
Wiedemann algorithm for the solution of sparse linear systems.
In Proc. ISSAC’97, Maui, Hawaii, USA, pages 32–39. ACM
Press, July 1997.

[34] R.E. Zippel. Probabilistic algorithms for sparse polynomials.
In Proc. EUROSAM, LNCS 72, Springer Verlag, pages
216–226, 1979.

316


