
PAC : First experiments on a 128 Transputers M6gmode

Franqoise ROCH-SIEBERT1 and Gilles VILLARD 1
Equipe Calcul F’arall?!le et Calcul Formel

LMC - CNRS 46, av. Felix Viallet, F-3S031 Grenoble C6dex

R6sum6. Lance il y a trois ans, Ie projet PAC : Para&4
Algebraic Computing [17], s’~tait donn~ pour but clans
une premitxe phase, de valider certains algorithms
de Calcul Formel sur un hypercube ii 16 processeurs
et de justifier l’utilisation du parall~lisme. Dans son

cadre nous continuous non seulement a @n&-aliser
les r&ultats qui avaient We obtenus, mais nous

envisageons aussi de nouveaux problbmes. Le

parallelism maintenant utilise est beaucoup plus
massif, puisque les experiences sent men~es sur u:n

r&$eau de 128 Transputers. Nous presentons clans ce

papier les premiers r&ultats experimentaux obtenu:s.
11s concernment, a titre d’exemple, l’application du
tkkor?me chinois des restes en al@bre lin6aire. NOULS

montrons comment, pour un nombre fixe de
processeurs, la topologie choisie pour le reseau influ~e
sur le comportment d’un algorithm. Nous insistonls
sur Ies coilts des communications et sur les
contraintes li6es a l’espace m6moire disponible.

Abstract. From its beginning three years ago, the
PAC project : Parallel Algebraic Computing [171, has
been exploiting a 16 processors hypercube to validate
some Algebraic Computation algorithms, and t.o
justify the use of parallelism. Going further, we begin
to generalize the previous results and study new
problems. Experiments are now hold on a more
massively parallel computer : a 128 Transputers
network. In this paper, we present the first results we
have obtained : as an example, we have been
interested in applying the chinese remainder theorem
in linear algebra. For a fried number of processors, we
show how the behaviour of an algorithm is influenced
by the chosen network topology. We point out the
communication costs and the constraints due to thle
storage requirements.

1. Introduction

In the field of Computer Algebra, Takahasi and
Ishibashi [20] developed in 1961 a new class of
methods based on congruences, as an alternative
to infinite precision arithmetic. Solutions are
first obtained in Galois Fields(p) for various

prime numbers p, and then recovered using an
application of the Chinese Remainder
Theorem [1 1].

Permission to copy without fee all or part of this material is

granted provided that the copies ara not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.
@ 1991 ACM 0-89791.437-6/91 /0006 /0343 . ..j. j .SO

A famous example of such an application is the
exact solution of linear equations with integer,
rational or polynomial entries [1, 2, 3, 4, 13], or
matrix inversion. After a brief recall of the
different algorithms which have been

developed and theoretically discussed in [22],

we describe the new architecture we are working

on, and present the experimentations.

Precisely, we focus on the problem of computing
n integers (xl, x2, xn) from their residues
modulo h prime numbers pl, p2,..., ph. We call
(Xlk, X2k, . . . ,Xhk) the residues of xk l<kSn. And
we assume that Ixk I s B for l<~n and p<pi<q for
l<i<h. Without any particular interest to the
computation of the residues, we assume A(n) to
be the sequential cost for each modulo pi

resolution (to compute the Xik, l<~n), and q(n)

the required memory. A(n) and q(n) count words
of size log2 q, on such a word an arithmetic

operation takes one unit of time.

For the parallel model we consider a network of
P processors (numbered from O to P-1). We let
P=cxn and P=~h where O<U,(K 1. Each processor
has a private memory and communicates by a
message passing protocol (rendez-vous) with its
neighbors [9]. The machine operates in an
asynchronous MIMD mode [5]. The time to
transfer n log2q sized words between two
adjacent processors is modelized in the
literature by ~ + n~ [18], where ~ is the
communication start-up and ~ the elementary
transfer time. For our asymptotic analysis, we
assume ~=0 without loss of generality [18].
With such a model. let

A(n)
~ + Cr(P)T (1)

I I
be the parallel cost on P processors for each
modulo pi resolution. Where, depending on the
network topology, Cr(P) is the communication

cost. Thus Cr(1) = O. The target topology for the
whole algorithm is a two dimensional grid with
wrap around, but we will just need (52.2) a ring of
processors for the modulo pi resolutions.

l’l%is work was supported in part by the PR C

Math&mattques et informatique of the french Centre
National de la Recherche Scientijique (CNRS).

343

And let

H

~(n)
P

[2)

be the required memory size on each processor.

Assumptions (1) and (2) of load-balanced
executions are not too restrictive, see further
details in [16, 17, 21].

2. The parallel algorithm

2.1 Basic recalls on chinese remaindering

The Chinese Remainder theorem is used to
compute integers from their residues. We
describe here the well known mixed-radix
conversion algorithm given by a constructive
proof of a consequence of the theorem [11 chap.
4.3.2, 12, 23]. Let pl, p2,..., ph. be h prime
numbers, and Xl, X2,..., Xh, h integers. If Pt is
defined as Pt=p 1 p2... ph. we can determine a
unique integer X such that :

-Pt - Pt
~ <X<~ , and X ~Xi mod pi for l<~h.

The proof gives X using h steps of computation
from its residues : working with the balanced
representation of the elements mi of the GF(pi),
i.e. -pi/2 < mi < pi/2 (pi>2] we define,

Y1 =Xl modpl,
Y2 = (X2 - Y1)c12 mod p2,
Y3 = ((x3 - Y1)c13 - Y2)c23 mod p3, (3)
.
Yh = (.. .([Xh-Yl)Clh-Y2) C2h -... -Yh-l)Ch-l,h mod ph,

Where the Cij constants are given by :

cij Pi=lmod pJforl Sicj Sh.

The value of X is then computed as,
X= Yl+Y2pl+Y3plp2 + . . . +Y~lp2...pl-l. (4)

The h-tuple (Pi, p2, ph) is called the h-tuple of

radices associated to X. More generally, for each

integer xk of our problem (14&n), we obtain the

;e~f.;e~h) from (3) and the decomposition (4)

Xk=ylk+y2~l+ . ..+~lpz...pl..l. (5)

To determine the quantity h, let us recall that

the absolute values of the integers we have to

recover are bounded by B. To place us under the

conditions of the theorem, we have therefore to

choose Pt > 2B. And since the prime numbers

have all been chosen greater than p, h just has to

satisfy :

h 2 ~o@B + lo@!2,

we will simply use :

m
(6)

The predominant terms of the arithmetic costs

of steps (3) and (4) are respectively 3h2/2 and h2.

Which gives for the n integers,

-
(7)

While the required memoW size evaluated from
(5) for the n integers, is asymptotically,

m (8)

2.2 The parallel algorithm

● A first approach : a simple look at the whole
congruence algorithm gives us a first parallel
implementation. Indeed, the h modulo pi

resolutions are independent and can be done
simultaneously : h/P resolutions on each
processor. At the end of this stage each processor

stores h/P residues for every xk. The recovering

stage have therefore to be performed in parallel.
For a sequential implementation the same h-
uple of radices is associated to all the xk, there is

no need to change the decomposition (5) from a
xk to another. Contrary to that, to avoid any

global scheme of communication, we assume as
in [22] that the target integers do not share a
same h-uple of radices. We define allocp(i) for
I<i<h as the number of the processor which
stores the residues mod Pi. In the same way the

application allot(k) for 1<k<n determines an
equidistribution of the xk over the network :

processor Palloc(k) will store xk at the end of the

process.

On a ring of processors, for a processor Pproc,

communications will simply consist in sending
a message to PProc+ 1 (regarding the numbering

of the ring) or receiving a message from Pproc- 1.

Let us give the basic idea we use [22] :

. Step O : every processor Pproc begins (3)

using the h/P primes pi such that allocp(i)=proc

and for the n/P xk veri&ing allot(k) =proc.
● Step i : it sends his results (gathered with

those received at step i-1) to Pproc+ 1. And goes

on computing (3) : still using the same primes
but now for the n/P xk which partial
decompositions have been received from

Pproc- 1.
● Last step : (5) can be computed without any

communication.

We give now the algorithm for the processor

Pproc (OSproc<P- 1), the communications are
implicitly from mg predecessor or to mg
successor. And let us consider a new numbering

344

of the primes : let pl,Proc, ph/IJ,proc be the pi

such that allocp(i)=proc.

Algorithm DhT (Distinct h-Tuples)

lfori=Oto P-1

{ communications }
PAR if bo

send (ylk, y2k, ~/p,~ for the k
such that allot(k)= proc-i+ 1 mod P

receive (ylk, y2k, yhi/p,k) for the k
such that allot(k)= proc-i mod P

{ computations of (3) }
forj= 1 to h/P

for k = 1 ton s.t. alloc(k)=proc-i mod P
compute yhi/P + j,k rnoclulo Pj,proc

according to (3)
for k = 1 ton s.t. alloc(k)=proc+ 1 mod P

compute (5).

Observing that arithmetic operations are
equidistributed, the arithmetic constituent of
the cost is simply obtained from A(n)
each modulo resolution) and from (7)

5fi2
#A(n) + ~ + 0(h2).

(the cost of

({])

Concerning the communications : each step i,
O<i<P, asks for the transfer of hin/P2 residues.
With (9) we can so deduce the cost of
DhT algorithm :

hA(n) 5fi2

P
+= +;z+O(h2). (DhT)

The memory required on each processor is
firstly the memory needed for one sequential
modulo pi resolution. In addition we have the
equidistributed storage of the integers for t;he
Chinese remaindering. Using quantity (8) over ‘P
we get at last :

q(n) + # + O(h). (MDhT)

The inherent parallelism (!) of h independent
modulo pi resolutions has been fully exploited.
But the main drawback of such a choice will
clearly appear during experiments (fj4) : q(n) can
be a serious restriction and limits tlhe
dimension n of the problem to solve.

● A second approach consists in exploiting
parallelism before the Chinese Remaindering.
According to (1), each modulo pi resolution ci~~

be parallelized in such a way that the storage is
distributed over the network (2). Without loss of
generality we may assume that each processor
computes all the residues for n/P among the n
integers xk . Obviously steps (3) and (5) are then

sequential on every processor.

Algorithm SCR (Sequential Chinese Remainder)

{if alloc(k)=proc, xk mod pi has been
computed for all i on this processor }

{ without communication }
for k = 1 ton such that alloc(k)=proc

compute (3) and (5).

From (1) and (7) the corresponding cost is :

hA(n) 5~2

P
+ ~ + hC~P) ~ + O(h2). (SCR)

The storage is now fully distributed (2), on each
processor we need :

(p(n) + nh
P

+ O(h). (MSCR)

Comparing (SCR) with (DhT) asks for the value
of Cr(P). This will be done in fj4 considering
applications of chinese remainders. But Cr(P)
could be a prohibitive cost for a use of (SCR) even
if memory is saved up.

● Looking for a compromise between those two
points of view, both stages of modulo resolutions
and of recovering can be done in parallel if grids
are viewed as cartesian products. The cartesian
product of two graphs G=(X,E) and G’=(X,E’) is
defined as the graph F which set of vertices is
Xx X’, and where the edge between (x,y) and (x’,y’)
exists if and only if: x=y and {x’,y’} = E’ or x’=y’
and {x,y} = E.

lemma 1: assume that P=RxS. A P processors 2-
dimensional grid contains S distinct rings. The
processors of those rings maybe numbered from
O to R-1 in such a way that, for O<icR, the sets of
processors i are R distinct S processors rings.

From this lemma we will use a double
numbering of the processors. Assuming the
current topology is a cartesian product with
P= Rxs :

{ Pproc , O<proc <P-1}

{Pr,~, O<r<R-l=and O<s<S-l}.

We also define two applications
allocp : [0, h] -> [0, S-1]

and
allot : [0, n] -> [0, R-1]

for an equidistribution of the primes on S=P/R
processors, and an equidistnbution of the xk on

R processors. Algorithm ParCR [22] computes
the modulo resolutions on the R processors
topologies, and then uses S processors to recover
each xk.

345

Algorithm ParCR (Parallel Chinese Remainder)

. Each modulo pi resolution is parallelized
using the R processors Pr, proc verifying
allocp (i)=proc. Therefore, at a given time, S
resolutions are simultaneously computed.

. At the end of this stage and for any k, the
residues of xk are distributed over the S
processors Ppos,s with alloc(k)=pos.

● Algorithm DhT is applied R times in
parallel using S processors. Indeed, for each r,
OSr<R, the S processors Pr,~ compute the
integers xk such that alloc(k)=r,

Figure 1 and figure 2 illustrate ParCR algorithm
on a 24 processors grid, with R=6 and S=4. It is
viewed as a cartesian product of two rings. The
modulo pi resolutions are simultaneously

performed on each of the four “horizontal rings”.
Each “vertical ring” is then dedicated to four of
the xk.

R processors

mod p
1

mod p
2

mod p
3

mod p
4

____~—–--
,-----

--+-4 - ?; ~ : ! -“-’,.-.. J- ——,_ , ,
-——i-::x

‘1““” ;4 3“”’X8 : ~ , 21 24

+,...-* L A
f -----,...- -------——— _—— -

.........
‘1””” ‘4 ‘5”’” ‘8 ‘2i””x24

Figure 1 : ParCR algorithm, modulo pi
resolutions.

nn n
:; :: i i

1’

,111

1’ 1’

ii’
Ill

‘m
Ill
Ill
I I I
I \ \

‘, !
:1 V ‘5 U w

2 :6
‘3 7
‘4 ‘8

Figure 2:

%3
’24

ParCR algorithm, chinese
remaindering.

2.3 ‘i’ow COStS

The modulo pi resolutions : according to (1),

each resolution can be parallelized with a
communication cost Cr(R) on R processors.
During this first stage, S modulo resolutions are
simultaneously executed : the cost is the one of
h/S resolutions each using R processors. The
total cost is then easily obtained from (1) and
(2) :

or,
hA(n) hR
— +~ C@) T.

P

And the required memory space is,
q(n)

R’

(14)

(15)

Chinese remaindering : in the same way, the
second stage consists in R simultaneous rnixed-
radix conversions each using S processors. The
cost is the one of the recovering of n/R integers
on a S processors ring. As for (DhT) we have :

or,
5fi2
— + y(R) ~ r + 0(h2).2P

(16)

with y(R)=O if R=P (S= 1) and Y(R)= 1 otherwise.
The storage is equidistributed. Gathering
together (14) and (16) we derive the total cost
using a ParCR type conversion algorithm on a P
processors grid. R is an integer lower than P

which divides P exactly. Let ~R) be equal to O if
R=P and to 1 otherwise. We have,

m ‘pa”R
The required space is (p(n) /R during the first
stage, data are then equidistributed. We get :

m (MParCR)

We may now conclude in a theoretical point of
view. Minimizing the total cost of the
computation will therefore consist in finding
the best compromise (best value for R) between
the communication cost of modulo pi
resolutions and the one of the Chinese
remaindering. But R=P is clearly the best choice
if minimizing the storage is the main goal.

346

Internode Switch

+ UC
4 Tandem-nodes

4

Figure 3: the 1;!8 transputers Mtlganode.

3. The 128 Transputers M6ganode
and its constraints

The Telmat Mt5ganode [19] is a distributed
memory multiprocessor computer which
operates in an asynchronous MIMD mode : this
exactly corresponds to our theoretical model..
The M~ganode may be considered as an
experimental computer. The softwarle
environment is poor : codes are written in a C
language augmented with local communication
routines (between neighbors). Therefore, the
main difference with our previous experiences
[17] does concern nor the software nor the
hardware but comes from the number of
processors available : 128 versus 16.

The m~ganode is partitionned into 4 basic
modules called tandem-nodes of 32 transputem
(1 transputer T800 [10]+ lMb memory) each a:j
shown on figure 3. On the inside of those
tandem-nodes, a 72x72 crossbar allows to
realize any degree 4 topology for the network
(provide that no input/output is required, see
below). A second level of connections (four
32x32 crossbars), the internode switch, then
manages the communications between distinct
tandem-nodes. Communications between
transputers are done by message passing. We
have the communication start-up :

P =5,6,10-%
and ,

1,1. 10-6S ~ s2,2. 10-6s/byte

D
u

for the throughput of the channels [14]. Any
graph of degree 4 is avalaible, except the closed
ones. Indeed, even if each transputer has four
links, one link of the network is reserved for
the data transfers to the host, especially for
booting and for the input/output. Consequently
a 128 processors 2d-torus for instance, cannot
be realized. But smaller closed networks can
easily be simulated using extra processors for
routing the data. Figure 4 shows us the RxS
grids we have been using for running ParCR
algorithm (~2.2).

A column of R routing processors has been
necessa~ during chinese remaindering : with a
communication cost at most doubled.
Dimensions had thus to verifyR(S+1)<128.

NB : the dynamic reconfiguration of links, that
is the possibility to modify the network
topology during the course of an execution, is an
important tool for the conception of the
parallel algorithms. Alas ! Even if it was an
expected quality of the M6ganode, it is still not
at our disposal.

4. Applications, experimental results

As we mentioned in the introduction, a famous
application of Chinese remaindering is the
exact solution of linear systems [1, 2, 3, 4, 13]. It
is also known that the method is effective while
dealing with high dimensions of matrices
Applying the results of previous sections, we
discuss in this paragraph about
implementations of Jordan eliminations for

347

matrix inversion and of Gaussian eliminations
for linear system solution. Let A be a square
matrix. Its determinant, say d, is non zero.

4.1 Modulo resolutions

We first report some measurements concerning
linear systems Ax=b solution in

GaloisField(p) ‘s, when p is a prime number less

than 4= (prime numbers are coded on 64
bits). A general study of the problem can be
found in [21]. Following this work, we have
chosen to implement a pipeline ring algorithm
as the fundamental brick of more general
system solutions. Let n be the dimension of A.
The first observation we make concerns the
time to solve a fixed-size problem versus the
number of processors, It is now well known that
this has little sense using a distributed memory
computer [6, 7]. Indeed, the performances of a
120 processors network will be correctly
evaluated if a large system is solved : a large-r
system than those a sole processor could treat.

9’

K
20

10-

0 1 , , , 1 1 P
o 20 4a 64) so 100 120

Figure 5: speedup measurements
for a 240’240 matrix (B=1OOO).

Therefore, the low speedups (ratios of the time
spent by a single processor over the time spent
by P processors) of fi~ure 5 are not surprisin~ if
w-e have a look at figu;e 6 at the same t&e. -

3W0

1

o P

1 10 20 40 60 80 100 120

Figure 6: greatest dimensions for problems
Ax=b mod p that can be solved on P processors,

and the corresponding costs (B= 100).

The 120 processors not even allow to reduce the
cost in a factor 30 just because the considered
problem dimension is not representative of
their capabilities. Another way to compute

speedups which has been proposed by Gustafson
[6, 7] will be used in the next paragraph.

Measuring the number of operations computed
per second per processor, figure 7 points out the
communications cost : it takes a more
important part of the whole process while the
number of processor increases.

a------
o~p

o 20 40 60 80 100 120

Figure 7: thousands of operations per second
per processor solving the greatest system

on P processors.

4.2 Linear system solution

We now consider the linear systems Ax=b
solution over the integers. A is still a n x n
matrix. Its coefficients and those of vector b are
absolutely bounded by B. We still assume the
determinant d of A is non zero.

● The first stage of ParCR algorithm
consists in performing h (given by Hadamard’s
inequality on I d I and (6)) modulo pi resolutions.

We assume the prime numbers pi are great

enough to neglect the pivoting cost. From [15]
we may asymptotically consider :

Cr(Rl = n2+ Rn. (19)

● Assuming that d is computed separately :
the second stage reduces to apply the Chinese
remaindering for the computation of the n
numerators of the rational coefficients of
vector x.

From (ParCR) we obtain the corresponding

communication cost on a P=R x S processors

grid (recall that ~x)=O if x=P and 1 otherwise) :

I GC(n,P,R) = I

h [&). ~(n2 + Rn) +xR). (&)]z.
(20)

For any given number P of processors and any
value R# 1, this quantity is clearly dominated

by the n2 term. Its minimization is therefore

348

obvious : R= 1 is the best choice, Compared with
the low communication cost of the Chinese
remaindering itself, any split of the modulo lpi

resolutions over the network would always
induce an extra-cost. This is well illustrated cm
figures 8 and 9. Considering R= 120 costs five

times as much as using R= 1.

1

J

~ aoo -

fi
- 4oo-
!!
“k

200-

0 1 1 1 8 1 ,R

o 20 40 w So 100 120

Figures 8 & 9: linear systems solution,
computational costs versus the value of R

(B= 100).

Real life problems ask to deal with matrices of
high dimensions. At the time, a few percentage
of gain is no more a priority if it seriously
limits the dimension of the problem. Let us see
what is happening for linear systems solution.
A modulo pi elimination needs at least the

storage of ~(n) =n2 coefficients. If Mmax is the

size of the workspace on each processor, from
(MParCR), n must satisfy:

(21:)

Assuming the absolute values of the coefficients
of A and b are bounded by B the Hadamard’s
inequality gives us a bound for the integers xk to

recover :
Bnnn/2.

Using (6) we may therefore asymptotically
consider,

h z nlo@nB. (22)

And condition (21) on n becomes :

nz n210gPnB
—--+
R P

< Minx. (23)

In other words, for any given dimension n of a
system to solve, the value of R which minimizes
the computational cost, is the lowest divisor R
of P satisfying :

R>
n2

(24)
n210gpnb “

Mm= - p

For large enough values of the lower bound p on

the prime numbers pi, n2/R is the largest term

of the memory cost. The maximum problem
dimension nmax we may consider on P

processors, then varies within a factor m We

have roughly nmax=~ M m ax if R= 1 and

%.a.X=@d~x if R=P. To increase R is
therefore a good way to exceed the limits
imposed to the dimensions. On the M6ganode
800 Ko available on each processor for the
storage of the coefficients lead to nmax~300

with R= 1 (B= 100) and to nmm=3000 with R= 120

(B= 100). As pointed before, the gain of about
25?40 on the total computational cost from R= 15
to R= 1 for instance, (figure 8) could be hidden by
the limits imposed to dimensions : 1100
versus 300.

moo 1

o~P
o 20 40 W801OO 120

Figure 10: greastest problems Ax=b (B= 100) on

P processors, extrapolated execution times.

We noticed in previous paragraph that

computing speedups running a fixed-size
problem is of low interest. Gustafson
introduced [6, 7] a new way to obtain them. For
each number P of processor, we consider the
largest instance of the problem that can be
solved and compute the time it would have
taken on a single processor. The ratio between
those times is the Gustafson’s speedup. But the
corresponding dimensions are too large in our
situation : they not allow us to measure the
required execution times (it would take about
2500 hours io aolvc a 3000ir3000 syekm). Wc

just present some strict extrapolations

obtained from the execution times modulo p

[figure 6).

349

100

80

40

20

0 P

o 20 40 60 so 100 120

I

o 20 40 60 80 100 120

Figures 11 & 12: extrapolated Gustafson’s
speedup and efficiency (B= 100).

The execution times are reported on figure 10.
Speedups and efficiency are given on
figures 11&1 2. The 120 processors grid reduces
the cost of the resolution in a factor 100.

4.3 Matrix inversion

Let A now be a 4 n x W matrix of integers
bounded by B. Its determinant is non zero. The
dimension of the problem is still n the number
of rationals to compute : the coefficients of the

inverse matrix A- 1. This inverse can be
computed performing Jordan eliminations on
A augmented with the identity matrix :

● We first perform h modulo pi
eliminations on A. Under the same
assumptions than 54.2 we get from [21, 15] :

C.(R) = n + Rb (25)

. We also assume that d is computed
separately : the second stage then reduces to
apply the Chinese remaindering for the
computation of the n COfaCtOrS of A frOm their h

residues.

Applying algorithm ParCR, the communication
cost of the whole process, is directly derived
from (ParCR) :

I JC(n,P,R) = ‘1

Looking for the value of R which minimizes
this quantity leads to complex formulas in the
general case. The term n/2R dominates for the

lowest values of R, while (R/P) (n + R~fi
increases with R. Consequences are better
illustrated by figures 13&14.

s Total

100 1
❑ Modulo p resolutions
❑ Chinese remaindering

o

1234568

Figure 13: total computation times for A- 1 and
repartition between the different phases

versus the value of R (n = P = 120, B = 106).

For the inversion on 120 processors, the best
value is R=3. The best compromise is reached
when : each modulo resolution uses a 3
processors ring, while each recovering process
uses a 40 processors ring. When P=80 our
example leads to a best value R=5.

12458 10 16 20 40

Figure 14: total computation times for A- 1 and

repartition between the different phases versus

the value of R (n = 160, P = 80, B = 103).

Let us observe before concluding, the respective
contributions of the different phases in the
total execution times. The time spent during the
chinese remaindering process decreases with R
while the time spent during the first step
increases. And according to formulas the
contribution of the chinese remaindering
increases faster with B than with n (it is
predominant in a unique case, R. 1 and
P=n= 120).

350

5. Conclusion

Applying the Chinese remainder theorem in

parallel to compute n integers, a main question
arises : is it necessary to introduce a
communication cost during the first phase ?
Which number R of processors do we have to
dedicate to each modulo resolution ? Let us
recall that such a question may seems
paradoxical since the work of this first phase is
to solve h independent problems.

● If the goal is to minimize the totad
computational cost, our answer depends on the
communication complexity of the modulo
resolutions. If it is of an order O(n) : we have to
find the value R which leads to the lowest total
cost given by the quantity (ParCR). An
illustration has been given by the problem c)f
matrix inversion. On the contrary, if it is of an
order greater than O(n), it dominates the whole
communication cost. Therefore there is no need
to parallelize the modulo resolutions, this
would always induce an extra-cost : linear
system solution is a representative example.

● Obviously, when the goal is to increase the
dimensions of the solved problems, the
solution is also to split the modulo resolutions.
At the time, to minimize the totad
communication cost, according to the available
memory we choose the lowest acceptable (see
(24)) value of R.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

E.H. Bareiss, Computational solutions of
matrix problems over an integral domain,

J. Inst. Math. Applic. 10 (1972) 68-104.
I. Borosh and A.S. Fraenkel, Exact solutions c)f
linear equations with rational coefficients by
congruence techniques, Mathematics cd’
Computation 20 (1966) 107-112.

S. Cabay, Exact solution of linear equations,

Proe. Second Symp. on Symbolic and Algebraic
Manipulation+ ACM, New-York (1971) 392-398.

S. Cabay and T.P. L. Lam, Congruence
techniques for the exact solution of integer
systems of linear equations, ACM Trans. Math.
Sc@are 3 (4) (1977) 386-397.
M.J. Flynn, Very high-speed computing
systems, Proc. IEEE 54 (1966) 1901-1909.

J.L. Gustafson, Reevaluating Amdahl’s law,
Communications of the ACM 31 5 (1988]
532-533.

J.L. Gustafson, The scaled-sized model : a
revision of Amdahl’s law, in 1 C S
Supercomputing 88, L.P. Kartashev and S.1.

Kartashev eds., International Supercomputing
Institute Inc. (1988), vol. II, 130-133.
J.L. Gustafson, S. Hawkinson and K. Scott, The
architecture of a homogeneous vector

supercomputer, Proc. ICCP 86, IEEE Compl.

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Science Press, Silver Spring, MD (1986) 649-

652.

K. Hwang and F. Briggs, Parallel processing
and computer architecture, Mc Graw Hill
(1984).
INMOS, The transputer data book, Press Ltd,

Bath (1989).
D.E. Knuth, The art of computer programming,
vol. 2, Addison Wesley Publishing Co., second
edition, (1969).
J. D. Lipson, Elements of algebra and algebraic
computing, Addison Wesley P. Co. (1981).

M.T. McClellan, The exact solution of systems
of linear equations with polynomials

coef8cients, J. of ACM 20 (1973) 563-588.
B. Plateau et A. Touz~ne, Mesures de
performances des communications du

M~ganode a 128 transputers, La lettre du
transputer et des calculateurs distribuks 7
(1990) 73-77.
Y. Robert, B. Tourancheau and G.Villard, Data

allocation strategies for the Gauss and Jordan
algorithms on a ring of processors,

Information Processing Letters 31 (1989) 21-
29.
F.Roth, Ca[cul Formel et paralle?lisme : forme
normale d’Hermite, m~thodes de calcul et
ParaU&lisation, These de l’Instistut National
Polytechnique de Grenoble, France (1990).
J.L. Roth, F. Siebert, P. S6n~chaud et G. Villard,
Computer Algebra on a MIMD machine, 1988
International Symposium on Symbolic and
Algebraic Computation, Roma, Italy, in

SZGSAM Bulletin ACM press, vol. 23 no 1 (1989).
Y. Saad, Gaussian elimination on hypercubes,

in M. Cosnard et al. eds. Parallel Algorithms
and Architectures , North-Holland, Amsterdam,

(1986) 5-18.

Telmat Informatique, T.node overview,
lTV/doc/ l_02/3.2 (1990).

H. Takahasi and Y. Ishibashi, A new method for
exact calculation by a digital computer,
Information Processing in Japan, 1 (1961) 28-
42.

G. Villard, Calcul Formel et parallblisme :
resolution de syst~mes lin&aires, Thr%e de
l’Institut National Polytechnique de Grenoble,
France (1988).

G. Villard, Chinese remaindering on a MIMD
parallel computer, submitted for publication in

Journal of Symbolic Computation.
D.M. Young and R.T. GregoW, A Suruey o~
Numerical Mathematics, Vol. 2, Dover

Publications, Inc. (1988).

2<1

