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Abstract

We study linear Differential Algebraic Equations, DAE, with
time varying coefficients. Such equations

B(t)&(t)= A(t)z(t) + f(t)

are intensively studied from a numerical point of view. Ca-
nonical forms have been proposed to find conditions under
which the equation admits a solution, to find the set of con-

sistent initial conditions and to determine conditions under

which there is a unique solution. However, since the sit-
uation where the system admits infinitely many solutions
for one initial value is not really tractable in a numeri-

cian framework, few algorithms may be found in this latter
case. Among them, we find the method of P. Kunkel and

V. Mehrmann who propose a new set of local characterizing

quantities for the treatment of the system. This leads to a
generalization of the global index.

Nevertheless, these latter characterizing quantities im-
pose too restrictive conditions on the input equations. We
propose new definitions for them that lead to a new algo-
rithm which puts the initial system into a reduced form with-
out doing any assumption on it. This allows us to propose

a new generalization of the global index and a definition for

the singularities of the initial system. The questions of ex-
istence and uniqueness of solutions are solved in all interval

which does not contain singularity.

Finally, since from a practical point of view the general
case of analytic functions is difficult to handle, we focus on
the polynomial case. We propose an effective algorithm that

has been implemented and report some experiments.

Introduction

Given a system:

A(t)i(t) + B(t)x(t) = f(t) (1)

where A(t) and B(t) are n x p matrices with analytic com-
ponents on an interval I and j(t) is undefined, we want to

know under which conditions the system (1) has solutions,
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and whether these are uniquely determined by their value

at any toG I. Finally, we want to find the set of consis-
tent initial conditions, i.e. conditions Z(to)= Xo,toE I for
which the corresponding initial value problem has at least

one solution.

When A(t) is a regular square matrix on 1, system (1)
turns out to be an ODE:

i(t) + A-l(t) B(t)z(t) = A-l(t)f(t)

In this case, we can answer the previous questions.

Otherwise, (1) is called a Differential Algebraic Equation
or DAE. To introduce the key notion of index, let us assume
for instance that A(t) is a square matrix of the form

Al(t) O

00

where Al(t) is a square regular matrix on 1. System (1) can

be written as:

A,(t)i, (t)+ l?,, (t)x, (t) + Bu(t)zz(t) = fl(t)
B,, (t)zl (t) + B22(t)z2(t) = f2(t)

(2)

that is a set of algebraic and differential equations. Assume

now that jZ (t)can be differentiated. Differentiating the sec-

ond row of (2) we obtain the system:

A,(t) O xl(t) +

B,,(t) B,,(t) x2(t)

gll(t) gn(t) xl (t) . fl(t)
l%, (t) B,,(t) x, (t) f,(t) “

If the matrix B22 (t) is regular, this new system is an ODE,

else we have another DAE and the process can be iterated.
The number of differentiations of the initial DAE that are
required to generate an ODE, when possible, is called the
O!iflerential index of the DAE. Gear [10] gives a general defi-
nition of the differential index. We write it here in the linear

case.

Definition 1 The differential index id of a system (1) is

defined by:

- -if A(t) is regular on I, id = O.

- Otherwise consider the system of equations

A(t)&(t) + El(t)x(t) = f(t)

&( A(t)i(t) + B(t)z(t)) = A+

(A(t) + B(t))i(t) + @t)z(t) = j(t) (3)

...
~(A(t)i(t) + B(t)z(t)) = ~

223



as a linear system of equations in the separate depen-

dent variables x, x(z), . . . . X(5+1), and solve for these

variables as functions of z and t considered as indepen-
dent variables. If it is possible to solve for x for some
finite s, then, the index id is defined as the smallest s

for which (3) can be solved for x(x, t).

This differential index is a fundamental notion from a nu-

merical point of view. In particular when id > 2, the numer-
ical computation of solutions requires specific care [8]. As
we will see, the latter definition can be extended to the cases

where it does not exist a s such that the system is solvable.

From now we distinguish a regular and a singular case.

System (1) is said to be regular (or analytically solvable fol-
lowing the definition in [3]) on the interval 1 if for any

sufficiently smooth f(t), there exist solutions to (1) defined
on all 1 which are uniquely determined by their value at any
toe I.

For this kind of DAE, Campbell and Petzold [3] have
shown that there exists a pair of nonsingular analytic ma-
trices on 1, P(t) and Q(t), such that the transformation

z(t) = Q(t)y(t) and left multiplication by P(t) turn (1) into

Id O Y1(t)
O N(t) Yz(t) +

c(t) o
(4)

Y1(t) = fl (t)
o Id Y2(t) fz(t)

where N(t) is nilpotent and lower (or upper) triangular.
Form (4) is called standard canonical form (or SCF).

When a system is in SCF, the solutions and the consistent
initial conditions can be found. For a regular DAE, Camp-

bell and Petzold also give an algorithm to compute P(t)and
Q(t). Besides, we can find algorithms [8, 2] which compute
the differential index of a system and establish its regularity.

Thus, the regular case is well known.

The singular case is more complicated. Indeed, a singu-
lar system may have more than one solution for a consistent
initial condition; also, there is not always a solution for any

f(t) smooth as it may be. Kunkel and Mehrmann [13, 14]
have proposed an algorithm for singular systems. They have
extended the definition of differential index (strangeness in-

dez) when (3) cannot be solved for x for any finite s. Un-
fortunately, there are some DAE’s, some even regular, that
cannot be solved with this approach.

Our aim in this paper is to generalize the approach of
Kunkel and Mehrmann to enlarge the classification of the
systems in case of analytic coefficients. This will lead us to
generalize also the index and to a natural definition for the
singularities of (1). We want to point out that our goal is

not to propose a general theory for DAE. We just propose

an efficient algorithm which allows to simplify linear DAE.
It is obvious that theoretical works has been done on the
wbjmt, both from a geometrical point of vew (see [16, 22])

and in differential algebra (see [4, 5]). These aproaches are
general but often lack efficiency.

In section 1 we begin with classical definitions of equiv-
alence and basic linear algebra results. The algorithm of
Kunkel and Mehrmann is briefly described in section 2. We
explain why it is too restrictive according to us. In section
3, we present a new algorithm that brings the system into
a reduced form. Under this form, the system will be called

full system. The point is that the form can be computed
for every system (1) on the whole of its definition interval.
In section 4, we show how the form computed allows us to
decide of the existence and uniqueness of the solutions. In

most cases, this can be decided except for a set of isolated

points. To describe this phenomenon, we introduce the no-
tion of singularity of a DAE. In this section we also extend
the definition of the differential index. Finally, in section 5,
we study the polynomial case and show that the algorithm

can be easily implemented. Some experiments are reported
using MAPLE.

Notation We often use the notation (A(t), B(t)) for the

system (l).

1 Basic definitions and theorems

In this section we define algebraic and differential equiva-

lence of two DAE and then give two theorems for matrix
transformations.

1.1 Equivalence between DAE

Given a DAE A(t)i(t) + B(t)z(t) = f(t) defined on the
interval 1, transformations of the form

Eqi t Egi + a(t)Eqj

where Eq~ and Eqj are respectively the ith and jth equations

of the system and a(t) is analytic on 1, does not change
the solutions of the system. This kind of transformation

amounts to a left multiplication by a matrix P(t) analytic

and nonsingular on I.
If we set now z(t)= Q(t)y(t) where Q(t) is analytic

and nonsingular on I, we do not change the nature (ie the

dimension of the solution manifold and the existence of sin-

gularity) of the solutions either. The system obtained can
be written:

Any + (A(t)Q(t) + B(t) Q(t))y(t) = f(t)

These two transformations are purely algebraic, we say

that the two systems

A(t)i(t) + B(t)z(t) = f(t) and

A(t)i(t)+ B(t)z(t)= j(t)

are algebraically equivalent on I if there exist two matrices
P(t) and Q(t) analytic and nonsingular on 1 such that:

PA = ~(t)

P(t)13(t)Q(t) + PA = ~(t)
(5)

We will

where n is

also need different ial operations like:

Eq~ t Eqi + a(t)~qj and (6)

Eqn~l + Eqj (7)

the number of equations, Eq~, EqJ and a(t) are
defined as above.

We say that two systems are differentially equivalent on
1 if we can obtain the second one by applying (6) or (7) to
the first one. In this definition, the operations (6) and (7)

must let the order of the system unchanged.

Definition 2 Two systems of DAE S and S are equivalent

on I if there exists systems SO = S, S1, . . . . Sk = ~ such

that for all i, O < i < k – 1, S~ and S~+I are algebraically
equivalent or differentially equivalent on I.
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1.2 Two very useful theorems

Preliminary remark: An analytic function defined on I

which is equal to zero on an interval J c I is equal to zero

on the whole of 1. Consequently, if III(t) is an n x p matrix
with analytic entries on 1 and has rank r(t),then r(t) is a

constant on 1 except at some isolated points.
The following two theorems form essential steps both in

Kunkel and Mehrmann’s algorithm and in our algorithm.

The proofs are given in [21].

Theorem 1 Ijlf(t) is real analytic on I and. > Rank(iM(t))
for all t E I, then there exists real analytic non~ngular ma-

trices P(t) and Q(t) such that:

P(t) M(t)Q(t) = x$) : with X(t) a r x r matrix

Theorem 2 If X(t) is a r x r real analytic matrix on I

and Rank(X(t)) = r(t) is equal to r except at some isolated
t G I, then there exists a real analytic nonsingular matrix

P(t) such that:

F’(t)’Z(t)= A(t)

where A(t) is upper triangular.

This last factorization is called, in the numerical linear al-

gebra community, a rank revealing QR factorization.

2 The Kunkel and Mehrmann algorithm

In this section we briefly describe the Kunkel and Mehrmann
algorithm for the reduction of linear DAE. Further details
may be found in [13, 14].

To give their algorithm, Kunkel and Mehrmann define
three characteristic quantities r, a and s. Let (A(t), B(t))

be a linear DAE with analytic components on 1. Assume

that Rank(A(t)) = r is constant on 1, by theorem 1, the

system is equivalent to the following one:

( Id, O B,, (t) B,,(t)
00 ‘ B2, (t) B22(t)

)

where Id, is the identity block of order r.

Assume now that Rank(B22 (t)) = a is constant on 1,

applying theorem 1 for M(t) = BZZ (t ) we obtain:

(
Id, O 0 B,,(t) B,,(t) B,3(t)

000 , Bz, (t) Ida O

000 B31 (t) O 0 )

where the B~j (t) are different from the previous ones.
Finally, assume that Rank(B31 (t ) ) = s is constant on 1,

we put the system into the form:

(
Id, O

0 Idd
00

00
00

B,,(t)
Bz, (t)
BSI (t)

Id,
o

withd=r —s

00
00
00 ,
00
00

B,Z(t)
BZZ (t)
B3Z (t)

o
0

B,S(t)
Bza(t)

Ida

o
0

B,,(t)
B*4(t)

o
0
0 )

Using algebraic transformations we can replace the blocks

i313(t),B2s(t),B31(t),13s2(t),BII(t),Bzl(t) and Bzz(t) by

zero (see [13]). If r, a and s are constant on 1 the initial

system is equivalent to a system of the form:

(

Id. 000 O Blz(t) O B14(t)

o ~dd O 0 000 Ba4(t)
o 0 00 , 0 0 Ida O

0 000 Id, O 0 0

0 0 00 0000 )

We also can write this system:

{

(a) iI (t)+ Bu(t)m(t) + Blw(t) = gl(t)
(b) i2(t) + Bzq(t)zl(t) = gz(t)

(c) z,(t) = g,(t) (8)

(d) x,(t) = g4(t)

(e) O = 95(t)

where there exists a nonsingular analytic matrix P(t)such

that g(t) = P(t) f(t).

We now differentiate equation (8d) and insert it in (8a),
which then becomes an algebraic equation. The new system
is equivalent to the initial one in the sense of definition 2,

and can be written:

(

o 0 00 0 Blz(t) O B14(t)

o~ddoo 000 Bz4(t)

o 0 00 , 0 0 Ida O

0 0 00 Ids O 0 0

0 0 00 0000 )

We can apply again the same transformations, computing

new characteristic values r, a and s. Repeating this proce-
dure, this gives rise to a sequence of systems (A~(t), Bi(t))

and to the related sequences of characteristic values (ri, a~, St )
However these transformations are possible if ri, ai and Si

are constant on 1 at each step. In that case, Kunkel and
Mehrmann [13] proved there exists a number m, called the

strangeness index, defined by:

rrz=min{i~N I sZ= O}.

When m is reached the iterations are stopped. In addition,
they proved that the sequences of characteristic values have

the properties:

r~ > r~+l fori <m, r~=rm fori~rn

ai < ai+l fori <m, ai=am fori~m (9)
si > Si+l fori <m, s~=O fori~m

Then the initial system A(t)i(t) + B(t)x(t) = f(t) is equiv-

alent to a system under the form:

(

Idr~ O 0 00 Blq(t)

o 00 , 0 Ida~ O

)

(lo)

o 00 00 0

where inhomogeneity is determined by f (t), ~(t), . .. . f(m) (t).

According to Kunkel and Mehrmann there exists a relation
between the strangeness index and the differentiation index

2d when they are both defined:

{

o form= O,aO=O& =
m+l otherwise

In addition, when the system is in the form (10), it is very
easy to answer to the existence and uniqueness of the solu-
tions and the consistency of initial conditions. However, this
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algorithm can be improved. A lot of systems (even regular
ones) do not fulfill the condition ri, w, and Si constant for
all i, O s i ~ m on the definition interval 1. We present two

examples...

Example 1 If ~(t) ~ C2 (R), the system

Ot xl(t) + 10 m(t) _ fl (t)
00 x2(t) 01 x2(t) – f2(t)

has a unique solution on all R which is

xl (t) = fl (t) – tj2(t)
z2(t) = fz(t).

However, the Kunkel and Mehrmann algorithm cannot say

anything at t = O because rO = 1 on all R except at t = O.

Example 2 If f(t) E C2 (R) and satisfies the consistency

condition t(f 1(t) – j3 (t)) = fz (t) the system

10 01
00 xl (t) + fjt xl(t) _

00
x2(t)

10
x2(t) –

has a unique solution on all R which is

xl(t) = f3(t)

z2(t) = fl (t) – f3(t).

fl (t)
f2(t)
f3(t)

However, the Kunkel and Mehrmann’s algorithm cannot say

anything at t = O because aO= 1 on all R except at t = O.
We propose in the next section a generalization of the

Kunkel and Mehrmann’s algorithm which allows us to treat

systems on all their definition interval.

3 Our generalized algorithm

A careful study of the Kunkel and Mehrmann’s algorithm

shows that the assumptions about r~ and a; for all i, O ~
i ~ m, are superfluous. If we just assume that r~ and am

(which is the case for the last two examples) are constant on
1, we can apply the Kunkel and Mehrmann’s algorithm in

the same way. As for to the assumptions about the si, even if
they are not constant, we can differentiate the corresponding

equations and add them to the system. The new algorithm
is based on these remarks.

Generalized algorithm:

Let the initial system A(t)i(t) + B(t)z(t) = f(t) be defined

on 1. Like in the Kunkel and Mehrmann algorithm, with
three applications of theorem 1, we can put the system into
the equivalent form:

(

All(t) A12(t) O 0
A21(t) A22(t) O 0

0 0 00 ,
0 0 00
0 0 00
Bll (t) B12(t) B13(t) B14(t)
B21 (t) B22(t) B23(t) B24(t)
B31 (t) E$2/;) ra~t) o

0 0
0 ; o 0

except at some isolated points. Applying theorem 2 we can

put the Aij block into an upper triangular forml:

[

-xl,(t)z2(t) o 0
0 b(t) o 0
0 0 00 ,
0 0 00
0
Bll (t)0B12(t;!i?13(t) B14(t)

B21 (t) B22(t) B23(t) B24(t)
B,, (t) :2$) r=(t) o

0 0 0
0 : 0 0 1

(11)

Now we can add to the system the derivative of the equa-

tion fl, (t)zz(t) = g4(t) to get the equivalent system

[

Xll(t) z12(t) o 0
0 x22(t) o 0
0 Q, (t) o 0
0 0 00 ‘

(12)

o 0 00
0 0 00 I
Bll(t) Bn(t) B13(t) ~14(t)

B21 (t) B22(t) B23(t) B24(t)

o 6. (t) o
B31(t) :2/;) ra (t)

o 0
0 i o

and applying theorem 1 to the block:

x22(t)
0. (t)

we obtain:

%,(t) q12(t) o 0

0 %(t) o 0
0 0 00
0 0 00
0 0 00
0 0 00

0
0
0
0

Bll(t) B12(t) B13(t) B14(t)

BZI (t) B22 (t) B23 (t) BZ4 (t)
Bs, (t) %(t) %(t) %(t)
B,, (t) B42(t) 17a(t) O

0 Q.(t) o 0

0 0 0 0

In the same way we now apply theorem 1 to the block:

this lead to:

[

II:3:/ B34 (t)

a o II
ml(t) z12(t) o 0

0 Szz(t) o 0
0 0 00
0 0 00’
0 0 00
0 0 00

where A~j (t) (respectively 17a(t) and Q.(t)) is an r x r (re-
spectively a x a and s x s) square matrix, nonsingular on 1
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Bll (t) Blz(t) Bls(t) B14(t)

B21 (t) B22(t) B23(t) Eh(t)
B3, (t) E&(t) ral (t) o
l?~l(t) l?~z(t) (1 o

0 Q,(t) o 0
0 0 0 0

Finally we apply theorem 1 to the block:

Ba (t) ELQ(t)
n, (t) o

the system is then:

[

ElI(t) z12(t) o 0
0 Zzz(t) o 0
0 0 00 ,
0 0 00
0 0 00.,,
B,I(t)
Bz1 (t)
B31 (t)

o
0

B,,(t)
B22 (t)
B32 (t)

Q., (t)

o

B,;(t)
B23(t)

ra, (t)
o
0

B14(t)
B24(t)

o

0
0 )

(13)

This procedure can be repeated, As in Kunkel and Mehr-
mann’s algorithm, this gives rise to a sequence of systems

(A, (t), Bi (t)) and to a new sequence of characteristic values
(r;, a,, si). Let us notice that no rank assumption has been
done: our transformations are valid on whole 1.

Theorem 3 There exists a number m defined by:

m.

{

min{i c N, Si+l = Si} ifso#o
o otherwise

Proof If SCI # O, (s~)i6N is an increasing sequence with

Min{n, n} as upper bound. ❑

When m is reached the iterations are stopped.

Proposition 1 When Kunkel and Mehrmann’s algorithm

can be applied, the number m defined in theorem 3 and

the strangeness index defined by Kunkel and Mehrmann are
equal.

Proof Applying our generalized algorithm on a system and
getting Sll = Id, Ezz = Id, 17a, = Ida, and Q,, = Id,, for

all i, O ~ i ~ m is equivalent to say:

where j is our s characteristic value and s the characteristic
value defined by Kunkel and Mehrmann, ❑

4 Full system, index, and singularity

As seen above our new algorithm can be applied to any
system in input, The final form will be called full system.

This section is intended to give its properties and to apply
it for the solution of the system.

4.1 Full system

When s~+l = s,, we obtain the final equivalent system

[

al(t) J&(t) o 0
0 &(t) o 0
0 0 00 ,
0 0 00
0 0 00
131(t) Bl, (t) B,,(t) Bui(t)
B,, (t) B,,(t) B,S(t) B,,(t)
Bs, (t) B32(t) I’am(t) O

0 Q.m (t) o 0
0 0 0 0 )

(14)

Proposition 2 Sequences (a~ ) and (si ) have the following

properties:

az<aa+l fori <m, ai=a~ fori>m

si+~>si fori <m, sl=sm fori~m

In other words, the sqstem (1,/) completed with the derivative

of the third equation~

(
Zll(t) Zlz(t)

o x,, (t)
Bin(t) B32 (t)

o
0 0
0 0

00

ra~ (t) g
00 ‘
00
00

Bll(t) Blz(t) B13(t) “ B14(t)
B,l (t) B22(t) B23(t) Bz4(t)

B31 (t) AsZ(t) ram(t) o
B31 (t) B32(t) ram(t) o

0 mm (t) o 0
0 0 0 0

is a system, equivalent to the initial one, where the ODE:

(

Sll(t) 212(t) o (1

o x,,(t) o 0 ,

B31 (t) B,,(t) 17~~ (t) O

Bll (t) B12(t) B13(t) B14(t)

)

(15)

B, I (t) B,,(t) B,,(t) B,,(t)

&l(t) B32(t) ram (t) o

is the “biggest” one, i.e. has the largest possible dimension
for an ODE underlying the initial system.

The systems which verify this property are called full sys-

tems.

Proof As in the proof of proposition 1, applying our al-
gorithm on a system that fulfills Kunkel and Mehrmann’s
condition we get a; = iii where i-i is our characteristic value

and a the characteristic value defined by Kunkel and Mehr-

mannc
Moreover we know that a system fulfills the condition

for the application of Kunkel and Mehrmann’s algorithm on

whole its definition interval except at some isolated point.
Using the “continuity” of& and 3, the two equations ai = iii

and &+l – -% = s;, and the equations (9) established by
Kunkel and Mehrmann, we complete the proof. ❑

Let us look at the proposition in the regular case. To a
regular system of dimension n, by definition, we can asso-
ciate an underlying ODE of dimension n [1O]. The propo-
sition expresses that the algorithm has computed such an
equation. The leads directly to generalize the index as be-
low.
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4.2 Generalization of the index

When the initial system is regular, or more generally, has
not undetermined component, the ODE (15) involves all the

entries of x(t). Clearly, in this case, as for the strangeness
index of Kunkel and Mehrmann, if m # O or U. # O the
differential index is given by id = m -1-1 (otherwise id = O).

So the natural extention of definition 1 for the index of any
system (1) that we will take is:

{

o form= O,aO=O
id =

m+l otherwise
(16)

Another application of form (14) we will see now is that
it leads to a natural definition of the singularities of a sys-

tem (l).

4.3 Singularities of the system, existence and uniqueness
of solutions

We now look at conditions under which our system is equiva-
lent to an ODE without singularity and an algebraic nonsin-
gular system, For that, we clearly need Ell (t) and ram (t)to
be regular. Furthermore if C?,- (t) is singular even if Z22(t)
is regular, the algebraic nonsingular system cannot be ob-
tained using equivalent transformations only. From this we

define the singularities of the system as follows.

Definition 3 A system on an interval I has a singularity

at point to C I if one of the submatrices S11 (to),ram (to)or

Qsm (to)has not a full r-ark.

Theorem 4 Any system (1) may be put into the equivalent

form (lJ) on the whole of its dej-inition interval. On each
sub-interval such that the system has no singularity (Ii) is

equivalent to a system:

{

kl(t) + Bll(t)zl(t)= gl(t) – B13(t)x3(~)

Czz(t)= 92(t) (17)
o = g3(t)

where the inhomogeneity is determined by f(t), f(t), ..,,

f (m)(t).

Lemma 1 Let (A(t), B(t)) and (A(t),fl(t))satisfy the alge-

braic relation (5), sequences (r~, a,, :,) generated by (A(t), B(t))

and (Fi, di, ~~) generated b~ (~(t), B(t)) are the same.

Proof Our characteristic values are defined on the whole
of the definition interval but are equal to the Kunkel and
Merhmann ones when the latter are defined. Thus, by [13,
theorem 7, p5], we have:

r-o = ;0 aO=iiO, so = 30

Assume now that (A(t), B(t)) and (~(t),~(t))are in the
form (11) which we rewrite:

(

Ml(t) %(t) o 0 0
0 k(t) o 0 0
0 0 000 ,

0 000
: 0 000

By assumption, there exist analytic and nonsingular l?(t),

Q(t)such that (omitting arguments):

PA= AQand PB=BQ+AQ

Usirw a similar method to the one used in [13, proof

of theorem 10, p12], we consider the first previous identity,
after some transformations we have:

Thus:

P31 = PLI = PSI = P3Z = P42 = P52 = O and

Q23 = Q24 = Q25 = Q,, = QM = Q,5 = O

Writting the last three row blocks of the second identity, we
find:

P53=P54=P43 =0,

Q34 = Q35 = Q21 = O and

P44& = fl~ Q22

Replacing these zero blocks in P and Q we see that P44

and Qtz must be nonsingular, thus (O, Cl, ) and (O, Q, ) are
algebraically equivalent.

We define now ~ by:

II P1l P12 P13 P14 o P15 II—.. .
P21 PZZ Pz3 PS4 O P26 “

P. ;:
P33 P34 o P35

o P44 o F’45

II00 0 P44 P44 o
00000 1355 II

We have

fi& = AIQ and PB1 = BIQ+AIQ

Al, Bl) and (~1, ~1) are in the form:

Xll(t) z12(t) o 0 0
0 h(t) o 0 0
0 0 000
0
0 Q:(t) : : :
0 0 000

>

BI1 (t) B12 (t) B13(t) B,4(t) B,5 (t)
l?zl (t) B22(t) Bt3(t) B24(t) B25(t)

B3, (t) B3, (t) r.(t) o 0
0 o.(t) o 0 0
0 Q. (t) o 0 0
0 0 0 0 0

B,I (t) B,2(t) B,3(tj’ h(t) B15(t)
B2, (t) l?,,(t) B23(t) h(t) BzS(t)

)

which is similar to the form (12). Thus, if we put two al-

B3, (t) B3, (t) r.(t) O 0 gebraically equivalent systems into the form (13), we have

o Q. (t) o 0 0 shown that the new systems are algebraically equivalent,

o 0 0 0 0 This completes the proof. ❑

228



Proof (of theorem 4):

system has no singularity,

(

Id ~12(t)

o X22 (t)

00

00

00

On every interval such that the
(14) is equivalent to a system:

00
00
00 ,
00
00

Ih(t) B12(t) &3(t) ~14(~)
~,, (t) B,Z(t) ~23(~) ‘2:(t)

B31(t) B32(t) Id.m

o Id5~ O 0
0 0 0 0 )

Using transformations (5) we put this system into the equiv-
alent form:

[

o z22(t) o 0

0 0 00
0 0 00 ,

0 0 00

Blk(t) o 0 B14(t)
B2, (t) o 0 B,, (t)

o 0 Ida- O
0 Id~~ O 0
0 00 0 )

Lemma 1 ensures sequences (ri, a~,.% ) of this last system to

be identical to the ones of the initial system. Thus, it follows
from proposition 2 that:

fori~m, ai=a~andsi=s~

Applying our algorithm we see that this is possible only if:

Rank(B24(t)) = Rank(B2, (t)) = O

Applying (6) where Eqi and Eqj are respectively the second

and fourth block of equations of the last system and a(t) is
equal to –XIZj (t), we can rewrite the system:

(
IdOO J311(t) o B14 (t)

000 , 0 Idanz+snz o

000 0 0 0 )

which is into the form (17). ❑

Once the form (17) is obtained we can immediately con-
clude concerning the existence and uniqueness of the solu-
tions of the system.

Corollary 1 (h all interval j such that the system has no

singularity, the system has at least one solution if and only
if f(t) is Cm (R) and satisfies g:(t) = O.

An initial condition at tO E I is consistent ij and only if
atsatisfies x2 (to) = g2 (to).

A solution is uniquely determined by its value at to c ~

if and only ij Dim(zI(t)) + Dirn(x2(t)) = p.

5 The polynomial case

In practice, it is not easy to implement theorems 1 and 2 for
analytic functions. On the contrary, the polynomial case

A(t)i(t) + B(t)x(t) = f(t)

where A(t) and B(t) have polynomial coefficients, may be

implemented. We give in this section the polynomial ver-

sions of theorems 1 and 2 and we show how a new set of

singularity ies, smallest than the one given in section 4.3, can

be computed.

We assume in this section that the coefficients of A(t)

and B(t)are in K[t] where K[t] is the polynomial ring on

K, subfield of R.

A nonsingular matrix M(t) E K(”inj [t]is in Hermite

normal form if it is upper triangular and if its entries satisfy:

roll(t) is monic for z 6 [1..n]

lleg(mj~)(t) < Deg(m~i(t)) for i G [1..n], ~ = [1..i – 1]

Theorem 5 Given a nonsingular matrix M(t), components

of which are in K[t], there exists a nonsingular square matrix

P(t) such that P(t)M(t) is in Hermite normal form.

Theorem 6 Given a r-ranked matrix M(t) components of

which are in K[t], there exist two matrices P(t) and Q(t),
such that:

P(t) M(t)Q(t) = ~jt) : and

Det(P(t)) c K*, Det(Q(t)) c K*

where H(t) is a Hermite square matrix of rank and order r.

The proof of theorem 5 can be found in [6, (II, chap. 6)]

and the proof of theorem 6 can be done by two applications
of theorem 5 on the matrix then on its transpose.

Moreover there exist polynomial time algorithms that

compute the Hermite normal form.
Given these two matrix transfomations, our agorithm de-

scribed in section 3 applies dh-ectly to the simpler case of

polynomial coefficients, but it gives rise to a new reduction
on the coefficient degrees. Let us see on an example.

Example

{

tz(t)= fl (t)
t’$(t)= f2(t)

The algorithm computes the equivalent system:

{

tz(t)= fl(t)

tx(t) = ;(–tfl (t) + }2(0) (18)

o = t2fl (t)– tf, (t) + 2f, (t)

and stops because !20(t)= I/tzIIand !21 (t)= [/t/lhave the

same order.
Nevertheless, Deg(Det(fll (t)))< Deg(Det (00(t))), and

if we take a step forward in the algorithm we find:

( tT(t)+ x = ;(-.fl (t)- til(t)+ fj’)(t))

{

z(t)= ~(–3jl (t)– t;l(t)+ fjz)(t)),
(19)

o = tfl(t) + +(t’ii(t) – tfj2) (t) + fz(t))

o = t’f, (t) – tj, (t) + 2f2(t)

The second equation of system (19) gives a solution on the
whole of R whereas definition 3 gives O as a singularity.

This reduction on the coejiczents degrees exists in the
polynomial case because the derivative of a polynomial of

229



degree d is a polynomial of degree d – 1. If we take this re-

duction into consideration, we can apply our algorithm and
compute the sequences (A,(t), Ih (t)) up to m > m defined
by:

% = Man{ i c N, si+l = s~ and

Deg(Det(C2~,+l)) = De9(Det(Q5i)) }

This reduction allows us to find a smaller set of singular-

ities. Nevertheless, it may be possible that we find a more

restrictive set of conditions on ~(t). Thus, applying the al-

gorithm up to m, we have just found a characterization of

f(t)which gives a smaller set of singularities.

6 Implementation

We have implemented our algorithm in the polynomial case

wit h the system MAPLE. Here are examples of executions.
The function RedSyst computes the full system, at each step

i of the algorithm the program prints the current system

(A,(t), B,(t), fi(t)).

Example 1

{

ti2(t) + z,(t) = f,(t)

z2(t) = fz(t)

> RedSyst(A,B,t);

Example 2 (see figure 1)

{

ti(t)= j,(t)
t2z(t)= fz(t)

In this latter case a solution is explicitly computed that

is given by the second row of the output matrices; the even-
tual problem at t = O arises for particular j(t)that do not
satisfy to the equations given by the last two rows.

Conclusion

Our new algorithm allows the reduction of any system (1)
on the whole interval of definition. Once the system is re-
duced, we can conclude to the existence and uniqueness of

solutions provided some assumptions are satisfied. Our as-
sumptions are less restrictive than Kunkel and Mehrmann’s
ones and induce us to define a set of singularities for a sys-
tem (1). Moreover, in the case of polynomial coefficients,
the algorithm can be implemented and gives a smaller set
of singularities.

Nevertheless, our algorithm can be improved considering
the algebraic conditions on ~(t) and its derivatives. Let’s
look at the example:

{

tz(t)= jl(t)
tzz(t)= f2(t)

> RedSyst(A,BJ);

[Iwi]..........----

11:1
t1

01

0’0

00

. . . . . . . . . . . . . . . . .

[1?fl(t)-t j?(t) +2 f2(r)

. . . . . . . . . . . . . . .

1111
tl

01

0’0’
ffl(t)

00

-: fl(r)-&))+%4--
-:fl(r)-:i[:fl(’)l+:(
‘:f2[:f’(’)1-:’[$n(’)

[1?fl(f)-f .&r) +2 f2(l)

Figure 1: Execution (example 2)

The algorithm (in the polynomial case) gives the equivalent

system:

{

i(t) = –2;1 (t) – ;.f[2) (t) + +f.j3) (t)

z(t)= –;(3fl (t) + til (t)– j:2)(t))

()=–f,(t)– 2tjl (t) – ;f[’) (t)+ ;t:3) (t)

o = tf, (t) + ;(~’j, (t) – tf$’) (t) + j2(t))

o = tzfl(t) – tfz(t) + 2f2(t)

where the second equation gives the solution, the first equa-

tion is the derivative of the second one, and the three last
equations are algebraic conditions on ~(t) and its deriva-
tives. These last equations are not independent. In fact we
only need the last equation:

o = t2fl(t) – tj2(t) + 2j2(t)

to describe the algebraic conditions on j(t) and its deriva-
tives.
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