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Abstract

For a polynomial matrix P(z) of degree d in M~,~(K[z])

where K is a commutative field, a reduction to the Her-
mite normal form can be computed in O (ndM(n) + M(nd))
arithmetic operations if M(n) is the time required to mul-

tiply two n x n matrices over K. Further, a reduction can
be computed using O(log~+’ (ml)) pamlel arithmetic steps

and O(L(nd) ) processors if the same processor bound holds

with time O (logX (rid)) for determining the lexicographically
first maximal linearly independent subset of the set of the

columns of an nd x nd matrix over K. These results are ob-
tamed by applying in the matrix case, the techniques used
in the scalar case of the gcd of polynomials.

Introduction

The problem of computing the greatest common divisor (gcd)

of scalar polynomials in K[z] (K is a commutative field) or
of polynomial matrices in M~,~ (lY[z]) has attracted a lot

of attention and has many applications in linear systems,
control and realization theory, see [19] and references there-

in. The reverse approach has also been widely considered,

that is the use of linear system theory and especially of the
theory of realizations [20, 15] for the computation of scalar

polynomial gcd’s [2, 3]. This has led to various computation-
al results: giving either efficient numerical procedures as for
instance developed in [24] or both sequential and parallel
complexity results [6, 7].

From these latter points of view, the multivariable case
(using the linear system terminology} as opposed to the s-

calar case), involving computations with polynomial matri-

ces [26], is much less studied. Precisely, this paper aims at
using standard results from linear systems theory to obtain
new and better complexity bounds for the computation of

the Hermite normal form via the polynomial matrix gtd.
Our approach uses a generalization from the scalar case to
the matrix case of certain algorithm for computing the gcd
of polynomials. Let P(z) be a matrix in Mn,~ (K[z]) of de-

gree d. The degree of a polynomial matrtx is defined as being

the maximum of the degrees of its entries. To not excessive-
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ly burden our presentation, we assume the determinant of

P(x) to be non identically zero. The general case should
be quite easily derived. Throughout the paper we use right,

(column) or left (row) equivalence. A unimodular matrix
in M ~ ,n (K [x] ) is an invertible matrix thus its determinant

is a nonzero element of the ground field K. Two polyno-

mial matrices are right (resp. left) equivalent if they differ
by a right (resp. left) unimodular factor. In the same way,

the different normal forms will be either obtained by right
equivalence and be column jorms or by left equivalence and

be row forms. For each form we give a unique definition by

column operations, the other one follows obviously.
There exists [28] a unique matrix RH (z) right equivalent

to P(z) and under (column) Hermite normal form:

RH(x) = P(z)V(Z)

with V(Z) unimodular in M.,. (K[x]) . The Hermite form is

an upper triangular form which diagonal entries are monic
and such that in each row the entries following the diagonal
entry are of lower degrees.

. Sequential point of view. Over an abstract field K the Her-
mite form can be computed in sequential time O-(n4d) [18,

16] using a classical approach. To consider a unique parame-
ter, let p be such that n = O(p) and d = O(p). The previous

complexity is 0-(p5 ). The notation 0- stands for a big ’10”

up to log terms, O-(n) is O(n logs n) for some positive inte-

ger a. Fast matrix multiplication techniques can be applied
to improve the above cost. The problem of finding a uni-
modular triangularization RT (z) = P(z)W(Z) can be solved

in time 0-(ndA4 (n)) [16] if M(n) is the complexity of ma-

trix product (then the Hermite form is obtained by reducing

off-diagonal entries). To compute the Hermite form, an algo-
rithm has been discovered in the meantime for integer matri-

ces [37]. It carries over directly for polynomial matrices and

computes the form also in time O-(ndM (n)). Since one can
take M(n) = n.2 A this bound ia 0(W44 ). Using standard

polynomial and ~atrix multiplications 0(n5d2) = 0(~7)

arithmetic operations are re uired for the elimination over
‘!polynomials in [18] or O(n4d ) = 0(p7) for the elimination

over constants in [8, 27]. The best Las Vegas probabilistic

1
solution has been given in [36 for a unimodular triangular-
ization only, its cost is 0(n4d ) = 0(p6).

Our method will compute the Hermite form in determin-
istic sequential time O (ndill(n) + M(nd) ) with fast arith-

metic. Using standard arithmetic it will require O-(p6) oper-
ations and thus match the cost of the best above randomized

solution. Beyond a good theoretical complexity, especially
in parallel, the new algorithm should thus provide very fast
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practical implementations in sequential.

At this point, we may emphasize the two key ideas we

are going to exploit. On the one hand, instead of direct-

ly computing the Hermite form of P(x), it will be deduced

from an intermediate form that is widely used in linear sys-
tem theory – the Popov form [32, 19]. On the other hand,

the computation of this latter form for P(z) will be reduced

to the computation of a well chosen matrix polynomial gtd.

This latter problem will be solved using block Hankel ma-
trices (being inspired by the scalar case).
● Parallel point of view. Very few algorithms exist that com-

pute the Hermite form fast using polynomially many proces-

sors. The solutions in [18, 16] are elimination processes and

are thus highly sequential. The problem has been shown
to belong to the class AfC in [21]. Nevertheless, this latter

approach involves 0(n2 d) structured linear systems of di-
mension n3d. Since quite prohibitive, the cost has not been

precisely computed by the authors. For a number of parallel

steps in 0(log3 p), one can evaluate the number of needed
processors to be in O(p~ 1) over fields of characteristic zero
and in 0(,u18) over any fields. Another solution could be to

compute the form by obtaining (in parallel) a row echelon
form of a generalized Sylvester matrix – Toeplitz-like – as

done in [8, 27] (in sequential). For a time 0(log3 p), one can
also evaluate the number of processors (this solution has not

been investigated) to be in O(pg) over fields of characteristic

zero and in 0(p’65) over any fields. To the knowledge of

the author, no better deterministic bound is available.
The parallel version of our algorithm will substantially

decrease these costs. An implementation will be possible in

time 0(log4 (ml)) using O (n3i2dA4(n) + (rid) 112M(nd)) or

0(K5S ) processors over fields of characteristic zero. Over

any field the new bound is 0- ((nd)4M(nd)) or 0(p12s).

The processor inefficiency of the algorithm, defined as the
ratio of the parallel work over the sequential complexity is

O((nd) 1/2) = O(p) for fields of characteristic zero and O(p8)
in the general case. These values essentially come from the

inefficiency of known solutions [7] to the problem of comput-

ing the nullspace of a matrix, or more precisely, as we will

see, to the problem of determining the lexicographically first

maxtmal linearly independent subset of the set of the column-
s of a matrix. However, processor-efficient algorithms of Las

Vegas type are available for these latter problems [22, 23, 12].

We will-see that they allow to com ute the Hermite form,
f’

using O (ndA4 (n) + M(nd) ) = O(p ) processors, in time

0(log4 (rid)) if K is of characteristic zero or of characteristic
p greater than nd and otherwise in time 0(log5 (rid)/ logp).

These complexities do not express the boolean computa-
tional cost of the algorithms. We will not detail the corre-

sponding studies in this paper. Further developments should

be done [35] using the Bezoutian for matrix polynomial-

s [4, 34]. From results in [7] concerning the scalar polynomial

gcd, very good bounds may be expected.
The paper is organized as follows: we begin with some

results on the polynomial matrix gcd in ~1 and on the min-
imal realization problem in 32. Then we will see in $3 how

these suitable results lead to the algorithm for computing
the Popov form. This is the first step toward the Hermite
form. The Popov form is read-off the nullspace of a block
Hankel matrix which entries are computed from the input
matrix P(m). Based on this result, we then devise a sequen-

tial algorithm and a parallel algorithm in 54 for computing
the Hermite normal form of an invertible matrix from the
previously computed Popov form. The cost analysis will be

done in $5. The reader may directly refer to 53 for a sketch

of algorithm 1 which computes the Popov form and to 54 for

a sketch of algorithm 2 which computes the Hermite form

from the former one.

1 Polynomial matrix gcd

A greatest common right divisor (gcrd) of two polynomial
matrices can be defined provided they have the same number

of columns. In the following we will restrict ourselves to the

case where lV(Z) is in A4~,n (K[x]) and D(z) is nonsingular
in &fn,n(K[z]) .

1.1 Definition

A gcrd of IV(z) and D(z) is (see [28]) any polynomial matrix

G(z) such that I) G(z) is a right divisor of fv(z) and D(r):

for some matrices ~(z) and ~(z) we have

IV(x) = ~(z) G(z), D(z) = ~(z) G(z);

II) any other right divisor G1 (z) of N(z) and D(x) is a right
divisor of G(z): G(z) = T(z)G1 (z) for some polynomial

matrix T(x). Gcrd’s are not unique, but if t [t IV(x) ,t D(x)]
is of rank n – here this is true by assumption – then all gcrd’s
of AT(X) and D(x) must be nonsingular in Mn,~ (K[z]) and

left equivalent. Here and throughout the text, for a matrix

M, t M denotes its transpose. In order to define the gcrd

uniquely, it is thus sufficient to consider any row normal
form to represent the equivalence class of all the gcrd’s. The
row Hermite form is a possible choice; besides, one way to

compute a gcrd [28] is to compute the Hermite form LH (z)
of t [tN(z) ,t D(z)] by left equivalence:

‘(X)[W=[GN (1)

And G(z) is a gcrd of IV(Z) and D(z). But precisely, to

devise efficient algorithms for the Hermite form, we are going

to adopt the converse approach, first computing a gcrd and
then obtaining the form itself.

1.2 The Popov form

Another choice to represent the gcrd’s is to use the PopDv
form. This will be more judicious because the highest degree

of the entries of the Popov form of a matrix, will be IDO

greater than the degree of the matrix. This property is
clearly false for the Hermite form. We define the column
POpOV form. For G(z) in M~,n(K[z]) let d~, 1 < j < n,

the j-th column degree, be the degree of the j-th column

of G(z). The coefficient vector of Xdj is the j-th leading

column coefficient vector. We let [G(z)]= be the matrix of

these leading vectors. A matrix G(z) is said to be column

reduced (or column proper in [41]) if rank [G(x)]c = rank

G($), it satisfies: deg det G(z) = ~~=1 dj. If, in addition,
G(x) satisfies the following properties, we shall say that G(z)
is in Popov fornv I) the column degrees are increasingly

ordered; II) the last entry of degree df in each column is
monic, it is called the pivot of column ~ with row index TJ;
III) if dj = dk and j < k then rj < rk; IV) all entries in a row
containing a pivot element have degrees lower than that of
the pivot element. The Popov form is normal and satisfies
a degree property:

Theorem 1 ([32, 19]) Any two right (resp. left) equiva-

lent matrices in Mn,~ (K[x]) of degree dl and d2 have the
same column (resp. row) Popov form of degree at most

min{dl, dz}.
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Example 1. The following matrix P(z) is not column re-
duced, rank [P(z)]c = 1.

[ -2*–2+X3 4Z+5– Z3 ]

\-z2+2+4x 2Z2-5-4Z1”

The next one is right equivalent to P(z) and is column re-
duced but not under Popov form since it does not obey
requirement IV):

[

2x+3 4X+5–$3

1X2–3 2#_Fj–4x

2.1 The problem

Consider H(x) = N(z)D–l (z) a strictly proper rational ma-
trix:

Definition 1 A traction u(x)/v(x) is strzctly proper if deg

u < deg v. A matrix jr-action m JU~,~ (K(x)) is strictly
proper if all its entrzes are strictly proper.

Thus If(x) has a formal expansion at infinity

H(Z) = z:lH,z-~ (3)

The last matrix is also right equivalent to P(x), now it is where the ~,’s are matrices in M~,~ (K). A triplet E =

under Popov form: (C, A, B) of matrices in M~,~(K), M~,p(K) and M~,~(K)

[2x+3 I+z3 1
respectively such that:

[ X2—3 –1+4X 1

withdl= 2,dz=3andrl= 2,rz=l. ❑

We may point out some related works. The univariate

determinant computation in [29] maybe viewed as the com-

putation of a column reduced form. More generally, strong
links are well known between column reduced forms and

the determination of the finite eigenstructure of a polyno-
mial matrix [39, 38] and also with the factorization algo-

rithm of Kublanovskaya [5]. Nevertheless, we are not aware
of any study of the number of operations needed to com-
pute the Popov form. From the methods in [32, 19] or
in [5] and by analogy with results in [38] one can see that

0(nd2&f(n)) = 0(p54) is a correct bound. Even if of main
theoretical importance such a form has poor properties from

a numerical analysis point of view.
As said previously the Popov form will be the first step

toward the Hermite form. It will be computed in ~3 by a

polynomial matrix gcrd operation. Apart from using matrix

equivalence and identity (1), a gcrd can be computed from

the generalized Sylvester resultant matrix in [8]. However
this method seems to lead to the same conclusions than
when using the Sylvester matrix in [27] and does not seem
fully appropriate to parallelism. Indeed the two methods

differ only by the form of the gcrd that is computed (Hermite

versus Popov form) and suffer from the fact that the degree
of the associated transformation matrix can be in O(ncl),

even though the degree of the input matrix and of the Popov
form of the gcrd are in O(d). A last method for polynomial

gcrd is to compute an irreducible fraction. The right matrix
fraction description

H(x) = iv(zp-’ (z) (2)

is irreducible if IV(z) and D(x) are right coprime or, equiva-

lently, if any gcrd of IV(z) and D(x) is a unimodular matrix.
The same can be defined in a dual manner on the left with
If(z) = C-1 (x) L(x). If a right matrix fraction description
is not irreducible, suppose we have a way to compute an

irreducible description ~(x)~– 1(c ) of H(z), then a gcrd

of IV(z) and D(z) is computed as G(x) = ~-1 (z)D(x) [8].
This is basically the approach used for the scalar polynomial

gcd in [6, 7]. We will see in next section that the same can be
done for matrices, and how we can compute an irreducible
fraction.

2 The minimal realization problem

From a system-theoretical point of view, normal forms ap-
pear from the general mznimal (or parttal) realization prob-
lem [20, 15].

CA’-lB = H, for i = 1, . . . (4)

is called a realization of H(x). Moreover X satisfies:

H(x) = C(ZI– A)-ll?. (5)

The realization is called minimal if the dimension v is min-

imal, one says that II(z) as transfer function have minimal
realization X. Given If(z), the problem is to find such a

minimal realization. The H,’s are called the Markov param-

et ers. In the scalar case (n, m = 1), for a transfer function
h(x) = u(z)/v (z), a minimal realization gives a new repre-

sentation of h(x) as the quotient of two relatively prime poly-
nomials: h(z) = ti(x)/D(r). So the reduction of the problem

of computing the gcd of two polynomials u(x) and v(z) to
the minimal realization problem is obvious. From u(z) and

v(z) compute a minimal realization of the h, ‘s, this realiza-

tion gives ti(z) and D(Z) and consequently the gtd. We refer

to [6, 7] for corresponding algorithms.
In the multivariable case (using the linear system ter-

minology), for a transfer matrix given as a matrix fraction
H(z) = N(x) D-l (x), a minimal realization of H(z) pro-

vides an irreducible fraction ~(z)~- 1(z) of H(z) with D(z)

under special form [26, 19]. Thus the polynomial matrix gcd
problem is also reduced to the minimal realization problem.

2.2 A minimal realization from the Markov parameters

For If(z) = iV(Z)D– 1(z) strictly proper rational, we now

look at the problem of finding a minimal realization match-

ing the corresponding set of Mmkov parameters H,, z ~, 1,
given by (3) and (4). The problem can be solved by finding

two right coprime matrices ~(z) and ~(x) such that

and such that ~(z) is column reduced.

Notation 1. For any integer k ~ 1,the H, ‘a dejinc theblock
Hankel km x k matrix M(k) whose (i, j) block is H,+J – 1.

From (6), the special structures of the denominator ma-

trix ~(x) are going to be reflected in special relations be-
tween the columns of M(v + 1).

Propositions below are very useful facts derived from [26,
19]. They will directly lead, at next section, to a procedure
for fraction reduction. Our scheme of proof is inspired from

the scalar case in [6, 7]. We give two propositions. Their
two assertions correspond to the “if” and the “only if” part
respectively of the following theorem the proof of which is
omit ted.
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Theorem 2 (theorem 6.5-1, [19]). A matrix fraction de-

scription is irreducible if and only if the determinantal de-

gree of the denominator matrix is the dimenston of any min-

imal realization of the fraction (right and left irreducible de-

scriptions of the same fraction have the same denominator

determinantal degree).

The following result is derived from [26, 19]. We state it
by emphasizing the degree of the denominator matrix of the
reduced fraction, this will be a relevant parameter to obtain

good complexity bounds. The determinantal degree of the
matrices plays the role of the polynomial degree during the

euclidean division in the scalar case.

Proposition 1 Let H(z) = N(z) D- 1(x) be strictly prop-

er in A4~,~(K(x)) with D(z) in A4w,~(JY[z]). Let v be the

dimension of a minimal realization of H(x). If H(x) has

a right irreducible description ~(x)~– 1(x) and a left irre-

ducible description ~-l (x)~(x) such that the denominator

matrices ~(x) and ~(x) have degrees bounded by 6, then
rank M(6) = v (notation 1).

Proof (Compare proposition 2.1 in [6] for the scalar polyno-

mial gcd). By minimality of v we know that rank A4(v+ i) =

rank M(m) = v, i ~ O ([43] or lemma 6.5-7, [19]). We

apply the “if” part of theorem 2. Since ~(z)~- I (z) is ir-

reducible, the determinantal degree of ~(x) is v. Using

theorem 1, ~(z) can be brought in Popov form T(z) up to

a right unimodular factor: ~(z) V(z) = Z’(z). The degree

of the entries of Z’(Z) are also bounded by J the degree of

~(z). We denote by T; the i-th coefficient matrix of Z’(z).

Let S(z) = ~(z) V(z), by (6), S(X) T-l(Z) = .Z~lH,z-i or

(H,x-l + HZZ-2 + .)(To +Tlx + . . .T6x~) = S(z). Since
S(x) is a matrix polynomial, comparing the coefficient of

x ‘%, i > 1, on both sides of the equation we obtain:

H,TO + H,+lT1 + . ..+ Hi+6TJ=o. i~l. (7)

Thus there is a strong relationship between the entries of

T(x) and the dependency relations between the columns of

M(v + 1). Indeed, let T(x) = {E~=otljkzk}. From the def-

inition of the Popov form, let dj be the j-th column degree

of T(z) and let rj be the index of the corresponding pivot

entry. Identity (7) for i ~ 1 and for the j-th column of T(x)
gives:

~tdj+l) = ~~~~1Mfd~+1)t6Jd, + X~=lD$=~lM/k+l)t~j~ (8)
TJ

for 1< j < n and with M\k) denoting the column 1 of the

k-th block column of M(v + 1). For any 1, only the columns
~:;),, .,

ibl~~+l) can appear in the right hand side of (8);

the fact that T(x) is in Popov form (requirement IV) implies

that only the columns M(l) Ikf(d~ ) can appear. So, ifT1l. ... r,
we look at all the identities (8) when j varies, 1 ~ j < n,

for each rj, only the columns M~~), . . . . Mj~ ) can appear in

some right hand side. By assumption there are E? dj = v

such columns. We denote ~J the submatrix of ill(i) built
from these v columns taken in the order they appear in

M(6). If any column degree is zero, say the jo-th, then the

‘(k) k >1 are not involved in ZJ. We denote bycolumns &l$O ,
p, 1 s p ~ n, th~n~mber of nonzero column degrees. If n
is an index permutation such that the r=(~) are increasingly

ordered, d.(j) # O for 1 <j S p and d.(j) = O for j ~ P+l,

[ 1~J=~:r{l),...,~:m{p),... GM6~,v(K)

with ~fk) denoting the column 1 of the k-th block colulmn

of M(d). With this choice of columns in M(6), it is natural
to consider the corresponding v rows of t [tTo,t T1,. . . ,t ‘T6]

as a v x n matrix:

‘f To,’T,,.. . ,’TH]

and the rows dn(l) + 1, ..., d=(n) + 1 form ~~. The matrix

~J is a n x n permutation matrix since it is a submatrix of
[T(z)]c and since the pivot entries in T’(z) are monic. Ncjw,

we may rewrite relations (7) and (8) in matrix form:

(9)

1..
We are going to show that ~~ (and thus M(6)) is of rank v.
By contradiction, if it is not, we show that the fractions

~(x)~- 1(x) and ~– 1(z)~(z) was not irreducible. Indeed,

if ~~ has rank strictly lower than v, the linear system (9)

gives other solutions than T(z). One such solution, T’(x),

can be constructed to have (at least) one column degree
strictly lower than the corresponding column degree of T’(:u),

the others being lower or equal. Thus T’(z) haa determi-
nantal degree strictly lower than v. We also construct the

associated numerator S’(z) using [19, 7]:

Now, the expansions of H(x) using ~-1 (x)~(x) and us-

ing S’(x) (T’ (z)) – 1 at infinity coincide up to the order 26:

then there exists a polynomial matrix Q(x) such that

~(z-l)T’(z-l)–~(x-l) S’(z-l) = X2~+l~(Z-l)Q(Z) T’(X-1).

But ~(x) and T’(z) have degrees lower than 6, that is

~(x-l)T’(x-l) – C(X-l)S’(Z-l) E O mod x

and
~(x) T’(z) – U(X) S’(Z) = O.

Now, since ~-~ (x)~(x) is irreducible, the determinantal de-

gree of ~(x) must be (lemma 6.3-8, [19]) at most equal to the
one of T’ (x) and thus strictly lower than v. This contradicts
the irreducibility of the fractions. ❑

Proposition 2 Let H(z) = N(z) D- 1(x) be as m propo-

sition 1. If ~(z) = D6XJ + . . . + DO in M.,~(K[x]) is of
determinantal degree v and such that

M(6-+ 1)
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then D(z) = ~(z)G(z) where G(x) zs a gcrd of N(z) and

D(z).

Proof (Compare proposition 3.6 in [6] for the scalar poly-
nomial gcd). This is the “only if” part of theorem 2 and

corresponds to the method proposed in [26] to compute a

minimal realization. Indeed, once ~(x) in Popov form is
computed, a satisfying triplet (C, A, B) can be readily ob-

tained [32, 19]. If ~(z) is nonsingular and satisfies (11) then

one can built a description ~(z)~– 1(z) of H(z) (using ar-

guments similar to those used in the proof of proposition 1).
And since the determinantal degree of the denominator is v

we know that the fraction is irreducible. Using for instance
lemma 6.5-5 in [19], we get that ~(z) = D(x) G-l(x) where

G(z) is a gcrd of N(z) and D(z) (the fraction has been
“simplified by” G(z) ). ❑

In the rest of the paper, we will view the above proposi-

tions as giving a procedure to reduce a matrix fraction (or,
equivalently, to compute a gcrd)

2.3 Reduction of a matrix fraction

We now relate the fraction reduction to the problem ,C(n) of
finding the lexzcographically jirst maz~mal hnearly indepen-
dent subset of the set of the columns of a matrix in M~,~ (K).

Here, the problem is applied to a block Hankel matrix. We
may (reasonably) assume that solving this problem is more

expensive than matrix product or inversion.

Lemma 1 Let l+(z) = IV(Z) D-’ (z) be m M~,n(K(x))j
m < n, be as in proposition 1, in partxculur there exist left

and right irreducible fraction descriptions of H(x) whose de-
nominator matrices have degrees bounded by 6. A reduced

fraction description If(x) = ~(m)~-l ($) with ~(z) under
Popov form can be computed in two solutions of the problem

C(n6) for a block Hankel matrix with m x n blocks.

Proof. We first compute the matrix M(J + 1). This is done

by computing for each entry h,,j (x) of H(x) the Taylor ex-

pansion of h,,J (z-1)/x (this is clearly of lower cost than

the rest). Now, from the linear system (11) we compute
the linear system (9). Applying L(n@ to M(J + 1) gives

by construction the submatrix ~~. Since we choose the
lexicographically first set of columns, the corresponding de-

pendencies give a column reduced matrix T(z) that is under
Popov form up to some column permutations. This matrix
is obtained by solving the system (9), for instance by iso-

lating a square invertible submatrix of ma using a second
solution of L(nJ) as done in [9] for the nullspace computa-

tion. Then ~(z) is computed under Popov form simply by
reordering the columns of T(z) with respect to their degrees,

and ~(z) is deduced from identity (10). By construction,

~(z) is of determinantal degree u, proposition 2 tells us that

~(z)~- 1(x) is irreducible. ❑

Costs will be detailed in 35. Before concluding, let us
point out well known links with the extended Euclidean al-

gorithm (or Berlekamp-Massey algorithm) used in [10] to
solve sparse linear equations. The corresponding problem
and algorithm to find a generator of a matrix sequence corre-
spond to the solutions of linear systems (11) and (9). Given
the sequence of the H, ‘s, the minimum generator computed
there, may be viewed_ as one of the column vectors of the
denominator matrix D(z) of a well chosen transfer function.

3 Computing the Popov form

Applying above results, we now compute the column Popov
form T(x) of a matrix P(x).

3.1 Direct approach

Since Popov forms appear at the denominator of irreducible
fractions, the problem is to find a suitable transfer func-

tion If(x) associated to P(z) !. e. such that the Popov form

of the denominator of an irreducible description of H(z) is

T(x). But, as emphasized in [14], to study a nonsingular
matrix polynomial P(x) it is natural to study systems for

which the transfer function is H* (z) = P– 1(z). Precisely
we are going to see that H*(z) leads to a suitable choice
H(z) to compute T(z). We denote by Z(n, d) the problem

of inverting a matrix of degree d in M~,n (K[z])

Algorithm 1. Computing the column Popov form.
The Popov form of P(x) is computed by reducing the
fraction H(x) = (P* (x) mod A(x)) A-l(x) (lem-

ma 2). The reduced fraction is found by solving a
block Hanlcel system (lemma 1).

Input: a polynomial matrix P(x).
P* (x) +- the adjoint of P(x).

A(z) +- diag (det P(z), . . . . det P(x)).

N(x) +- P*(x) mod A(z).

Reduce H(x) = JV(Z)A-l (z) applying lemma 1:

Compute the expansion H(x) = ZH,z-’.
Build the block Hankel matrix M(6 + 1) as in (11).

~(d) + the first independent columns of M(J+ 1).

‘T +- the solution of the linear system (9).

Build T(x) from the entries of T.
Output: the column Popov form T(x) of P(x).

Lemma 2 The column Popov for-m of a nonsingular matrix

P(x) of degree d in M~,n (K[x]) can be computed m one ma-
trvx inversion Z(n, d) and two computations of independent
columns C (rid) of a block Hankel matrix.

Proof. Consider H* (z) = P-l(z). If we denote by P*(x)

the adjoint matrix of P(z) and A(z) the diagonal matrix of

dimension n whose nonzero entries are the determinant of
P(x):

H*(x) = P-’(z) = P*(x) A-l(z).

In the general case, H* (x) is not strictly proper. However,

since we are going to focus on the reduced fraction, we can
take:

If(x) = iV(x)A-’(z) = (P*(x) mod A(x)) A-l(x)

wit h the obvious definition of the modulo A(x). This new

transfer function is strictly proper and G(x) is a gcrd of
P“(z) and A(z) if and only if it is a gcrd of iV(Z) and A(z).
Now, P* (x) is such a gcrd thus every gcrd G(z) of N(x) and
A(x) is given by

G(z) = U(Z) P*(Z)

with U(x) unimodular. Furthermore, any irreducible right

fraction description lV(Z)~- 1(x) of H(x), obtained by “ex-

tracting” a gcrd from iV(x) and A(x) satisfies

~(z) = A(x) G-l(z) = A(Z)(P*(X))-’U-l (Z) = P(z)V(X)

wit h V(z) unimodular. Prom the uniqueness of the Popov
form, to compute the Popov form T(x) of P(z) thus reduces
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to compute an irreducible fraction description of H(z) with

denominator ~(x) under Popov form: Z’(Z) = ~(z). Since

the column and the row Popov forms of P(x) me at most

of degree d, there exist irreducible right and left fraction

descriptions of H(z) with denominators of degrees at most d,

we conclude by applying lemma 1 to If(z). One additional
matrix inversion is needed to build M(d + 1). ❑

3.2 Dual approach

Clearly, it is also possible to exactly match the scalar case for
the polynomial gcd [6]. For u(z) and w(x), the authors of this
paper proceed in two steps: first computing a reduced frac-

tion O(Z)/ti(Z) then obtaining the gcd aa u(z)~ti(x). In the
same way, we may consider ET(x) = P(x)A– (x). The re-

duction of the fraction now gives as denominator the Popov
form T* (z) of the adjoint matrix of P(z), T(z) is easily

deduced (row Popov form with this dual approach). This
method compares favorably with the above one in the sense

that it can be easily built for singular matrices (A(x) can
be build from a well chosen nonzero minor of P(x)) [35].
But its main drawback is that the degree of T* (z) can be as
large as nd. Thus one has to take 8 = nd and to deal with

M(d) = M(nd) which is of dimensions mnd x nzd.
This dual point of view, when applied to the compu-

tation of the gcd of n polynomials, resembles the method
in [24] for this latter problem which is a particular case of

the Popov or of the Hermite normal form for a 1 x n row

matrix. Adopting the system theoretic language, M(6 + 1)

in proposition 2 has to be viewed as a controllabiktg matrix

of an implicitly defined linear system S(A, l?). In the direct
approach (resp. the dual approach), the controllable modes

(the uncontrollable modes) of S(A, B) provide the Popov

form.

4 Computing the Hermite form

By lemma 2 it remains to focus on the computation of the
column Hermite normal form RH (z) of P(z) from the Popov

one Z’(r). We may use two approaches that are in fact e-

quivalent. The first approach is presented below. It works
in a way analogous to the computation of the P~pov form

we have presented. It just consider the fraction descriptions
in a form that gain from the Popov form. Another point of
view will be found in [40]; it is based on modules over a P.I.D

and exploits the links, both theoretically and practically, be-

tween normal forms of matrix polynomials and normal form-

s of matrices over a field under similarity. Computing the
Hermite form of the Popov form T(x) reduces to computing

a polycyclic form [31] or shift-Hessenberg form [1] from the
shift-form A associated to T(x) [40].

For the irreducible right fraction description with de-
nominator T(z) under Popov form, that we have computed

at lemma 2, one can readily construct a minimal realisa-
tion X = (C, A, B) (as defined in 52.1). The matrix A in

M“,. (~) can be chosen in shift form [32, 19]:

A=

x
x
x

o x
1 x

1x
x
x
x
x

w
x 1 x
x . . . 1 x
x lx

G M.,”(K).

I10:0
00 0
00 0
010
00 0

x:x
x x
x x
x x
x x‘1

00 0 x x
B= ...,...

I
E M.,.(K)

.

]“/
::. ..
00 1 x x
00 0 x x
00 0 x x
00 0 I

-
P n—p

More precisely, A and B are obtained as follows. To con-
struct A we map Z’(z) onto the above structure. Only the

columns j, 1 < j < p of Z’(z) with nonzero column degree

dj are relevant here. From the definition of the Popov form,
in each row cent aining a zero degree pivot, all the other en-

tries are zero, let us call them non relevant. Up to column

and row permutations we may assume that the leading p x p
submatrix of T(z) gather together all the relevant entries of
T(x). Row operation are not allowed: they will be reflect-

ed back in the end matrix. The matrix A is a p x p block
matrix. The block (rj, j) is the companion block of m~ini-
mal polynomial the pivot of the j-th column of T(z). The

other blocks (TJ, 1), 1 # j, have nonzero entries only in their
last column. This column is given by the coefficients of the

corresponding entry T,j,1 (z) = ~j=~l = t,j lk~k of degree at

most dj — 1 – requirement IV) of the Popov form – it is:

‘[-t.,,o, -t,jll, , -tr,l(dj -l)]. (12)

We omit the matrix C since it is not involved in the
computation. The matrix B is an element of Mv,n (K). It
is constructed aa two blocks of columns vectors. The p first

column vectors of B are canonical vectors of K“. Let r
be the index permutation considered during the proojf of

proposition 1 such that the r=(j) are increasingly ordered
and dx(j) # O, 1 < j < p. The first column vector Of B

is the first canonical vector and the l-th column vector of

B, 2<1 ~ p, is the (d=(l) + . . . + d=(j_l) + 1)-th canonical

vector of W’, The n — p last column vectors of B are given
by the columns with pivot equal to one. The entries of the
l-th column vector of B, p + 1 < 1 < n, are given by the

coefficients of the entries of column n(l) of Z’(Z), as done

above at (12) for the nonpivot entries of the relevant part.

Now, we proceed as for the Popov form during the proof
of proposition 1 since the realization and the transfer matrix

satisfy identity (5). There are strong relationships between
the entries of the Hermite normal form of the denominator
matrix T(x) and the columns of the block Krylov matrix

M(A,B, v):

[Bl, AB1,..,, A~Bl,..., B, AUBn]AUBn] c Mu,nu (13)

where Bj denotes the j-th column of B for 1 ~ j < n.

Lemma 3 The column Hermite normal form RH (x) of T(x)

in Popov form as given by lemma 2, can be computed in

O(log(nd)) solutions of Z(2nd).

Proof. We do not detail the proof, it is based on classical
results in [42, 19]. By construction ($6.4.4, [19]),

If(x) = C(Z1 – A)-lB = ~(z) T-l(z).

Since (C, A, B) is a minimal realization of H(z) then [42, 19]
there exists a matrix Q(z) in M v,~ (K[z]) right coprime with
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D(x) such that

(xl - A)-’l? = V(X) T-’(Z).

Now, RH (x) is right equivalent to Z’(z) thus the same holds

for it and for a matrix O(X):

(z1 - A)-’l? = @(z) R;’(z).

We keep the same reasoning than for proposition 1 with
M(A, B, v) playing the role of matrix M(J+ 1) (indeed, from

a system-theoretic point of view they are both controllabil-
ity rnatr~ces). We get that the entries of RH (z) are read-off
the nullspace of M(A, B, v). We may write a linear system
which solutions gives the entries of RH (z ). This line-w sys-

tem is computed by first isolating the v lexicographically
first independent columns of M(A, B, v). Since the matrix
is block Krylov, we can restrict ourselves to v x 2V matrices

as done in [25]. The cost is that of O(log(v)) solutions of

,C(2V). The fact that 2V s 2nd terminates the proof. ❑

Algorithm 2. Cornputmg the column Hermite form.
The Hermtte form of P(x) is computed from its
Popov form T(x) (algorithm 1). This w done by

solving a block Krylov system (lemma 3). An equiv-

alent alternative method would be to compute a shift-
Hessenberg form of the constant matrix A associated
to T(x).

Input: a polynomial matr~x P(x).
T(x) + the column Popov form P(x).
M(A, B, v) + the block Krylov matrix (13).

~(A, B, v) +- the first indep. CO1. of M(A, l?, v).

RH 4- the solution of the corresponding linear system.

Build RH (x) from the entries of 13H.

Output: the column Hermtte form RH(x) of P(x).

5 Cost analysis

Using the results of previous sections we establish new cost
bounds for the computation of the Hermite normal form of

a matrix polynomial of dimension n and of degree d. We
let n. = O(p) and d = O(p). For a survey of basic sequen-

tial and parallel complexities, e.g. for matrix or polynomial
multiplication, we refer to [7].

Proposition 3 A reduction to the Hermite normal form

for a non singular matrix in A4~,~(K[z]) of degree d can

be computed in deterministic sequential time O-(ndM(n) +

M(nd)) = O(p’s) over K using fast arithmetic, or, 0-(y6)

using standard arithmetic.

Proof. The first step of the solution consists in computing

the Popov form of the matrix. By lemma 2, the correspond-
ing cost is that of matrix polynomial inversion and of solu-

tion of L(nd) for a block Hankel matrix. Then, by lemma 3,
the Hermite form is obtained by performing O(log(nd) ) so-
lutions of L(2nd). During the first step, the inverted matrix
is n x n thus the former cost is O(M(n)) operations on uni-

variate polynomials of degree O(nd). This gives O-(ndM(n) )
over K. For the second step, on can solve C (2nd) in time

O-( M(nd) ) using the algorihm in [25]. Thus the complex-
it y given in [11] for matrix multiplication leads to the an-
nounced cost O ( (rid) 24). Using standard arithmetic, unlike

the eliminations in [18, 16] but as the probabilistic triangu-
larization in [36], our algorithm is suscept able to a evalua-
tion/interpolation scheme. Since two polynomials of degree

d are multiplied in O(n2d2 ), the cost of matrix inversion is

O(nd x n3 + nz x n2d2) = O(n4d2). The second step costs

O(log(nd)) times 0((nd)3). We get 0-(n4d2 +n’d’) = 0-(p6)
for the whole computation. Clearly, the unique transforma-
tion matrix is obtained with the same bounds. ❑

Proposition 4 A reduction to the Hermite normal form

for a non singular matrix in M~,n(K[x]) of degree d can

be computed m 0(log4 (rid)) arithmetic parallel steps using

0(n3/2dM(n) + (nd)112M(nd)) = 0(p5s) processors zf K
is of characteristic zero. The computation can be performed
in time 0(log3 (rid)) using 0-((nd)4M(nd)) = 0(,u12 8, pro-

cessors over an arbttrary jield.

Proof. Over a field of characteristic zero, we refer to [33]

for matrix inversion. The number of processors required

is 0(nli2M(n)) for 0(log2 n) arithmetic steps. Together
with the cost of the operations- on polynomials of degree
nd, in time O (log (rid)) using O (rid) processors, this gives

0(ns\2dM(n)). Then, we follow results of [17] for the rank,
of [22] for the nullspace (O(log2 n) steps) and of [12] for the

subset of independent columns ( x O (log n) steps), and we

use, as proposed in [13], the parallel handling of [25] for the

block Krylov system involved in lemma 3 (x O(log n) steps).
The Hermite form is computed from the Popov form in time

0(log4(nd)) using O((nd) l/2 M(nd)) processors.

Over an arbitrary field, the costs are dominated by the
solution of ,C(2nd). As for the processor bound of the solu-
tion of the nullspace problem in [9] this leads to nd times [7]
the processor bound for the rank. This latter problem is

solved using the algorithm in [30]. The number of steps if

0(log3(nd)) using 0-((nd)4M(nd)) processors. The unique
transformation matrix is obtained with the same bounds. ❑

Comparing the sequential cost 0(,u48) of proposition 3
and the parallel work 0(p’28) of proposition 4 we see that
our parallel solution is still far from processor-efficient. But
no processor-efficient algorithms are known even for general

linear systems solution, for rank and for maximal linearly
independent subset over fields. However, processor-efficient

Las Vegas algorithms are available in each case [22, 23, 12].

Proposition 5 There exists a Las Vegas type probabilis-
tic algorithm to compute a reduction to the Hermite nor-

mal form of a non singular matrix in Mm,. (K[x]) of de-
gree d running in 0(log4 (rid)) arithmetic parallel steps and

using O-(ndM(n) + M(nd)) = 0(p4”8) processors if K is
of characteristic zero or greater than nd. If K is of posz-
tive characteristic p lower than nd then the running time is

0(log5(nd)/ logp) .

Proof. We can use the same arguments than for the proof of
proposition 4 but using the probabilistic versions of the al-

gorithms. We refer to [22, 23] for the rank and the nullspace,

to [12] for the independent subset and to [25, 13] to handle
the block Krylov matrix. ❑

Conclusion

We have given new complexity bounds for some operations
on matrix polynomials. These have been obtained using a
strong relationship (never exploited for practical purposes m
matrix computer algebra) with linear system theory in con-

trol. Pursuing this approach, many technical work remains

to be done. But the questions we did not tackle here ( e.g
the use of the Bezoutian, the boolean complexity, the case
of singular matrices, links with Euclid’s algorithm) should

be solved as it has been done for scalar polynomials.
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