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Abstract

We analyse the probability of success of the block algorithm
proposed by Coppersmith for solving large sparse systems
Aw = O of linear equations over a field K. Itis based on a
modification of a scheme proposed by Wiedemann. An open
question was to prove that the block algorithm may produce
a solution for small finite fields e.g. for K =GF(2). Our
investigations allow us to answer this question nearly com-
pletely. We prove that the input parameters of the algorithm
may be tuned such that, for any input system, a solution is
computed with high probability for any field. Conversely, for
particular input systems, we show that the conditions on the
input parameters may be relaxed to ensure the success. We
also improve the previous probability measurements in the
case of large cardkmlity fields.

Introduction

This paper is an extended abstract of [30]. Results answer-
ing the open question over small fields are only partially
proven here. Those corresponding to the improvement over
large fields are only reproduced without proofl. The ran-
domized method proposed by Coppersmith [6] solves large
sparse systems of homogeneous linear equations Aw = O,
w # O. Throughout the paper A will be a N x N matrix
over the Galois field with q elements K =GF(q) and w a
vector of N unknowns. One fundamental application of this
problem in computer algebra is integer and polynomial fac-
torization, where such systems arise with N over 200,000
[18, 20, 15]. This has motivated several authors to develop
fast symbolic counterpart to numerical iterative methods.
The conjugate gradient method h= been used in [18], the
Lanczos method in [18, 8] and the block Lanczos method
in [5, 24],

But up to now, only the probabilistic analysis of Wiede-
mann [32] was giving a provably reliable and efficient method
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to solve Aw = O over small fields. This method is based on
findhg relations in Krylov subspaces using the Berlekamp-
Massey algorithm [23]. The same analysis could be applied
to bound the probability of success of the (bi-orthogonrd)
Lanczos and conjugate gradient algorithms with look-ahead
of Lambert [19]. These various algorithms are very similar:
they can be understood in a unified theory [19].

Coppersmith [6] has then proposed a block version of
Wiedemann’s approach to take advantage of simultaneous
operations: either using the machine word over GF(2) or a
parallel rnacldne [14]. Coppersmith’s algorithm is very pow-
erful in practice [15, 21] but raises some theoretical ques-
tions. We are going to partially answer them in this paper.

We refer to $1 for the definitions and to $2 for a detailed
presentation of the algorithm. We only consider the method
intuitively in this introduction. In the Wiedemann alg~
rithm [32], one computes the lowest degree polynomial that
linearly generates the sequence ha = zAiy, O s i ~ 2N – 1,
where z and y are respectively a row and a column random
vector. With high probability, this polynomial is the min-
imal polynomial n!(A) of y with respect to A and is such
that r~ (0) = O (one does not need the minimal polynomial
of A):

{

rrjol) =gf A’+gl+l A’+l+. ..+gd A~,o<lsd,9l #o,
glA1y+gl+l A1+ly+ . . . +gdAdy = O = K~.

Taking w = glA’ - 1y + . . + gdAd- 1y above relation gives
that w is a solution: Aw = O. The modified algorithm of
Coppersmith [6] uses a random matrix X with m rows and
a random matrix Y with n columns and computes first the
sequence of m x n matricea Hi = XAiY, i = O,. . . . N/m +
N/n+ O(l). By analogy with the scalar case we will see in $1
that one may define vector or matrix generating polynomials
for that sequence. With high probability, such a generating
polynomial is also a generating polynomial for the sequence
{A’Y}i20 and leads to a solution w.

To limit the length of our article we will neither address
the subproblem of computing a generating polynomial for
a given sequence nor study the cost of the method. The
reader may refer to [6, 14], or to [31] for an improved com-
plexity obtained using the algorithm of [1] for the computa-
tion of Pad6 approximants. The method of Coppersmith is
randomized, essentially in the sense that a generating poly-
nomial for {XA’Y}i20 may not be a generating polynomial

for {Ai Y}a ~0 and thus may not allow the computation of a
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solution w. Our computation of the probability of success
apart from being influenced by the one of Wiedemann – will
use two main previous results. The first one, by Copper-
smith [6], relies on the notion of pathological input matrix
.4. For matrices having too many eigenvalues with high mul-
tiplicities (compared to the blocking factors m and n) the
algorithm might fail. [Jsing heuristic arguments, Copper-
smith claims that. if the input, matrix A k not pathological
then the algorithm succeeds. He observed experimentally
that it is sufficient to consider the first N/m+ N/n+ 0(1)
terms of the sequence {H, },. The second result has been
given by Kaltofeu [14]. LTpto a preconditioning and if the
field K has enough elements. the algorithm is guaranteed to
{ornputf, a solutinm

Trying to answer the question “why is there no patho-
logical matrix for Wi~demann’s algorithm ?“ we are led to
generalize Wim-kvnann’s approach and to use complemen-
tary arguments. \Ve improve previous results in two direc-
tions By empha.sizinx the role of m and n, on the first hand,
we prove that, the algorithm may succeed, with a reasonable
constant probability, provided that m z n -t-2. For that, we
theoretically study the additive term A = 0(1) experimen-
tally imposed by Coppersmith, for the number of matrices
H, that, must be used. This gives an algorithm that works
for any field 1( and ally input, system, and thus avoids the
notion of pathological matrix. More precisely theorem 4
will show that

Probx,~ of succcws ~ @(m, 71,A) + ~(m, n, .4)q-A

where, for m large enough with respect, to n, &(m, n, A) will
be close to a constant between 1/4 and 1 and ~(m, n, A) will
Iw close to a constant, between 1 and 3. Using A additive
terms of the sequence the probability of success will be made
arbitrarily close to @(m, n, .4).

Alternatively we also show that the condition on m and
n can be relaxed. We prove that -- as heuristically justified
by Coppersmith the algorithm always works for certain
non pathological matrices. On the other hand, in the case of
large fields, wc \villsec that the preconditioning required by
Kaltofen is not nrcessary, the algorithm computes a solution
with constant probability for any input matrix. This results
In a better probability bound in this case.

.~fter basic definitions in $1 and the presentation of the
block algorithm in $2, we will characterize the “good block-
ing matrices” in $3. We will precisely understand which con-
ditions .Y and 1’ must satisfy, so that the sequence {XA’ Y},
may be used instead of the sequence {A’ Y },. We will then
characterize thr “generic” behaviour of the algorithm by
considering matrices X and Y with indeterminate entries in
\4. This characterization will immediately apply over large
fields to bound the probability of success. It is also useful to
explain what are the expected generating polynomials of the
Input, random sequence. The main probabilistic analysis is
then divided into two sections. We will give the tkt techni-
cal results in $5. The reader will then find the final theorems
in $6. Paragraph 6.1 is devoted to small fields and $6.2 will
focus on large cardinality fields. By an abuse of notations,
we will use “O” to denote either scalars, vectors or matrices.
The dimension will be deduced from context as it will for 1,
which denotes the idtwtztg matrix. The degree of a matrix is
the maximum degree of its entries, its deterrninantal degree
is the degree of its determinant, A unirnodrdar matrix is a
nonsingnlar matrix whose determinantal degree is O. Two
matrices are right. equivalent (resp. left) if they differ by a

right (resp. left) unimodular multiplier.

1 About realizations and generating polynomials

This section is intended to give some definitions and facts
about realizations and about generating polynomials of ma-
trix sequences. The formalism we introduce was not used
by previous authors, but will make easier our presentation,

1.1 Reaiizat ions of rational matrices

Let X = (X, .4, Y) be a triplet of matrices in M~,~ (K),
-M ~ (K) and M N,” (K) respectively. We also consider two
polynomial matrices N(J) in Mm,n(K[~]) and D(A) non sin-
gular in M. (K[J]) such that the right rnatriz fraction de-
scription H(A) = N(A) D–*(A) in Mm,. (K(A)) is strictly
proper i.e. the degree of the numerator polynomial of each
entry of H(A) is less than the degree of the denominator
polynomial.

Definition 1 [34]. If X(M – A)-l Y = H(A) then Z =
(X, A, Y) is called an order N realization of H(A). Further-
more, since H(J) is strictly proper, it has a formal expansion
at the infinity

H(A) = X~oH, A-’-l (1)
where the H, ‘s are matrices in M~,n(K) , we have

XA’Y=H, for i= l,... (2)

and X is also called an order N realization of the above ma-
trix sequence.

The denominator matrix D(A) leads to the notion of gen-
erating polynomial. If D(A) = DO + D1 A + + DdAd with
D3 in M.(K) , 0< j s d, then by computing H(A)D(J) we
get

N(A) = (kfo~-’ + ~1~-2 +.. .)( Do+ DIA+D~Jd)~Jd).

Since N(A) is a matrix polynomial, comparing the coefficient
of A–’ , i ~ O, on both sides of the latter equation leads to

Vi~O:H, Do+ H,+l Dl+. ..+ H,+dDd =0. (3)

Any such non singular matrix polynomial D(A) is called a
right generating matriz polynomial for the matrix sequence
{H, }~o. As presented in Coppersmitb’s paper [6] or in the
analysis proposed in [14], we tna,yalso consider D(A) column
by column. If D(J)(A) = D$) + D~)J+ +D$)Ad is the
j-th column of D(A) we get the vector version of (3):

Vi ~ O : H,D~) +H,+,D~]} + +H,+dD~) = O (4)

and the vector polynomial is called a right generating vector
polynomial for the sequence.

To fully characterize and classify the generating polyno-
mials, we use a module theoretic approach as done in [27, 2]
for matrix Padd approximants. Clearly, the set of the right
generating vector polynomials for the sequence {Hi }~o is
a K[~]-submodule W of K“ [~]. We know (see [12] for in-
stance) that such a submodule W has a basis of at most
n elements. But since the columns of the diagonal matrix
diag(XA (J), . . . . XA(~)) - where XA(~) is the characteristic
polynomial of A are all in W, any basis of W must have
exactly n elements. AII the ba..es (arranged as coIumns in a
matrix) of W differ by a right unimodular multiplier. Thus
the set of the right generating matrix polynomials of a se-
quence (2) can be uniquely determined by choosing a partic-
ular representative. As emphasized in [3, 29] several matrix
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polynomial normal form can be chosen. In next paragraph
we focus on the Popov form which provides a notion of min-
imal polynomial.

1.2 Minimum generating polynomials

From a complexity point of view it is important to handle
relations (3) or (4) of minimal length. We will dethe mini-
mal bases for W, these will correspond to minimal bases of
vector spaces [9, 28]. In addition, to extend the notion of
minimal scalar polynomial, we will speak (by an abuse of
language) of minimal generating matriz polynomial.

A basis given by the columns of a matrix D(A) will be
minimal (see theorem 2 below) when D(J) will be column
reduced. Uniqueness will be ensured by the Popov form. Let
us define this latter form. For D(A) in M. (K[~]) let dj,
1 < j s n, the j -th column degree, be the de ee of the

9.j-th column of D(J). The coefficient vector of J ‘ IS the j-
th leading column coefficient vector. We let [D(J)]. be the
matrix of these leading vectors.

Definition 2 [26]. A matriz D(A) is said to be column re-
duced ij rank [D(A)]= = rank D(A), thus its determinantal
degree is deg det D(J) = Z~cl dj. If, in addition, D(A) sat-
isfies the following properties , we shall say that D(A) is in
Popov form:
]) the column degrees are increasingly ordered;
II) the last entry of degree dj in each column is monic and
is called the pivot of column j with row indez rj;
III) if dj = dk and j < k then r] < rk;
N) all the entries in a row containing a pivot element have
degrees lower than that of the pivot.

The Popov form is normal in the following sense:

Theorem 1 [26, 13]. Any two right equivalent matrices in
M. (K[A]) are right equivalent to a same unique matriz in
Popov form.

Here is an important classical fact that identifies column
reduced forms and minimal bases.

Theorem 2 [9]. Let ~(~) be a basis of W with j-th column
degree di, 1 ~ j ~ n. For any element w(A) of W let
w(A) = D(A) v(A). ‘Then, @A) is column reduced if and ordg
if it is a minimal basis in the sense that any w(A) satisfies:

deg w(A)= maxj~x{dj + deg ~j(~)} (5)

where u is the set of indices j such that the j-th entry vj (A)
of v(A) is non-zero. Furthermore, any two minimal bases oj
W have the same set of column degrees {dj } I<j<rz, they are
called the Kronecker indices of W.

If the indices are arranged in increasing order, iden-
tity (5) shows that the corresponding elements of W are the
first linearly independent ones with minimal degrees [9, 13].
This motivates the following definition.

Definition 3 The unique minimal basis DW (A) in Popov
form is called the minimal (right) generating matrix poly-
nomial for the matriz sequence {XA’Y}~o.

We may also look at this characterization column by col-
umn. For instance, the fist column degree dl of DW (A)

is the smallest possible length for a vector recurrence of
type (4):

Vi ~ O : HiD$)o +Hi+l D~\l + . ..+ Hi+dl D~)d, = 0. (6)

2 Coppersmith’s block Wiedemann algorithm

Using above terminology, we now give here the Copper-
smith’s version [6] of Wiedemann’s algorithm for the solu-
tion of Aw = O. The matrix A is squaxe of chmension N
over a field K. We follow the notations of Kaltofen [14] and
his variant of the method.

The algorithm picks up a random matrix X in M~,N (K)
—say a left blocking matriz – and a random matrix Y in
MN,. (K) – say a right blocking matrix. The first step
consists in computing the first terms of the sequence
{XA’Y}~o. Coppersmith has introduced an additive
term in 0(1) as a safety measure and has recommended
to compute iV/rn + N/n + 0(1) terms of the sequence.
Th]s additive term will be denoted by A and will be called
the shift parameter of the algorithm. We refer to $5 for a
detailed study of the theoretical behaviour of the algorithm
with respect to that key parameter. We also refer to the
experiments reported in [21, 15].

Input: A a N x N matriz over K and the shift param-
eter: A a nonnegative integer.

Step 1. Pick up random matrices X, Y. Let Z = AY.
Step 2. Let 61 = [N/m] and h, = [N/nj. Compute

H:= XAiZ, i= O,...,6l+6r+l–l.

Then, solutions w such that Aw = O are constructed
from generating vector polynomials for the sequence.

Step 3. Compute a generating vector polynomial

g(J) =gO+g, ~+... +gd~d EKn[J]

o} degree at most 6, for the sequence {XAi Z}i i.e. such that:

XAiZgo + XA’+l Zgl + . . . + XAi+dZgd = O. (7)

for O~i<. &+ A-l.
With high probability, as we will prove later (see theo-

rem 4 and theorem 5), the left projection by X does not
modify the invariants of the sequence and g(~) is a generat-
ing vector polynomial for {Ai Z} ::

O~i<cfi +A-l:AiZgo+A’+l Zgl +... +Ai+dZgd=O.

Let gl be the fist non-zero vector coefficient of g(~). Since
Z = AY, above identities give in particular:

(A*+l Ygl + AYgl+l + . . . + A ‘-’ygd)
= AIZgi + A1+l Zgt+] + . . . + Adzgd = O.

(8)

The left-hand side leads to the solution.
Step 4. Compute G = Ygl + AYgl+l + . . + Ad-lYgd.
With high probability, ti is a non-zero vector (again, see

theorem 4 and theorem 5). Fkom identity (8) we know that
we can find an integer L such that A’w = O.

Step 5. Compute the first integer 6 such that A’ti = O.
Output: Ij t ~ 1 then w = A’-l@ else w = O.

The algorithm is randomized concerning two points:
identity (8) may be false and the algorithm may return
the trivial solution. The former point will be the major
concern of subsequent sections, the probability of getting a
non-trivial solution has been bounded by Coppersmith.

3 Characterization of good blockhg vectors

To answer the problem, we have to characterize “good ma-
trices X and Y. This characterization is divided into two
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oarts. Thev both studv the relationship between the value
and propw”tirs of the minimal generating polynomials and
of t,hr triplet Y = (X, .4, l”) that defines the sequence. In
~3.1 wc see how the minimal polynomial of {A’ Y}, and of
{.Y.4’I” }, can coincide. In $3.2 we determine the length of
the sequence that must be considered. We finally give an
additional technical lemma in $3.3.

3.1 Blocking vectors and Krylov subspaces

Let < }“ >= span(l”, .4}’, .4JI’, ...) and denote by .4<Y>
thr restrictioll to < }- > of the linear operator associated
(o the matrix .4. Tll(llo[ltlnityirlvariant factors of Dw(A)
(Icpend on the spectra] structure of .4 and on the choice of
(.Y, I-) with respect to that structure.

Theorem 3 Lcf Dw(X) bethemin~mal generating matriz
polynomial of the seguence associated to a strictly proper
nLtw7wl matrvz H(A). A7Ly realization Z = (x, A,Y) of
H(A) sat~sfie,sdcgdet DvJ(~) <order Z= dim .4 and there
czists a muhzateon (.YO..40, 1~,) such that the equality holds.
7’hr nonuntty !nvariunt Jactors of A“ and of DW (A) are the
saint,.

This is a classical result. The proof may be found in several
papers. \Ve rvfer to [4, 33] or to [13] and references therein.
Given 11~(A). next result states precisely how to choose X
so that the generating polynomial remams unchanged. It
is proven in [30] using also classical arguments from linear
system theory (see [13] for instance)

Proposition 1 Let D~ (J) and DW (A) be the minimal

generating matmx polynomials of the sequences {A’ Y}~o
and {.Y.4’Y}’~0. Let ATF denote the dimension of < Y >
~]nd.4} bc a matrtz ussoc~uted to .4<y> i.e. there ezists a
similarity transformation P S9JC)Lthat

‘-’AP=[p’“]-L-”PY“’=[$a
Then DF (A) = Dw(A) if and only if the subspace generated
by the rows of {.YPY, .YPy.4}. XPY .4~, .} is of dimension
i:.Y ) = N)

3.2 Length versus degree

Proposition 1 indicates how .Y must be chosen to ensure
that we can consider the sequence {X.4’ Y }, instead of the
sequence {.4’ >’},, The next problem we address is how many
terms of the sequence are required to compute the vector
generating polynomials (see step 3 of the block algorithm).
of course, this will heavilv depend on the actual degrees of
these polynomials.

Lemma 1 Let .Y be such that the vector subspace gen-
rrated by thr rows aj {.YPY , XPYAy, . . . . XPYA~-l} is
of dzmcnston ,7}1 (proposition 1) and let 61 be the first in-
dex such that thus M true. Any vector polynomial g(~) =
@ + 91J + + gd~d s?mh that

.l’A’Ygo + X.4 ‘+l}’g, + + XA*+dYg~ = O (9)

jar O ~ i ~ 61-1, is a generating vector polynomial for the
sequence {<4*J’}~=o.

Thus, any generating vector polynomial of degree d for
the sequence {XA’Y}, up to the (dl + d – 1)-th term, is a
generating polynomial for {A’ Y}~o,

Note that any polynomial g(~) that satisfies (9) corre-
sponds to a vector ~ = ‘[ ’go,’ g,,...,’ gd] of Knd which is
in the kernel of the block-Hankel matrix

M(&, d+ 1) = {X.4i+’-2Y} ,
(lo)

with l~i~dl~’~l<j<d+l.

Remark 1 Since DY (A) has determinantul degree at most
N and since at has n columns, for any A and Y we know
that there always exists at least one generating polynomial
of degree less than [N/n] for {A’ Y}~o.

3.3 Separation

We give an additional fact that will be useful for the com-
putation of minimal generating polynomials, The main dif-
ficulty is to choose correct blocking matrices. We work by
analogy with the analysis of Wiedemann in $VI of [32]. He
uses the Euler’s Phi function for polynomials and thus their
decomposition into primes. We also show below that the
correct choices of matrices can be more easily studied after
a factorization of the polynomials.

In the scalar case, for a matrix A in M ~ (K) , if u and
u’ are two vectors whose minimal polynomials ji., (A) and
pu,~(A) with respect to A are relatively prime, then we know
(see [10] for instance) that the minimal polynomial of u’ + u“
is p., (~)p.~1 (A). This result remains valid in the case of
matrix polynomials.

A least common right multiple D(A) (Icrm) of two ma-
trices P(A) and Q(J) is a common right multiple which is
a left divisor of every common right multiple of P(J) and
Q(A) [22]. In particular, P(~).V(A) = Q(A)V(A) = D(A) for
some matrices U(A) and V(A). Every pair of non-singular
matrices P(A) and Q(A) have a Icrm [22]. If P(A) and Q(A)
have relatively prime determinants p(~) and q(~), the deter-
minant of a Icrm is p(~)q(~).

Lemma 2 Assume that A is a block-diagonal matrix
A = diag (AP, Aq) and that the characteristic polynomials
P(A) and q(~) of AP and Aq, are relatively prime. Consider
Y = ~[~Yp iYq] in MN,. (K) with corresponding dimen-
sions of blocks. The minimal generating polynomial for the
sequence {XA’Y}~o is a lcrm of the minimal generating
polynomial DP(A) for {XA~YP }~o and of the minimal gen-
erating polynomzat Dq (~) jor {XA~Y~ } Tco.

This result will be useful to generalize Wiedemann’s
analysis in $5.1. Contrary to that, it seems difficult to use
the same stategy with Coppersmith’s analysis, for instance
to establish a result similar to lemma 5.

4 Generic degree profiles of minimal polynomials

Given any matrix A, does the block algorithm work for any
m and n? In Coppersmith’s justification ($6 of [6]) one
basic assumption is m ~ n. In Kaltofen’s analysis ($5 of
[14]) there is no restriction on m and n but in return, there
are restrictions on A. Indeed, let A“ denote a restriction of
A to its range space. If ~“ denotes the number of blocks of
the Frobenius form of A* (we refer to [10] for the definition),
then one must have @“ = 1 [14]. In the following we will see
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that only m ~ min{~”, n} is required and as indicated by
proposition 3, this does not seem too strong.

To justify the probabilistic analysis of two next sections
we need to state the result below that give generic degree
profiles of minimal generating polynomials. This concept
catches what are, in general, the column degrees of the gen-
erating polynomials for sequences constructed from a given
matrix A. This is the same concept than the generic rank
profiles [7] that catches what are, in general, the ranks of
leading principal submatrices of matrices equivalent to a
given matrix A. We thus follow the technique from Kaltofen,
Pan and Saunders [16, 17, 14]. We call generic degree pro-
file of the minimal generating polynomials for sequences
{XA’Y}~o (X has m rows and Y has n columns) the col-
umn degrees of the minimal generating polynomial for the
sequence {XAi Y}~o, where the entries of .-? and of Y are
indeterminates (jfk, 1 < ~ < m, and Vh,l, 1 s 1 ~ n, with
l<k <N.

Proposition 2 Let A be a matriz in MN(K) whose
Fkobenius form has ~ companion blocks. Let v = fl + . . +
fmin{~,n} be the sum of the dimensions of the first n or @
biocks of F. ‘The minimai generating polynomial DY(A) for
the genen”c sequence {AiY}~o has deterrninantal degree v
and has degree exactly br = [u/nl (over the rational func-
tion field K(vl,l, . . . . UjV,n)) with coiumn degrees

[d~,... )dn]=[dl,l) br.l,br l,,bl..., b.] (11)

where CL– 1 is repeated T = n[v/nl – u times. Further, the
pivot row indices satisfy:

(12)

Note that the entries of DY are not, in general, over
the ground field K but lie over K(ul,l, . . ., UN,n). This is a
main difference with the scalar case – e.g. see proposition 2
in [14]. The following consequence will be needed for the
block method which computes generating polynomials for a
sequence {Ai Z}~o with Z = AY.

Corollary 1 Let 1#0be the number of singular companion
blocks of the I+obenius form F of A, and let v“ = fl + . +
fmin{o,n} – min{do, n}. The minimal genemting polynomial
Dz(A) for the generic sequence {A’Z}~o, Z = AY, has
determinantal degree v“ and has degree exactly 6: = [v” /nl.
If m ~ rein{+”, n} then it can be computed from the kernel
of the block-Hankel matriz {XAi+~–2Z}i,j, 1 < i ~ c$~and
l<j~d~+l, which isofrank v”.

This is a generalization of proposition 3 in [14] to any
type of matrix.

5 Preliminary probability analysis

We propose two different but complementary analyses. The
first one in $5.1 is a direct generalization of Wiedemann’s
work [32]. We bound the probability of picking two matrices
X and Y such that DY (A) = Dw (J) (following the notations
of proposition 1). If in addition we require that X and Y
lead to DY (A) with generic degrees - as characterized by
proposition 2 – then we may use most of the arguments of
Coppersmith [6], to show that thk is “almost” true with
a good probability. This will allow us in $6.1, especially
for small fields, to adapt the initial block algorithm and
bound its probability of failure. We define @ and u aa in
proposition 2.

5.1 Generalization of Wiedemann’s analysis

Let us compute the probability that {AiY}~ and {XAiY}&’
have the same minimal generating polynomials, Even if this
represents a generalization of Wiedemann’s study, the equal-
ity only gives an incomplete answer with respect to Copper-
smith’s algorithm. Indeed, it does not focus on the actual
degrees of DY (A) and DW (A) but only on their determinan-
tal degrees. The probability is computed in terms of the
function @n (f, ~) defined over K =GF(g) for a polynomial
f(A) in K[A] and two positive integers n and ~, n ~ @ This
function is given by:

(‘n(f, @) = ~ (1 – ~–(~+~)degg
) H (1 _ ~-k~degg)

9 i,, If k=2 )

where the product is taken over the irreducible factors of
f(A) in K[A] and where p = [n/~j and p satisfy @ n =
p~ + p.

Lemma 3 Let A be a N x N matriz over K with minimal
polynomial nA (~), and let Y with n ~ ~ columns chosen at
random. If K = GF(q) then

Proby {dim < Y > = v} > @n(fiA,@).

Proof. Up to a change of baais P we may assume that A
is under rational Jordan form [11]. We mean that KN is
decomposed into a direct sum of invariant subspaces with
respect to A whose minimal polynomials are powers of ir-
reducible factors of ~A(A) in K[A]. This may be denoted
by:

A = P-’AP= diag({Agi },) = ({ A:),... ,A~~’)}i) (13)

where gi (A) is the i-th irreducible factor of nA (A) and Ax),
1 < j < #i, is one the @i < @ square blocks over K amoci-
ated to gi (A). By analogy with the dimension v, we denote
by vi the dimension of Agi the block-diagonal matrix formed
by all the blocks associated to gi(~). Since multiplication
by P-l: ~IV,n(~) + MN,n(~) is a bijection, it follows
that Y is chosen uniformly at random over K if and only if
~ = P–lY is uniform random over K. Using lemma 2, we
may thus separate the problem according to (13). Let pY
be the probability that dim< Y >= v:

pY = ProbY {dim span(~, A~, A’~, . . .) = v}
= H, ProbYi {dim span(yi, A9i K,...) = vi},

(14)

where Yi denotes the ui x n submatrix of ~ whose row indices
correspond to the row indices of Agi in ~. We are going to
compute a lower bound for each probability in above prod-
uct. We focus on Ag, and Yi. Let gi (A) be of degree di and
let each block A%), 1 s j s @i, be of minimal polynomial

g~~(,4) and thus of dimension kjdi: (kl +. . .+kdi )d: = ~a. Let
us restrict ourselves for the moment to the random choice
of the fist @i columns CI, . . . . C6i of Yi (@i < # ~ n). We
denote by Vj the vector space generated by c1, . . . . cj:

Vj =span(cl, Ajicl, A~icl, . . ..cz. cj, Agicjji), j...),

for 1 ~ j ~ ~, and let VO = {O}. A sufficient condition
to ensure that the dimension of sp~(Yi, A9i Yi, . .) k vi, k
that dimV@i = ~t. This condition will be satisfied if for any
j, the minimal polynomial of cj modulo Vj_ 1 is any power
of gi (A) corresponding to a block of Ag, dfierent from those
associated to the previous columns of Y;. We compute the
probability that c1, c~, satisfy this property by induction
On Cj, l~j <#i.
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For j = 1, c1 must span any of the ~, invariant sub-
spaces, its minimal polynomial has to be any power of g, (A)

{(~rr(,s~)[)~l(iillg(o a block of Ag, For one block BJ = .4~i)
the probability of failure is the probability that c1 satisfies

“-’( B,)C1 = ()..9,

Th~ ri]nk of g~’-’ (1?, ) is d,, for B, theprobability of fail-
\lre is thus (1–’{’ Further, we may look separately at the
entries of c1 corresponding to the different Mocks, thus the
probability of failure for the choice if c1 is q-~’d’, We now
assume that Cl, . . ..cj. 1 satisfy the property, The minimal
pol,vnomial of c, modulo lj-t must be any power of g,(~)
corresponding to one of the remaining ~–j+l blocks. Up
toachange of basiswithrespert to lj_] wemay follow the
Siinlt’ reasoning w for r] For one block the probability of
failure is q–{”. thus tlw probability that c, does not satisfy
the property is q–(~’–~+’ )’”. IfpY, denotes the probability
that dim span(}\, Aq, l\l .) = v,, this shows that

py, > Probt C,j, {~im 1~+, = v,}

> (1 –q-+’’f’)(l –(/-@-’ )) ’(1. .(d-)– d’).

Above hound (.M1 be improved when 71 is greater than @,.
hdeetj, let n = p~ +p, thus, in particular, we have PO, +p s
/t. .Above construction can be done using p columns of Yi
for each of the first ~, – 1 block so f.4g, andp+pcolurnns
for the last one

p}-, > (1 –q-~’~’’’’). ..(l –q-z’’’)(1(l –q-(~+~)d’),

Finally, from (14) we obtain

p} > ~,(1 _q-dtwli ) (1 - q-2@l)(~ - q-( P+P)d, )

> orL(mA,4).

u

The function @,, (nA, ~) is a rough lower bound, but this
\vill }W sufficie]lt to bound thr probability of failure. Note
that for n = 1 our study reduces exactly to the analysis of
Wiedernann [32]. Now, applying the lemma on the left:

Proposition 3 Let .4 be a N x N matrix over K =GF(q),
let .Y and J’ be chosen at random with m rows and n
rolwmns. If n, z min{~, n} then D}-(,.4) = Dw(;
pr-obabtlzt~no 16.ssthan ~,” (n..i, rein{@, n}).

Lemma 4 For f(A) of degree N > q and n ~ ~:

{

l/(4510gq N) ifn=~,
@,,(f)@) > 1/30 if~l = [71/4] = 1 andp~ 1,

1 – l/q~’-’ – l/q2@L) if p = [n/@-

5.2 Using Coppersmith’s analysis

) with

>2,

By proposition 2, in the generic case DY (A) has determi-
nantal degree u and has ~ = n [v/n] – v columns of degree
Jr – 1 and n – ~ columns of degree 6.. We compute the
probability that DY (A) is not “too far” from this situation.
Indeed, as implicitly noticed in [6, 14, 21], to always have
exactly the generic degrees seems unlikely. For matrices A
and Y, define

KY(J,) = (Y. AI”, . . . ..4 A’-2~’1 Ytl J. Y. Aa”. . .. AaT)]Y(n-T)]

where }’(1), 1 s 1 s n, denotes the l-th column of Y. The
column degrers of D}- (A) are strongly related to the rank
of KY (J,). If rank K} (b,) > v – p then the determinantal
degree of D, (A) is also strictly greater than v – p, and the
column degrees of Dy (A) must be less than J, + p, If this is
true with p small. DY (J) should be viewed as nearly generic,

Next lemma is an interpretation of lemma 6.2 in [6] to fit
the current context. We formulate it using the function
@n(f, 4) defined over h- =GF(q) for a polynomial j(~) in
K[A], a positive integer n and a matrix A whose Frobenius
form has @ companion blocks:

~n(f,o~ = 1 + ~q~-,,dt-g,-rmk ,(A)

91J

where the sum is taken over all the factors of /(A). This
definition is slightly different from the original one in [6].
The reader may refer to the latter article concerning the
properties of the function that remain unchanged,

Lemma 5 Let .4 be a N x N matriz over K with minimal
polynomial ZA (~). The matrzx Y is chosen at random unth
n ~ ~ co[umns. [f K = GF(q) then

ProbY {rank KY(c$r) > u – p} ~ 1 – @n(7TA,@)q-’.

Proof Following [6] we relate the probability of failure
DY (A) has small determinantal degree - to the existence of
small degree polynomials g] (A), . . . gn(A) such that

gl(.4)1’(1) + gz(A)Y(2) + . + gn(A)Y(n) = O. (15)

Intuitively, DY (A) is a generating polynomial for {A’ Y }~o,
thus considering DY (A) column by column we have:

DL,J(A)Y(l] + D2,1(A)Y(2) + + D“,I(A)Y(”) = O,

for 1 ~ j s n, where the D, ,J(,4)’s denote the entries of
DY (A). But since DY (A) is the minimal polynomial, its
entries must be the lowest degree polynomials such that the
above relation is true. More precisely, DY (A) satisfies (11)
and (12) i.e. rank KY (6, ) = u, if and only if

(C): the trivial collection, gi(~) = O for 1 s i s n, is the
only collection of n – ~ polynomials gl ()), . . . . g“_, (A)
of degrees at most d, – 1 and of ~ polynomials
gn-r+l (~), ~,9n(~) of degrees at most 6. – 2 such
that (15) holds.

For the “if part”, it is easily seen that if DY (A) satisfies (11)
and (12) then condition (C) is true. Conversely, for the
“only if” part, on the one hand (C) ensures that DY (A) has
no column of degree less than J, – 1. On the other hand,
it implies that one can find ~ columns of degree 6, – 1 with
pivots as expected (otherwise a collection that violate (C)
is exhibited among the columns of degree b, – 1) and in the
same way, that one can also find n —r columns of degree CL
with pivots as expected.

As done in [6] we may now bound the expected vafue
EY of the number W(n) of “wrong collections”. We mean
the number of choices of collections that satisfy (15) but
violate (C), plus one for the trivial choice:

Ey = EXPy# {{g, },; ~,g, (A)Y(i) = O}
= ~,, ProbY {~1 g,(A)Y(’) = O}

(16)

To bound the above sum of probabilities, for any non-trivial
collection we consider the polynomial

g(~) = gcd(7rA(~), g,(~),... ,g~(~)). (17)

Given such a g(~), there are qar- *-deg g possible g,(~) of
degree at most b. – 2 such that g(~) divides g,(~), thus
there are at most qn(~” - L‘deg’) collections {gl(~)}, =l, .,n of
degree at most 6. – 2 that satisfy (17). Adding the collec-
tions whose first n – r polynomials are of degree L5,– 1 this
gives qn(Jr–l–deg g)+~qn– T_ ~)qn(~.–l–degg) thus q~–ndegg
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collections of degrees lower than the generic degrees. For a
given collection, the probability that a random Y will satisfy

gl(A)Y(l) + gz(A)Y(2) + . + gn(A)Y(n) = O,

is the same that the probability that a random vector y will
rank 9(A), Then using (16) wesatisfy g(A)y = O. It is g–

get:

ExpY {W(n)} ~ 1 + ~ qv-ndegg– rank 9(A) = @n(TA, @).

91X,4

Now, we use the fact that W(n) is related to the rank of

KY(13.) so that, W(n) = q.- rank KY(J.), T~Is finally leads

to

{
ExpY q-

}
rank KY (J.) ~ qmA, @)q-u

and

ProbY {rank ~Y(d~) ~ v – p} s %(TA, 4)9-P,

which concludes the proof. ❑

We will mainly need the same result on the left:

Proposition 4 . Let A be a N x N matrix over K =GP(q),
let X and Y be chosen at random with m rows and n
columns. Let 61 = [v/ml and

KxY(Jl) = [Xfi, XfiAY,..., XPyA*]*].

If m ~ min{~, n} then with probability no less than 1 –
@~(~A, min{q$, n})q-P we have rank KXY(d~) > NY – p.

Lemma 6 For ~(~)l~A(~) oj degree N > q anti for n ~
@+l:

{

14 log~ N
@n(f, @) <

ifn=@+l,
1 +exp (1/qn-~-2 + l/q2(n-b)-3) ,n ~ 4+2.

6 Probability of success

The block algorithm uses Z = AY rather than Y. AS in $4
we thus define A* to be a restriction of A to its range space.
We let ~“ be the number of blocks of the Frobenius form
of A* and v* be the dimension of the first ~ or n blocks.
Clearly, all previously seen results with A,@ and v, can be
applied with A*, r$” and v“.

We do not know whether the block algorithm is correct
or not for any A, m and n. We can only work under the
assumption that m is at least greater than rein{@*, n} and
fortunately, this is not too restricting in most cases. Besides,
there are two ways to bypass this difficuly.

To work with any given m and n: either the matrix A is
assumed or forced to be non pathological. From our point
of view, Coppersmith has assumed m ~ n ~ @*. Using the
same notations, Kaltofen has proposed a preconditioning of
A to ensure m,n ~ ~“ = 1.

To work with any matrix A: one may simply choose m
greater than n. Indeed, even if +“ is large, the blocking
factor n on the right always actually limits the number of
blocks to min{#, n}.

6.1 Over small cardlnality fields

To find at least one solution to the linear system, mainly the
choice of X and the shift parameter A are relevant:

Theorem 4
K = GF(q).
A4hf,. (K) are

Let A be a N x N singular matriz over
The matrices X c M~,N(K) and Y E
chosen at random. Suppose that m >
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rein{@*, n} and let V = Iker Al. If w is computed by
the block algorithm of $2 with shift parameter A, then
Probx,Y {w # O,Aw = O} is greater than
(@m(~,4,min{~*, n}) - @~(TA,min{@”,n} )q-A) (l-l/v).

Proof. We begin by bounding the probability of having
Aw # O. Following the notations used in $2, we have
& = [l’J/ml and 6. = lN/n]. We simultaneously ap-
ply proposition 3 – which controls the dimension v“ of
the corresponding space – and proposition 4 – which in-
dicates whether the target dimension is reached. As done
for corollary 1, these propositions are applied with Z = .4Y
rather than with Y. We denote by NZ the dimension of
span(Z, AZ, . . .). If X is such that rank Kxz(fil) = Nz – A
and if DZ (~) = Dw (A) then rank Kxz (61+ A) must be Nz.
Thus by lemma 1, any vector in the kernel of the correspond-
ing block-Hankel matrix Lf(rJl+ A, 6, + 1) (see (10)) must be
a vector generating polynomial and must provide, by defini-
tion, a w such that Aw = O. Note that - by remark 1 – the
kernel of Ibf(& + A, 13r+ 1) is not trivial. Now, by proposi-
tion 3 and proposition 4 we know that Probx {Aw # O} is
less than

1 – @m(~A, min{~”, n}) + %(KA, min{~”, n})q-A.
Finally, by an argument of Coppersmith [6] we know that
the probability – on the choice of Y – that w # O is more
than (1 – l/V). ❑

We have to make a slight additional restriction over
GF(q). Indeed, from a practical point of view, lemma 6
and lemma 4 will provide realistic bounds only for m z
min{q$”, n} + 2. If the ground field is GF(2) and as soon
as A z 8, our theoretical probability is greater than a fixed
number ~. = 0.03 > 0. Fortunately – to explain the good
practical behaviour of the algorithm – our bound may be
much greater, even over GF(2 ). Especially when m is a
multiple of ~“, for instance:

Corollary 2 . If m ~ 44”, A ~ 8. then the probability of
success is grenter than 0.6.

Remark 2 . Let us explain why - as experimentally no-
ticed in [15, 21] - blocking may amplify the success prob-
ability. Intuitively, the more one uses blocking vectors the
more a block-Krylov subspace of dimension v* is easy to get
(see also Wiedemann about the success of his algorithm 1
in [32]). If, for instance, ~“ = q50is a constant. When m
and n increase (m – ~“ and n –@* increase), ~~ (TA, #0) in-
creases and tends to 1, and em (TA, @o) decreases and tends
to 2. The probability in theorem 4 increases and can be made
arbitmrily close to (1 – l/V).

Remark 3 Referee 3 has noted that the condition m ~ n
and consequently the condition m ~ rein{@*, n} are hawn-
less if At times a vector cnn be computed with no loss of
eficiency. Indeed, in that case, on can jind Wt such that
WtAt = O using a left version of the block algorithm. R-em a
theoretical point of view, on may use Tellegen’s theorem [25]
which states that an algorithm computing A times a vector
can be converted to one for Ai times a vector. However
in certain cases one will still need either m ~ n + 2 or
n~m +2.

6.2 Large fields – Generalization of Kaltofen’s
analysis

For large fields, another randomization technique can be
used. We follow the ideas of Kaltofen [16, 17, 14]. This ideas



have been successfully applied to singular matrices .4 whose
minimal polynomial has degree deg nA (~) = rank(A) + 1.
Using the generalization of corollary 1, we get for any ma-
trix:

Theorem 5 Let .4 be a Ar x A’ singular matrix over K
and let m > min{r#”, 71} Suppose that that .Y with m rows
and Y with n columns am chosen at random over K. If w
n a vector computed by the block algorvthm of $2 with A = O
then

Prob.r,} {w # O and .4w = O} ~ 1 – (2N – 1)/lK[.

Conclusion

Our approach has been influenced by matrix polynomial the-
ory, where many operations on scalar polynomials are gen-
eralized. Especially over GF(2), our contribution is based
on a very accurate tuning of parameters (m, n, A). The
problem is solved because some constraints are relaxed in
a first step (see lemma 5 concerning dimensions of Krylov
subspaces) while others seem to be inevitable (see the com-
ments after theorem 4 about m and n). Even if experiments
tend to confirm these facts, a problem is to know whether or
why the remaining assumptions are necessary. In passing,
one question is to know whether is particular the structure
of matrices arizing in factorization algorithms. This could
corroborate our analysis.
Acknowledgments. Grateful thanks to Erich Kaltofen for
his valuable questions.
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