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Abstract 

In t,his paper we st,ucly the problen~ of transforrniug, via in- 
vertible colu1tln opcrat.ious~ it matrix polyioruial into a va- 
ricty Of .shiftcd forms. Esarnplcs of forms c:overed in out 
frmwa-ork include a colunm rctluccd form: il triangular fornlz 
R I%!rInite IlOrInd fOrll1 or it Popov IlorIllal fOrIll alollg wit,11 

their shifted courltcrpart,s. 
I3y obt.aiuiug tlcgrvc bounds for uuiniodiilar niiill,iplicrs 

of shifted Popor fornis we are able t,o c11lbct1 tlic probleni of 
conqmtiug il normal forni into 0Iic of deterniiJIing a sliift.ctl 
forni Of R InininIal pOl~IlOIIliill hiISiS fur all XWXiiltWl IIliLtris 
polyioruial. Shifted niiuind polynomial lXPX?S cm be conl- 

pu1.d via sigma bases [2! 31 iIlld ill POpOv forui Vii1 Mahler 
s~sbenls [il. Tl ic d 1. t,t, cr Iut:t.lIotl gives a fractiorl-frw algo- 

rithm for computing niatris riormal forms. Key words: 
Popov Form. Herr&c N~~r~n~d Fornl 

1 Introduction 

111 ortlcr t,o USC ulauy analogous wncc:pts from SCilliK 

polynoniial a.rit.linietic one often transforms a given riiat,rix 
pOlyJlOJtlia1 ido aI1 cquiwlcut mat.rix pO1~IlOIllii~l hit\-iIlg lJd,- 

tcr propcrtics for f~l~~tli~~~~~~~~t.i~l operat.ions. Forndly, two 
nmt.ris polpon~ials A(z) ant1 B( 2) XC COIIIIIIJ~ cquiralcrlt, 

if there exists a unin~odular pOl~IlOIlliirl IIiRl.rix U(z) such 
thiit A(Z) U(z) = B(ij. Tho ulatrix U(z) corrc:sponds to 
a seqiimcc of clcmcxit,ar?; coluuin operations. For i-1 given 
A(Z) OIW has a uumber of equivalent. fornis that iwe use- 
ful for a.pplica.tioris. Thcsc inclurlc colmln rctlucccl forms: 
whew the Icatling Coluum codiicid nliltris is nonsingular 
(a pr0pc:rl.y iiseful for d’ 7’ ,’ ix ihlon algorithms). triaugulax forms 
(useful for solving syst.cms of liwar quatious) and Hcruli1.c~ 
nomid fornis or Popov nornial forn1s (usefiil for tleternliniug 
wvhell t,wo mat.rix polyuoruiiils arc nob ccpivalent). 

In this paper we st.uciy the pr0blcJJl of coJnpiJt.ing uornml 
forms for full cohmn rank matris I)o1ynomia1s. III particular 
\v(l iUY' interest,ed iI1 coulputiug POpOv ilIlt sh~fkfl Popov 

normal forms for SUCh Jtlatrices. Roughly spcbakiug: it Popov 
normal fixni [li. 221 is a form having a “good” striict.lirc for 
leading cocffitricnt. Illitt.ricY3 On hl h row ilIld c:ohInlII sides. 
It has t.hc iuiport.mL pr0pc:rt.y t,llid it. iLl\VitJ?$ reduces coluum 
clegrrcs of tlic iupul: 1niLl.ri.u. This is different. from ot,her 
forms suc.11 iis the classical Hermite norltld forlti which is an 
Ilpprr triaIlguhr Jllatrk With RdditiOIlid dcgrcc c~OIlS~ri~iIl~.S 

wit.h respect t.O diagonals bit. which t?:piCitlly 1lilS dogroc5 
increased during the rctluct.iou t.0 uoruial form. 

The notion of a shifted form is basidl~ OIW of alter- 

ing t,lic tlcgrcc st~riic:t.uros of I,lic rows of a niatris and then 
computing forms of t,lie resulting nlatris. It. is a. simple 
prowss but. wry poaerfd. For esample~ t.he dassid Her- 
ulit.o IlOrIllill forui can be ol~taiuetl I)!- determining it shifted 
Popov nornia.1 form for a shift tleterniined from the degree 
structure of t.lw input, nlat.ris polynonlid (cf. Esimlple 2.5). 
Shifted Popor Forms for squnrc nonsingu1a.r nmtris pal?;- 
uonlials wcw first. irltrotlucctl in [-I] as a colrvcnicnt mrnial 
form for describing the propertics of Rlahler systems. hhlll(-Y 

syst,eIus were used as a basic building block for wmrsiwl~ 
conil)uting solut,ious to ulotlule hlw!s for mittris riLt.iOIliLl ap- 

prosiniation and nlatris ra.t~i0na.l interpolation prohlcms (5~ 
also [l] iI1 the case of JIIa.tris Pad6 s?-stemsj. The: (vcclor) 
shift. was useful iI1 dais applicat~ion fbr keeping t,rxk Of ii path 

of cmilput~ation that allowccl mic to avoid singular Sil.llilt.iOIlS 

in order t,o recursively compute along a pa1.h of duscst. nor- 



IlliLl points t0 a Si1lglllilrity. .A (!XilliL~) shift 11~1s idS0 l>Wll 
used by Bcclcn CL al [i] in deternliniug a redwcttl co1u111n 
fOrI Of a fill1 COlun1n rank nlatris pO~~Ilolniitl by computing 
a minimal pol~no~nial basis of a shfted sladwcl rect.angu- 
lar rtlatris. The WC: of it shift c~lsurcd that the nonsingular 
1eiKliIlg cocfficieut. ruatris be isolat.ed in specific: (in this case 
IilSL) fOWS. 

By obta.ining clegree bounds for uninlodular nlult.ipliers 
of shiftxcl Popov forn+ w’c arc able to c~nbctl the problcnl of 
conlputing a norinal forni into one of determining a. shifted 
forni of a nliIliIIli~l polyionlial basis for aI1 associatctl ma- 
tris po1ynomia.l kernel. Shifted mininlal polynomial bases 
can bc cornputcd via sigma bases [IL, 31 ant1 in Popov f&n 
via Rlihhl(lr S+~I~S [A]. The last na~n(~l algorithm hits an 
iniportant. pr0pert.y: if the entries in the original nlatris a.rc 
polynonlials having cocfficicwts front an integral clornain (for 
exaniple a niat.ris wit.11 entries from Z [f] or Q[a, : , ai.][,z]) 
then it conlputes a niininlal polynoriiial bases using only 
fraction-free arithrnctic. 

The results in this paper arc part. of a larger rcw!arc:h pro- 
grilnl: t.lIc c4kif-ml; COlIlpUtiltiOll of matrix norIm foruis foI 
ilrbitrilry nlihtris polynoniials. In particular we are iIIterestcd 
in efficient fraction-free conlputatiou of such nornial fornis 
for IlOI~siIlgllli~r, Sillgllli~~ illld rectangular nia.trices. Our rc- 
suits give it first step in this clirection. Additional rcsult,s arc 
available in the nianuscript [G]. 

The rcnAudvr of 1.11~ paper is organized as follows. Src- 
tion 2 gives the basic definitions of shiftrcl rctlucctl ant1 nor- 
nlal forms iu the cast of nonsingular s(~uar(~ rnai.ric:cs while 
t.llC rlcxt. m:tioII holis ilt t.llc-3 erjuivalent. problem for rect- 
angulax rnat.ris polgnoniials of full colunn~ rank. Swt.ion 4 
gives degree bounds on the (uniyic) uniniotlular niultiplier. 
Section 5 shows how to cnibccl the probleni of coniput~ing 
a shifted Popov NornA ForIn and t.he asso(:iat.4 unimodu- 
1a.r nlult,iplicr into one of computing a niininial polynonAa1 
bil.ciiS in nornial form. This allows shift.cd normal fornis t.0 
be conlputecl using t,hc algorit,hnl of [4]. The last swt.ion in- 
cludcs ii conclusion along w4t.h a discussion of future research 
directions. 

2 Shifted Popov Forms of Nonsingular Matrices 

In this section wc give sonic of t.he basic definitions and prop- 
erties rrcluircd for the rcniaiudcr of t.hc papclr for the CilW 

wlicrc the input matrix pOlynonlii~1 is square and nonsin- 
gular. Various shift& forms arc introtluced along with the 
concept. of shifM colunn~ rerluc:t.ion. 1Ve renlark that for 
any multi-index ?i (i.e. a vector of integcrsj WC dcnotc b\; IdI 
t,he sun1 of its conlponents. III~S d it.s rnasirtulnl con1poncnt 
and perIII ((7) a perIIIUt.i~tirm of t.h coIIiponc:nts. In xldil.ioII 
the nlulti-index I? clcnotos lhc vcvt.or (1. i 1). 

Definition 2.1 (&Shifted forms, square matrices) 

A71 rn x 7~ 7rrat7is: pol?y~o7nial T(z) E Q”“ “I [z] is cl-column 
reducccl with ii -colimn tdqrec d - ,if thel~t: exists 0, IMLlti- 

hdelr: ii .SlLCh t11nl. 

5-“’ - T(z). z’-’ = T’ + C7(;-1):+,x; 

with T’ E Q”’ “‘I wzsingdnx (1) 

If this condition holds with T’ n.on,singuln~ and upper t7iun- 
~+7. then T(3) is said to be sn d quasi Popov form. When 

rt satisfies the addition.ul 7~.oi~rrLulizutaon tlcqrw and leading 
cocficient co7Lstmin.t 

t -Ii. T(Z) = I,,, + O(Z-‘)~+. (‘2) 

then T( 2) is said lo be in ii Popov normal forIn. 0 

Remark 2.2 IVope7,tir:s (1) cmd (2) we kwCnt untle~~ 

uddi7ag a consta7~~t to all co7npone7ks of Z. This c~llows wT 

iIt, particldar. to exteiul ow definitions to Lnurcnt Illiltris 
pol~nonlials where needed. 

Up to a (~~nique) pw7rLutation of col7Lmns, Definitio7l 2.1 
gives the classical Popoz~ normal form [12. Subscctro7~ 6.72, 
p.4811 in. the cast: r?: = 6. When the form is used ii1 (I rriatriz 
fraction descliption or as CL rnin.i7n.a1 polyxo7niol basis, the 
deg7w r’i ~IY: 7,efwred to as the rlector of co~lt.roll;thilit,~ or 
Kronecker indices. 

For any two col,u7nn equivalent cuntl ii-co17~71~1~ reduced 7na- 
trices: the covyespo7edileg vecto7:s CT - Z OS in (1) col.ncide up 
to per7nutatiori [le. Leiwrria G.S-14, p.JSS]. Also! for any) 
rrmt7C polyno~nial A(z) colunm equivalent to T(z) (LS i71 (l), 

1~71 = dcgclctT(z) = dcgdet A(Z). (3) 

is (17~ iiarwiniat. 0 

It is known [12? 5 6.7.2: p.4841 t.hat any scluarc nonsiugu- 
lar niatris polynrunial 111.y bc t.ransfornied to Popov normal 
forni by I~illlt.iplic:at,io~i on tlic right by il uniniodular nlat,rix 
polynonAa1, ant1 that the fornl is unique. A similar St,itt.C!- 

nient, is also true for an i-Popov form. 

Lemma 2.3 For a non.sing7Llar matrix polywm%al A(z) and 
a multi-index d, set A(:)# = z-’ A(z). Let T(z)# = 
A(z)” U(r) be the 6- Popocr form with dqwe G# of this 
~wulting Lu,u7,e7Lt mat7k polynomial A(z)# . Then T(z) = 
-Ii . T( z)# = A(Z) . U( 2) e as an Z-Popes form of A(Z) ,ruith 
deqwr! CT = ~7” + Z. Conversel?q, for an,g &Popov jorm T(z) 
of A(,-) we ILc~oe T(zj# = z-’ T(z). 0 

Lemma. 2.3 says that it is possible to consider only ii- 
Popov fowls. Howcvcr. the introduction of an a&litional 
paraInet~rr ci is con\-rnicnt for a nutnber of reasons. It ap- 
pGlrS lli~t.llrdl~ in the context of the approximation probl~~n~5 
stxcliecl in [4], and was the primary purpose for introducing 
t.his forIn. Our vector shift cilI1 i>lSO be usecl to simplify the 
klat.ris Euclidean algoritlnu of [8]. Indeed their six retlUction 
steps cau be viewed as nlol-ing from one shiftetl I’opov form 
to a. IICW shiftctl Popov fornl wit,11 a reduced shift. In the 
cast of colunln-rcduct.ion a shift. (in this case a scalar shift 
of ccrtairi colilponcnts) was used a.s a tool in the a.lgorit,hni 
of [T] for c:onstJruct.ing it colunin rctlucctl polyiorriial rria.tris 
for a matrix polynonlial of full column rank. 

.A vector shift is also very usrful in that it allows one 
to tlescribe a nuniber of other inlp0rt~i~nt~ 1ni~l:ris IiornIal 
forms. For example, t,ria.ngular forms ant1 the Hernlitc nor- 
nial forni [15: 522, p.321 arc obtained with shifts as follows. 

Lemma 2.4 Let A(z) be u matrix polywnial an.d T(z) be 
one of its r7-quasi Pmpov forms with cT-defqvee ci. If n’ and ii 
.sati& 

Z,j - rli > Z.j: for 1: > j: (4 

then T(z) is nplpu t7kmg~ular. Furth~ermore the d-Popo*u 
fawn, of A(z) coincides with its He7mite n.ormal form. 

Proof. Let, us show t.hat T(z)>., = 0 for i > j. I)\; 
Dcfinit.ion 2.1. T’ is upper triangular thus for ,i > j, 
4, + dcgT( z)>.,, + Z,; - 5, < 0 and if (4) is true tlicn 



deg T(z)~.~ < 0 and T(G) is upper triangular. Ms0 condi- 
t.ion (2) iniplies that t.lie degree Of a diagonal ent,rT is stricl1.v 
larger th>ln the degree Of the other entries of this ~O\V ant1 
t.hc Z-Popov fornl is the Hcrrnit.c: nOrnlil1 form. 0 

The condition T’ upper t.riangular in Definit,iOn 2.1 plays 

Definition 3.1 (Column echelon matrices) A full col- 
umn rank ,scola~ matri.2 T’ E Q”’ ’ ” zs in upper echelon form 
with pivot set I = (il, ...i i,!) if 1 5 il < i:! < . < %,, < m! 
T:-, = 0 for i > i:;, and T! ().,, # 0, j = 1: . ..! n. 0 

a minor role in the entire trialiglllarizat.ion Of A(z). Irlclcctl -4ny full ~01u1nn rank scalar matrix may bc tr;lnsfornlc~d 
the upper triangularixation nlay bc cmsured using Only a I)\; cO1uni11 Opc:rat.iOns to upper echelon forni and the cor- 
colun~~ wduced forni wit.1~ a slightly different~ shift. If T(z) responding pivot set is unique. The (row) pivot, set of any 

is c7-cO11nnn rcxluced wit.11 Z,j - di > (Yj, for i > j, thfn T(z) niatris is thus well tlefinctl ilh the pivot. set of it.s (wlu~nn) 
is upper tria.ngular. upper ecliclon fornis. In addition we 1ia.w: 

Even if for any given matrix A(z). the degrees G’j arc 
not knO\vn in advan(~(~. OIW ~n+v al\~a~s I~SC! Lennua 2.4 and 
sliift.c:d forms to c011ip11t.r triangular forms. In&cd, t.lic de- 
grees are l~ountlcd by (3) thus choosing v! > degdet A(z) 
and as shift vector d = [(It/ - l)lc, : I);, U]: condition (-1) is 
satisfied. 

Lemma 3.2 The yirwt set I is max~mel jar det T’,., being 

nuxzc~~o. th.nt is, ,if I’ = (ii:. . :i6?i;,.1: . : it,) ,with ii > ie 
und ,ik 2 ir.. P + 1 < I;: 5 ‘11, thc!lL tlct, T’,,,- = 0. 

Proof. By Definition 3.1, the row’s Of indices i;, ? ii, <~itllllOt 

lx lint?arly indcpcndent since their first t’ entries arc zero. 0 

Definition 2.1 is generalized for non-square ruabrices. 

Definition 3.3 -4 mutri:c polynomial T(Z) E Q’7’x’f[z] l.s 
called cl-colunn~ reduced with dqrec: r: if there exists a full 
column, ~~wrk scalar rn.ntrG T’ with. yiwt set I sati,sfyiq 

z -c? T(,-) . =lil -6 = T’ + (3(~-~):-,~. (5) 

If T’ is in qqw echelon form then T(z) 1:s said to br: in b 
quasi Popov fowl. If it sc~hjiifies the additional ~mrmnlization 

drqrcc and leading cocfi&lLt cowtraint 

z -” T(,-)I., = I,, + (3(~-~):+~. 

then, T(C) %s sn%d to le in ii--Popov normal form. 

(6) 

0 

0 

This application Of shifted fornls of nlatris polynomial, is 
very similar t.0 B well known application Of intcgcr lattice I)>]- 
sis rrductiou. Given an integer rnatris A, it is shown in [18: 
p 741 that the rc~duct.ion Of a well chosen lattice: rleduccd from 
A : .gl\L. ,’ 7’s the int.clger Hcrnlite fcr111. 

3 Shifted Forms of Full Column Rank Matrices 

In order to include in ow franwwork such applicat.iOns as the 
t~stentlc:rl gctl probleru (cf. Esample 3.1), deterruination of 
Iniltris struct.uws [21] (cf. Es;tIIlple 3.5) id n0rnlalixation 
Of n~otlulc bilSCS, we est.cnd the results of the previous swt.ion 
t.0 full colunn~ rank polyuonlial matrices. IV<? introduce shifts 
in the ClasSiCal t.~(!iltlIlCIlt~ for coluinn reduced fbrnis [l’i, 12, 
~1811 and. as douc: in [I 31 in the IIernlitc (:ase, W’C ensure 
the nornialization Of leatling nlatrices by considering c01un111 
eclic~lon fornis. 

Given a matrix polynomial A(z), we denote it.s c+nients 
by A( 2)i.j. Furthermorc~, given lists 1: ..T Of increasing row / 
col~nnn indicts Of A(z): mr drnotc by A(z)J..J t.he corw- 
spOlltli~lgelll)Ili;~trisofA(~). .UsO. for A(;)[.. (and A(E),.J) 
we just (xtract rows wit,11 inclcs in I (illd colunlns with indes 
in J. respoctivtrly). 

By extension of Definition 3.1, we will rcfcr t,o the set 
I = (,il, . . . . I:,)) Of Definition 3.3 as the pivot, set of an Z- 
CY~IIII reduced nlatris T(z). If T(z) in addition is in Z- 
quasi POpOv fornl Lh:n it,s entry T(i)iJ*, - referred t.0 as 
the jth pivot clcnlent - has precise degrrc i;J. Not.ice that 
the Rt;ilt~?Illf3lt Of Ixnnna 2.3 also holds in tlx rectangular 
case. In particular; A(z) is cl-wl~nnn reduced if and only if 
--3 . A(,-) is b.: I ( 0 111111i reduced. Kon n0rma.l sliiftctl forms 
;lave IJCCIl Mined in [20] with a sliglit,ly different dcfinit,ion 
Of t.lic Glegree. 

The nest csaniple gives another illust.ration Of t,he link 
bctwwn slliftcd fornls of polynonGa1 nlatriccs ant1 the intc- 
gc*r case. \1Tc! use the fa.cl thilt a shift vector with only one 
nonzero entq niay be uscxl t0 Meet.” a given row in a nia- 
t.ris. -4s sliow~l in [I 1: Xgoritlinn 21 for inlegers, this is useful 
in solring the est.endcd gcd problcni. 

Example 3.4 To compute the gcd c(z) of o(z) = .-‘--41+3 
and b(z) = z3 - 7 z’ + 14 2 - 8 together with n corresponding 
multiplier U(z) such. that [a(z) b(z)] U(z) = [c(z) 01. 0716: 
mng eomputc (L sh,iftcd form equimltmt to 

$ - 4 I .,. :) 

[ - 

;3 - 7 ;L’ + 14; _ ,g 

A(z) = 1 0 

0 1 I. 
This matris: is built using the idelkitg matrix, to keep tmck 
of the co1~1~mr1 operations that (Lrc ycrformed and that will 
give U(z). A kcolurnn TW~ILCC~ form of A(z) Ss 

r 2”-4L.k3 -z+ I. 1 

L 1 -2+3 

0 1 1 

191 



brat does not prwide the target resdl. 07t.c could verify Ircre 

that a [-2. 0: (I]-rcdwcfl form: 
-2 + 1 0 
--z t3 -9+6:-X 

1 2 - 3 I 

Icads to c(zj (d?ld to a possible U(z). q 

The generalixati()n of R.crnark 2.2 and in IJart,icUlar of 
idtrntity (3) relies 011 Cli&sSiCal tools from linear s3;st,cwr thc- 
cry. For a. Inatris pc~l~nonIia1 A(z) of full c:olUnIn raIIk WC 
Mine the M&w dcgwc - &noted by Wnor-ctcg A( ,z) - as 
the Inasimuni of tlic tlcgrccs Of the d~~t.c~rnIiIIants of 7, x II 
SulnIIatrices of A(z) (WC [12. Eq. (34): p.Gl]). This can 
1JC IlRtllrB11~~ &3?Iltkd IO LillIlTIlt Inatris p~Jl~IlOIIlii~lS. Set,- 
t.ing CT* = c.&:g (2-C A(.:)) where cdq tlcnot.cs the unshifted 
c:olIInIn dcgrcc: it is a-ell-known t,lIitt 

wit.h eC@it) itf A(z) is z-~--(.011111111 rcclilcetl w, 

5 63.2: p3S4]. III this lat,tcr case. wit,h TJivot, set 1. 
LCIIIIII~ 3.2 pr&idcs I 11c adtlitional inforInationA 

hlinor-tleg (z-“A(I)) = tlcgtlct, (2~“‘A(z),...) 
= If7 1 

> cleg th (z iir’A(z),~..) 

whew 1’ is “113; list, its iI1 t.llc l~Illlllil. 

Example 3.5 The fi-Popwu rrorwml of 

A(z) = 

(7) 

T”(z) = 

has pivol xl I = (1, 2, 3) und ,uector degree (i = [l. 1. 11. NO,UI 
Iii1 = 3 is lhr: Minor dcgnx of the first 4 I’O’WS of A(L). 0 

Theorem 3.7 helow slIows that. my 1JolynoInial IIIatris 
CR11 IJC transforrncd to a unique n’-Popov form b-y nIult.ipli- 
cation on the right with sonie uniniotlular nlatris. \Vc first 
st.al;c a 1cIIlIIIa which gives a useful pr0lJert.y of colun~n rc- 
dwcd Inatrices (see [12, Theoreni 6.3-13. p387]). 

Theorem 3.7 (ii-Popov form) 
Any/ mfdriz A(z) E Q”’ “‘[z] ff 11 : 1 0 u f 0 Ilrnn rfmk is eqniclfdeiet 
to a wnl,q~~e matli:f: T(z) in ~-I’opo~~ nfmnal forin. 

Proof : The existence of a c~lun~n reduced form B( 2) cclniv- 
ihlt to A( 5) is a ~I~tssi~A fact, SW [12. IJ 356] for instance. 
The sa11le applies tlircctl\- to shifted forms. Following (5) let 
B’ IJC the corresponding lcatling scalar niat.ris. Wc t1cnot.c 
Iy /? t.tIe unshifted c-lqz,rcc: 

2 -; A(-). U(;). :,-‘j;* = z-z. B(-). ,;-? 

= B’ + O(z-‘)>-,u 

a.nd let I IJC t,lIta pivot. set. of B’. If T(z)/.- = B(z)J.*V(Z) 
is in dr-Popov forIn (Definition 2.1 in the IJoIIsingu1a.r (.‘il.SE!) 
t.lwn T(z) = A(z) U(z) V(z) is in Z-Popov form. 11Itleec1, 
1.)~ Renlitrk 2.2: the componc~nts of t.lIe unshifted tlcgrcc 6” 
of z-‘~ T(;j,., are given 1)~ a perniutation of the COIII- 

po11ent.s of 3;: (I’* = peruI (3’). I~~IllIllil 3.6 iInplies that 
dog [V(Z)],.,) < i;; - R. ‘TllUS ii11 1 .’ t I(. cntrics in t.he j-th 
r011111111 of ,‘-,? T(t) 11avc tlcgrees bo~ndctl ly i;T. Using 
t.he wcontl itlentity of (7) we have 1Iinor-tlcg (z-;T(z)) = 

Minor-deg ( zCi B(z)) thus the two Inatrices must have the 
sanw 1Jivot set. 1. ot.hcrwisc the inequalit.,v in (7) w-oulrl l~c 

viola.tec:l. For tlw sanle reasons it follows t,lIat. l~clow H pivot 
ent,ry in z-’ T(z) the dcgrccs Inust, 1x st.rictly less than Z; : 
this estiihliSlIcS the rsistcncc of the form. 

By (7), RS UXYI ilbovc’. iLll?; two ri-C0lun~ll rcclucctl nIilt,ri- 
CW tllid XC uIliIll0dllli~r COlUIIlIl C?Cplivill(‘Ilt 1Ia.w the SilIIlO 
pivot set. l?ri-oni t.lIc nniqueness of tlic fornl in the nonsin- 
gular rasr: if T”)(Z) ancl T”!(s) are two GPolJor forms 
of A(z) then T”‘(z)I., = Ti”)(z),... This iniplics OIat. t.lIe 
two c:orrcqJoIItling trimsf0rInation IlliltriC(!S are the SillTlC! ant1 
t1Ia.t T”‘(z) = Tc2’(z). q 

1ic 1IiI.w seen in the preceding IJroof tllilt : for any two 
co1111nn equivalent. ant1 ii-coluInn rcthxetl niat.riccs: t,lIe pivot 
sets coincitie. Nevrrbhclcss. by (i): the pivot Set will in gen- 
eral rlcl~cn~l on Z. For instance, gcncralixing Lcnnna 2.4 1.0 

t,he full rank case we nliI\; define HcrIIIitc shifts Z 1.y 

d;J - t?, > GJ ? for i > ij 

In such CilSCS, I will consist. of the largest row iIIdices swh 
that A( 2)~ ,_ is IIcnsingIIlar. 

4 Degree bounds for multipliers 

III t.his section wc give dcgrcc bounds for the uniniodular 
IIiultil~lier U(2) IIscd to t.ransforni il givcII IIlilt,ris polyIlortIia.1 

A( a) into a11 ii-Popov form (or some similar form) T(z). The 
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bounds will be used in the next section to cmbcd t,he shifted 
Popov problem into one of computing a certain basis of the 
kernel of an associated matrix polynomial. a computat,ion 
that can be cfficient.ly done in compukr algebra systems. 

Our degree estimates u-ill bc given in terms of a free pa- 
rameter t which may be chosen in order to reflect part.icular 
properties of the input. A(z) (e.g., in the case where A(z) is 
F-column rrducedj. In the first. part of t,he next, t.hcorem our 
estimates arc formulated in terms of the input.s A(Z), d, Z! 
and of the invariants T(z): (7: I. The aim of the second part 
is to estimate t,he invariants in terms of the iuput. 

Theorem 4.1 (Degree bounds for Multiplier) 
Let A(z) U(s) = T(z) with U(s) unimodlkw and T(z) 
being d-colmm yed,uced with, pivot set I and deyee 6. Am- 
thermore, for some arbitrury multi-index 6 let 

+? 
Y = cdeg (z-’ . A(z)): 7” = cdeg (z-‘. T(z))! (8) 

and define A’ := IT’“1 + Jhl - Idl. Then 

dcgU(z)k.J 5 <**” - 7;’ + A”: j: k = 1: . . . . n. (9) 

Also 

is in upper triangular Hermite form with, 6 = [8,0; 01. In this 

case A;” = 21 > A” = 0. Th,e entries of the transformation 
U(z) have degl,ee ut most 7 and all the degrees are exactly 
predicted 111~ the choice t= a. On the other hand the bound 
for c’ = ?i gives a in,axim7~m dqiee 12. 0 

0 5 -Minor-deg (3/ .A(z)._,-~*‘) < A” < IT“l+lF,‘rl: (10) 

und A’ = 0 iff A(z) is Z-column reduced. In addition, 

Pwof of Theorem 4.1: For the remainder-of the prvof we 
fix t and use the shorter notation 7 = T*“: r’ = 7’. For 
a. proof of (9), we recall that dcgdet, A(,-),,. = Idl. Since 
A(2)l.j 5 ZL - T;. WC get 

7; < n’ - f-it + CT. 1rm[d - q: (11) 
-vii 7 = G - n’, 5 perm (T*“). (12) 

Bcforc giving a proof of Theorem 4.1 we give some cxam- 
ples which illustrate the sharpness of (9) for different choices 
of t In the examples A(z) will al\vays bc nonsingular so 
m = n, and I = (1: . . . . m). Also, we will just compare 

the choices 1 = a’ 2 0’ and c’ = 6. If 7’” = cdcg A(t) 

and y*” = cdcg (z-“A(;)) are of t.he same magnitude, then 

Aa M A*’ - Iii1 5 A’ - IllaX[Z], Xld from (9) Xld (11) WC 
see that the choice c’ = 6 leads to tighter hounds (compare 
with Ac3)( z) below). If the shift is relevant for the degree 

bounds, typicallv when A” < A’ (SW matrix A”!(z)), then 
the choice t = ‘ii will be more appropriate. However, the 
optimal choice of the parameter Zremains an open prohlcm. 

Therefore, by a.pplping (8) and Cramer’s rule, the quantity 
2.5 . U(z) teP rctluces to 
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which is ii-column red,uced. The transformation matrix fol, 
the a’-Popov form is constunt. and the two estimates for ZE 

(0’: a’} give the exact degree 0 for most of its coeficicnts. 
For the shift ii = [‘i, 2, O] on the mntriq 

giving cqua.tion (9). 
In order t.o show (lo), recall first that. z-‘. A(z) zPi is 

a polynomial in l/z by the definition of 7. Consequently. 

0 > Minor&g (z-‘. A(z) z-‘) 

> Minor-deg (z-” A(Z) . zFi), 

the latter q!lant.it,v being equal to -A’. It remains to diqcuss 
the cae A’ = 0. By (7) and the above inequalities, AC = 0 
is equivalent, to t.hc facts that y is the column degree both 
()f z-p1 .A(:),., and z-’ ‘A(Z), and t:hitt, both mat.rices are 
column reduccd~ as claimed in (10). 

.ksertion (11) and the first part, of (12) follow immedi- 
ately from the dcfiuition of r’. III order to show the final esti- 
mate for r’= Z, we introduce the unimodular mat,rix V(s) = 

U(z)-‘. Since z-‘A(z) = z-‘T(Z) V(z) and t-‘T(Z) is 
fi-column rctluced, it follows from the Predictable-Degree 
Property (Lemma 3.6) and (8) that zi . V(z) . -8 = O(z”). 
Since V(3) is nonsingular? we find some permutation 11 such 
that V(,Z),j.pi,j) # 0. leading to (12). 0 

Remark 4.3 Recall thut 6, is the (u priori unknowns) degree 
of a pi,uot element of the normal formz in, particrLlar it is 

nonnegati~ue. Thus, in terms of the input data, combining (g) 
with (11) gives the weuker degree bound 

degU(2)k.j < IF, I - 12,~ + 17*“1 - Ti’+ max[Z - 4 

In particulnr~ in terms of d = deg A(z): ‘we obtain in the 
unshifted Popou case (Z = t= 6) 

dcg U(z) < (n - 1) d: dcg T( t) 2 tl. 

me gets 7’ = ii + [lo. 3,4] and 7” = [lo, 8,111. The a’- 
Popov form of A(‘)(z) lus the degwe vector 13 = [lo, 3: 31. 

With A’ = 1 and A” = 13 > A”, the bound for c’ = CT is 

precise und gi,ues the exact m.aximwnS degree 3 for the entries 
of the twnsformation. when the oth.er one is pessimistic and 
gives a maximum de,gree 15. 

The [lo. 3,0]-Popov form. of 

2;+ I 2z”+zJ +2z”+22 2zL’+2 

A(“)(,-) = 2z+l 15 +2”+2z~+1 22 + 1 

z+ I ,-5+234+23:!+i 2;“+z 1 



5 Computing Popov Forms via Minimal Polyno- 
mial Bases 

In this section wo show that shifted Popov forms T(zj of 
A(z) together with their multiplier U(z) C&IL 1)~ obtained by 
a part,icular polynomial basis for the kernel of [A(z): -In,] 
(considered as a module over Q[z]). It makes int,uitive sense 
to look at the kernel since the columns of the (m + n) x 71 
matrix polynomial 

(13) 

lit: in the kernel of [A(t): -I,,,]. Tl iese coluinns form a ba- . 
sis iff T(z) = A(z) U(z) and U(z) is unimodular. Finally, 
as observed for exainplc in [19], WC Inay use the algorithms 
FPHPS and SPHPS of [3] to con1put.e colun~n reduced polp- 
nomial bases of mat.ris polynomials: othclrwise known as 
minimal polynomia.1 bases (MPB). III our case me wish to 
use a shifted version of a basis of the kernel to comput,e 
shifted Popov forms. 

Definition 5.1 (Shifted Minimal Polynomial Bases) 

Let C(z) E QTnxfl [z] be of rank r and B(z) E Qnxcn-“)[z] 
irreducible (of full rank for all finite values of z in the 
co7nplez plane), with C(t) . B(z) = 0. If in addition B(z) is 

K-column reduced then it is cdled a &-Minimal Polynomial 
Basis (c-MPD) of the Q[.;]-7nodule ker7~1 of C(z). cl 

The existence and the uniqueness of a c-MPB in 6-Popov 
form follows from Theorem 3.7. If h’ = 0 then Definition 5.1 
gives the classical definition of a Minimal Polynomial Basis 
(RIPB) [9]. Such bases arc called minimal since if a MPB 
for the kernel of A(z) has degree /‘i then any other basis has 
degree /!? 2 pcrm (p’, [12. $6.5.4, p-l%]. 

Theorem 5.2 (Popov forms via MPB) 
Let A(,-) be an, ‘ITL x II. m.atrix polynomial of full col- 

umn ml+, und Ci; c’ m~ulti-indices. Furthermo7.e;: let T*’ 2 
cdcg(z-CA(z)), and wrile G(lY) = (N . e’- -;“:Z) for any 
integer N. 

The matrix polynomial S(z) is of the form (13) with T(,z) 
the Z-Popov form of A(z) and U(z) its correspon,din,q mul- 
tiplier if and on& if, for so7ne 

N > IV1 := a’ + nlas[a - q: - 

S(z) is a MPl? of the kernel of [A(z)! -I,,] 1:n ,Z(N)--Pop071 
fOlW1. 

In this cuse: the latter property is true for all iV 2 Xl. 
Furthermore, S(z) a7t.d T(z) have the sa7nc pivots, a71d the 
same .sh.ifted colu7n71 degree. 

Proof: For the! first implication it is sufficient to show 
that. the stacked matrix S(z) constructed with help of the 
Popov form T(z) and the multiplier U(z) is ,5(N)-column 
retlucecl for all N 2 XI: with the properties as specified in 
the last, part of Theorem 5.2. Indeed. denoting by ir’ the 
(2 column degree of T(Z) a.nd by I the corresponding pivot. 
set, we get, 

and it only rcmAns to show that 

for all N > N1. This latter st,atement follows howcvcr 
from (9) and (11). 

In order t,o show the other implication, let S(z) (and 

S(z)) 1 ,e as described in the first part of the assertion 
(and of the second part, respectively). Then the columns 
of bot.11 matrices form bases of t.he kernel of [A(z), -In,], 
and thercforc there exists some uninlodular W(z) such that, 
s(z) = S(z) W(z). On the other hand, both S(z) and g(z) 
arc of full cohnnn rank and in ii(N)-Popov form for the spcc- 
ificd value of Ai: and t,lius S(z) = S(z) by the uniqueness of 
rl( N)-Popov forms. 0 

Thcorcm 5.2 implies that one can compute shifted forms 
by computing shifted forms of bases matricrs for an asso- 
ciated kernel. That this is useful is shown by Theorem 5.3 
below lvhich implies t,hat one can USC the Mahler basis al- 
gorithm FFFG of [J] in order to compute an MPB S(z) in 
shifted Popov form. III addit.ion, FFFG only uses fract,ion- 
free arithmetic, an advantage if the ent.ries in the original 
matrix arc polynomials having coefficients from an integral 
domain (for example a matris with entries from Z [z] or 
Q[fll, : Uk][Z]). 

To bc more precise, let us briefly recall the definition 
of order for vect.or Hcrnlite-Pad6 approximation (see, e.g., 
[5] or [4: Example 2.31): given an m x s mAris F(z) of 
polynomials (or formal power series) and a multi-index ii 
of lengt,h m, a vector P E Q”[z] is said t,o have order a’ if 

-’ . F(z) P(z) = C?(l),,o. Obviously, the set of polyno- 
~iial vect.ors having a given order is a submodule of Q*[z], 
containing th kernel of F( z). The method FFFG mentioned 
above dctcrniines s x s bases of such order modules in shifted 
Popov form, by successively increasing one (arbitrary) com- 
~JOIlCIlt of the order vector by one unit. For sufficiently large 
order vectors and suitable shift.s, we may recover our desired 
Ml% in shifted Popov form as a part of such an order basis. 

Theorem 5.3 Let A(z):Z; Z!=j’z”,7T be as in Theorem 5.2, 
und define 5 := (1V . e’- T-F> u’), where N 2 NI 

Apply algo&hm FFFG to the matrix [A(z): -I,,,] along 
the ofldiazonnl path induced by ii and %ncreasing order ?‘ec- 
tars cr’ 2 0 in order to obtain, fraction-free poly71o7nial bases 
M(z) of Z-colu7r17~ degree v’ along with polynomial residuals 

R(z) = z--’ [A(::): -I,,]. M(z) E Q7”x(“+m’[~], 

and stop th.e algorithm if a 77~ x 71 .submntrix R(~),,L of R(z) 
is zero. 

Then there exists som.e ,scnlar c # 0 such that the last m 
rows of M(;J)..~. yGre c time.9 the Z-Popov form of A(z) with 



Z-column degree 6 = 27~ and pivot set (PI - n, . . . . P, - ,I/),, 
where L = (I’,: . . . . C,), and the first n, IWIIS of M(z),./, give 
c times the corresponding unirnodular rrmltipliw. 

Th,e nlgolithm. will temwinnte at the latest by the order 
wed07 

;i > a" := z+ (N + 1 + mxi[r"q)c?. 

Proof: sotice t.hat,. for any order vector (?: R(0) is of full 
rank m [5: Lemma 2.8]? and M(z)/ c is a nonsingular matrix 
in %Popov form for SOIIW scalar c # 0 [4, Theorem 7.21, 
with its dcgrcc vector denot,rd by 17. Let. S(z) be a.s in the 
first part. of Theorem 5.2. Then the columns of S(z) have 
order rr’: and from [4, Theorem 7.3(a)] we know t,hat, there 
exist.s a unique mat,rix polynomial P(z) such that 

S(z) = M(z)P(z). and ?ri .P(s). z-~‘+‘~ = 0(1)1717j 

If the index set L is as above, t.hen t,hc columns of M(z),J 
arc elements of the kernel of [A(,-). -I,,,]. From the basis 
property of S( 2) we nlay conclude t,hat, there exists a unique 
matrix polynomial Q(z) such that M(z)*.L = S(z)Q(z). In 
combination with (14) we obtain M(z)*J, = M(z)P(z)Q(z). 
Consequently, P(z) I,,.* = 0, and P(z)I.,. = Q(z)-’ is uni- 
modular. Uniqueness of shifted Popov forms gives us t,hc 
dcsircd result, S(z) = M(s)*J/c. 

In order to prove the last part, notice that 

- - 
za-: .R(z).Z~-u’=~-~ . [A(,-), -I,,] . M(z) . tTi-’ 

= [z-‘. A@) . z-3*p; -I,] 

Since N - max[iZ - 4 > A’ > 0 by assumpt,ion on N alld 
relation (10) of Theorem 4.1, it. follows that tdpP R(s) 
,TT-J-;,r; 

= o(2°):+30. We now mav choose an index list 
i with L,: := (1: . . . . m + 7~) \ L such that the square matrix 
R(z)-.L, is invertible. Consequently, there exists a bijective 
map p : (1: . . . . m} + L, wit.h R(,-) ,,.I, (j) # 0, j = 1:..,m3 
and thus 

whcrc we recall t.hat. perm denotes a permut.ation of the 
components. If now ii 2 J = c?+W’T?~ then niin[(v’-7Y)L,] 2 
N’ - N > IIMX[~“] + 1 2 max[cu - ?;I] + 1 by assumpt.ion 
011 N’ and (12). It follows that P(z),,,,. = 0 in (14). On 
the ot,hcr hand, with S(z), P(z) must also ha.ve full column 
rank, and t.hus P(z)L,, is invertible. Multiplying the left- 
:;; equation in (14) on the left u-ith [A(z), -I,,,], we obtain 

z *.L . P(‘)L.- = 0 and hence R(Jz)..T, = 0, as required 
for the final part of Theorem 5.3. 0 

The fraction free comput.ation of shifted Popov forms via 
FFFG has lmm implemented in the computer algebra syst.em 
MAPLE and can be obtained from the authors web sites or 
via email. 

Example 5.4 Let A(,-) be as in Emmple 2.5 with Z = 0’ 
and c’ = cdeg A(s). Il’hen upplying the FFFG dgor.ithm 
along th.e path [6.10: 6,8: 4,0] results in n Mahler system that 
products an integer multiple of n [8.4,0]-Popov normul form. 

A(z) along with n lLn.imodulor rnultipliel~ in 18 iterutions. 
The result is 4 times the true u71s~u~e7’ because it worhzs with 

fruction-free urithmetic. The *unilnodular mrrltiplier i7t. this 
case is given by 

[ 

is’ + 42 z+l -2z+2 

-4 z2 + 16 --” 2z - 4 

-4~‘-8~ --f -2 23 1 
again 4 times the true answer. 0 

Wc cm give a worst case complexity for this approach 
in terms of d = deg A(s). As in the discussion at the end 
of section 3 we will restrict ourselves to the choices t = 0 
and Z > 0: max[i;] 5 161, which includes the classical Pop01 

and Hcrmitc normal forms. Then y’*’ 5 To 5 d . E’, and 
A” + max[rl - iJ < IT’“1 5 ‘11 (1. Consequently. a practical 
choice for N would be N = 11. d? leading to lrir 1 = m. n. d + 
m. (d+ 1). 

From [ST Lrnnna 2.81 and [3: Section 41 wc know that. the 
module K := 1171 of the degree voct,or of t.hc final basis in 
FFFG coincides with the module of the final order vector 
(lil 5 [?‘I. It is s1mw11 in [3: 41 tl1a.t the complexit,y of FFFG 
to reach this order vector is bounded by c3((m + n) K’) 
in floating point, arithmetic, arid by O((m + ,I,) . K’ K”) in 
csact, a+ithmetic, where K is an upper bound for the size (in 
bits) of t.hc cocfficicnts of A(Z) ( remember that. the corre- 
sponding complexities for solving the underlying systems of 
linear equations by Gaussian elimination arc obt,ained by re- 
placing In + r/ a.bove by K). Under the above assumptions, 
we obt.ain rough worst cast I~ounds in t.erms of the degree 
d = drg .4(z). namely 0(m” . 71” 
tions, and O(K;’ . 7~~‘. n4 

. d’) floating point opera- 
d’) bit operations. There arc no 

other fract.ion-free algorit.hnls for Popov or Hermite that can 
be used for comparison with our approach. 

6 Conclusions 

In this paper we have studied reduced and normal forms of 
matrix polynomials by looking a.t so called shifted forms of 
matrix polynomials. Thcsc forms include column-reduced: 
triangular: Hermite normal and Popov normal forms along 
wit,11 their shifted counterparts. WC have det.ermincd de- 
grcc bounds for a unimodular matrix which transforms the 
input matris polynomial into an equivalent ma.trix in the de- 
sired form. The dcgrce bounds allow one to embed a shifted 
Popov normal problem into a problem of determining a mini- 
mal polynomial basis in shifted Popov form for an associat.ed 
st,ac:kcd matrix polynomial. These shifted minimal polpno- 
mial bases can in turn be computed in a fraction-free way 
via the Mahler syst,cm algorithm of [4]. 

As ment.ioned in t,hc int.roduction the results in this paper 
can bc viewed as a first step in a program to obtain efficient 
symbolic methods for computing matrix normal forms of ar- 
bitrary matrix polynomials. The full row rank rectangular 
cast is important. for computing mat.rix polynomial GCDs in 
normal form. The singular cast gives information on min- 
imal polynomial bases for the kernel of the matrix polyno- 
mial. The cast of singular or rccta.ngular matrices is con- 
siderably more conlplcx be(:ause one no longer has a unique 
unimodular mult.iplicr. In such cases one needs to determine 
a unimodular mult.iplier with minimal degree properties [6]. 
Degree bounds for t.his cast are also more difficult. At the 
same time degree bounds for such multipliers in t,his case 

also lead to interesting degree bounds for important classes 

195 



of problems of interest ill computer algebra. For example, 
from [(i] we have: 

Theorem 6.1 (GCD of several scalar polynomials) 

jet A(L) = [~~L(~z):((L’(z):...Q~~(~)] E Q’““[z] with dcg:grce.s 
r’= [ylrY.‘,...Ynl and d(z) = GCD(al(z), . ,a,,(~)) with 
degree 6. Assume iwithout loss of genel,ality) that 71 = 
minj y,, ad y,1 = maxJ yj. Then there are “‘small” mul- 
tiphem us. (2) fol, the diophantine equation 

Ul(2)‘U1(2) +ap(z) ‘O.,(Z) + -tan(z) ‘U?L(r;) = d(2); 

which satisfy 

dcglrl(z) 5 y,, --a- 1: 2 (l+dcgW(z)) 5 -y1-6. (15) 
A.=” 
u. A. # 0 

Notice tha.t thescb bounds include the classical one for 7x = 
2 (cf. [lo]). Also, a straight forward gcncralization of the 
intclger bound of [ll] to the polynomial case would lead to 
the weaker estimate dcg ‘uk(z) 5 yn - 1 for all h. 

Thcrc ilre a number of intcrcsting problems t,liat still rf:- 
main to be solved. WC have shown tl1a.t it is possible to solve 
the shifted Popov form problem via some fraction free algo- 
rit,hm by not,ing that. it is embedded insitlc an order basis 
computation (or an MPB comput,ation). The major prob- 
lem with using such AU approach to compute our form is 
that this method is not, really a reduction procrdure. In 
particular it cloes not recognize when a matrix polynomial 
A(z) is in shifted Popov form until the final step of the 
computation. We are intcrcsted in obt.aining a fraction-free 
algorithm which coruputcxs minimal polynomial bases (and 
hence our normal form) in a reduction procedure. We ex- 
pect that this may be done by df)termining an ;tssociat.ed 
linear sgst,em along with tlcl,erminent~al reprcscntations as in 
[4] mtl then making use of modified Schur complements as 
done in [l]. 
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