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Abstract

In this paper we study the problem of transforming, via in-
vertible column operations, a matrix polynomial into a va-
ricty of shifted forms. Examples of forms covered in our
framework include a column reduced form, a triangular form,
a Hermite normal form or a Popov normal form along with
their shifted counterparts.

By obtaining degree bounds for unimodular multiplicrs
of shifted Popov forms we are able to cmbed the problem of
computing a normal form into one of determining a shifted
form of a minimal polynomial basis for an associated matrix
polynomial. Shifted minimal polynomial hases can be com-
puted via sigma bases [2, 3] and in Popov form via Mahler
systems (4]. The latter method gives a fraction-free algo-
rith for computing matrix normal forms. Key words:
Popov Form, Hermite Normal Form

1 Introduction

Matrix polynomial arithmetic is fundamental to many ap-
plicatious in science and engineering. It is enconntered in
linear systems theory [12], determining minimal partial real-
izations of matrix sequeunces [20] and solving linear diophan-
tine cquations [14, 16]. Not surprisingly, the arithmetic of
matrix polynomials has substantial differences to that found
with scalar polynomials. Such fundamental operations as
determining a degree, a leading coefficient, and normal and
canonical forms [10] have numerous variations in the ma-
trix case. For cxample, the degree of a scalar polynomial
has equivalents such as row degree, column degree, degree,
degree of the determinant, MacMillan Degree, and others,
cach with their own usefulness. Leading coefficients of a
matrix polvnomial can mean leading column or leading row
matrices and are not necessarily invertible, a problem when
attempting division-like computations.
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In order to usc many analogous concepts from scalar
polynomial arithmetic one often transforms a given matrix
polynomial into an equivalent matrix polynomial having bet-
ter propertics for fundamental operations. Formally, two
matrix polynomials A(z) and B(z) arc column equivalent
if there exists a unimodular polynomial matrix U(z) such
that A(z) - U(z) = B(z). The matrix U(z) corresponds to
a sequence of clementary column operations. For a given
A(z) one has a number of equivalent forms that are use-
ful for applications. These include column reduced forms,
where the leading cohunn cocfficient matrix is nonsingular
(a property useful for division algorithins), triangular formns
(useful for solving systems of linear equations) and Hermite
normal forms or Popov normal forms (useful for determining
when two matrix polynomials are not cquivatent).

In this paper we study the problem of computing normal
forms for full column rank matrix polynomials. In particular
we are interested in computing Popov and shifted Popov
normal forms for such matrices. Roughly speaking, a Popov
normal form [17, 22] is a form having a “good” structure for
leading coefficient matrices on both row and column sides.
It has the important property that it always reduces column
degrees of the input matrix. This is different from other
forms such as the classical Hermite normal form which is an
upper triangular matrix with additional degree constraints
with respect to diagonals but which typically has degrees
increased during the reduction to normal form.

The notion of a shifted form is basically one of alter-
ing the degree structures of the rows of a matrix and then
computing forms of the resulting wmatrix. It is a simple
process but very powerful. For example, the classical Her-
mite normal form can be obtained by determining a shifted
Popov normal form for a shift determined from the degree
strncture of the input matrix polynomial (cf. Example 2.5).
Shifted Popov Forms for square nonsingular matrix poly-
nomials were first introduced in [4] as a convenient normal
form for describing the properties of Mahler systems. Mahler
systems were used as a basic building block for recursively
computing solutions to module bases for matrix rational ap-
proximation and matrix rational interpolation problems (sce
also [1] in the case of matrix Padé systems). The (vector)
shift was uscful in this application for keeping track of a path
of computation that allowed one to avoid singular situations
in order to recursively compute along a path of closest nor-



mal points to a singularity. A (scalar) shift has also been
used by Beelen et al [7] in determining a reduced columnn
form of a full column rank matrix polynomial by computing
a minimal polynomial basis of a shifted stacked rectangu-
lar matrix. The use of a shift ensured that the nonsingular
leading coeflicient matrix be isolated in specific (in this case
last) rows.

By obtaining degree bounds for unimodular multipliers
of shifted Popov forms, we are able to cubed the problemn of
computing a normal form into one of determining a shifted
form of a minimal polynomial hasis for an associated ma-
trix polynomial kernel. Shifted minimal polynomial bases
can be computed via sigma bases [2, 3] and in Popov form
via Mahler systems [4]. The last named algorithm has an
important property: if the entries in the original matrix arc
polynomials having cocfficients from an integral domain (for
example a matrix with entries from Z [z] or Qfa., ..., er][z])
then it computes a minimal polynomial bases using ouly
fraction-free arithmetic.

The results in this paper are part of a larger research pro-
gram: the efficient computation of matrix normal forms for
arbitrary matrix polynomials. In particular we are interested
in efficient fraction-free computation of such normal forms
for nonsingular, singular and rectangular matrices. Our re-
sults give a first step in this direction. Additional results are
available in the manuscript [6].

The remainder of the paper is organized as follows. Sec-
tion 2 gives the basic definitions of shifted reduced and nor-
mal forms in the case of nonsingular square matrices while
the next scction looks at the equivalent problem for rect-
angular matrix polynomials of full column rank. Section 4
gives degree bounds on the (unique) unimodular multiplier.
Section 5 shows how to embed the problem of computing
a shifted Popov Normal Form and the associated unimodu-
lar multiplicr into one of computing a minimal polynomial
basis in normal form. This allows shifted normal forms to
be computed using the algorithm of [4]. The last. scction in-
cludes a conclusion along with a discussion of future research
directions.

2  Shifted Popov Forms of Nonsingular Matrices

In this section we give some of the basic definitions and prop-
erties required for the remainder of the paper for the case
where the input matrix polynomial is square and nonsin-
gular. Various shifted forms are introduced along with the
coucept of shifted column reduction. We remark that for
any multi-index @ (i.e. a vector of integers) we denote by |d|
the sum of its components, max @ its maximum componcnt
and perm (@) a permutation of the components. In addition
the multi-index € denotes the vector (1,...,1).

Definition 2.1 (d@-Shifted forms, square matrices)

An m X m matriz polynomial T(2) € Q™" (2] 1s @—column
reduced  with @ -column degree & — if there exists a multi-
index & such that

2TT(E) A s T+ O S,

. ; . 1
with T' € Q"™ nonsingular. (1)
If this condition holds with T' nonsingular and upper trian-
gular then T(z2) is said to be in & quasi Popov form. When
it satisfies the additional normalization degree and leading
coefficient constraint

=L, +00G""): 50 (2)
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then T(z) is said to be tn @ Popov normal form. ]

Remark 2.2 Propertics (1) and (2) are invariont under
adding a constant to all components of @. This allows us,
in particular, to estend our definitions to Laurcnt matrix
polynomials where needed.

Up to a (unique) permutation of columns, Definition 2.1
gives the classical Popov normal form [12, Subsection 6.7.2,
p.481] in the case @ = 0. When the form is used in @ matriz
fraction description or as a minimal polynomial basis, the
degree @ are referred to as the vector of countrollability or
Kronecker indices.

For any two column equivalent end d-column reduced ma-
irices, the corresponding vectors & — @ as in (1) coincide up
to permutation [12, Lemma 6.3-14, p.888]. Also, for any
matriz polynomial A(z) column equivalent to T(z) as in (1),

3)
O

|¢} = deg det T(z) = degdet A(z).

15 an mvariant.

It is known [12, § 6.7.2, p.484] that any square nonsingu-
lar matrix polynomial may be transformed to Popov normal
form by multiplication on the right by a unimodular matrix
polynomial, and that the form is unique. A similar state-
ment is also truc for an @-Popov form.

Lemma 2.8 For a nonsingular matriz polynomial A(z) and
a multi-indez @, set A(z)* P A(z). Let T(z)# =
A(2)¥ - U(z) be the {(-Popov form with degree G of this
resulting Laurent matriz polynomial A(z)*, Then T(z) =
24 T (2)* = A(z) - U(2) is an @-Popov form of A(z) with
degree & = G% +a. Conversely, for any @-Popov form T(z)
of A(2) we have T(2)* =277 . T(2). 0

Lemma 2.3 says that it is possible to consider only -
Popov forms. However, the introduction of an additional
parameter @ is convenient for a number of reasons. It ap-
pears naturally in the context of the approximation problems
studied in [4], and was the primary purposc for introducing
this form. Qur vector shift can also be used to simplify the
Matrix Euclidean algorithm of [8]. Indeed their six reduction
steps can be viewed as moving from one shifted Popov form
to a new shifted Popov form with a reduced shift. In the
case of column-reduction a shift (in this case a scalar shift
of certain componcents) was used as a tool in the algorithm
of [7] for constructing a column reduced polynomial matrix
for a matrix polynomial of full column rank.

A vector shift is also very useful in that it allows one
to describe a number of other important matrix normal
forms. For example, triangular forms and the Hermite nor-
mal form [15, §22, p.32] arc obtained with shifts as follows.

Lemma 2.4 Let A(z) be o matriz polynomial and T(z) be
one of its d-quasi Popov forms with d-degree &. If @ and &
satisfy

(4)

then T(z) is upper triangular. Furthermore the @-Popov
form of A(z) coincides with its Hermite normal form.

a; —d; > &y, for @ > j,

Proof. Let us show that T(z2);; = 0 for ¢ > j. By
Definition 2.1, T' is upper triangular thus for i > j,
—id;i + degT(z);; +d; — & < 0 and if (4) is true then



deg T(z)i; < 0 and T(z) is upper triangular. Also condi-
tion (2) implies that the degree of a diagonal entry is strictly
larger than the degree of the other entries of this row and
the @-Popov form is the Hermite normal form. O

The condition T’ upper triangular in Definition 2.1 plays
a minor role in the entire triangularization of A(z). Indeed
the upper triangularization may be ensured using only a
column reduced form with a slightly different shift. If T(z)
is d-column reduced with @; — @ > &;, for i > j, then T(z)
is upper triangular.

Even if for any given matrix A(z), the degrees @; are
not known in advance, one may always use Lemma 2.4 and
shifted forms to compute triangular forms. Indeed, the de-
grees are bounded by (3) thus choosing w > degdet A(z)
and as shift vector @ = [(m — 1)w, ..., w,0], condition (4) is
satisfied.

Example 2.5 Let A(z) be the following 0-column reduced
matriz: N
2

z+1 2

=

A(z)= 0 —2

:42 0

z4+1

From the sum of the column degrees one may take w = 4
as an upper bound on the degree of the determinant. If @ =
[8,4.0] then an d-quasi Popouv form of A(z) is

2 —sad —23 a4 2t o233 44224152
0 -4 ~82
0 0 8

which in foct is [4,1,0]-reduced with degree & = [4,0,0]. By
Lemma 2.4, with the same shifts, the @-Popov form of A(z):

2422 244 %33—3—% ;1;33+:'2|:—%
0 1 0
0 0 1
s also its Hermite normal form. |

This application of shifted forms of matrix polynomial, is
very similar to a well known application of integer lattice ba-
sis reduction. Given an integer matrix A, it is shown in [18,
p 74] that the reduction of a well chosen lattice deduced from
A, gives the integer Hermite form.

3 Shifted Forms of Full Column Rank Matrices

In order to include in our framework such applications as the
extended ged problem (cf. Example 3.4), determination of
matrix structures [21] (¢f. Example 3.5) and normalization
of module bases, we extend the results of the previous section
to full column rank polynomial matrices. We introduce shifts
in the classical treatment for column reduced forms [17, 12,
p481] and, as done in [13] in the Hermite case, we cnsure
the normalization of leading matrices by considering column
echelon forms.

Given a matrix polvnomial A(z), we denote its clements
by A(z); ;. Furthermore, given lists I, J of increasing row /
column indices of A(z), we denote by A(z)s,; the corre-
sponding submatrix of A(z). Also, for A(z);.. (and A(z)+.4)
we just extract rows with index in J (and columns with index
in J, respectively).
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Definition 3.1 (Column echelon matrices) A full col-
umn rank scalar matriz T € Q"™ 1s in upper echelon form
with pivot set I = (iy,...,4,) if 1 < i1 < d2 < ... <y <,
Ti; =0 fori>ij, and T, #0,j=1,..,n m]

Any full column rank scalar matrix may be transformed
by column opcrations to upper echelon form and the cor-
responding pivot set is unique. The (row) pivot set of any
matrix is thus well defined as the pivot set of its (column)
upper echelon forms. In addition we have:

Lemma 3.2 The pivot sct I is mazimal for det T, being
nonzero, that is, if I' = (i1, ..., €p,ipqqs .- i) with i > iy

and i}, > in, €+ 1<k <n, then det T}, _ = 0.

., 1, cannot
[m]

Proof. By Definition 3.1, the rows of indices 7, . .
be linearly independent since their first £ entries are zero.

Definition 2.1 is generalized for non-square matrices.

Definition 3.3 4 matriz polynomial T(z) € Q"*"[z] is
called @-column reduced with degree @ if there ewists a full
column rank scalar matriz T with pivot set I satisfying

M) T = T 4 06T .

If T' s in upper echelon form then T(2) is said to be in d-
quasi Popov form. If it satisfies the additional normalization
degree and leading coefficient constraint

3—‘“ 'T(S)].* :I1z.+0(3_1):—>oo- (6)
then T(z) 4s said to be in @-Popov normal form. &)

By extension of Definition 3.1, we will refer to the set
I = (i1,...,%,) of Definition 3.3 as the pivot set of an d-
column reduced matrix T(z). If T(z) in addition is in @-
quasi Popov form then its entry T(z);;,; — referred to as
the jth pivot clement — has precise degree &;. Notice that
the statement of Lemma 2.3 also holds in the rectangular
case. In particular, A(z) is d-column reduced if and only if
=% A(z) is O-column reduced. Non normal shifted forms
have been defined in [20] with a slightly different definition
of the d-degree.

The next example gives another illustration of the link
between shifted forms of polynomial matrices and the inte-
ger case. We use the fact that a shift vector with only one
nonzero entry may be used to “select” a given row in a ma-
trix. Asshown in [11, Algorithm 2] for integers, this is useful
in solving the extended ged problem.

Example 3.4 To compute the ged c(z) of a(z) = 2 —4243
and b(z) = z3 = 72 + 14z — 8 together with a corresponding
multiplier U(z) such that [a(z) b(z)] - U(z) = [e(z) 0], one
may compute a shifted form equivalent to

— 7z 41428
A(2) = 1 0
0 1

P TR B

This matriz is built using the identity matriz, to keep track
of the column operations that are performed and that will
give U(z). A 0-column reduced form of A(z) is

2?4243 —z+41
1 —-z+43
0 1



but does not provide the target resull. One could verify here
that a [-2,0,0]-reduced form:

—-z4+1 0

leads to ¢(z) and to a possible U(z). ]

The generalization of Remark 2.2 and in particular of
identity (3) relies on classical tools from linear system the-
ory. For a matrix polynomial A(z) of full column rank we
dcfine the Minor degree — denoted by Minor-deg A(z) — as
the maximum of the degrees of the determinants of 1 x n
submatrices of A(z) (sce (12, Eq. (34), p.454]). This can
be narura]l\ extended to L(mr(‘ut matrix polynomials. Set-
ting & = cdeg (7_“A( }) where cdeg denotes the unshifted
column degree, it is well-known that

[&"] > Minor-deg (277 - A(z)),
with equality iff A(z) is d-column rednced [12,
§ 6.3.2, p.384]. In this latter case, with pivot set I,

Lemima 3.2 provides the additional information

Minor-deg (z"YA(2))

degdet (=" A(2)r.)

.y ) (1)
> degdet (2 “I"A(z),.)
where I’ is any list as in the lemma.
Example 3.5 The (-Popov normal of
2?2 -2 1 sy
=1 =~z42 P22
Alz) = z 0 1
1 -1 22
41 —:—2 ¥ 4322
has pivot set I =(1,3,5) and vector degree & = [2,1, 2]
2—1 1 =z
22 ] 0
T(z) = 0 1
1 0 0
t4+2 -1 22
The form reveals that A(z) has Minor degree |7 = 5.

Here, the degrees are also ml[(’(l the minimal indices nf the
module generated bq the columns of A(z) (see also Defini-

tion 5.1) [9]. With @ = [0,0,0,0,3], the shifted form
z 0 1
0 z—1 |
T:)=| | 0 2
0 1 0
22 2 pel -1

has pivot set I = (1,2,3) and vector degree & = [1.1, 1] Now
|| = 3 is the Minor degree of the first 4 rows of A(z 0
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Theorem 3.7 below shows that any polynomial matrix
can be transformued to a unique @-Popov form by multipli-
cation on the right with some unimodular matrix. We first
state a lemma which gives a useful property of columu re-
duced matrices (see [12, Theorem 6.3-13, p387]).

Lemma 3.6 (Predlctable-Degree Property)

Let B(z) with cdeg = -6 -B(z2) = f be a b-column reduced
matriz polynomial. If P(z) and C( ) are two matric polyno-
mials such that B(z)P(z) = C(z) with cdeg » -5 -C(2) =79
then degP(2);; <47 — 47, O
Theorem 3.7 (d-Popov form)

Any matriz A(z) € Q"7 "[2] of full column rank is equivalent
to a unique matric T(z) in @-Popov normal form.

Proof :  The existence of a column reduced form B(z) equiv-
alent to A(z) is a classical fact, see [12, p 386] for instance.
The same applies dircctly to shifted forms. Followi ing (5) let
B’ be the corresponding leading scalar matrix. We denote

by A the unshifred degree:

TAG) UR) 2T = s TB() - s
B, + C)(.Z_l):—>m

and let I be the pivot set of B'. If T(z);.. = B(z)7..V(z)
is in dr-Popov form (Definition 2.1 in the nonsingular case)
then T(z) = A(z) - U(z) - V(2) is iu @-Popov form. Indeed,
by Remark 2.2, the componcuts of the unshifted degree &

of s=T1 - T(2)r.« are given by a permutation of the com-
ponents of 3*: & = perm(3"). Lemma 3.6 implies that
deg [V (2)]i.; &; — fB7. Thus all the entries in the j-th

<
column of :=% . T(z) have degrees bounded by &;. Using
the second identity of (7) we have Minor-deg (:7*T(z)) =
Minor-deg (z~7B(z)) thus the two matrices must have the
same pivot set I, otherwise the inequality in (7) would be
violated. For the same reason, it follows that below a ])1\01:
entry in z~9T(s) the degrees must be strictly less than &j,
this establishes the existence of the form.

By (7), as used above, any two d@-column reduced matri-
ces that are unimodular colummn equivalent have the same
pivot set. From the uniqueness of the form in the nonsin-
gular case, if T"(z) and T'?(z) are two G@-Popov forms
of A(z) then T'"(2);.. = T™(z);,. This implies that the
two corresponding transformation matrices are the same and
that T (z) = TP (z). i

We have seen in the preceding proof that, for any two
column equivalent and d-column reduced matrices, the pivot
sets coincide. Nevertheless, by (7). the pivot set will in gen-
eral depend on @. For instance, gencralizing Lemma 2.4 to
the full rank case we may deﬁne Hermite shifts @ by

di; — @ > &, for i > i;.

In snch cases, T will consist of the largest row indices such
that A(z);.. is nonsingular.

4 Degree bounds for multipliers

In this section we give degree bounds for the unimodular
multiplier U(z) used to transform a given matrix polynomial
A(z) into an a—Popov form (or some similar form) T(z). The



bounds will be used in the next scction to embed the shifted
Popov problem into one of computing a certain basis of the
kernel of an associated matrix polynomial, a computation
that can be cfficiently done in computer algebra systems.

Our degree estimates will be given in terms of a free pa-
rameter ¢ which may be chosen in order to reflect particular
properties of the input A(z) (e.g., in the case where A(z2) is
&-column reduced). In the first part of the next theorem our
estimates arc formulated in terms of the inputs A(z),&,¢,
and of the invariants T(z), &, I. The aim of the second part
is to estimate the invariants in terms of the input.

Theorem 4.1 (Degree bounds for Multiplier)

Let A(z) - U(z) = T(z) with U(z) unimodular and T(z)
being @—column reduced with pivot set I and degree &. Fur-
thermore, for some arbitrary multi-index €, let '

7 =cdeg (2% A(2)), 7C=cdeg(z° - T(2)), (8)
and define A% := |3*°| +|&1| — |&|. Then
deg U2)i; S 75— 7T+ A%, jik=1,,m  (9)

Also

0 < —Minor-deg (2~ A(2) ) <A< |7 +al, (10)

and A% =0 iff A(z) is E—column reduced. In addition,

e

775 <& — dr + ¢ max[d — g,

(11)
(12)

Before giving a proof of Theorem 4.1 we give some cxam-
ples which illustrate the sharpness of (9) for different choices
of ¢ In the examples A(z) will always be nounsingular so

@ -**ll)

=qa —d; < perm (¥

m = nand I = (1,...,m). Also, we will just compare
the choices @ = @ > 0 and € = 0. If § 30 = cdeg A(z)
and ¥*¢ = cdeg (27 A(z)) are of the same magnitude, then

AV AT - @] < AT — max[d], and from (9) and (11) we
see that the choice & = 0 leads to tighter bounds (compare
with A'®(2) below). If the shift is relevant for the degree
bounds, typically when A% < AP (see matrix A®'(z)), then
the choice ¢ = @ will be more appropriate. However, the
optimal choice of the parameter ¢ remains an open problerm.

Example 4.2 Given the shift @ = [0,6,9], we have 370
7T 4+ @ =[8,3,1] (and thus A = A®) for the matriz

228 0 0

ANy =

o

which is d@-column reduced. The transformation matriz for

the @-Popov form is constant, and the two estimates for ¢ €

{0 d} give the ezact deg1ee 0 for most of its coefficients.
For the shift @ =[7,2,0] on the matriz,

2.,,10 + z :8_ 1 ;,11 +1
AR = 2541 2281 4
—z2 2 2z

YAs seen in the proof below, estimates (9) and (12) remain valid
if instead of (8) we only assume that $*¢ > ccleg(:‘E' -A(z)y..) and
F*° > cdeg(27% ~T(z)1.4).
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o*d

one gets 7°% = @ +[10,3,4] and 770 = [10,8,11]. The a-
Popov form of A®(z) has the degree vector & = (10,3, 3].
With AY = 1 and A® = 13 > A?, the bound for = @ is
precise and gives the exact mazimum degree 3 for the entries
of the transformation, when the other one is pessimistic and

gives a mazimum degree 15.
The [10, 3, 0]-Popov form of

241 2254244223422 22242
AP (= | 2241 St +227+41 4l
41 4224422242 22242

1s in upper triangular Hermite form with @ = [8,0,0]. In this
case A% =21 > AY = 0. The entries of the transformation
U(z) have degree at most 7 and all the degrees are ezactly

predicted by the choice ¢ = (. On the other hand the bound
for €= d gives a mazimum degree 12. 0O

Proof of Theorem 4.1: For the remainder of the proof we

fix ¢ and use the shorter notation ¥ = *¢, ¥ = 7. For
a proof of (9), we recall that degdet A(z);,. = |@|. Since

A(z)i; £ G —4j, we get

27 (adj A(2)r..) - 25 = O,

Therefore, by applying (8) and Cramer’s rule, the quantity
27 -U(z) - z77 reduces to

27 adjA(2)). - 2% — . _ AF,
: : 2T T () 2T =002
det A(z).. (2)1 (=),
giving cquation (9).
In order to show (10), recall first that z=%- A(z)- 277 is

a polynomial in 1/ by the definition of A'/'. Consequently,

A7)
A( ."":_T)-.

0 >

> Minor-deg (7" ¢
2

Minor-deg (z~°

the latter quantity being equal to ~AFf. It remains to discuss
the case A° = 0. By (7) and the above inequalities, Af =0
is equlmlent to the facts that ¥ is the coluinn degree both
of 27 - A(z); . and 7% A(z ) and that both matrices are
column reduced, as claimed in (10).

Assertion (11) and the first part of (12) follow immedi-
ately from the definition of 7. In order to show the final esti-
mate for @ = @, we introduce the unimodular matrix V(z) =
U(z)"%. Since 2 9A(z) = z79T(2) - V(2) 27I(2) is
0-column reduced, it follows from the Predictable-Degree
Property (Lemma 3. 6) and (8) that z7 - V(z)- 277 = O( °).
Since V(z) is nonsingular, we find some permutation p such
that V(2);,¢; # 0, leading to (12). O

and

Remark 4.3 Recall that &) s the (a priori unknown) degree
of a pivot element of the normal form, in particular it s
nonnegative. Thus, in terms of the input data, combining (9)
with (11) gives the weaker degree bound

—uc

deg U(z)xy < |&1] — @, + 17" — 2% + max[@ — @].

In particular, in terms of d = deg A(z), we obtain in the
unshifted Popov case (@ =¢C=10)

degU(z) < (n—1)-d, degT(z)<d.




In contrast, in the square Hermite case (m = n, ¢ = 0,

iy = ZI':':J Gr. j=1,...,m as in ({), and thus 7% < |@| by
(11)) we have
degU(2) < (n—1)-d,
deg T(z) < |&] = degdet A(z) <n-d.
O

5 Computing Popov Forms via Minimal Polyno-
mial Bases

In this section we show that shifted Popov forms T(z) of
A(z) together with their multiplier U(z) can be obtained by
a particular polynomial basis for the kernel of [A(z), —I,,]
(considered as a module over Q[z]). It makes intuitive sense
to look at the kernel since the columns of the (m +n) x n
matrix polynomial

~—

S(z) = [ il ] (13)
lic in the kernel of [A(z), —I,,]. These columns form a ba-
sis iff T(z) = A(2) - U(z2) and U(z) is unimodular. Finally,
as observed for example in [19], we may use the algorithms
FPHPS and SPHPS of [3] to compute column reduced poly-
nomial bases of matrix polynomials, otherwise known as
minimal polynomial basecs (MPB). In our case we wish to
use a shifted version of a hasis of the kerncl to compute
shifted Popov forms.

Definition 5.1 (Shifted Minimal Polynomial Bases)

Let C(z) € Q™*"[z] be of rank r and B(z) € @ *("~")[¢]
wrreducible (of full rank for all finite values of z in the
complez plane), with C(z) - B(z) = 0. If in addition B(z) is
b-column reduced then it is called a b-Minimal Polynomial
Basis (i;—MPB) of the Q[z]-module kernel of C(z). m]

The existence and the uniqueness of a b-MPB in g—Popov
form follows from Theorem 3.7. If b = 0 then Definition 5.1
gives the classical definition of a Minimal Polynomial Basis
(MPB) [9]. Such bases arc called minimal since if a MPB
for the kernel of A(z) has degree 3 then any other basis has
degree F > perm (3) [12, §6.5.4, p436].

Theorem 5.2 (Popov forms via MPB)
Let A(z) be an m X n matric polynomial of full col-
umn rank, and @,& multi-indices. Furthermore, let 3¢ >
cdeg (2 %A(2)), and write A(N) = (N - & — 37¢,&) for any
integer IN.

The matriz polynomial S(z) is of the form (13) with T(z)
the @—Popov form of A(z) and U(z) its corresponding mul-
tiplier if and only if, for some

N > Np =AY + max[@ — &,

S(z) is @ MPB of the kernel of [A(z), —Ln] in #(N)-Popov
form.

In this case, the latter property is true for all N > Nj.
Furthermore, S(z) and T(z) have the same pivots, and the
same shifted column degree.
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Proof:  For the first implication it is sufficient to show
that the stacked matrix S(z) constructed with help of the
Popov form T(z) and the mulsiplier U(z) is #(N)-column
reduced for all N > N, with the properties as specified in
the last part of Theorem 5.2. Indeed. denoting by & the
@ column degree of T(z) and by I the corresponding pivot
set, we get

LTAN) S(2) - LErEr |2

and it only remains to show that

&

y _IJ(Z)_3,—c'1?+¢'1'1—‘-'\«'.e?=(9(::0):_“)0o
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for all N > Ny.
from (9) and (11).

~ In order to show the other implication, let S(z) (and
S(z)) be as described in the first part of the assertion
(and of the second part, respectively). Then the coluinns
of both matrices form bases of the kernel of [A(z), —In],
and thercfore there exists some unimodular W{z) such that
S(z) = S(z) - W(z). On the other hand, both S(z) and S(z)
are of full column rank and in 7i(N)-Popov form for the spec-

ified value of N, and thus S(z) = S(z) by the uniqueness of
7i(N)-Popov forms. a

Theorem 5.2 implies that one can compute shifted forms
by computing shifted forms of bases matrices for an asso-
clated kernel. That this is useful is shown by Theorem 5.3
below which implies that one can use the Mahler basis al-
gorithm FFFG of [4] in order to compute an MPB S(z) in
shifted Popov form. In addition, FFFG only uses fraction-
free arithmetic, an advantage if the entries in the original
matrix are polynomials having coefficients from an integral
domain (for example a matrix with entries from Z[z] or
Qlai,. .., ax][2]).

To be more precise, let us briefly recall the definition
of order for vector Hermite—Padé approximation (see, e.g.,
[5] or [4, Example 2.3]): given an m x s matrix F(z) of
polynomials (or formal power series) and a multi-index &
of length m, a vector P € @Q°[z] is said to have order & if
277 . F(z) - P(z) = O(1).-0. Obviously, the set of polyno-
mial vectors having a given order is a submodule of Q@*[z],
containing the kernel of F(z). The method FFFG mentioned
above determines s x s bases of such order modules in shifted
Popov form, by successively increasing one (arbitrary) com-
ponent of the order vector by one unit. For sufficiently large
order vectors and suitable shifts, we may recover our desired
MPB in shifted Popov form as a part of such an order basis.

This latter statement follows however

Theorem 5.3 Let A(z),a,c, 55,7 be as in Theorem 5.2,
and define @t := (N - & — 77, &), where N > Ny

Apply elgorithm FFFG to the matriz [A(z), —1.] along
the offdiagonal path induced by @i and increasing order vec-
tors & > 0 in order to obtain fraction-free polynomial bases
M(z) of ii—colutnn degree U along with polynomial residuals

R(z) = 277 - [A(z), —Im] - M(2) € Q" *"F™ (2],

and stop the algorithm if a m x n submatriz R(2).,. of R(z)
s 2ero.

Then there exists some scalar ¢ # 0 such that the last m
rows of M(z)..1 give ¢ times the @—Popov form of A(2) with



d@-column degree & = ¥ and pivot set (f1 —n, ..., b — 1),
where L = (£1,...,£n), and the first n rows of M(2),1, give
¢ times the corresponding unimodular multiplier.
The algorithm will terminate at the latest by the order
vector
&> & =+ (N +1+ max[3"))e.

Proof: Notice that, for auy order vector &, R(0) is of full
rank m [5, Lemma 2.8], and M(z)/c is a nonsingular matrix
in #-Popov form for some scalar ¢ # 0 [4, Theorem 7.2],
with its degree vector denoted by 7. Let S(z) be as in the
first part of Theorem 5.2. Then the columns of S(z) have
order &, and from [4, Theorem 7.3(a)] we know that there
exists a unique matrix polynomial P(z) such that
S(z) = M(z)P(z), and 7 "-P(2)-: 7 = O(1): 500

(14)
If the index set L is as above, then the columns of M(z).,r
are elements of the kernel of [A(z),—IL,]. From the basis
property of S(z) we may conclude that there exists a unique
matrix polynomial Q(z) such that M(z)..r = S(z)Q(z). In
combination with (14) we obtain M(2).. 1, = M(z)P(z)Q(z).
Consequently, P(z)7... = 0, and P(z)... = Q(z)"! is uni-
modular. Uniqueness of shifted Popov forms gives us the
desired result S(z) = M(z).,1/c.

In order to prove the last part, notice that

2) 2" =

F-& LA—F
z

<2

o
&

&

T [A(2), —In] - M(z)

Since N — max[@ — &) > Af > 0 by assumption on N and
relation (10) of Theorem 4.1, it follows that 27 - R(z) -
LAT-NE O(:O):_,oc. We now may choose an index list
L with L. := (1,...,m + n) \ L such that the square matrix
R(2)-.L. is mvert.ible. Consequently, there exists a bijective
map p: {1,...,m} = L. with R(2);,;), #0,j =1,..,m
and thus
perm (& — ¢— Né) < (¥ — ).

where we recall that perm denotes a permutation of the
components. If now & > o/ = &+N'-&, then min[(F—)r,] >
N' — N > max[7"%] + 1 > max[d@ — al] + 1 by assumption
on N’ and (12). It follows that P(2).... = 0 in (14). On
the other hand, with S(z), P(z) must also have full column
rank, and thus P(2)z . is invertible. Multiplying the left-
hand equation in (14) on the left with [A(z), —I,,], we obtain
R(2)s,z - P(2)1,- = 0 and hence R(z)..;, = 0, as required
for the final part of Theorem 5.3. [}

The fraction free computation of shifted Popov forms via
FFFG has been implemented in the computer algebra system
MAPLE and can be obtained from the authors web sites or
via email.

Example 5.4 Let A(z) be as in Ezample 2.5 with @ = 0
and € = cdeg A(z). Then applying the FFFG ulgorithm
along the path [6,10, 6, 8,4, 0] results in a Mahler system that
produces an integer multiple of a [8, 4, 0]-Popov normal form
A(2) along with a unimodular multiplier in 18 iterations.
The result is 4 times the true answer because it works with
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fraction-free arithmelic.
case is given by

The unimodular multiplier in this

422 + 4z z4+1 —2242
—4:2 416 —z 2z — 4
422 -8z —2-—2 2z

again 4 times the true answer. O
We can give a worst case complexity for this approach
in terms of d = deg A(z). As in the discussion at the end
of section 3 we will restrict ourselves to the choices ¢ = 0
and @ > 0, max[@] < |@|, which includes the classical Popov
and Hermite normal forms. Then 3°F < 3% < d - &, and
A fmax[d — @ < |50 < n-d Consequentl\ a practical
chowo for N would be N = n-d, leading to |6/| = m-n-d+

v (d+1).

From [5, Lemina 2.8] and [4, Scction 4] we know that the
module K := |7] of the degree vector of the final basis in
FFFG coincides with the module of the final order vector
|@| < |&7|. Tt is shown in [3, 4] that the complexity of FFFG
to rcach this order vector is bounded by O((m + n) - Ix %)
in floating point arithmnetic, and by O((m + n) - &> - K*) in
exact arithmetic, where & is an upper bound for the size (in
bits) of the cocfficients of A(z) (remember that the corre-
sponding complexities for solving the underlying systems of
linear equations by Gaussian elimination arc obtained by re-
placing m -+ n above by K). Under the above assumptions,
we obtain rough worst casc, boundq in terms of the degree
d = deg A(z). namely O( . d?) floating point opera-
tions, and O(x? - m® - (14) b1t operations. There are no
other fraction-free dlgorlthms for Popov or Hermite that can
be used for comparison with our approach.

6 Conclusions

In this paper we have studied reduced and normal forms of
matrix polynomials by looking at so called shifted forms of
matrix polynomials. These forms include column-reduced,
triangular, Hermite normal and Popov normal forms along
with their shifted counterparts. We have determined de-
gree bounds for a unimodular matrix which transforins the
input matrix polynomial into an equivalent matrix in the de-
sired form. The degree bounds allow one to embed a shifted
Popov normal problem into a problem of determining a mini-
mal polynowial basis in shifted Popov form for an associated
stacked matrix polynomial. These shifted minimal polyno-
mial bases can in turn be computed in a fraction-free way
via the Mahler system algorithm of [4].

As mentioned in the introduction the results in this paper
can be viewed as a first step in a program to obtain efficient
symbolic methods for computing matrix normal forms of ar-
bitrary matrix polynomials. The full row rank rectangular
casc is important. for computing matrix polynomial GCDs in
normal form. The singular case gives information on min-
imal polvnomial bases for the kernel of the matrix polyno-
mial. The case of singular or rectangular matrices is con-
siderably more complex because one no longer has a unique
unimodular multiplier. In such casecs one needs to determine
a unimodular multiplier with minimal degree properties [6].
Degree bounds for this case are also more difficult. At the
same time degree bounds for such multipliers in this case
also lead to interesting degree bounds for important classes



of problems of interest in computer algebra. For example,
from [6] we have:

Theorem 6.1 (GCD of several scalar polynomials)
Let A(z) = [a1(2),a2(z),...an(z)] € Q' *"[2] with degrees

¥ = [11,72,.-. W] and d(z) = GCD(ai1(z),...,an(z)) with
degree 8. Assume (without loss of generality) that vi =
min; y; and y. = max;y;. Then there are “small” mul-

tipliers ui(2) for the diophantine equation
a1(z) - ui(z) + az(z) - u2(z) + ... + an(z) - un(z) = d(2),

which satisfy

n

Y (L4 degui(z)) < v =4, (1)

u g #0

degui(z) <yu—6-1,

Notice that these bounds include the classical one for n =
2 (cf. [10]). Also, a straight forward gencralization of the
integer bound of [11] to the polynomial case would lead to
the weaker estimate deg urp(z) < v, — 1 for all k.

There are a number of interesting problems that still re-
main to be solved. We have shown that it is possible to solve
the shifted Popov form problem via some fraction free algo-
rithm by noting that it is embedded inside an order basis
computation (or an MPB computation). The major prob-
lem with using such an approach to compute our form is
that this method is not really a reduction procedure. In
particular it does not recognize when a matrix polynomial
A(2) is in shifted Popov form until the final step of the
computation. We are interested in obtaining a fraction-free
algorithm which computes minimal polynomial bases (and
hence our normal form) in a reduction procedure. We ex-
pect that this may be done by determining an associated
linear system along with determinental representations as in
[4] and then making use of modifiecd Schur complements as
done in [1].
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