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We present a deterministic parallel algorithm that solves a n-dimensional system
Ax � b of linear equations over an ordered field or over a subfield of the complex

Ž 2 . Ž � Ž . 2numbers. This algorithm uses O log n parallel time and O max M n , n
Ž . 4. Ž .log log n �log n arithmetic processors if M n is the processor complexity of fast
parallel matrix multiplication. � 2000 Academic Press
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1. INTRODUCTION

Solving an n � n linear system Ax � b over a field F is a major
computational problem. It is still of interest to know its parallel complexity
and especially to decrease the work of known algorithms. The work of a
parallel algorithm is the product of its running time by the number of
processors it utilizes. For an n-dimensional input, an algorithm that has a
running time in logOŽ1. n is called processor efficient if its work is within a
polylogarithmic factor from the record sequential time for the same

� �problem 13 . We suppose that the product of two n � n matrices over F
Ž . Ž .can be computed in O log n parallel time using M n processors. Each

time unit in the algorithms represents an arithmetic operation in F.
If F is of characteristic zero or greater than n, the processor count

measures of the best known deterministic algorithms to solve Ax � b,
'exceed by a factor slightly less than n the processor complexity of matrix

multiplication. These algorithms are improvements of the method of
� �Csanky 5, 17 and are based on the reduction of the problem to rectangu-
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� � Ž 2 .lar matrix multiplication 8 . The solution x can be computed in O log n
Ž 2.837. � �time using O n processors 9 . Over a field of any characteristic, the

� �exceeding factor is n 1, 4 . These results hold if A is invertible. When A
is singular, to test whether the system is consistent and to possibly
compute a solution over any field leads to the even greater exceeding

4 � �factor n 2, p. 333 .
Over an abstract field, Kaltofen and Pan have discovered the only

known approach to handle the problem of processor efficiency for linear
system solution. This approach leads to the following class of Las Vegas
randomized algorithms. One can solve Ax � b, for any n � n matrix A, in

Ž 2 . Ž Ž ..randomized time O log n using O M n processors if the characteristic
� �of F is zero or greater than n 10, 11 . Over any field if A is invertible, the

Ž 3 . � �time increases to O log n using the algorithm in 11 combined with
� � Ž Ž ..those in 12, 16 ; the processor complexity remains in O M n using the

� �improvement of Eberly 6 . For A singular, the time used increases to
Ž 4 . � �O log n with the same processor complexity 11, 12, 16 .

ŽWe will now assume that F is an ordered field �1 is not a finite sum of
.squares or a subfield of the complex numbers, a direct application of

known results allows us to present a deterministic version of above proces-
sor efficient algorithms. For a matrix A or a vector over F, A* will denote
the Hermitian transpose.

2. THE ALGORITHM

The previously cited algorithms are nontrivial parallelizations of the
� �Wiedemann sequential method 18 . They are thus strongly related to

� �Lanczos biorthogonalization 14 . The solution of Ax � b is computed in
� 2 4the Krylov subspace span b, Ab, A b, . . . , using an auxiliary vector u and

� 2 4the associated Krylov subspace span u*, u*A, u*A , . . . . It is a classical
� �fact that�as called by Wilkinson 19 �the algorithm may ‘‘seriously

� �break down.’’ The randomizations proposed in 18 and used, as seen
� �above, for parallelization 6, 11, 12 , precisely avoid this problem especially

over finite fields.
Our observation is simply that since�as well known�the Hermitian

� �Lanczos method 14 i.e. when A � A* and with u � b, does not seriously
� �break down, then the corresponding parallelization proposed in 11 must

be deterministic. The algorithm follows immediately.

2.1

We begin with A invertible. Forming if necessary the system AA*y � b,
we will work with a Hermitian matrix. Following the parallelization of
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� � � �Kaltofen and Pan 11 of the Wiedemann method 18 , the parallel algo-
rithm is:

Algorithm 1.
Input: A invertible in MM F ; b � 0 a n-dimensional vector.Ž .n , n
Compute C � AA*.
Form the n � 1 � n � 1 Hankel matrix H � h where h �Ž . Ž . i , j i , j

i�jb*C b , 0 � i , j � n.
d � rank H .
Form the d � d sub-matrix H � h and the vector z �d i , j 0�i , j�d�1

� ��h .i , d 0�i�d�1 t� �Solve H g , g , . . . , g � z .d 0 1 d�1
d d�1Here, � � g � � ��� �g � � g is the minimal polynomial of b� d�1 1 0

4with respect to C.
d�1 d�2y � �1�g C b � g C b � ��� �g b .Ž . Ž .0 d�1 1

x � A*y.
Output: x the n-dimensional vector such that Ax � b.

To show that the algorithm is correct it is sufficient to prove that
Ž . Ž . drank H � rank H � d and that the corresponding polynomial g � � �d

� g �d�1 � ��� �g � � g is the minimal polynomial of b with respectd�1 1 0
to C. These facts are easily shown. Let � be the degree of this latter

� 2 4minimal polynomial, � is the dimension of span b, Cb, C b, . . . thus
� ��1 �rank H � � . In addition, H � B*B, where B � b, Cb, . . . , C b , thus�

H is invertible. Indeed, H x � 0 implies that x*B*Bx � 0 thus Bx � 0� �

and x � 0. It follows that rank H � rank H � � and d � � . By unique-�

� �t Ž .ness of the solution of H g , g , . . . , g � z, g � is the minimald 0 1 d�1
polynomial of b.

Ž . Ž .The matrix C is computed in O log n time using M n processors.
� � kFrom 3, p. 128 , the 2n � 1 vectors C b and consequently the matrix H

Ž 2 . Ž Ž ..are computed using O log n time with O M n processors. We know
� �that computing the rank of the Hankel matrix H 16, §1.4 and solving the

� � Ž 2 .corresponding system 15 can be done in time O log n with
Ž 2Ž . .O n log log n �log n processors. From there, x is computed within the

Ž 2 .same bounds. Hence the whole algorithm takes O log n time using
Ž � Ž . 2Ž . 4.O max M n , n log log n �log n processors.

2.2

If A is square and singular, range A � range AA* thus the system
Ax � b is consistent if and only if Cy � b is consistent. Since C is
Hermitian, these systems are consistent if and only if the minimal polyno-
mial of b with respect to C has nonzero constant term. Indeed, C is
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similar to a diagonal matrix D over an extension field of F: C � P�1DP.
The system Cy � b is consistent if and only if DPy � Pb is consistent. This
is equivalent to the fact that Pb has nonzero entries at places correspond-
ing to the nonzero entries of D, thus to the fact that the minimal
polynomial of Pb with respect to D has nonzero constant term. The claim
follows since the latter minimal polynomial is equal to the one of b with
respect to C.

A solution is thus computed as follows.

Algorithm 2.
Input: A 	 MM F ; b � 0 a n-dimensional vector.Ž .n , n
Compute g � using Algorithm 1.Ž .
If g � 0 then output ‘‘system inconsistent ’’.0

d�1 d�2else y � �1�g C b � g C b � ��� �g b .Ž . Ž .0 d�1 1
x � A*y.
Output: x an n-dimensional vector such that Ax � b.

The algorithm is correct since the arguments used in the regular case
still hold when A is singular, algorithm 1 actually computes the mini-
mal polynomial of b. The complexity measures remain unchanged.

CONCLUSION

As a consequence of some known results, we have given a deterministic
processor efficient algorithm for a particular class of fields. The question
of deterministic processor efficiency for any field is still open. For a
randomized version of the symmetric Lanczos method over finite fields, the

� �reader may refer to 7 . In the same way, the solution of the system is
computed using the minimal polynomial of a particular vector, thus even
with restrictions on the field, we do not solve the problem of matrix
inversion.
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