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Abstract

We present an inversion algorithm for nonsingular n � n matrices whose entries are degree d

polynomials over a field. The algorithm is deterministic and, when n is a power of two,

requires OBðn3dÞ field operations for a generic input; the soft-O notation OB indicates some

missing logðndÞ factors. Up to such logarithmic factors, this asymptotic complexity is of the

same order as the number of distinct field elements necessary to represent the inverse matrix.

r 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Let K be an abstract commutative field and, for two positive integers n and d;

consider a nonsingular AAK½x�n�n of degree d: Since the determinant of A is a
polynomial of degree up to nd; it follows from Cramer’s rule that the number of field

elements necessary to represent the inverse of A can be of the order of n3d: Assuming
that n is a power of two, we present in this paper a deterministic inversion algorithm

whose complexity is generically OBðn3dÞ field operations on an algebraic random
access machine. Here and in the following, the OB notation indicates some missing
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logðndÞ factors. By generically, we mean that the algorithm has the above asymptotic
complexity for every n � n matrix polynomial of degree d whose coefficients do not

form a point of a certain hypersurface of Kn2ðdþ1Þ:
The best previously known complexity estimate for computing the polynomial

matrix inverse was OBðnoþ1dÞ; where o is the exponent for multiplying two n � n

matrices over K [10, Chapter 1]. If o42; we thus improve the complexity for most
n � n inputs with n a power of two; the improvement is by a factor of n when
considering classical matrix multiplication ðo ¼ 3Þ:

Let us recall how the above classical estimate OBðnoþ1dÞ for matrix inversion over
KðxÞ is obtained. The determinant and the entries of the adjoint, whose degrees are
bounded by nd; may be recovered for instance using evaluation/interpolation at
nd þ 1 points [16, Section 5.5]. A randomized Las Vegas algorithm—A must be
invertible at the nd þ 1 evaluation points—may thus rely on recursive matrix
inversion over K in OðnoÞ [9,28,32] and on a fast evaluation/interpolation scheme for
univariate polynomials of degree nd in OBðMðndÞÞ [24], [16, Section 10]. Here and in
the rest of the paper, MðdÞ is the number of operations in K sufficient for multiplying
two polynomials of degree d in K½x�: The method in [11] (over any ring) allows
MðdÞ ¼ Oðd log d log log dÞ: Many other inversion approaches may be considered
such as direct Gauss-Jordan elimination on truncated power series, Newton iteration
[25], Hensel lifting à la Dixon [12], or linearization (see for instance [23] and the

references therein). A deterministic OBðnoþ1dÞ algorithm is given in [29, Section 2].
This algorithm is a fraction-free version over K½x� (Bareiss’ approach [1]) of the
recursive inversion algorithms over K cited above. We see that none of these methods

seems to reduce the complexity estimate over K below the order of noþ1d: With
classical matrix multiplication ðo ¼ 3Þ the cost of inversion was still about n times
higher than the typical size of the inverse.

Our motivation for this work is the fact that some other basic linear algebra
problems on polynomial matrices have much lower complexity estimates. It is
known, since more than two decades, that a linear system can be solved exactly in

OBðn3dÞ operations [12,25], and it has been shown more recently that the solution
can be computed using fast matrix multiplication in OBðnodÞ operations [30,31].
Concerning the problem of computing the determinant, the classical techniques seen

above also lead to the cost OBðnoþ1dÞ: In the last years, this estimate has been
reduced using rank perturbations by Eberly et al. [13], basis reduction by Mulders
and Storjohann [26], or a Krylov–Lanczos approach by Kaltofen [19], Kaltofen and
Villard [21,22]. By Hensel lifting with jumps to high order it is possible to compute
the determinant in OBðnodÞ operations in K [30,31], and the same estimate is valid
for the Smith normal form. An application of the latter method further gives an
algorithm for column reduction in OBðnodÞ operations [17]. We may also point out
that for o ¼ 3; the approach of Kaltofen and Villard [22] gives an algorithm for
computing the characteristic polynomial and the Frobenius normal form of a

polynomial matrix in OBðn3þ1=5dÞ operations in K: Under the algebraic complexity
model for matrices over an abstract field, the problems of computing the
determinant, the characteristic polynomial and the inverse have the same exponent
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(we refer for instance to the survey in [10, Chapter 16]). Nevertheless, in spite of the
recent advances just mentioned, the same is not known in the polynomial case. The
essentially optimal algorithm for inversion in the generic case that we propose here
gives a new insight into the links between the problems.

Our approach, described in Section 2, consists in computing a nonsingular

UAK½x�n�n and a diagonal BAK½x�n�n such that UA ¼ B: The inverse of A is then

recovered as A	1 ¼ B	1U : In order to achieve the announced OBðn3dÞ complexity,
we shall make three remarks. First, with n a power of two, A can be diagonalized in
log n block elimination steps, starting with

A ¼ ½AL AR�-UA ¼ U

U

" #
½AL AR� ¼

UAL

UAR

" #
: ð1Þ

Here AL;AR have dimensions n � n=2 and U ;UAK½x�n=2�n are bases of the left

kernels ker AR; ker AL considered as K½x�-submodules of K½x�n: The blank areas
in matrices are assumed to be filled with zeros. We then observe in Section 3.1

that among all the possible kernel bases U and U ; those with rows of lowest
degree typically have degree exactly d; the degree of A: Hence, choosing such
minimal bases yields two square blocks of order n=2 and degree 2d: The third and key
point is that this property generically carries over from one step to the next one. In
particular, we show in Section 3.2 that if the input matrix A of degree d is generic

enough then all the minimal bases at step i of the computation of A	1 have degree

exactly 2i	1d; regardless of the way these bases are computed. Therefore, the degree
of the working polynomial matrices only doubles at each step, whereas their order is
divided by two. As we shall finally see in Sections 4 and 5, combining deterministic

OBðn3dÞ minimal basis computations with steps of type (1) eventually allows for

A	1 to be computed in OBðn3dÞ field operations by using only classical matrix
multiplication.

Notation: All matrix kernels are left kernels. We write K� for K\f0g and jKj for the
cardinality of K: Also, for any real number y; Iym (resp. JynÞ is the greatest (resp.
smallest) integer less than (resp. greater than) or equal to y: As already used in (1), if
M is an n � m matrix then ML is the n � Im=2m matrix that consists of the leftmost
Im=2m columns of M and MR is the n � Jm=2n matrix that consists of the

rightmost Jm=2n columns of M: Submatrices M and M are defined similarly by
considering top and bottom rows instead.

2. Inversion algorithm

Algorithm Inverse is described below. Here MinimalKernelBasis is any
subroutine for computing a minimal basis of the left kernel of a polynomial matrix.
(We give in Section 4 an example of such a subroutine that is appropriate to our
complexity purposes.) Furthermore, when entering step i; the polynomial matrix B is

block-diagonal with jth block B
ð jÞ
i of order n=2i	1 for 1pjp2i	1:
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Algorithm InverseðAÞ
Input: AAK½x�n�n of degree d

Output: A	1

Condition: det Aa0 and n ¼ 2p with pAN

(a) B :¼ copyðAÞ;
U :¼ In;

(b) for i from 1 to p do ==B ¼ diagðBð1Þ
i ;y;B

ð2i	1Þ
i Þ

for j from 1 to 2i	1 do

U
ð jÞ
i :¼ MinimalKernelBasisðBð jÞ

i;L Þ; ==U
ð jÞ
i B

ð jÞ
i;L ¼ 0

U
ð jÞ
i :¼ MinimalKernelBasisðBð jÞ

i;RÞ; ==U
ð jÞ
i B

ð jÞ
i;R ¼ 0

od;

Ui :¼ diagðU ð1Þ
i ;y;U

ð2i	1Þ
i Þ; ==U

ð jÞ
i ¼ U

ð jÞ
i

U
ð jÞ
i

" #

B :¼ UiB;
U :¼ UiU;

od;
(c) return B	1U :

We now prove that algorithm Inverse is correct. For i ¼ 1; it follows from

det Aa0 that U
ð1Þ
1 and U

ð1Þ
1 have full row rank. Additionally, U1 ¼ U

ð1Þ
1 is

nonsingular for otherwise ker AL- ker AR+! f0g which contradicts det Aa0: There-
fore, the two blocks of order n=2 of U1A are nonsingular. Repeating the argument
for i ¼ 2;y; p; we see that the pth step of stage (b) produces a nonsingular

UAK½x�n�n and a diagonal BAK½x�n�n such that UA ¼ B: Correctness follows from

identity A	1 ¼ B	1U :

In fact, the kernel bases need not be minimal for the algorithm to return A	1: On
the other hand, it is not hard to modify the algorithm so that it computes the inverse
of any nonsingular polynomial matrix A: if n is not a power of two, the first step
should yield two square blocks of respective orders In=2m and Jn=2n and so on.
However, both minimality and n ¼ 2p are necessary in our cost analysis of the

algorithm when the input is generic. Indeed, the polynomial matrices B
ð jÞ
i and U

ð jÞ
i

then have order n=2i	1 and, as we shall prove in Section 3, minimality further implies

that they typically have degree 2i	1d for 1pjp2i	1: In other words, each of these
polynomial matrices satisfies order� degree ¼ nd:

3. Minimal kernel bases and genericity

We first recall in Section 3.1 the definition and some needed properties of minimal
kernel bases of polynomial matrices. We also give an explicit formula for the
construction of such bases in the generic case. This formula will then allow us
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to characterize in Section 3.2 the degrees produced by algorithm Inverse for a
generic input.

3.1. Definition, degree characterization and explicit construction

For a positive integer m; let MAK½x�2m�m with rank m and let UAK½x�m�2m with
rows forming a basis of the K½x�-submodule ker M: It is sufficient for our purpose to
restrict ourselves to matrices having twice as many rows as columns. We further
denote by di the ith row degree of U ; that is, the highest degree of all the entries of

the ith row of U : The polynomial matrix U is a minimal basis of ker M when
Pm

i¼1 di

is minimal among all the polynomial bases of ker M [14]. Here we shall use only two
properties of minimal kernel bases but we refer to Forney [14] and Kailath [18,
Section 6] for a comprehensive treatment. First, although minimal kernel bases are
not unique, their row degrees fdig1pipm are unique up to ordering; such indices are

usually called the minimal row degrees of ker M or the left Kronecker indices of M;
for when M has degree one they coincide with some block dimensions in the
Kronecker canonical form of M [18, Section 6.5.4]. Second, if d is the degree of M;
one has the upper bound

Xm

i¼1

dipmd: ð2Þ

Some minimal row degrees can thus be of the order of md: However, in most cases,
all of them are equal to d: To verify this typical behaviour, let us associate with

M ¼
Pd

i¼0 Mix
i the block-Toeplitz matrix

T ðMÞ ¼
M0 M1 ? Md

& & ^ &

M0 M1 ? Md

2
64

3
75AK2md�2md : ð3Þ

To any nonzero vector u ¼
Pd	1

i¼0 uix
i in ker M of degree less than d corresponds the

nonzero vector ½uT
0 ;y; uT

d	1�
T in ker T ðMÞ: Thus if det T ðMÞa0 then diXd for

1pipm and, using (2), di ¼ d: It is not hard to verify that det T ðMÞ is a nonzero

polynomial in the 2m2ðd þ 1Þ coefficients of the entries of M; therefore the minimal
kernel bases of M generically have degree d:

For algorithm Inverse with generic input A; this means that the minimal bases

U
ð1Þ
1 ; U

ð1Þ
1 at the first step both have degree d: In addition, by uniqueness of the

minimal degrees, the latter is true independently of the way the bases are computed.
Now what about the minimal basis degrees at the remaining steps? In order to show

in Section 3.2 below that in general the degrees at step i are 2i	1d; we shall further
use the following explicit construction of a minimal kernel basis of M when
det T ðMÞa0: Indeed, it follows from identifying the matrix coefficients in both sides
of polynomial matrix equation UM ¼ 0 that a minimal kernel basis is given by any
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of the m � 2m matrices N ¼
Pd

i¼0 Nix
i such that

Nd is a basis of ker Md ; ð4aÞ

½N0j?jNd	1� ¼ 	Nd ½OjM0j?jMd	1�T ðMÞ	1: ð4bÞ

The fact below is an immediate consequence of the block structure of T ðMÞ which
we shall use to prove Proposition 3.

Fact 1. If det T ðMÞa0 then matrices M and N as in (4) have degree d exactly, and

their leading matrix coefficients Md and Nd have full rank.

One can take for Nd in (4a) the particular kernel basis obtained by applying
Gaussian elimination with pivoting (GEP) to the rows of Md : Here, by pivoting—at
the start of the ith stage of elimination—we mean exchanging rows i and k where
kXi is the smallest index such that the ðk; iÞ entry is nonzero. The main point is that
when replacing (4a) with

Nd is the basis of ker Md computed by GEP; ð4cÞ

the entries of N0;y;Nd given by (4b and c) are now uniquely defined as
rational functions over K of the entries of M0;y;Md (see for example [15,
Section 2.4]).

3.2. Typical degrees of minimal kernel bases during inversion

Consider n2ðd þ 1Þ indeterminates ai; j;k for 1pi; jpn; 0pkpd; and let

AAK½a1;1;0;y; ai; j;k;y; an;n;d �½x�n�n have its ði; jÞ entry equal to
Pd

k¼0 ai; j;kxk: Recall

that n ¼ 2p for some pAN and let

ni ¼ n=2i	1 and di ¼ 2i	1d for 1pipp: ð5Þ

First, assume that algorithm Inverse is runned formally with subroutine
MinimalKernelBasis replaced with minimal basis formula (4b and c). We show
in Lemma 2 below that this construction leads to successive block-Toeplitz
matrices as in (3) that are invertible. We link the invertibility of these matrices
to a well defined and nonzero rational function F in the ai; j;k’s. This means that

(4b and c) with ðm; dÞ ¼ ðni; diÞ reflects the degrees of the matrices computed
at the ith step of the algorithm in the generic case. As a consequence of the
uniqueness of the minimal degrees, we then show in Proposition 3 that, if F is well
defined and nonzero for a given input A; these degrees are still di for any choice of
minimal bases.
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For 1pipp; 1pjp2i	1; let the matrices A
ð jÞ
i ;N

ð jÞ
i AK½x�ni�ni be of degree di and

such that: A
ð1Þ
1 ¼ A; N

ð jÞ
i is the minimal basis of ker A

ð jÞ
i;R of the form (4b and c); N

ð jÞ
i

is the minimal basis of ker A
ð jÞ
i;L of the form (4b and c); and

A
ð2j	1Þ
iþ1

A
ð2jÞ
iþ1

" #
¼ N

ð jÞ
i

N
ð jÞ
i

" #
A

ð jÞ
i;L A

ð jÞ
i;R

h i
for 1pjp2i	1; 1piop: ð6Þ

Then let F ¼
Qp

i¼1

Q2i	1

j¼1 det T ðAð jÞ
i;L Þdet T ðAð jÞ

i;RÞ:

Lemma 2. For nX2; F is a nonzero element of Kða1;1;0;y; ai; j;k;y; an;n;dÞ:

Proof. We prove the statement by recurrence on the ith stage of the construction. To
prove both the existence of F—matrix inversions in (4b)—and the fact that Fa0; it

suffices to show that the successive determinants det T ðAð jÞ
i;L Þ and det T ðAð jÞ

i;RÞ are

nonzero for a particular matrix A over K½x�; we shall denote this particular matrix by
An;d and define it as follows. For n a power of two, let

An;d ¼ xdIn 	 Jn; where Jn ¼
Jn=2

In=2

" #
if nX2 and J1 ¼ 1:

Let also Nn;d ¼ xdIn þ Jn: We show that the determinants used to define F

are nonzero by proving that, when starting with A
ð1Þ
1 ¼ An;d ; construction (6)

yields

A
ð jÞ
i ¼ Ani ;di

and N
ð jÞ
i ¼ Nni ;di

: ð7Þ

For i ¼ 1 one can verify by inspection that T ðAð1Þ
1;LÞ and T ðAð1Þ

1;RÞ are invertible, of

determinant 71; for example,

T ðAð1Þ
1;RÞ ¼

	Jn=2

O

� �
O

In=2

" #

& &

	Jn=2

O

� �
O

In=2

" #

2
66666664

3
77777775
AKnd�nd :

To obtain N
ð1Þ
1 ¼ Nn;d ; notice further that applying (4c) to the leading term ½O In=2�T

of A
ð1Þ
1;R yields for N

ð1Þ
1 the leading term ½In=2 O�: Notice also that T ðAð1Þ

1;RÞ
	1 is equal

ARTICLE IN PRESS
C.-P. Jeannerod, G. Villard / Journal of Complexity 21 (2005) 72–8678



to the transpose of T ð½	J	1
n=2 j xdIn=2�T Þ:

T ðAð1Þ
1;RÞ

	1 ¼

	J	1
n=2 O

h i
&

	J	1
n=2 O

h i

O In=2

� �
&

O In=2

� �

2
6666666666664

3
7777777777775
AKnd�nd :

It then follows from (4b) that N
ð1Þ
1 ¼ Nn;d ; similarly, N

ð1Þ
1 ¼ Nn;d because (4c) gives

the leading term ½O In=2� and T ðAð1Þ
1;LÞ

	1 equals the transpose of T ð½xdIn=2 j 	 In=2�T Þ:
Hence, N

ð1Þ
1 ¼ Nn;d and (7) holds for i ¼ 1:Now, if (7) holds for iAf1;y; p 	 1g; this

is still true for i þ 1: Indeed, the block-diagonalization scheme (6) and identity

Nn;dAn;d ¼
An=2;2d

An=2;2d

" #

imply that A
ð jÞ
iþ1 ¼ Aniþ1;diþ1

for 1pjp2i: We further obtain det T ðAð jÞ
iþ1;LÞa0;

det T ðAð jÞ
iþ1;RÞa0 and N

ð jÞ
iþ1 ¼ Nniþ1;diþ1

in the same way as for i ¼ 1: &

Proposition 3. Let AAK½x�n�n
be nonsingular of degree d: If FðAÞAK� then the

matrices B
ð jÞ
i;L ; B

ð jÞ
i;R; U

ð jÞ
i ; U

ð jÞ
i in InverseðAÞ have degree di:

Proof. Let B
ð jÞ
i ; U

ð jÞ
i be the polynomial matrices involved during stage (b) of

algorithm InverseðAÞ and, since FðAÞAK�; consider A
ð jÞ
i ; N

ð jÞ
i as in (6).

It suffices to show that there exists invertible constant matrices C
ð jÞ
i of order

ni ¼ n=2i	1 such that, for 1pjp2i	1 and 1pipp;

B
ð jÞ
i ¼ C

ð jÞ
i A

ð jÞ
i and; if iop; U

ð jÞ
i C

ð jÞ
i ¼

C
ð2j	1Þ
iþ1

C
ð2jÞ
iþ1

" #
N

ð jÞ
i : ð8Þ

Indeed, the target degree bound di for B
ð jÞ
i and U

ð jÞ
i then follows from FðAÞAK�

and Fact 1 which gives the bound di for A
ð jÞ
i and N

ð jÞ
i :

We proceed by recurrence on i: When i ¼ 1; B
ð1Þ
1 ¼ A

ð1Þ
1 ¼ A and C

ð1Þ
1 ¼ In: To see

why U
ð1Þ
1 is an invertible constant multiple of N

ð1Þ
1 ; notice that both U

ð1Þ
1 and N

ð1Þ
1 are

minimal kernel bases of B
ð1Þ
1;R ¼ A

ð1Þ
1;R ¼ AR: Hence there exists a unimodular

DAK½x�n=2�n=2 such that U
ð1Þ
1 ¼ DN

ð1Þ
1 : Now, it follows from the assumption on F

and from Fact 1 applied to A
ð1Þ
1;R;N

ð1Þ
1 that D must have degree zero. We can thus take
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C
ð1Þ
2 ¼ D: Similarly, U

ð1Þ
1 ¼ C

ð2Þ
2 N

ð1Þ
1 for some invertible constant matrix C

ð2Þ
2 and (8)

holds for i ¼ 1:

Assume that (8) holds for iop: It follows from B
ð2j	1Þ
iþ1 ¼ U

ð jÞ
i B

ð jÞ
i;L ; (6) and (8) that

B
ð2j	1Þ
iþ1 ¼ C

ð2j	1Þ
iþ1 A

ð2j	1Þ
iþ1 (and similarly for B

ð2jÞ
iþ1Þ: Now consider U

ð2j	1Þ
iþ1 and, for

simplicity, let X stand for X
ð2j	1Þ
iþ1 for XAfA;B;C;N;Ug and let d stand for diþ1: To

show that UC ¼ DN for some invertible constant matrix D; recall first that U is a

minimal kernel basis for BR ¼ CAR: Therefore, UC is a kernel basis for AR; it is

further minimal, as we explain now. By assumption on F; det T ðBRÞ ¼ ðdet CÞd �
det T ðARÞa0 and then all the rows of U have degree d (see Section 3.1).

Consequently, UC is a kernel basis for AR of degree at most d and, since the minimal

row degrees of ker AR are d;y; d; UC is minimal. We conclude as for i ¼ 1 that

UC ¼ DN for some invertible constant matrix D: Using similar arguments, we
obtain UC ¼ D0N for another invertible constant matrix D0 and (8) therefore holds
for i þ 1: &

The zeros of numeratorðFÞ � denominatorðFÞ define a hypersurface of Kn2ðdþ1Þ:

By identifying the matrix set fAAK½x�n�n: deg Apdg with Kn2ðdþ1Þ; we therefore get
the following corollary.

Corollary 4. The matrices B
ð jÞ
i;L ; B

ð jÞ
i;R; U

ð jÞ
i ; U

ð jÞ
i in InverseðAÞ have degree di for all

nonsingular AAK½x�n�n
of degree d except those in a certain hypersurface of Kn2ðdþ1Þ:

Again, the typical degrees di in Proposition 3 and Corollary 4 are independent of
the way minimal kernel bases are computed. The next section deals with the cost of
computing such bases.

4. Minimal kernel basis computation

In algorithm Inverse the degrees of the successive minimal bases are not known
in advance. To get a low complexity estimate in the favorable cases where the bases
actually have small degrees (the generic case), we thus use a minimal basis algorithm
whose cost is sensitive to these degrees. In particular, for a 2m � m input matrix M

of degree d; the algorithm detects whether the genericity condition det T ðMÞa0 is

satisfied. If so, a minimal basis of ker M is returned in OBðm3dÞ operations in K:
Several approaches exist for computing minimal polynomial bases of matrix

polynomial kernels. Most of them are based on matrix pencil normal forms, see for
example [5,6] and references therein, but it is unclear whether they lead to the target

complexity estimate OBðm3dÞ: Following the characterization (4), another
possibility is structured linear system solving. In particular, the block-Toeplitz

linear system (4b) can be solved in OBðm3dÞ field operations [20]. Such a fast
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structured solver uses preconditioning with random matrices in order to prevent
some particular minors to vanish during recursions [20, Appendix A]. However, for
the whole inversion algorithm, this should amount to replacing condition FðAÞAK�

with another generically satisfied condition of the same nature, say, FðAÞCðAÞAK�:

We now recall in detail another deterministic OBðm3dÞ approach that relies only
on rational function F: It is based on matrix Hermite–Padé approximation. We
compute a minimal basis of ker M as a submatrix of a suitable minimal approximant
basis for M; called a s-basis in [2]. This follows the idea of [27, Chapter 4] as applied

in [3,4]. Intuitively, a left minimal approximant basis for MAK½x�2m�m is a

nonsingular VAK½x�2m�2m such that

VM � 0 mod xt for some tAN ð9Þ

and whose row degrees are as small as possible among all such approximants. More

precisely, let sAN and, following [2, p. 809], let for vAK½x�2m

ord v ¼ supftAN: vTðxmÞ � MðxmÞ � ½1; x;y; xm	1�T � 0 mod xtg:

Denote further by deg v the highest degree of all the entries of v: A s-basis for the

rows of M is a matrix VAK½x�2m�2m such that

(I) for 1pip2m; ord V ði;�Þ
Xs; where V ði;�Þ is the ith row of V;

(II) every polynomial vector vAK½x�2m such that ord vXs admits a unique

decomposition vT ¼
P2m

i¼1 cðiÞV ði;�Þ where, for 1pip2m; cðiÞAK½x� and deg cðiÞ þ
deg V ði;�Þpdeg v:

This definition coincides with [2, Definition 3.2] when the m components of the
multiindex in [2] are the same. Also, approximation (9) follows from (I) by taking
s ¼ mt; and regularity and minimality of V follow from (II). Note that, in
particular, V has degree no more than t: Proposition 5 below shows that if the
approximation order s ¼ mt is large enough compared to the minimal row degrees
of ker M then there are exactly m rows of V forming a minimal basis for ker M:
Although a more general version not restricted to the 2m � m case can be found in
[27], we give a proof here for the sake of completeness.

Proposition 5. Let MAK½x�2m�m
with rank m; degree d and left Kronecker indices

fdig1pipm; and let V be a s-basis for the rows of M: If sXmðmaxi di þ d þ 1Þ then the

m rows of V with smallest degrees form a minimal basis of ker M:

Proof. For 1pip2m; V ði;�ÞðxmÞ � MðxmÞ � ½1; x;y; xm	1�T � 0 mod xs where the
left-hand side is a polynomial of degree at most

mðdeg V ði;�Þ þ d þ 1Þ 	 1: ð10Þ

It thus follows from (10) and from sXmðmaxi di þ d þ 1Þ that a row of V whose
degree is no more than maxi di is a vector of ker M: Let us now show that V has m

rows of respective degrees d1;y; dm: By definition, a vector u1 of ker M of degree d1
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can be written as u1 ¼
P2m

h¼1 c
ðhÞ
1 V ðh;�Þ with deg c

ðhÞ
1 þ deg V ðh;�Þpd1: Hence, there

exists h1 such that deg V ðh1;�Þpd1: Now assume that V has i 	 1 rows

V ðh1;�Þ;y;V ðhi	1;�Þ of respective degrees d1;y; di	1 and let ui be a vector of
ker M that does not belong to the submodule generated by these i 	 1 rows and
such that deg ui ¼ di: As for i ¼ 1; there exists hiefh1;y; hi	1g such that

deg V ðhi ;�Þpdi: Therefore, V contains m distinct rows (indexed by h1;y; hmÞ such
that the hith row belongs to ker M and has degree at most di: These m rows are

linearly independent in ker M and, since
Pm

i¼1 di is minimal for any such set of rows,

they must form a minimal basis. Notice that the remaining m rows of V cannot
belong to ker M and therefore have degrees greater than maxi di: The choice of the m

rows with smallest degrees in the statement of the proposition is thus well
defined. &

Because of the bound (2) on the Kronecker indices, Proposition 5 implies that
every s-basis for the rows of M such that sXmðmd þ d þ 1Þ contains a minimal
kernel basis for M: However, notice that if maxi di is known to be no more than d

then s can be decreased to mð2d þ 1Þ: We make the algorithm sensitive to the output
degree in the following straightforward way. If a first attempt with the
approximation order mð2d þ 1Þ is sufficient then we stop and output the basis.
Otherwise we increase the order. We remark that this test on the order could be
included in the approximation algorithm itself.

Algorithm MinimalKernelBasisðMÞ
Input: MAK½x�2m�m of degree d

Output: a minimal basis UAK½x�m�2m of ker M

s :¼ mð2d þ 1Þ;
ð%Þ V :¼ a s-basis for the rows of M;

U :¼ the m rows of V with smallest degrees;
if s ¼ mð2d þ 1Þ and UMa0 then go to ð%Þ with s ¼ mðmd þ d þ 1Þ fi;
return U :

In algorithm MinimalKernelBasis above, s-bases can be computed determinis-
tically with the method of [2] or its counterpart using fast matrix multiplication [17].
For our generic inversion purposes, it is sufficient to show that the algorithm has

cost OBðm3dÞ when U has degree no more than d; i.e. when taking s ¼ mð2d þ 1Þ is
enough to get UM ¼ 0:

For s ¼ mð2d þ 1Þ; the matrix U has degree OðdÞ and testing for ‘‘UMa0’’
therefore costs OðMMðm; dÞÞ; where MMðm; dÞ is the complexity of multiplying two
m � m polynomial matrices of degree OðdÞ: Recall that o is the exponent for
multiplying two m � m matrices over K and that multiplying two degree d

polynomials in K½x� can be done in MðdÞ ¼ Oðd log d log log dÞ operations in K:
From [11] we have MMðm; dÞ ¼ Oðmo �MðdÞÞ; thus

MMðm; dÞ ¼ Oðmod log d log log dÞ: ð11Þ
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When the field K has at least 2d þ 1 elements, polynomial matrix multiplication can
be done by multipoint evaluation/interpolation; in this case, the best known estimate
is from [7,8] and gives

MMðm; dÞ ¼ Oðmod þ m2d log d log log dÞ if jKj42d: ð12Þ

Let Bðm; dÞ be the complexity of computing a s-basis for the rows of M such that the
approximation order s ¼ mð2d þ 1Þ is sufficient. Theorem 2.4 of [17] gives the
estimate

Bðm; dÞ ¼ O
Xlog d

i¼0

2iMMðm; 2	idÞ
 !

; ð13Þ

where d is the smallest integer power of two such that dX2d þ 1: Since d ¼ OðdÞ; it
follows from (11) and (13) that Bðm; dÞ ¼ Oðmod log2 d log log dÞ and, for large

enough fields, Bðm; dÞ ¼ Oðmod log dÞ þ OBðm2dÞ follows from (12) and (13). Using
classical matrix multiplication only ðo ¼ 3Þ; we thus obtain the following
consequence of Proposition 5.

Proposition 6. Let MAK½x�2m�m
with rank m and degree d: If the left Kronecker

indices of M are bounded by d; then Algorithm MinimalKernelBasis returns a

minimal basis of ker M in Oðm3d log2 d log log dÞ field operations; if jKj42d; this

bound becomes Oðm3d log dÞ þ OBðm2dÞ:

If Algorithm MinimalKernelBasis does not detect that s ¼ mð2d þ 1Þ is
sufficient, then a higher approximation order mðmd þ d þ 1Þ is used. Hence, a

minimal kernel basis can always be computed in OBðmoþ1dÞ operations in K:

5. Cost analysis of inversion for a generic input

We study the cost of algorithm Inverse when the input matrix A is such that
FðAÞAK�: In particular, ni and di are as in (5). We assume that MinimalKernelBasis
implements the method of the previous section, and the matrix polynomial
multiplication complexity MMðm; dÞ is as in (11) and (12).

The asymptotic complexity of algorithm Inverse can be bounded as follows.

First, Propositions 3 and 6 imply that the 2i minimal bases at step i can be computed

at cost 2i � Oðn3i di log
2 di log log diÞ; that is

Oð2	in3d log2ðndÞlog logðndÞÞ: ð14Þ

This becomes Oð2	in3d logðndÞÞ þ OBðn2dÞ if jKj42d: The update B :¼ UiB consists

in multiplying two block-diagonal matrices, each of them having 2i	1 diagonal

blocks of order ni and degree di: This costs 2
i	1 � OðMMðni; diÞÞ: To update the dense

matrix U ; we update each of its 2i	1 block-rows with 2i	1 matrix products of order ni

and degree di: This costs 2
i	1 � Oð2i	1MMðni; diÞÞ: The total cost of matrix updates at
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step i is thus bounded by this latter quantity; with (11) and o ¼ 3; this gives

Oðn3d logðndÞ log logðndÞÞ: ð15Þ
With (12) and o ¼ 3; this gives instead

Oðn3d þ 2in2d logðndÞlog logðndÞÞ if jKj42d: ð16Þ

The total costs induced by (14)–(16) follow from
Plog n

i¼1 2	i ¼ Oð1Þ and
Plog n

i¼1 2i ¼
OðnÞ; hence the cost of stage (b) of algorithm Inverse is bounded by

Oðn3d log2ðndÞlog logðndÞÞ; and if jKj42d; this reduces to

Oðn3d logðndÞlog logðndÞÞ þ OBðn2dÞ: Stage (c) consists in reducing n2 fractions
whose numerators and denominators have degrees bounded by nd 	 d and nd;

respectively; this can be done by Oðn3d log2ðndÞlog logðndÞÞ field operations as well.
We give the conclusion of this analysis in the theorem below.

Theorem 7. Let AAK½x�n�n
be nonsingular of degree d; with n a power of 2. If

FðAÞAK�; algorithm Inverse computes A	1 in Oðn3d log2ðndÞlog logðndÞÞ þ
OBðn2dÞ field operations.

Corollary 8. Algorithm Inverse computes A	1 in OBðn3dÞ field operations for all

nonsingular AAK½x�n�n
of degree d and with n a power of 2, except those in a certain

hypersurface of Kn2ðdþ1Þ:

When ignoring logarithmic factors but assuming fast matrix multiplication over K;

(14) and (15) become, respectively, OBð2ð2	oÞinodÞ and OBð2ð3	oÞinodÞ: When i

ranges from 1 to log n; the cost of computing minimal kernel bases therefore

decreases from OBðnodÞ to OBðn2dÞ; simultaneously, the cost of matrix updates

increases from OBðnodÞ to OBðn3dÞ: Hence, asymptotically and regardless of
logarithmic factors, basis computations dominate at early stages of the algorithm
whereas matrix updates dominate at the end.

Clearly, it remains to remove the assumption that n is a power of two. The
assumption is used in Proposition 3 and thus Theorem 7. For general dimensions,
similar results should follow from inverting

A ¼
A

X I2p	n

� �
; 2p	1ono2p;

with X a generic polynomial matrix of degree d: If A is generic, then the degrees of
the minimal kernel bases in InverseðAÞ should still be bounded by the di’s, although
not equal to them anymore. It also remains to get rid of the genericity condition
FðAÞAK�; and to develop a method for handling minimal kernel bases with possibly
unbalanced degrees.

We have noticed in [17] that Algorithm Inverse may be specialized for computing
the determinant of a generic matrix A in OBðnodÞ operations. In the generic case this
yields an alternative approach to the determinant algorithm in [30,31]. These two
different methods for the determinant are respectively based on Hermite–Padé
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approximation and Newton–Hensel lifting: how do they compare? As we have seen,
recent advances show that several problems on polynomial matrices can be solved in
OBðnodÞ operations. The latter is also the cost of polynomial matrix multiplication.
For inversion we get an algorithm whose cost is essentially the size of the output. The
extension of the list of polynomial matrix problems that can be solved in
asymptotically OBðnodÞ algebraic operations plus the input/output size should be
pursued.
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