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Abstract

We present an algorithm for the computation of a shifted Popov normal form of a rectangular polynomial
matrix. For specific input shifts, we obtain methods for computing the matrix greatest common divisor of
two matrix polynomials (in normal form) and procedures for such polynomial normal form computations
as those of the classical Popov form and the Hermite normal form. The method involves embedding
the problem of computing shifted forms into one of computing matrix rational approximants. This
has the advantage of allowing for fraction-free computations over integral domains such as Z[z] and
K[a1, . . . , an][z].

In the case of rectangular matrix input, the corresponding multipliers for the shifted forms are not unique.
We use the concept of minimal matrix approximants to introduce a notion of minimal multipliers and show
how such multipliers are computed by our methods.
c© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Two polynomial matrices A(z) and B(z) in K[z]m×n , K a field, are column equivalent if there
exists a unimodular matrix U(z) ∈ K[z]n×n such that A(z) · U(z) = B(z). The matrix U(z)
corresponds to a sequence of elementary column operations. There exist a number of normal
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forms for such an equivalence problem, the best known being the Hermite normal form, initially
discovered by Hermite (Hermite, 1851) for the domain of integers (MacDuffee, 1956; Newman,
1972). This is an upper triangular matrix that has the added constraints that the diagonals have
the largest degrees in each row. While a triangular form has many obvious advantages for such
operations as solving linear equations it also has certain disadvantages. In particular, the column
degrees of a Hermite normal form can increase. For such reasons the Popov normal form (Popov,
1969) of a polynomial matrix can give a better form for many problems. This is a form that
specifies certain normalizations of matrix leading row coefficients and which has the property
that column degrees are minimal over all column equivalent matrices.

A related problem is the computation of matrix greatest common divisors. For two matrix
polynomials A(z) and B(z), both with the same row dimension, a left matrix Gcd is a matrix
polynomial C(z) satisfying A(z) = C(z) · Â(z) and B(z) = C(z) · B̂(z) and where Â(z) and
B̂(z) have only unimodular left divisors. The Matrix Gcd plays an important role in such areas
as linear systems theory (Kailath, 1980), minimal partial realizations and other application areas.
Normal form plays two important roles in the Matrix Gcd problem. In the first place Matrix
Gcd’s are only unique up to multiplication on the right by unimodular polynomial matrices.
In order to specify a single answer one asks that the Gcd be in a specific normal form. In
addition, matrix Gcd’s are usually computed by converting the rectangular matrix polynomial
[A(z), B(z)] into a normal form [0, C(z)] where C(z) is precisely the Matrix Gcd in normal
form.

Shifted normal forms. The solution of a number of normal form problems involving matrix
polynomials – particularly the forms mentioned above and others that we will introduce as
examples in the paper – may be unified by the notion of shifted form (Beckermann et al., 1999).
Matrix normal forms such as Hermite and Popov ones have certain degree structures in their
requirements. They are typically computed by reducing degrees in certain rows or columns in
such a way that the degree requirements will eventually be met. A shift associated with an input
matrix A(z) is a vector �a of integers that may be seen as weights attributed to the rows of the
matrix (see Definition 2.3). These weights govern the order in which operations are performed
during the algorithm and thus allow one – via alternative ways of choosing them – to use the
same process for the computation of different forms including for example the Popov and the
Hermite forms. One can illustrate this using the two latter forms as an example. The column
degrees of

A(z) =
[

z3 − z2 z3 − 2 z2 − 1

z3 − 2 z2 + 2 z − 2 z3 − 3 z2 + 3 z − 4

]

may be reduced by unimodular column transformations to obtain

T(z) =
[

z −1

1 z − 1

]
,

the Popov form of A(z). With the shift �a = [0,−1] one will give preference to the degrees – and
hence to the elimination – in the second row over those in the first row. This leads to

H(z) =
[

z2 − z + 1 z

0 1

]

which is the Hermite normal form of A(z) (see (Beckermann et al., 1999, Lemma 2.4) and
the definition in Section 2). Additional examples of the use of shifted normal forms are also
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included later in this paper. For example, it can happen that certain preferences of a whole
set of rows of a rectangular matrix will provide a right inverse computation for such a matrix
(cf. Example 2.4).

Shifted Popov forms were introduced in Beckermann and Labahn (2000) as a natural and
convenient normal form for describing the properties of Mahler systems. These systems are used
as basic building blocks for recursively computing solutions to module bases for matrix rational
approximation and matrix rational interpolation problems (see also (Beckermann et al., 1997)
in the case of matrix Padé systems and Section 4.2). Shifts also appear naturally in the context
of computing normal forms of matrices over Z. Schrijver has shown that integer weights on the
rows of a matrix A in Z

n×n lead to a lattice whose reduced basis gives the Hermite form of A
(Schrijver, 1986, p. 74). A similar approach is found in Havas et al. (1998, Section 6) where the
powers of a positive integer γ give an appropriate shift. For matrix polynomials we develop a
more complete study.

Computing shifted forms. The primary aim in this paper is to give a new algorithm for
computing a shifted Popov form of an arbitrary rank polynomial matrix. In the case where
the input is square and nonsingular or rectangular and of full column rank, an algorithm for
determining a shifted Popov form has been given in Beckermann et al. (1999). We extend the
methods from Beckermann et al. (1999) to deal with the general case of singular matrices, in
particular for those not having full column rank. The Matrix Gcd problem and coprime matrix
rational functions give two important examples which require normal forms for arbitrary rank
matrices. We refer the reader to Examples 2.5 and 3.2 for Matrix Gcd computations and to
Example 3.6 for coprime matrix rational functions. Our new algorithm solves two difficulties.
The first one concerns the fact that – unlike in the full column rank case – the multipliers U(z)
are not unique. We will define and compute minimal multipliers. The second difficulty is the
intermediate expression swell with respect to polynomial coefficients. This will be solved by
proposing a fraction-free method.

Our methods view the equation A(z) · U(z) = T(z) as a kernel computation

[A(z),−I] ·
[

U(z)
T(z)

]
= 0 (1)

and the normal form problem as one of computing a special shifted form of a basis for the
kernel of [A(z),−I]. This special form provides the normal form T(z) along with a unimodular
multiplier U(z) having certain minimal degree properties. The minimality of degrees overcomes
the problem that the unimodular multiplier is not unique. Starting from (1), the same idea of
computing column reduced forms using minimal polynomial basis has been used by Beelen
et al. (1988). We generalize the approach by using non-constant shifts and by computing different
forms.

For various purposes, the shift technique may also be applied to the unimodular multipliers.
In addition to the input shift �a associated with A(z) we introduce a second shift �b associated with
U(z). Specific choices of �b result in unimodular matrices U(z) having special properties that are
useful for nullspace and polynomial system solving problems. For example, two bases for the
nullspace of

A(z) =
[

z3 + 4 z2 − 2 z2 + 2 z − 1 z3 + z2 z2 − 1
z4 + z3 + 4 z2 + 2 z z3 + z2 + z 2 z3 + 2 z2 z2 + z

]
are given by



B. Beckermann et al. / Journal of Symbolic Computation 41 (2006) 708–737 711

U(z) =

⎡
⎢⎢⎢⎣

z + 1 0

−z2 − z −z − 1

−1 z + 1

−2− z −z2 + 1− z

⎤
⎥⎥⎥⎦ and

U′(z) =

⎡
⎢⎢⎢⎣

−z3 − 2 z2 + 1 z2 − 1

z4 + 2 z3 − z2 − 4 z − 2 −z3 + 2 z + 1

2 z2 + 4 z + 1 −2 z

0 1

⎤
⎥⎥⎥⎦ .

These two bases are submatrices of multipliers for shifted Popov forms of A(z) (see the detailed
study at Section 3). The first basis U(z), computed with no shift, has the smallest possible
degrees. The second one, U′(z), is computed with a shift �b = [0, 0, 0,−3] which forces a
preference of elimination in its last row. By definition, the second column U′2(z) of U′(z) satisfies
A(z)U′2(z) = 0 and since the last entry has been made constant by the shift, one may solve
the diophantine linear system given by A(z) and its last column. This is not directly possible
from U(z).

The shifted multipliers are also useful for deriving degree bounds and analyzing the cost
of the algorithm. Bounds for the minimal unimodular multiplier are obtained in terms of the
input parameters and the invariants to the problem — the shifted minimal degrees and the shifted
Kronecker indices. The invariants are themselves bounded in terms of the input parameters. The
bounds that we obtain for the minimal unimodular multiplier are interesting in their own right.
Indeed, as will be shown in Example 5.4, they can be used for instance to determine bounds for
the cofactor polynomials in the extended Gcd problem for n ≥ 2 scalar polynomials, that is,
degree bounds for the uk(z) in

a1(z) · u1(z)+ · · · + an(z) · un(z) = Gcd(a1(z), . . . , an(z)).

Following (1), the computation of a shifted form for the kernel of [A(z),−I] is done using the
σ -basis (or order basis) algorithm of Beckermann and Labahn (2000). This algorithm computes
all solutions to a rational approximation problem, that of vector Hermite–Padé approximants to a
certain order. The basis for this approximation problem is in the shifted Popov form and includes
the desired kernel for high enough orders. The algorithm has the advantage that the computations
are fraction-free for integral domains, a significant advantage when the input is parameterized,
for example when the input entries are from Z[z] or K[a1, . . . , an][z], classical domains for
computer algebra systems. To our knowledge, a specific fraction-free method for computing
Hermite or (shifted) Popov forms for general matrix polynomials has not been previously given.

Algorithms for and complexities of computing the Popov form or column reduced forms
over K[z] with K an abstract field have been studied in Giorgi et al. (2003), Mulders and
Storjohann (2003), Villard (1996) (see also the references therein) and in Beckermann et al.
(2002) for noncommutative skew fields. Many algorithms have been proposed for computing the
Hermite form over K[z], with (Storjohann, 2000) giving a good overview of the domain. For
concrete coefficient domains like Z, expression swell on the coefficient level leads in general
to a severe breakdown of the method’s performance. The case of matrices over Z[z] has only
been considered for the Hermite form using Chinese remaindering in Storjohann (1994, Chap. 4
and 6). Our idea of introducing fraction-free techniques to handle the complexity of coefficients
for general matrix polynomial computations (shifted forms) is a natural solution.
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Organization of the paper. Section 2 gives the basic definitions of our normal forms along
with proofs of existence and uniqueness. Section 3 discusses shifted minimal polynomial bases
and shifted minimal multipliers. Section 4 gives the main algorithm for the computation of the
shifted forms. We first show in 4.1 how they may be computed as minimal polynomial bases
and then how to compute these bases as approximant order bases in 4.2. The termination of
the algorithm is specified using invariants of the problems (minimal degrees and Kronecker
indices). These invariants are studied in Section 5 where the concern is to bound the degrees
of the unimodular multipliers. From these bounds, Section 6 gives the cost of the algorithm. The
last section includes a conclusion along with a discussion of future research directions.

Notations. Except for the presentation and the cost study of the fraction-free technique where
the domain of the entries will be specified, we will work with constant and polynomial matrices
over K and K[z] for an abstract commutative field K. Given a polynomial A(z), we denote its
elements by A(z)i, j . Furthermore, given lists I, J of increasing row/column indices of A(z), we
denote by A(z)I,J the corresponding submatrix of A(z), where for A(z)I,∗ (and A(z)∗,J ) we just
extract rows with index in I (and columns with index in J , respectively).

For any multi-index �a (that is, a vector of integers) we denote by |�a| the sum of its components,
max[�a] and min[�a] its maximum and minimum components, perm [�a] a permutation of its
components and �aI the subvector given by the indices in I . The multi-index �e is the vector
(1, . . . , 1) of appropriate size. Three main types of multi-indices are involved. The shifts will be
indicated by italic letters (e.g. �a, �b); we will use Greek letters (e.g. �α, �β) for the shifted column
degrees and add a “∗” to the latter (e.g. �α∗, �β∗) for the actual (non-shifted) column degrees
(see Definition 2.3). The multi-index given by the column degrees of matrix A(z) is denoted by
cdeg A(z) and the row degree is denoted by rdeg A(z).

2. Preliminaries

This section gives some of the basic definitions required for the remainder of the paper. We
give examples of matrix normal forms and provide motivation for the concept of shifted normal
forms for both square and rectangular matrix polynomials. Information for normal forms of
matrix polynomials in the full column case have been handled in a previous paper (Beckermann
et al., 1999).

The best known normal form for matrix polynomials is the Hermite normal form. This is a
triangular matrix with the additional normalization properties than the diagonal polynomials are
monic and that the degrees of the off-diagonal entries are less than the degrees of the diagonal
entry in the same row. For example, the matrix

A(z) =
⎡
⎣z4 − 2 z3 + 1 z3 + z

0 z2 − 1 −z − 1
0 0 z + 2

⎤
⎦ (2)

is in Hermite normal form. From a computational point of view, the Hermite normal form has
the disadvantage that it does not minimize or even necessarily reduce the column degrees. A
second well known matrix normal form was introduced by Popov (1969). Called the Popov
normal form or the polynomial–echelon form (Kailath, 1980), this form requires normalization
properties similar to those of the Hermite form: the leading (by rows) coefficient matrix has
to be normalized to the identity. Specifically we have, in the case of nonsingular square
matrices:
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Definition 2.1. An m × m nonsingular matrix polynomial T(z) ∈ K[z]m×m is in Popov form
(with column degree �α∗) if there exists a multi-index �α∗ such that T(z) satisfies the degree
constraints

T(z) · z−�α∗ = T′ +O(z−1)z→∞, T′ ∈ Km×m being upper triangular, (3)

z−�α∗ · T(z) = Im +O(z−1)z→∞. (4)

If only condition (3) holds with T′ ∈ Km×m being simply nonsingular then the matrix polynomial
is said to be column reduced. �

Notice that in the first part of the definition the matrix T′ in (3) is necessarily nonsingular
because of (4). Up to a (unique) permutation of columns, we obtain the classical Popov normal
form (Kailath, 1980, Section 6.7.2, p. 481). When the form is used in a matrix fraction description
or as a minimal polynomial basis then the degree �α∗ is usually referred to as the vector of
controllability indices or Kronecker indices. It is known (Kailath, 1980, p. 484) that any square
nonsingular matrix polynomial may be transformed to the Popov normal form by multiplication
on the right by a unimodular matrix polynomial, and that the resulting polynomial matrix is
unique. As an example, the Popov normal form for (2) is given by

T(z) =
⎡
⎣ z3 + z − z + 1 z2 − z + 3
−z − 1 z2 + z 0

z + 2 −z − 2 z2 + z − 2

⎤
⎦

with �α∗ = [3, 2, 2] and

T′ =
⎡
⎣1 0 −1

0 1 0
0 0 1

⎤
⎦ .

Since this matrix is column reduced it gives the minimal column degrees of all matrices column
equivalent to (2) (up to a permutation of the columns). That is, if B(z) is any other matrix column
equivalent to the above then its column degrees are at least (3, 2, 2) (Kailath, 1980, Section 6.5.4,
p. 456) (see Section 3).

Our example matrix (2) is not in Popov normal form — indeed it is not even in column
reduced form. However, we can make a shift, that is give “weights” to the degrees of the rows
by multiplication on the left by z(−3,−1,0) to make it a column reduced matrix. This has led in
Beckermann et al. (1999) to the extension of the notion of Popov forms to the notion of �a-Popov
for full column rank matrix polynomials. The matrix (2) is said to be in (3, 1, 0)-Popov form with
shifted degrees (4, 2, 1). In order to include more general applications such as normal forms for
Matrix Gcd’s and for minimal nullspace bases, we will need to consider the more general case of
rectangular matrix polynomials having an arbitrary column rank. The normalization of leading
matrices is now ensured by column echelon matrices:

Definition 2.2 (Column Echelon Matrices). A scalar matrix T′ ∈ Km×n of rank r is in upper
echelon form with pivot set I = (i1, . . . , ir ) if 1 ≤ i1 < i2 < · · · < ir ≤ m, T′i, j = 0 for i > i j ,
and T′i j , j �= 0, j = 1, . . . , r . �

Notice that we may transform any scalar matrix by column operations to upper echelon form
and that the corresponding pivot set is unique. The (row) pivot set of any matrix is thus well
defined as the pivot set of its (column) upper echelon forms. The general definition of shifted
forms is then:
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Definition 2.3 (Shifted Popov Normal Form). A matrix polynomial T(z) ∈ K[z]m×n is called
�a-column reduced with �a-degree �α (or shifted degree) if it may be partitioned as

T(z) = [0, T(z)∗,Jc] where J = (1, 2, . . . , n − r), Jc = (n − r + 1, . . . , n), (5)

and if its right hand part is such that there exists a full column rank scalar matrix T′ with pivot
set I satisfying

z−�a · T(z)∗,Jc · z�aI−�α = T′ +O(z−1)z→∞. (6)

If it satisfies the additional normalization degree and leading coefficient constraint

z−�α · T(z)I,Jc = Ir +O(z−1)z→∞. (7)

then T(z) is said to be in �a-Popov normal form. We define the multi-index �α∗ by

�α∗ = cdeg z−�a · T(z)∗,Jc

with the convention that though the �a-degree �α and the column degree �α∗ have the same sizes,
we index them in different ways — �α is indexed by the pivot rows I while �α∗ is indexed by the
columns Jc. �

In the square, nonsingular case the pivot set is (1, . . . , m) and may be dropped from our
notation. For the above forms, r equals the rank of T(z), T(z)∗,Jc and of T′. Since I =
(i1, . . . , ir ) is the pivot set of T′, the r × r submatrices T(z)I,Jc and T′I,Jc

are invertible and
for any other list I ′ = (i ′1, . . . , i ′l , i ′l+1, . . . , i ′r ) with i ′l > il for some l, T′I ′,Jc

is singular. By
extension we will call the pivot set of an �a-column reduced matrix the pivot set of an associated
matrix T′ in (6). Notice that Definition 2.3 may be used directly for Laurent matrix polynomials
and that A(z) is �a-column reduced (respectively, in �a-Popov form) if and only if z−�a · A(z) is
column reduced (respectively, in Popov form).

Example 2.4. Consider the matrix

A(z) =

⎡
⎢⎢⎢⎣

3 z − 6 −3 z 6

−3 z + 3 3 z −3

2 z + 3 −2 −2 z − 1

z −1 −z + 1

⎤
⎥⎥⎥⎦ .

Its Popov form T0(z) and its (2, 2, 0, 0)-Popov form T(z) provide two different bases for its
dimension 2 column space:

T0(z) =

⎡
⎢⎢⎢⎣

0 −z −6

0 z 3

0 − 2
3 2 z + 1

0 − 1
3 z − 1

⎤
⎥⎥⎥⎦ , T(z) =

⎡
⎢⎢⎢⎣

0 −z2 + z − 2 2z2 + z + 4

0 z2 − z + 1 −2z2 − z − 2

0 1 0

0 0 1

⎤
⎥⎥⎥⎦

with pivot sets I 0 = (2, 4) and I = (3, 4) (pointed out by the underlined terms). The shifted
degrees are �α0 = [1, 1] and �α = [0, 0]. A transformation matrix U(z) for T(z) will give a right
inverse for A(z)I,∗ since it satisfies A(z)I,∗U(z)∗,(2,3) = I2. �
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Example 2.5. Consider the problem of computing the left Matrix Gcd of the two matrix
polynomials

P(z) =
[−z3 + 4z2 + z + 1 z − 1
−z2 + 7z + 4 z + 2

]
and Q(z) =

[
2z2 + 2z − 2 −z2

z2 + 6z + 6 −2z

]
.

One determines a left Matrix Gcd by forming the augmented matrix A(z) = [P(z), Q(z)] and
then making this column equivalent to a matrix of the form [0, C(z)] with C(z) a left Matrix
Gcd. Popov and shifted Popov forms for A(z) give Matrix Gcd’s in normal form. For example,
the Popov form for A(z) is given by[

0 0 z −1
0 0 2 z

]
and so the last two columns give a Matrix Gcd in Popov form. On the other hand the (2, 0)-Popov
form for A(z) is[

0 0 z2 + 2 1
2 z

0 0 0 1

]
and its last two columns give a Matrix Gcd in Hermite form (see (Beckermann et al., 1999,
Lemma 2.4)). �

Using Definition 2.3, we can now handle the Hermite normal form more precisely. A matrix
T(z) in K[z]m×n is in Hermite normal form (see (MacDuffee, 1956; Newman, 1972)) if it may
be partitioned following (5) as

T(z) = [0, T(z)∗,Jc]
where T(z)∗,Jc : (i) has full column rank r ; (ii) is in upper echelon form with pivot set I =
(i1, i2, . . . , ir ); (iii) satisfies the normalization constraint

z−�α · T(z)I,Jc = Ir +O(z−1)z→∞, (8)

that is, the pivot entries T(z)i j ,n−r+ j are monic and have a degree �αi j strictly larger than the
entries in the same row T(z)i j ,∗. As mentioned already before, for an appropriate shift the
Hermite form may be viewed as a shifted Popov form:

Lemma 2.6. If T(z) is in �a-Popov normal form with pivot set I = (i1, i2, . . . , ir ) and shifted
degree �α such that

�ai − �al ≥ �αi , for i ∈ I and l > i (9)

then T(z) is in Hermite normal form.

Proof. Since T(z) is in �a-Popov normal form with shifted degree �α, conditions (i) and (iii) for
the Hermite form are clearly true. In addition, from identities (6) and (7), for l > i j we get
−�al + deg T(z)l,n−r+ j + �ai j − �αi j < 0. Thus if the shift satisfies (9) then T(z)l,n−r+ j = 0 for
l > i j and hence T(z)∗,Jc is in upper echelon form. �

A practical a priori shift �a will depend on bounds for the degree �α. This will be considered in
Section 6 using Theorem 5.1 below.

The existence and uniqueness of shifted Popov forms for rectangular matrix polynomials
having full column rank can be found in Beckermann et al. (1999, Theorem 3.5). In the general
case we have the following.
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Theorem 2.7. Any matrix A(z) ∈ K[z]m×n is column equivalent to a unique matrix T(z) in
�a-Popov form.

Proof. As noted in Kailath (1980, p. 375–376) one can always do elementary column operations
so that the matrix polynomial A(z) is of the form [0, B(z)] where the first n − r columns are 0
and B(z) has full column rank r . The existence of an �a-Popov form therefore follows from the
full column rank case. To show uniqueness, suppose [0, T(z)] and [0, T′(z)] are two �a-Popov
forms for A(z). Then there exists a unimodular matrix polynomial V(z) such that

[0, T(z)] = [0, T′(z)] ·V(z). (10)

If V′(z) denotes the bottom right hand r × r submatrix of V(z) then (10) implies that

T(z) = T′(z) ·V′(z). (11)

Similarly, one can find a second r × r matrix polynomial W′(z) such that

T′(z) = T(z) ·W′(z). (12)

Therefore,

T(z) = T(z) ·W′(z) · V′(z)
implying that W′(z) · V′(z) = Ir since T(z) is of full column rank. Thus V′(z) and W′(z)
are unimodular and T(z) and T′(z) are two full column rank equivalent �a-Popov forms. By
Beckermann et al. (1999, Theorem 3.5) they must be equal. �

3. Minimal multipliers

In the case of full column rank matrices, both an �a-Popov form T(z) and its unimodular
multiplier U(z) are unique. In the case of singular input Theorem 2.7 implies that the shifted
form is also unique. However, the same cannot be said for the associated unimodular multiplier.
Indeed one simply needs to look at the definition to see that one can take multiples of any of the
first n−r columns of the multiplier and add them to the last r columns without having any effect
on the associated shifted form. In this section we look for a multiplier that has a type of shifted
minimal property. This type of reduction (without a shift) has already been done in the context of
linear systems theory (Wolovich and Antsaklis, 1984) (see Remark 3.7). We will show in a later
section that the addition of a shift gives certain useful properties for our multipliers.

If A(z) · U(z) = [0 , T(z)∗,Jc] with U(z) = [U(z)∗,J , U(z)∗,Jc] unimodular and T(z)∗,Jc of
full column rank, then A(z) · U∗,J (z) = 0. Since U(z) is unimodular, U(z)∗,J has full column
rank and therefore forms a polynomial basis for the kernel of A(z), that is, a basis for the kernel
as a module over K[z]. The minimality of the columns J will thus be naturally captured using the
well known concept of minimal polynomial basis (see (Forney, 1975) or (Kailath, 1980, Section
6.5.4)) which we extend here to include shifted bases.

Definition 3.1 (Shifted Minimal Polynomial Bases). Let A(z) ∈ K[z]m×n be of rank r and
B(z) ∈ K[z]n×(n−r) with A(z) · B(z) = 0. If B(z) is �b-column reduced then B(z) is a �b-Minimal
Polynomial Basis (�b-MPB) for the nullspace of A(z). If B(z) is also in �b-Popov form then B(z)
is a �b-Popov Minimal Polynomial Basis (�b-Popov MPB). �
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If �b = 0 then Definition 3.1 gives the classical definition of a Minimal Polynomial Basis
(MPB) (Forney, 1975). Such bases are called minimal since if a MPB for the nullspace
of A(z) has column degree �β (with components in increasing order), then the degrees �β ′ (with
components in increasing order) of any other basis satisfy �β ′l ≥ �βl , 1 ≤ l ≤ n−r (Kailath, 1980,
Section 6.5.4, p. 456). Clearly, the same property holds for shifted MPB. The shifted degrees �βl

may be called the �b-right minimal or �b-right Kronecker indices of A(z). The existence and the
uniqueness of a shifted MPB in Popov form follows from Theorem 2.7.

Example 3.2. Consider

A(z) =
[
−z3 + 4 z2 + z + 1 z − 1 2 z2 + 2 z − 2 −z2

−z2 + 7 z + 4 z + 2 z2 + 6 z + 6 −2 z

]
,

the augmented matrix used in the Matrix Gcd problem of Example 2.5. The Popov MPB and
[0,−3, 0, 0]-Popov MBP for the nullspace of A(z) have the same pivot set K = (2, 4):

U0(z)∗,J =

⎡
⎢⎢⎢⎣
−1 −1

z2 − 7 −2 z − 7

−z + 3 3

−1 z

⎤
⎥⎥⎥⎦ , U(z)∗,J =

⎡
⎢⎢⎢⎣
− 2

21 z + 1
7 −z2 − 2 z

1 0
2

21 z − 3
7 z2 − z

2
21 z2 − 1

3 z − 4
21 z3 − 9 z − 7

⎤
⎥⎥⎥⎦ .

One may use the first column of U(z)∗,J with pivot 1 to write the second column of A(z) as
a polynomial combination of the other columns. This combination is not seen directly from
U0(z)∗,J . �

As described above, the minimal bases provide a normalization for the columns J of the
multipliers U(z). If U(z)∗,J is a MPB with pivot set K , then the remaining columns Jc may be
normalized by reducing their row degrees with respect to U(z)K ,J . This leads to the notion of
(�a, �b)-minimal multipliers:

Theorem 3.3. Let A(z) ∈ K[z]m×n of rank r , and �a, �b be multi-indices of length m and n,
respectively. Let U(z) be a unimodular matrix such that A(z) ·U(z) = T(z) with T(z) the unique
�a-Popov normal form.

(i) A unimodular multiplier U(z) is unique up to multiplication on the right by matrices of the
form

W(z) =
[

W(z)J,J W(z)J,Jc

0 Ir

]
, W(z)J,J ∈ K[z](n−r)×(n−r) unimodular.

(ii) There exists a unique multiplier U(z) verifying

[U(z)K ,J ]−1 ·U(z)K ,Jc = O(z−1)z→∞, (13)

with U(z)∗,J being a �b-Popov MPB for the nullspace of A(z).
(iii) Under all multipliers mentioned in (i), the sum of the degrees of the �b-column degrees of the

unique multiplier U(z) of (ii) is minimal.

We will refer to the unique multiplier U(z) satisfying (ii) as the (�a, �b)-minimal multiplier or,
when (�a, �b) = (0, 0), as the minimal multiplier.

Before proving Theorem 3.3 we give two lemmas, one which shows a useful property of
column reduced matrices (Kailath, 1980, Theorem 6.3-13, p. 387) and a second lemma which
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describes the division/remainder properties of polynomial matrices. These results will be used
for the proof of the theorem.

Lemma 3.4 (Predictable Degree Property). Let B(z) be a full column rank and �b-column
reduced matrix polynomial with �β∗ = cdeg z−�b · B(z). If P(z) and C(z) are two matrix

polynomials such that B(z) · P(z) = C(z) with �δ∗ = cdeg z−�b · C(z) then deg P(z)i, j ≤
�δ∗j − �β∗i . �

Lemma 3.5 (Matrix Polynomials Division). Let B(z) be a nonsingular m×m matrix polynomial

with �β∗ = cdeg z−�b · B(z). For any m × n matrix polynomial A(z) with �δ∗ = cdeg z−�b · A(z)
there exist unique matrix polynomials Q(z) ∈ K[z]m×n and R(z) ∈ K[z]m×n such that

A(z) = B(z)Q(z)+ R(z),

B(z)−1 ·R(z) = O(z−1)z→∞.

(14)

If B(z) is �b-column reduced then deg Q(z)i, j ≤ �δ∗j − �β∗i , for 1 ≤ i ≤ m and 1 ≤ j ≤ n.

Proof. The first statement is Theorem 6.3–15 in Kailath (1980, p. 387). For the sec-
ond statement, the matrix quotient Q(z) is the polynomial part of B(z)−1A(z) =
adj (B(z))A(z)/(det B(z)) where adj (B(z)) denotes the adjoint of B(z). Since B(z)adj (B(z)) =
diag(det B(z), . . . , det B(z)), by Lemma 3.4 we get that deg adj (B(z))i, j ≤ d − �b j − �β∗i with
d = deg det B(z). It follows that

deg (adj (B(z))A(z))i, j ≤ (d − �bl − �β∗i )+ (�bl + �δ∗j ) = d + �δ∗j − �β∗i
where the index l is from the matrix product. The quotient by det B(z) then leads to deg Q(z)i, j ≤
�δ∗j − �β∗i . �

Proof of Theorem 3.3. For statement (i), if U(1)(z) and U(2)(z) are two multipliers for the
�a-Popov form, then U(1)(z)∗,J and U(2)(z)∗,J are two bases for the nullspace of A(z) and
thus for the same K[z]-module. Consequently there exists a unimodular multiplier W(z)J,J

which makes these matrices column equivalent. By the uniqueness of T(z)∗,Jc , the columns
of U(2)(z)∗,Jc − U(1)(z)∗,Jc are in the nullspace of A(z) and there exists a matrix W(z)J,Jc

such that (U(2)(z)∗,Jc − U(1)(z)∗,Jc) = U(1)(z)∗,J W(z)J,Jc or U(2)(z)∗,Jc = U(1)(z)∗,Jc +
U(1)(z)∗,J W(z)J,Jc . This gives the general form of the multipliers as announced in (i).

For (ii), assume now that U(z)∗,J is the unique �b-Popov MPB for the nullspace, say with
pivot set K , so that by definition U(z)K ,J is invertible. Given any multiplier U(0)(z) we may thus
divide U(0)(z)K ,Jc on the left by U(z)K ,J :

U(0)(z)K ,Jc = U(z)K ,J W(z)J,Jc + U(z)K ,Jc

and (13) is identity (14) of Lemma 3.5. Since in addition the matrix remainder U(z)K ,Jc is the
unique matrix such that (13) is satisfied, using the generic form of a multiplier given at (i) and
taking

U(z)∗,Jc = U(0)(z)∗,Jc − U(z)∗,J W(z)J,Jc (15)

shows that the (�a, �b)-minimal multiplier U(z) is well defined and unique. This proves (ii).
It remains to conclude the proof of (iii). Let U(0)(z) be a second unimodular multiplier. From

the general form of the multipliers, the sum of the degrees in the columns J and in the column Jc
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can be minimized independently. Since the degrees in the columns J are minimized by choosing
a MPB, we only have to look at what happens in the columns Jc. Thus we need to show that the
degree sum of z−�b ·U(0)(z)∗,Jc is at least the degree sum of z−�b ·U(z)∗,Jc . Let �β∗, �δ∗, �γ ∗ be the

column degrees of z−�b · U(z)∗,J , of z−�bK · U(0)(z)K ,Jc and of z−�bKc · U(0)(z)Kc,Jc , respectively.
The degree sum for the columns Jc of U(0)(z) is σmin = Σ j max {�δ∗j , �γ ∗j }. By Lemma 3.5, we

have a matrix quotient W(z)J,Jc such that (15) is satisfied and where deg W(z)i, j ≤ �δ∗j − �β∗i .

Therefore, by (15), after the division we have, for 1 ≤ i ≤ m and j ∈ Jc,

deg (z−�b · U(z))i, j ≤ max {max {�δ∗j , �γ ∗j }, �δ∗j } = max {�δ∗j , �γ ∗j }.

This shows that the degree sum for the columns of Jc is not increased by the normalizing division
and gives (iii). �

Example 3.6 (Coprime Rational Matrix Functions). Suppose we are given a left coprime
proper matrix rational function R(z) = D(z)−1 · N(z) with D(z) square of size p × p in Popov
form and N(z) of size p × q . Then it is well known that there exists a right coprime matrix
rational function – i.e. of the form Q(z) · P(z)−1 – for R(z). This is done as follows. Let

A(z) = [D(z), N(z)]

be a matrix of size m× n with m = p and n = p+ q . Let U(z) be the unique minimal multiplier
(with �a = �b = 0) such that

A(z) · U(z) = [0, Im ], (16)

the Popov form for A(z). In this case the pivots are given by I = (1, . . . , m) and, since R(z) is
proper (degree constraints), by K = (n − m + 1, . . . , m). Identity (16) leads to

D(z) · U(z)Kc,J + N(z) ·U(z)K ,J = 0

D(z) · U(z)Kc,Jc + N(z) · U(z)K ,Jc = Im ,

where J = (1, . . . , n − m). In this case the matrix fraction −U(z)Kc,J · U(z)−1
K ,J gives the right

coprime proper rational function with U(z)K ,J in Popov form. �

Remark 3.7. With �β the �b-Kronecker indices of A(z), that is, the �b-degree of the MPB U(z)∗,J

and �β∗ = cdeg z−�b ·U(z)∗,J , using the index convention of Definition 2.3, we have the following
degree bounds for a minimal multiplier:

deg U(z)k, j ≤

⎧⎪⎨
⎪⎩

min( �βk, �bk + �β∗j ), k ∈ K , j ∈ J,

�bk + �β∗j , k ∈ Kc, j ∈ J,

�βk − 1, k ∈ K , j ∈ Jc.

(17)

The two first bounds are from the fact that U(z)K ,J is in �b-Popov form and from the definition
of �β∗. The last one is deduced from the reduction identity (13) and has been given in Wolovich
and Antsaklis (1984, Theorem 2) in the case �a = �b = �0. �
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Example 3.8. Consider again the matrix A(z) of Example 3.2. In this case the minimal
multiplier for the Popov form satisfies

A(z) · U0(z) = A(z) ·

⎡
⎢⎢⎢⎣
−1 −1 0 0

z2 − 7 −2 z − 7 −z − 2 z + 3

−z + 3 3 1 −1

−1 z 1 −1

⎤
⎥⎥⎥⎦

=
[

0 0 z −1

0 0 2 z

]
= T(z).

On the other hand the (�0, �b)-minimal multiplier for �b = [0,−3, 0, 0] is given by

U(z) =

⎡
⎢⎢⎢⎣
− 2

21 z + 1
7 −z2 − 2 z 1

7 z + 2
7 − 1

21 z − 3
7

1 0 0 0
2

21 z − 3
7 z2 − z − 1

7 z + 1
7

1
21 z + 2

7
2

21 z2 − 1
3 − 4

21 z3 − 9 z − 7 − 1
7 z2 + 9

7
1
21 z2 + 1

3 z − 23
21

⎤
⎥⎥⎥⎦ .

The Kronecker and the �b-Kronecker indices are (2, 1) and (0, 3) respectively, with pivot set
K = (2, 4) in both cases. They impose strict degree bounds for the entries of U(z)K ,∗, here for
the non-pivot entries in the second and the last rows. �

4. Computing Popov normal forms

As mentioned in the introduction, the shifted Popov form of A(z) together with its minimal
multiplier is going to be computed by determining a minimal polynomial basis for the kernel of
[A(z),−Im] – see identity (1) – considered as a module over K[z]. We first show in Section 4.1
that the entire normal form problem may actually be stated as a special MPB computation.
Section 4.2 will then be concerned by the algorithm itself using known techniques for computing
MPB. Most of the results here are given in terms of unknown degree bounds for the entries of
U(z). These bounds will be estimated in terms of the input parameters by Theorem 5.1 in the next
section and lead to simplified interpretations of what follows when we will study the complexity
in Section 6.

4.1. Computing Popov forms as minimal polynomial bases

The approach used for computing Popov Forms as Minimal Polynomial Bases has already
been roughly described in Beckermann et al. (1999, Section 5) for the case of full column rank
matrices A(z). In this subsection we will give more details and extend our considerations to the
case of general matrices A(z). Consider the stacked matrix polynomial

S(z) =
[

U(z)
T(z)

]
∈ K(m+n)×n . (18)

Notice that the columns of S(z) are elements of the kernel of [A(z),−Im] if and only if
A(z)U(z) = T(z). In addition, they form a basis of the kernel if and only if U(z) is unimodular.
Conversely, it is not the case that any MPB of the kernel of [A(z),−Im] will give the U(z) and
T(z) that is desired (Beelen et al., 1988). By generalizing the work of Beelen et al. (1988) with
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the introduction of shifts and the full rank case in Beckermann et al. (1999, Theorem 5.2), we
show that we can recover the shifted normal form by imposing a certain degree structure on the
MPB that is computed. This structure is itself one of a shifted normal form.

Theorem 4.1 (Popov Forms via MPB). Let A(z) be a matrix polynomial and �a, �b multi-indices.
We denote by T(z) the �a-Popov form of A(z) with pivot set I and �a-degree �α and by �α∗ the column
degree of z−�a · T(z)∗,Jc . Let U(z) be the associated (�a, �b)-minimal multiplier with pivot set K

and �b-degree �β. Assume that �τ ∗ is some upper bound for the column degree of z−�b ·U(z)∗,Jc .
Let N0 = max[�τ ∗ − �α∗]. Then for any integer N ≥ N0, the matrix polynomial S(z) of (18)

with T(z) and U(z) as above is the unique MPB of the kernel of [A(z),−Im] in �n(N)-Popov form
where �n(N) = (�b + N · �e, �a). As a shifted MPB, its pivot set is (K , I ) and is �n(N)-degree is
�μ = ( �β, �α).

Proof. We may first show that S(z) obtained in (18) using the shifted Popov form of A(z) and
its multiplier is indeed a �n(N)-Popov MPB for any N ≥ N0, with the pivot sets and the shifted
degrees as indicated above. By construction S(z) is a basis for the kernel, it is thus sufficient to
prove the shifted Popov form properties of Definition 2.3. Since T(z)∗,J = 0 and since T(z)∗,Jc

and U(z)∗,J are in shifted Popov form and thus both satisfy (7), we have

z−�μ · S(z)(K ,I ),∗ =
[

z− �β · U(z)K ,J z− �β · U(z)K ,Jc

0 z−�α · T(z)I,Jc

]
,

with z− �β ·U(z)K ,J = In−r +O(z−1) and z−�α ·T(z)I,Jc = Ir +O(z−1). By the division (13) we
also have

z− �β ·U(z)K ,Jc = z− �β · U(z)K ,J ·
[[U(z)K ,J ]−1 · U(z)K ,Jc

] = O(z−1).

Thus z−�μ · S(z)(K ,I ),∗ = In + O(z−1) as required for the row degrees of S(z). For the column
degrees we have

z−�n(N) · S(z) · z−�μ+�n(N)(K ,I ) =
[

z−�b · U(z)∗,J · z− �β+�bK z−�b · U(z)∗,Jc · z−�α∗−N ·�e
0 z−�a · T(z)∗,Jc · z−�α∗

]
,

with

z−�b ·U(z)∗,Jc · z−�α
∗−N ·�e = [

z−�b · U(z)∗,Jc · z−�τ
∗] · z �τ∗−�α∗−N ·�e = O(1)

by the definition of τ ∗ and the assumption that N ≥ N0. Since, in addition, U(z)∗,J and T (z)∗,Jc

both satisfy the column degree property (6), S(z) itself satisfies the property and is therefore in
shifted Popov form as required for the first part of the proof. Since two �n(N)-Popov MPB – as
bases of the K[z]-module ker[A(z),−Im] – must be equivalent, the uniqueness follows from the
uniqueness of shifted Popov forms in Theorem 2.7. �

The theorem states that if the shift is large enough (when compared to the column degrees of
U(z)), then preference is given to the last m rows of S(z). These rows are forced to be in shifted
Popov form and so lead to the unique T(z) in the MPB. As noticed previously, in order to exploit
the statement and in particular, in order to obtain an explicit value for N0 (which is needed for

the algorithm), we rely on an upper bound �τ ∗ for the column degree of z−�b · U(z)∗,Jc . In the
case of square nonsingular A(z) (r = m = n and Kc = Jc = (1, . . . , n)) or more generally
full column rank matrices A(z) (r = n, Kc = (1, . . . , n) = Jc = (1, . . . , n)), such bounds have
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been obtained in Beckermann et al. (1999, Theorem 4.1). The case of general matrices A(z) is
considerably more involved and will be discussed in Section 5.

4.2. Computing minimal polynomial bases as matrix rational approximants

Several algorithms exist for computing Minimal Polynomial Bases (in normal form) of matrix
polynomial kernels. Most of them are based on matrix pencil normal forms — see for example
(Beelen et al., 1988; Beelen and Van Dooren, 1988) and the references therein. Another approach
could be to compute a nullspace basis, for example as in Storjohann (2000, Chap. 5), and from
there compute a minimal basis by column reduction and normalization. Here, in order to take
shifts into account and in order to do fraction-free computation, we will follow the idea of
Quéré-Stuchlik (1997, Chap. 4) as applied by Beckermann et al. (1999) in the full column rank
case. We will use Hermite–Padé approximation by adapting the methods FPHPS and SPHPS of
Beckermann and Labahn (1994) (which have been developed for fixed cost arithmetic) and their
fraction-free generalization FFFG (Beckermann and Labahn, 2000).

A key point of the latter algorithms is the notion of order (see e.g. (Beckermann and Labahn,
1997) or (Beckermann and Labahn, 2000, Lemma 2.8)): given some m × s matrix polynomial
F(z) and a multi-index �σ of length m, we say that a vector Q(z) ∈ K[z]s has order �σ if
z−�σ · F(z) · Q(z) = O(1)z→0. If we compare this to (1) and keep the notation of (18), we see
that we can take F(z) = [A(z),−Im] and consider that the columns of S(z) have order infinity.
Based on this remark, Theorem 4.2 below will state that the columns of S(z) can be computed
as order vectors for �σ large enough with respect to degree bounds on U(z) and T(z). In what
follows we will always take F(z) = [A(z),−Im] though many of the properties mentioned are
also true more generally for a matrix of formal power series at zero.

From Theorem 4.2 we obtain the required order σ for an approximation problem. We then give
the main algorithm for computation up to such an order (and hence for computing our minimal
multiplier and normal form). The set of all polynomials of order �σ forms a K[z]-submodule of
the module K[z]s . This module contains all the elements of the kernel of F(z). The basic idea of
our method is to construct successively for increasing order vectors some s×s matrix polynomial
M(z) with columns forming a basis for the module of order �σ . From a certain order on, n of the
columns of M(z) will also form a basis of the kernel of F(z). We will check these additional
properties by counting zero columns in the residual polynomial

R(z) = z−�σ · F(z) ·M(z). (19)

According to Theorem 4.1, we require not only a basis of the kernel of F(z) but also a �n(N)-
Popov MPB. Therefore we also need to impose degree constraints on the matrix M(z). These
constraints will actually be ensured by algorithm FFFG where all intermediate bases are Mahler
systems of type �n, that is, order bases which are in �n-Popov form for any input multi-index �n
(Beckermann and Labahn, 2000, Theorem 7.2 and Theorem 7.3). Before stating the algorithm
explicitly, let us thus show that order bases lead to shifted Popov forms and multipliers for
sufficiently large order �σ :

Theorem 4.2 (MPB via FFFG). Let A(z) be an m × n matrix polynomial. As in Theorem 4.1
set N0 = max[�τ ∗ − �α∗], �n(N) = (�b + N · �e, �a) with �a, �b the input shifts, and �α, �α∗, �β, β∗, �τ ∗
the corresponding degrees in T(z) and U(z). We assume in addition that the multi-index �γ ∗ is an

upper bound for the row degree of A(z) · z �b, that is, z−�γ ∗ · A(z) · z �b = O(1).
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If F(z) = [A(z),−Im] and M(z) is a Mahler system of type �n(N) with order vector �σ ,
�n(N)-degree �μ and residual polynomial R(z) as in (19), then for any integer

N ≥ max{N0, max[�a − �γ ∗]}, (20)

M(z) and R(z) satisfy

(a) When �σ > �σ0 where

�σ0 = �γ ∗ + (1+max{N +max[�α∗], max[ �β∗]})�e (21)

and then there exists a list L = (1, . . . , s) of n elements with R(z)∗,L = 0.
(b) If there exists a list L ⊂ (1, . . . , s) of n elements with R(z)∗,L = 0, then the last m rows of

M(z)∗,L give the �a-Popov form of A(z), the first n rows of M(z)∗,L give the corresponding
(�a, �b)-minimal multiplier, and �μL = ( �β, �α).

Proof. Let us start by proving (b). Suppose that R(z)∗,L = 0 with #L = n. Then, by (19), the
columns of M(z)∗,L are elements of the kernel of F(z). A basis of the kernel is given by the
matrix S(z) built up with the shifted Popov form and the minimal multiplier of A(z) as described
in (18). Hence there exists a unique n × n matrix polynomial Q(z) with

M(z)∗,L = S(z) ·Q(z).

On the other hand, the columns of S(z) are of order �σ and thus may be uniquely represented as
polynomial linear combinations of the columns of M(z). Thus there exists a matrix polynomial
P(z) with

S(z) =M(z) · P(z). (22)

Combining these two identities gives M(z)∗,L =M(z) · P(z) ·Q(z). Since the columns of M(z)
are linearly independent, we find that P(z)Lc,∗ = 0 and P(z)L ,∗ = Q(z)−1 is unimodular. Hence
S(z) and M(z)∗,L are column equivalent matrices. They are both in �n(N)-Popov form: S(z) as
seen in the proof of Theorem 4.1 since N ≥ N0 and M(z)∗,L as a subset of columns of the Mahler
system M(z) which is in �n(N)-Popov form. It follows that S(z) =M(z)∗,L by uniqueness of the
normal form, showing part (b).

A proof of (a) is slightly more involved. Let �δ∗ be defined by

�δ∗ = cdeg (z−�n(N) · S(z)) = ( �β∗ − N �e, �α∗).
Using the Predictable Degree Property stated in Lemma 3.4 we may deduce for the unique P(z)
satisfying (22) that

deg P(z)i, j ≤ �δ∗j − [�μ− �n(N)]i , 1 ≤ i ≤ m + n, 1 ≤ j ≤ n. (23)

When the order �σ is increased, the degrees in M(z) are also increased. We show that this forces
some rows of P(z) and consequently some columns of the residual to be null. We proceed by
showing that otherwise, inequality (23) would be impossible. From the definition (19) of the
residual

R(z) = z−�σ · F(z) ·M(z)

we can write

z �σ−�γ ∗ ·R(z) · z �n(N)−�μ = z−�γ ∗ · F(z) ·M(z) · z �n(N)−�μ

= z−�γ ∗ · [A(z),−Im] ·M(z) · z �n(N)−�μ

= [z−�γ ∗ ·A(z) · z �b+N ·�e,−z−�γ ∗+�a] · [z−�n(N) ·M(z) · z �n(N)−�μ].
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Since N ≥ max[�a − �γ ∗] and since �γ ∗ is defined by z−�γ ∗ · A(z) · z �b = O(1) we will have that
[z−�γ ∗ ·A(z) · z �b+N ·�e,−z−�γ ∗+�a] = O(zN ). Since in addition �μ, the shifted degree of M(z), gives
[z−�n(N) ·M(z) · z �n(N)−�μ] = O(1), the residual satisfies

z �σ−�γ ∗−N �e · R(z) · z �n(N)−�μ = O(z0)z→∞. (24)

From Beckermann and Labahn (1997, Lemma 2.8) it is known that, with F(0), also R(0) and
thus R(z) all have full row rank m for all order �σ . Therefore we may find a nonsingular square
submatrix R(z)∗,Lc and more precisely some bijective map ρ : {1, . . . , m} → Lc such that

R(z) j,ρ( j ) �= 0, j = 1, 2, . . . , m.

Together with (24) this leads to

[�σ − �γ ∗ − N �e] j + [�n(N) − �μ]ρ( j ) ≤ 0, j = 1, 2, . . . , m.

Replacing �σ by its lower bound

�σ0 = �γ ∗ + (1+max{N +max[�α∗], max[ �β∗]})�e
= �γ ∗ + (1+ N +max[�δ∗])�e

we get

1+max[�δ∗] + [�n(N) − �μ]i ≤ 0, i ∈ Lc

or

�δ∗j − [�μ− �n(N)]i ≤ −1, i ∈ Lc, 1 ≤ j ≤ n. (25)

Comparing (25) and (23), we may conclude that

P(z)Lc,∗ = 0, S(z) =M(z)∗,L · P(z)L ,∗. (26)

Multiplying this last identity on the left by [A(z),−Im] leads to

0 = z−�σ · [A(z),−Im] · S(z) = R(z)∗,L · P(z)L ,∗.

On the other hand, S(z) is a polynomial basis and thus of full column rank. From (26) it follows
that P(z)L ,∗ is invertible, implying that the matrix polynomial R(z)∗,L is identically zero, as
claimed by (a). �

Algorithm SPF computes the shifted normal form and the associated minimal multiplier.
As described previously, they are obtained in a stack matrix S(z) as a submatrix of an order
basis M(z) once n columns of the residual matrix have been zeroed (see the stopping criterion
#L = n). Concerning the invariants and the main iteration, the algorithm is essentially the
algorithm FFFG of Beckermann and Labahn (2000, Section 7) for fraction-free order bases
computation. A slight difference is in the computation of the residual polynomials which
is made more explicit here. For a proof of correctness of FFFG the reader is referred to
Beckermann and Labahn (2000, Theorem 7.2). Some further properties, in particular the link
to an underlying system of linear equations, have been investigated in Beckermann and Labahn
(2000, Theorem 7.3). The complexity study will be given in Section 6.

For D an integral domain, Algorithm SPF takes as input an m × n matrix A(z) with entries of
degrees less than d in D[z]. Since FFFG is fraction-free, all the divisions are exact in D. The claim
of Theorem 4.2 relies on two quantities: the input shift must satisfy N ≥ max

{N0, max[�a− �γ ∗]}
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Algorithm SPF – Shifted Popov Form via FFFG.

INPUT: A matrix polynomial A(z) ∈ D[z]m×n of degree d , s = m + n,
a multi-index �a of length m (default �a = 0),
a multi-index �b of length n (default �b = −cdeg (z−�a · A(z)).

INVARIANTS: For (increasing) order vectors �σ ,
Mahler system M(z) of size s × s in �n-Popov form with shifted degree �μ,
its columns form an order basis for [A(z),−Im ] and order �σ ,
g is a corresponding constant multiplier,
R(z) is the corresponding residual polynomial,
L is the set of indices of zero columns of the residual polynomial

INITIALIZATION: M(z)← Is , g← 1, R(z)← [A(z),−Im], L ← { }, �σ ← �0
N ← d ·min{m, n} +max[�a] −min[�b], �n ← (�b + N · �e, �a),

�γ ∗ ← rdeg (A(z) · z �b), �μ← �0

ITERATIVE STEP:
Find j such that �γ ∗j − �σ j = max[ �γ ∗ − �σ ]
Define for 	 = 1, . . . , s: r	 ← R(0) j,	

Define set Λ = {	 ∈ {1, . . . , s} : r	 �= 0} ( �= { })
Define pivot π = min

{
	 ∈ Λ : �n	 − �μ	 = maxk∈Λ{�nk − �μk}

}
Define leading coefficients p	← coefficient(M(z)	,π , z �μ	−1), 	 �= π

Check stopping criterion:
add all indices 	 �∈ L ∪ Λ with R∗,	(z) = 0 to L
STOP ITERATION if #L = n.

Increase order for 	 = 1, . . . , m, 	 �= π :
M(z)∗,	 ← [M(z)∗,	 · rπ −M(z)∗,π · r	]/g
R(z)∗,	 ← [R(z)∗,	 · rπ − R(z)∗,π · r	]/g

Increase order for 	 = π and adjust degree constraints:
M(z)∗,π ← [z ·M(z)∗,π · rπ −∑

	 �=π M(z)∗,	 · p	]/g
R(z)∗,π ← [z · R(z)∗,π · rπ −∑

	 �=π R(z)∗,	 · p	]/g

Adjust residual in row j :
R(z) j,∗ ← [R(z) j,∗/z]

Update constant multiplier: g← rπ

Update order vector: �σ ← �σ + �e j

Update shifted degree vector: �μ← �μ+ �eπ
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FINAL STEP AND OUTPUT: If L is the increasing list (	1, . . . , 	n):
Rank r of A(z): unique index with 	n−r ≤ n < 	n−r+1 (with the convention 	0 = 0)
g · T(z) =M(z)(n+1,...,n+m),L being the �a-Popov form of A(z)
g ·U(z) =M(z)(1,...,n),L being the corresponding (�a, �b)-minimal multiplier
Pivot sets: K ← (	1, . . . , 	n−r ), I ← (	n−r+1 − n, . . . , 	n − n)

Shifted degrees: ( �β, �α)← �μL .

and the order �σ must be greater than �σ0. For the choice of the input shift we use Corollary 5.9 of
Section 5. The corresponding worst case bound (see the initialization of N) works for any A(z), �a
and �b. Finer bounds could be derived from the forthcoming Theorem 5.1 if additional properties
are available on the matrix and the shifts. Default shift values may be proposed (see the input
data): for example, the choices �a = 0 and �b = −cdeg (z−�a · A(z)) lead to the simplification
�γ ∗ = �a = 0. Concerning the order, an a priori bound for �σ0 is actually not needed for the
algorithm and will be used only for the complexity estimates. The stopping criterion ensures
that the algorithm will automatically stop when a sufficient order is reached. At this point, the
columns (l1, . . . , ln) are null. In S(z), the pivot indices corresponding to K are lower than n and
those corresponding to I are greater than n. The same is thus true in M(z) which is itself, by
construction (Algorithm FFFG), in shifted Popov form. Identity (7) implies that the pivot entries
are diagonal in M(z), and thus K and I can also be found from the column indices. The algorithm
therefore finds the rank of A(z) (#I ) and I from the li ’s greater than n; it finds the set K from
the li ’s smaller than n (see the final step and the output data).

Notice that as is typical for fraction-free methods, the algorithm only outputs g times the
“correct” answers T(z) and U(z) for a scalar multiplier g ∈ D. Here, correct means with T(z)
having a normalized leading matrix following (7). Indeed, generically the coefficients of the
normal form are not elements of the initial integral domain but only of its quotient field and g is
a multiple of the denominators. In Beckermann and Labahn (2000, Definition 4.1), the authors
give a characterization of the scalar multiplier as a multigradient, that is, as a determinant of a
striped Krylov matrix (here, a striped Sylvester matrix). This indicates that in general the factor
g cannot made be smaller (although of course for particular examples a better choice of g might
be suitable).

Example 4.3. If we keep the matrix A(z) ∈ Z[z]m×n of Examples 3.2 and 3.8, Algorithm SPF

with shifts �a = [0, 0] and �b = [0,−3, 0, 0] constructs

S(z) = g ·
[

U(z)
T(z)

]

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2 z + 3 −21z2 − 42 z 3 z + 6 −z − 9

21 0 0 0

2 z − 9 21 z2 − 21 z −3 z + 3 z + 6

2z2 − 7z − 4 21 z3 − 189z − 147 −3 z2 + 27 z2 + 7 z − 23

0 0 21 z −21

0 0 42 21 z

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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Notice that S(z) is not in (�b, �a)-Popov form since the leading degrees in the two last columns
are not in the last two rows – i.e. the part corresponding to T(z). Here it would have been
sufficient to consider N ≥ 1: with �n(1) = (�b + �e, �a), S(z) is in �n(1)-Popov form with
pivot indices L = (l1, l2, l3, l4) = (2, 4, 5, 6). From there it is seen that K = (2, 4) and
I = (5 − n, 6 − n) = (1, 2). If we compare with Example 3.8, we see that SPF has computed
the multiple g · T(z) = 21T(z) of the normal form. However, since this factor appears naturally
in the denominators of U(z) in the normalized case, we may consider that no spurious factor has
been introduced. �

The fraction-free computation of shifted normal forms via FFFG has been implemented using
the computer algebra system MAPLE and can be obtained from the authors.

5. Degree bounds for minimal multipliers

The algorithm described in the previous section requires that we know in advance degree
bounds for the (�a, �b)-minimal unimodular multiplier U(z) needed for transforming a given
matrix polynomial A(z) into the �a-Popov form T(z). The aim of this section is to give such
degree bounds, generalizing those already determined in Beckermann et al. (1999) for the case
of full column rank matrices. Theorem 5.1 gives estimates in terms of the degrees in A(z) of the
shifts and of the invariants �α and �β of the problem. These invariants are generally unknown and
the estimates are simply worst case bounds. Nevertheless Example 5.6 will show that there are
cases where the bounds are tight.

We do our degree bounds in two steps. In part (a) of Theorem 5.1, we first formulate our
bounds in terms of the input parameters A(z), �a, �b, and of the invariants to our problem, these
being T(z)∗,Jc, �α, �β (�α∗, �β∗) along with the pivot sets I, K . Note that the degree bounds for
the MPB part U(z)∗,J and for U(z)K ,Jc follow immediately from (17) in Remark 3.7 with only
degree bounds for U(z)Kc,Jc remaining unknown at this stage. The aim of the second step, in
parts (c), (d) and (e), is to estimate the invariants in terms of the input parameters only.

Part (b) is a precise characterization of the pivot sets I and K . It generalizes the following
well known relations for full column rank matrices. In the case of square matrix polynomials, if
A(z) is column reduced and if T(z) is its Popov normal form with column degree vector �α∗ then
we have the invariant

|�α∗| = deg det T(z) = deg det A(z). (27)

It is also not difficult to see how one obtains degree bounds for the multiplier in this case. Indeed,
one writes

A(z) = T(z) · V(z)

where V(z) = U(z)−1 and uses the Predictable Degree Property to obtain bounds for V(z) in
terms of the column degrees of A(z) and T(z). Bounds for U(z) are then determined by making
use of Cramer’s rule for the adjoint of V(z).

In the rectangular case a relation corresponding to (27) and degree bounds for the multiplier
requires some classical tools from linear system theory. For a matrix polynomial A(z) of rank r ,
we define the Minor degree – denoted by Minor-deg A(z) – as the maximum of the degrees of the
determinants of r × r submatrices of A(z) (see (Kailath, 1980, Eq. (34), p. 454)). For a matrix
polynomial, this degree is the polar content at infinity and is thus equal to the sum of the polar
contents at all poles which is the MacMillan degree (Kalman, 1965) – denoted by MM-deg A(z).
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If A(z) has full column rank then it is well known that

Minor-deg (z−�a ·A(z)) ≤ |cdeg (z−�a ·A(z))|,
with equality if and only if A(z) is �a-column reduced (Kailath, 1980, Section 6.3.2, p. 384). In
the latter case, denoting by I = (i1, . . . , ir ) the pivot set of the leading coefficient matrix, and
with �α∗ = cdeg (z−�aA(z)), we also have that

Minor-deg (z−�aA(z)) = deg det (z−�aI A(z)I,∗)
= |�α∗| > deg det (z−�aI ′A(z)I ′,∗) (28)

for any list of the form I ′ = (i ′1, . . . , i ′	, i ′	+1, . . . , i ′r ) for some 	, where i ′	 > i	 and i ′k ≥ ik .

Theorem 5.1 (Degree Bounds for Multipliers). Let A(z) · U(z) = T(z) with T(z)∗,J = 0 and
T(z)∗,Jc �a-column reduced with pivot set I and �a-degree �α. Assume that U(z) is unimodular
with U(z)∗,J �b-column reduced with pivot set K , �b-degree �β, and satisfying [U(z)K ,J ]−1 ·
U(z)K ,Jc = O(z−1)z→∞. Set �γ ∗ = rdeg (A(z) · z �b), �α∗ = cdeg (z−�aT(z)∗,Jc) = �α − �aI , �β∗ =
cdeg (z−�bU(z)∗,J ) = �β − �bK and define Δ�a,�b = |�γ ∗I | − |�bKc | − |�α| − | �β|. Then the following
are true.

(a) (Degree bounds for multipliers). For j ∈ Jc, k ∈ Kc we have the degree bounds

deg z−�bk ·U(z)k, j ≤ max(�α∗j +max[�aI − �γ ∗I ] +Δ�a,�b, max[ �β∗] − 1). (29)

(b) (Pivot sets and minor degree). The set Kc consists of the smallest column indices such that

Minor-deg (z−�γ ∗ · A(z) · z �b) = Minor-deg (z−�γ ∗ ·A(z)∗,Kc · z �bKc ).

The set I consists of the largest row indices such that

Minor-deg (z−�a ·A(z) · z �b) = deg det (z−�aI · A(z)I,Kc · z �bKc ),

with deg det (A(z)I,Kc ) = |�α| + | �β|.
(c) (Bounds for Δ�a,�b). We have

0 ≤ −Minor-deg (z−�γ ∗ · A(z)∗,Kc · z �bKc ) ≤ Δ�a,�b ≤ | �γ ∗I | − |�bKc |,
and Δ�a,�b = 0 if and only if A(z)∗,Kc is �γ ∗-column reduced, with pivot set I and �bKc =
cdeg (z−�γ ∗ · A(z)∗,Kc).

(d) (Bounds for �α). T(z)I,Jc is a left maximal factor of A(z)I,∗, and thus |�α| equals the
degree of the determinant of a left maximal factor of A(z)I,∗. Furthermore we also have
�α∗ ≤ max[ �γ ∗I − �aI ] · �e − perm [�bKc] and, by definition, �α ≥ �0.

(e) (Bounds for the �b-Kronecker indices �β). We have | �β| ≤ | �γ ∗I |− |�bKc | − |�α| and, by definition,
�β ≥ �0.

We remark that the statement of the theorem simplifies for matrices having full row rank
(where I = (1, . . . , m)), and also for matrices having full column rank. In the latter case,
Kc = Jc = (1, . . . , n), J = K = ∅ and all terms involving �β have to be dropped (cf.

(Beckermann et al., 1999)). The quantity Δ�a,�b can be thought of as a measure of the distance
that our input matrix is from being �γ ∗-column reduced (see the discussion in Beckermann et al.
(1999, Section 4)).

We now give several examples to illustrate the theorem. Its proof will be given subsequently.
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Example 5.2. Let us use Theorem 5.1 to study the Kronecker indices of

A(z) =
[

z5 − 2 z2 − 3 z2 + 2 z − 5 z3 − z − 2 z2 + z − 4

z6 + z3 − z2 + z − 1 2 z2 + z − 1 z4 − z2 + z − 1 z2 + z − 1

]
.

With the shift �a = [0,−3] one computes the Hermite form of A(z) with a determinantal
degree satisfying |�α| = 4. The degrees of the entries of the associated minimal multipliers with
respective shifts �b = [0, 0, 0, 0] and �b′ = [−5, 0,−3, 0] are

deg U(z) =

⎡
⎢⎢⎢⎣

0 −∞ −∞ −∞
0 2 2 1

2 0 0 −∞
0 2 1 1

⎤
⎥⎥⎥⎦ , deg U′(z) =

⎡
⎢⎢⎢⎣

0 −∞ −∞ −∞
4 2 2 1

−∞ 0 −∞ −∞
4 2 2 1

⎤
⎥⎥⎥⎦ .

For �b = [0, 0, 0, 0], the pivot set K is (3, 4) with �β = [2, 2]. One can see that the choice
�b′ = [−5, 0,−3, 0] forces another pivot set K = (1, 3) and leads to �β = [0, 0]. In both cases
one can check statement (b) of Theorem 5.1:{�b = [0, 0, 0, 0], Kc = (1, 2), deg det A(z)∗,(1,2) = 4+ 4 = 8,

�b′ = [−5, 0,−3, 0], Kc = (2, 4), deg det A(z)∗,(2,4) = 4+ 0 = 4.

This makes explicit the relation between the Kronecker indices and the selection of a particular
submatrix of A(z). When �b = [0, 0, 0, 0], the bound (e) on the Kronecker indices is | �β| ≤
(5+ 6)− (0+ 0)− 4 = 7 which is pessimistic compared to the actual value | �β| = 4. The value
Δ�a,�b = 7 − 4 = 3 shows that the prediction is limited by the structure of A(z)∗,(1,2). When
�b = [−5, 0,−3, 0] the estimation | �β| ≤ (2 + 2) − (0 + 0) − 4 = 0 gives exactly | �β| = 0: the
good predictions takes advantage of the fact that A(z)∗,(2,4) is column reduced. �

Example 5.3. As in Example 3.6 assume that we have a left coprime proper matrix rational
function R(z) = D(z)−1 · N(z) with D(z) square of size p × p in Popov form and N(z) of size
p × q . Let U(z) be the unique minimal multiplier giving the Popov form:

[D(z), N(z)] ·U(z) = [0, Im].
Then Theorem 5.1 gives the pivot sets and degree bounds on U(z) with �a = �b = �0. In this case
�γ ∗ is the row degree of D(z) (R(z) is proper form), Δ�a,�b = �0 since D(z) is �γ ∗-column reduced
(D(z) is in Popov form) and �α = �0. The degree bound in part (a) then gives

deg U(z)k, j ≤ max[ �β] − 1 for k ∈ Kc, j ∈ Jc.

This in turn is bounded by | �β| − 1 ≤ | �γ ∗| − 1 by part (e). �

In the following example, we illustrate the use of Theorem 5.1 to give bounds for the size of
cofactors for the Gcd of n ≥ 2 scalar polynomials. To our knowledge, such a bound has not been
given before.

Example 5.4 (Gcd of Several Scalar Polynomials). Let A(z) be a row vector of n polynomials
[a1(z), a2(z), . . . an(z)] ∈ K[z]n with degrees �d = [d1, d2, . . . dn], where without loss of
generality we assume that d1 = min j d j and dn = max j d j . We are interested in degree bounds
for “small” multipliers uk(z) in the diophantine equation
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a1(z) · u1(z)+ a2(z) · u2(z)+ · · · + an(z) · un(z) = Gcd(a1(z), . . . , an(z)).

We will derive these degree bounds from the last column of a shifted minimal multiplier accord-
ing to Theorem 5.1(a), (b), (c). In fact we show that there exist multipliers verifying

deg u1(z) ≤ dn − δ − 1,

n∑
k=2

uk �=0

(1+ deg uk(z)) ≤ d1 − δ, (30)

where δ = deg Gcd(a1(z), . . . , an(z)). Notice that our bound includes the classical one for n = 2
(cf. (Geddes et al., 1992)). Also, a straightforward generalization of the integer bound of Havas
et al. (1998) to the polynomial case would lead to the weaker estimate deg uk(z) ≤ dn−1 for all k.

In order to show (30), we choose �a = �0 and �b = −�d and we take as the uk(z) the entries of
the last column of a (�0, �b)-minimal multiplier. Degree bounds for the uk(z) are then determined

by using Theorem 5.1 along with Remark 3.7. The row degree of A(z)z �b is �γ ∗ = �0 and in this
case I = (1), J = (1, . . . , n − 1), and �α = [δ]. Furthermore from our choice of �b we determine
that Kc = (1) from part (b) while since A(z) · z �b is column reduced we know from part (c) that
Δ�a,�b = 0 and | �β| = d1 − δ. The degree bounds from part (a) then imply that

deg u1(z) = max(−d1 + δ,−d1 +max[ �β + �dK ] − 1)

= −d1 +max[ �β + �dK ] − 1

≤ −d1 + | �β| + dn − 1

= dn − δ − 1.

Bounds for the degrees of the remaining uk(z), for 2 ≤ k ≤ n ,are given in Remark 3.7. This
allows us to bound the sum of these degrees by

n∑
k=2

uk �=0

(1+ deg uk(z)) ≤
n∑

k=2

�βk ≤ | �β| = d1 − δ

giving us our desired degree bounds. �

In terms of the total degree of our input matrix polynomial Theorem 5.1 gives the following
upper bounds.

Corollary 5.5. Let d = deg A(z) where A(z) is of size m × n, of rank r and �a = �b = �0. Then in
the singular case, we have the bounds

deg U(z) ≤ r · d, deg T(z) ≤ d,

while in the nonsingular case we have

deg U(z) ≤ (n − 1) · d, deg T(z) ≤ d.

Proof. The degree bounds follow directly from part (a) of Theorem 5.1 and Remark 3.7. Indeed,
for j ∈ Jc, k ∈ Kc we have from Theorem 5.1 the degree bounds

deg U(z)k, j ≤ max((r − 1) · d − | �β|, max[ �β] − 1)

with 0 ≤ | �β| ≤ r · d . The remaining entries are bounded using Remark 3.7. �

The following example shows that the bounds from Corollary 5.5 can indeed be tight.
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Example 5.6. Let q1, . . . , qn be polynomials of degree d and set QL = ∏n
j=1, j �∈L q j . Assume

the qi are chosen so that Q(1), . . . , Q(n) are coprime (for example the q j could have distinct
sets of zeros). Let ui , i = 1, . . . , n, be polynomials such that

∑n
i=1 u j · Q( j ) = 1 and satisfying

deg ui < d (this is possible since otherwise we can replace each ui by its remainder after division
by qi ). Then the matrix polynomial

A(z) =

⎡
⎢⎢⎢⎢⎢⎢⎣

u1 u2 . . . . . . un

q1 −q2 0 0
q1 0 −q3 0
...

. . .
...

0
q1 0 . . . 0 −qn

⎤
⎥⎥⎥⎥⎥⎥⎦

is unimodular of degree d . Indeed if U(z) is the matrix given by

U(z)k, j =

⎧⎪⎨
⎪⎩

Q(k), if k = 1, . . . , n, j = 1
u j ·Q( j)−1

q j
, if k = j �= 1

u j · Q(k, j ), otherwise

then it is a simple exercise to show that U(z) is the inverse of A(z). In this case U(z) is the
unimodular multiplier giving the Popov form In for A(z) and has degree (n−1) ·d . If we remove
the first row of A(z) then it is easy to check that U(z) becomes the minimal multiplier with
max[ �β] = | �β| = r · d = deg U(z). Notice that the high degree is not just in the kernel part but
occurs also in the rest of U(z). �

For a proof of Theorem 5.1, we will need the following

Lemma 5.7. Let U(z) be unimodular with inverse V(z), and K ′, J some index lists, with
|K ′| = |J |, and complements K ′c, Jc. Then V(z)Jc,K ′c is invertible if and only if U(z)K ′,J is
invertible and in this case

U(z)K ′c,Jc = V(z)−1
Jc,K ′c
+ U(z)K ′c,J [U(z)K ′,J ]−1U(z)K ′,Jc, (31)

and

deg det U(z)K ′,J = deg det V(z)Jc,K ′c . (32)

Proof. Since U(z) is invertible, the first statement follows from well known Schur complement
techniques. It remains to show (32) in the case of invertible U(z)K ′,J . From V(z) · U(z) = I we
have

U(z)K ′c,J · [U(z)K ′,J ]−1 = −[V(z)Jc,K ′c]−1 · V(z)Jc,K ′ . (33)

Both matrix fraction descriptions in (33) are coprime since they result from columns of
unimodular matrices (Kailath, 1980, Subsection 6.3.1, p. 380). This implies that we have two
partial minimal realizations (Kailath, 1980, Theorem 6.5-1, p. 439) of the same rational function
and so the denominators must satisfy (32). �

Proof of Theorem 5.1. We start by proving part (b). Let V(z) = U(z)−1. Taking into account
the full rank decomposition
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A(z) = T(z) ·V(z) = T(z)∗,Jc · V(z)Jc,∗,

we have

Minor-deg (z−�γ ∗ · A(z) · z �b) = Minor-deg (z−�γ ∗ · T(z)∗,Jc)+Minor-deg (V(z)Jc,∗ · z �b).
The right hand term can be computed using Lemma 5.7 and (28)

Minor-deg (V(z)Jc,∗ · z �b) = max
|K ′c|=|Jc|

deg det (V(z)Jc,K ′c · z
�bK ′c )

= |�b| + max
|K ′|=|J |

deg det (z−�bK ′ · U(z)K ′,J )

= |�b| + deg det (z−�bK ·U(z)K ,J )

= deg det (V(z)Jc,Kc · z �bKc ) = |�bKc | + | �β|
from which the first part of (b) is readily determined. A similar argument shows that

Minor-deg (z−�a · T(z)∗,Jc) = deg det (z−�aI · T(z)I,Jc ) = |�α| − |�aI |
which along with A(z)I,Kc = T(z)I,Jc · V(z)Jc,Kc gives the second part of (b).

In order to show (c), recall first that z−�γ ∗ ·A(z)∗,Kc · z �bKc is a polynomial in 1/z by definition
of �γ . Consequently,

0 ≥ Minor-deg (z−�γ ∗ ·A(z)∗,Kc · z �bKc ) ≥ Minor-deg (z−�γ ∗I ·A(z)I,Kc · z �bKc ).

The latter quantity is equal to −Δ�a,�b by its definition along with making use of the fact that
deg det (A(z)I,Kc ) = |�α| + | �β|. It remains to discuss the case Δ�a,�b = 0. By (28) and the

above inequalities, Δ�a,�b = 0 is equivalent to the facts that �bKc is the column degree both of
z−�γ ∗I · A(z)I,Kc and z−�γ ∗ · A(z)∗,Kc , and that both matrices are column reduced, as claimed in
part (c).

We now turn our attention to a proof of parts (d) and (e). Since A(z)I,∗ ·U(z) = [0 , T(z)I,Jc ]
with square T(z)I,Jc and unimodular U(z), the first sentence follows, for example from Kailath
(1980, Lemma 6.3-3, p. 377). The upper bound for | �β| is implied by part (c). In order to show
the upper bound for �α∗ = �α − �aI (with index set Jc), recall that A(z)I,Kc = T(z)I,Jc V(z)Jc,Kc

is nonsingular. Consequently, if we set �ν∗ = cdeg z−�aI · A(z)I,Kc then the Predictable Degree

Property, Lemma 3.4, gives deg V(z) j,k ≤ �ν∗k − �α∗j , j ∈ Jc, k ∈ Kc. Since z−�γ ∗I · A(z)I,∗ · z �b =
O(1)z→∞, by bounding �ν∗, we also have that deg V(z) j,k ≤ max[ �γ ∗I − �aI ] − �bk − �α∗j for all
j ∈ Jc, k ∈ Kc. Our bounds now follow by taking into account that V(z)Jc,Kc is nonsingular,
since then for each j in Jc there must exist at least one k in Kc such that deg V(z) j,k ≥ 0.

Finally we prove part (a). From Lemma 5.7 we need only to consider degree constraints for
both terms on the right in Eq. (31). From Remark 3.7 we know that �b + max[ �β∗]�e bounds the
row degree of U(z)∗,J . Since [U(z)K ,J ]−1 · U(z)K ,Jc = O(z−1)z→∞ the second term is then
bounded by observing that

z−�bKc−max[ �β∗]�eU(z)Kc,J [U(z)K ,J ]−1U(z)K ,Jc = O(z−1)z→∞.
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For the first term on the right of Eq. (31) we use [V(z)Jc,Kc ]−1 = [A(z)I,Kc ]−1 · T(z)I,Jc and so

z−�bKc [V(z)Jc,Kc ]−1z−�α∗ reduces to

1

det A(z)I,Kc︸ ︷︷ ︸
O(z−|�α|−| �β|)z→∞

z−�bKc adj (A(z)I,Kc )z
�aI z−�aI T(z)I,Jc z−�α∗︸ ︷︷ ︸

O(1)z→∞

. (34)

Since we know that z−�γ ∗I A(z)I,Kc z �bKc = O(1)z→∞ we can obtain degree bounds for the adjoint
in the above equation by making use of Cramer’s formula. This gives

deg adj (A(z)I,Kc )i,k ≤ | �γ ∗I | − |�bKc | + �bi − �γ ∗k
≤ | �γ ∗I | − |�bKc | + �bi − �ak +max[�aI − �γ ∗I ]

for all i in I and k in Kc. Therefore the middle term of Eq. (34) has order

O(z| �γ ∗I |−|�bKc |+max[�aI−�γ ∗I ])z→∞ and so we have the desired bounds for part (a). �

Remark 5.8. Note that there are other possibilities for degree bounds for the first part of Eq.
(31) and hence (from the above proof of Theorem 5.1(a)) for degree bounds for U(z)Kc,Jc . For

example, �γ ∗ may not be the actual row degree of A(z) · z �b but only an upper bound, the proof
for part (a) also hold in this latter case. In addition, if d = deg A(z) is the total degree of A(z)

then the middle term of Eq. (34) is of order O(z(r−1)d+max[�a]−min[�b])z→∞ where r is the rank of
A(z). In this case the bounds in Theorem 5.1(a) could be replaced by

deg z
�bk ·U(z)k, j ≤ max(�α∗j + (r − 1)d +max[�a] −min[�b] − |�α| − | �β|, max[ �β∗] − 1) (35)

for all j ∈ Jc and k ∈ Kc. �

Using Theorem 5.1 and Remark 5.8 allows us to deduce a simplified estimation of a degree
bound on U(z)∗,Jc and of the shift threshold defined in Theorem 4.2. These estimations have
already been used for the presentation of Algorithm SPF at the end of Section 4.

Corollary 5.9. Let A(z) ∈ K[z]m×n with d = deg A(z). Then, for any �a and �b, in Theorem 4.2
we may choose

N = min{m, n}d +max[�a] −min[�b].
For the corresponding worst case order vector �σ0 we obtain

|�σ0| ≤ m · (2(min{m, n} + 1)d +max[�a] −min[�a] +max[�b] −min[�b]).
Proof. For the first part of the statement we need to find an N ≥ max

{
max[�τ ∗ − �α∗], max[�a −

�γ ∗]} where we recall that �τ ∗ is an upper bound for the column degree of z−�b ·U(z)∗,Jc . Let r be
the rank of A(z). Clearly max[�a − �γ ∗] ≤ d +max[�a] −min[�b]. In addition, the second term in
Eq. (35) of Remark 5.8 can be estimated using Theorem 5.1(b). In this case

max[ �β∗] ≤ | �β| −min[�b] ≤ deg det (A(z)I,Kc )−min[�b] ≤ rd −min[�b]
which implies that

deg U(z)k, j ≤ max(�bk + �α∗j + (r − 1)d +max[�a] −min[�b] − |�α| − | �β|,
�bk + rd −min[�b] − 1)
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for all j ∈ Jc and k ∈ Kc. Consequently, we obtain rd + max[�a] − min[�b] as an estimate for
max[�τ ∗ − �α∗]. Replacing the rank r by the larger quantity min{m, n} completes the proof of the
first statement.

We now turn to the proof of the second statement. With N as before, we have to estimate the
order vector

�σ0 = �γ ∗ + (1+max{N +max[�α∗], max[ �β∗]})�e
given in Theorem 4.2. From the above reasoning we have

N +max[�α∗] ≥ max[�τ ∗] ≥ max[ �β∗] − 1

and hence

max{N +max[�α∗], max[ �β∗]} ≤ N + 1+max[�α∗] ≤ N + 1+max[�α] −min[�a].
Substituting the explicit value for N and using the rough bounds | �γ ∗| ≤ (max[�b] + d)m and
max[�α] ≤ |�α| ≤ deg det A(z)I,Kc ≤ r · d leads to the claimed upper bound for |�σ0|. �

6. Cost of the algorithm

A worst case bound for the cost of Algorithm SPF will depend on the size of the input
matrix (dimensions, bit sizes and degrees) and on the input shifts. We consider an input matrix
A(z) ∈ D[z]m×n with D an integral domain. We assume that D is such that for any two
elements a and b in D, the elementary operations (addition, product, exact division) are using
O(size(a) · size(b)) bit operations – with a standard arithmetic – or O˜(size(a) + size(b)) bit
operations – with fast arithmetic (based on FFT for instance). Here, O˜(p(n)) denotes p(n)1+o(1).
The function size is such that the result of an operation has a size of O(size(a)+ size(b)) bits.

To reach a Mahler system with order �σ , we know from Beckermann and Labahn (2000,
Theorem 6.2) that SPF has cost O((m+n)|�σ |2) operations in D, on elements of size bounded by
O(|�σ | log ‖A‖). By log ‖A‖ we denote the length of the entries in A. In terms of bit operations
the cost is thus O((m+n)|�σ |4 log2 ‖A‖) using a standard arithmetic or O˜((m+n)|�σ |3 log ‖A‖)
using fast arithmetic. With the order threshold �σ0 defined by (21), the bound of Corollary 5.9 on
�σ0 and taking �a = �b = 0 we get:

Corollary 6.1. Let A ∈ D[z]m×n be of degree d. The Popov normal form of A and a
corresponding minimal multipliers can be computed by the fraction-free algorithm SPF using
O˜((m + n)(md min{m, n})3 log ‖A‖) bit operations (using fast arithmetic). �

The worst case value N proposed in Corollary 5.9 is very easy to compute and applies for
any set of data. However, it could be improved for certain classes of matrices and hence lead
to smaller complexities in special cases. We should also mention that the cost of the algorithm
SPF may very well depend on the choice of the shift parameter N , even for values over the
threshold (20), as becomes clear from the following example.

Example 6.2. Let A(z) be a square matrix in K[z]n×n with d = deg A(z), A(0) being invertible
and �a = �b = �0, i.e. we compute the (unshifted) Popov form of A(z). For any choice of N ≥ 0
we thus consider Mahler systems of type �n = (N �e, �0). It is not difficult to show that, after k · n
steps of the algorithm SPF, 0 ≤ k ≤ N , we obtain

�σ = k · �e, �μ = (k · �e, �0), M(z) = ±[det A(0)]k ·
[

zkIn B(z)(k)

0 In

]
(36)
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where B(z)(k), of total degree k − 1, is the partial sum of the inverse power series A(z)−1. In
particular, one may check that by construction, for any 0 ≤ k ≤ N , M(z) in (36) is a Mahler
system of type �n with order vector k · �e. We thus see that to compute the Popov form of A(z),
SPF implicitly proceeds by first computing an approximation of order N of A(z)−1. This may be
compared to the method of Villard (1996, Lemma 2). �

If A(z) is of degree d , from Theorem 5.1(b), we know that 0 ≤ �αi ≤ |�α| ≤ deg det A(z)I,Kc ≤
d min{m, n}. Hence, the shift �a = (id min{m, n})i=(m−1),...,0 satisfies the sufficient condition (9)
for computing the Hermite form. With the corresponding bound for |�σ0| in Corollary 5.9 we
obtain:

Corollary 6.3. Let A ∈ D[z]m×n be of degree d. The Hermite normal form of A and a
corresponding minimal multipliers can be computed by the fraction-free algorithm SPF using
O˜((m + n)(m2d min{m, n})3 log ‖A‖) bit operations (using fast arithmetic). �

Concerning the computation of small multipliers for the gcd of n polynomials, one can use
the notation and the results of Example 5.4. The input polynomials have minimum degree d1 and
maximum degree dn . Their gcd has degree δ. In Theorem 4.2 this gives N0 = d1 + dn − 2δ − 1
and the order threshold σ0 = d1 + dn − δ + 1; hence:

Corollary 6.4. Multipliers that verify the degree bounds (30) for the gcd of n polynomials can be
computed by the fraction-free algorithm SPF using O˜(n(d1 + dn − δ)3 log ‖A‖) bit operations
(with a fast arithmetic). �

7. Conclusion

In this paper we have presented an algorithm for the computation of a shifted Popov normal
form of an arbitrary rank rectangular polynomial matrix. For specific input shifts, our approach
gives methods for computing matrix normal forms (such as Hermite and Popov) and the matrix
greatest common divisor of two matrix polynomials (in normal form). The method used is
to embed the problem of computing shifted forms into one of computing matrix rational
approximants.

In the case of matrix normal forms, our methods compute both the form and a unimodular
matrix that describes the elementary operations used to obtain the form. In the case of rectangular
matrix input, the corresponding multipliers for the shifted forms are not unique. We use the
concept of minimal matrix approximants to introduce a notion of minimal multipliers and show
how such multipliers are computed by our methods.

The proposed method has the advantage that in the case of exact arithmetic domains all
computations can be done using fraction-free arithmetic. This ensures that the problem of
intermediate expression swell is minimized for such computations. To our knowledge we know
of no fraction-free methods that handle all the normal forms and matrix greatest common divisor
problems covered in this paper.

There are other methods that can also be used to reduce intermediate expression swell in
exact arithmetic computations. In particular, modular methods can be used for such cases. These
methods reduce a single computation to a number of similar computations in simpler domains
and then reconstruct the result using a Chinese remaindering technique. Since modular methods
are typically an order of magnitude faster than fraction-free methods we plan on investigating
such methods in the future. We remark that our present paper already contributes to such a
method since modular methods require that we reconstruct an object in the original domain and
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know when to stop. Since our computations are all done in the original domain, as opposed to
moving to a quotient domain, our results are of interest for such problems.

Our method embeds our problem into a rational approximation problem and then relies
on a variation of the method of Beckermann and Labahn (2000) for computing a solution to
the problem. The concern with this method is that it is not a reduction process and, as such,
does not recognize early the case where we quickly convert to a normal form. We plan on
investigating reduction methods for computing shifted normal forms. Since we are interested
in exact arithmetic domains along with fixed cost domains we will look for methods which
are fraction-free. We also hope to address similar problems with respect to algorithms for the
computation of matrices of linear difference and differential operators. Popov forms for such
noncommutative domains are interesting for their use in finding series and closed form solutions
of systems of difference and differential equations.
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International Symposium on Symbolic and Algebraic Computation, ISSAC’97. ACM Press, Maui, pp. 125–132.

Beckermann, B., Cheng, H., Labahn, G., 2002. Fraction-free row reduction of matrices of skew polynomial. In:
Proceeding of International Symposium on Symbolic and Algebraic Computation, ISSAC’02, Lille, France, pp. 8–15.

Beckermann, B., Labahn, G., 1992. A uniform approach for Hermite Padé and simultaneous Padé Approximants and
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