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a b s t r a c t

Kaltofen has proposed a new approach in Kaltofen (1992) for
computing matrix determinants without divisions. The algorithm
is based on a baby steps/giant steps construction of Krylov
subspaces, and computes the determinant as the constant term
of the characteristic polynomial. For matrices over an abstract
ring, by the results of Baur and Strassen (1983), the determinant
algorithm, actually a straight-line program, leads to an algorithm
with the same complexity for computing the adjoint of a matrix.
However, the latter adjoint algorithm is obtained by the reverse
mode of automatic differentiation, and hence is in some way
not ‘‘explicit’’. We present an alternative (still closely related)
algorithm for obtaining the adjoint that can be implemented
directly, without resorting to an automatic transformation. The
algorithm is deduced partly by applying program differentiation
techniques ‘‘by hand’’ to Kaltofen’s method, and is completely
described. As a subproblem, we study the differentiation of
the computation of minimum polynomials of linearly generated
sequences, andwe use a lazy polynomial evaluationmechanism for
reducing the cost of Strassen’s avoidance of divisions in our case.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Kaltofen has proposed in Kaltofen (1992) a new approach for computing matrix determi-
nants. This approach has brought breakthrough ideas for improving the upper bound on the com-
plexity of computing determinants without divisions over an abstract ring (see Kaltofen, 1992;
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Kaltofen and Villard, 2005). Building upon these foundations, the algorithm of Kaltofen and Villard
(2005) computes the determinant of a matrix of dimension n in O(n2.7) additions, subtractions, and
multiplications.

The same ideas also lead to the currently best known bit complexity estimate of Kaltofen and
Villard (2005) for the problem of computing the characteristic polynomial.

We consider the straight-line programs of Kaltofen (1992) for computing the determinant over
abstract fields or rings (with orwithout divisions). Using the reversemode of automatic differentiation
(see Linnainmaa (1970, 1976) and Ostrowski et al. (1971)), a straight-line program for computing
the determinant of a matrix A can be (automatically) transformed into a program for computing
the adjoint matrix A∗ of A. This principle, stated by Baur and Strassen (1983, Cor. 5), is also applied
by Kaltofen (1992, Sec. 1.2) for computing A∗. Since the adjoint program is derived by an automatic
process, little is known about the way it computes the adjoint. The only available information seems
to be the determinant program itself, and the knowledge that we have on the differentiation process.
The adjoint program can neither be described nor implemented without resorting to an automatic
differentiation tool.

The approach of Kaltofen (1992) leads to a determinant algorithmwithout divisions by first giving
an algorithm working with divisions. We follow the same idea. By studying the differentiation of
Kaltofen’s determinant algorithm over an abstract commutative field K step by step, we produce an
‘‘explicit’’ adjoint algorithm with divisions in Section 6. The latter is then extended to a division-free
adjoint algorithm in Section 7.

We recall the determinant program over an abstract field K in Section 2. The simplest parts of the
program are differentiated by applying ‘‘by hand’’ the automatic program differentiation mechanism
that we review in Section 3. However, this strategy appears to be quite complicated and tedious for
the more complex parts of the program, for which we proceed analytically instead. In particular, one
of the steps of the determinant program is computing the constant term of the minimum polynomial
of a linearly generated sequence.We differentiate the corresponding formula from an analytical study
in Section 4, and propose a concrete implementation. The determinant algorithm also uses a Krylov
subspace construction, which consists in vector timesmatrix andmatrix timesmatrix products. These
simplest parts of the program are differentiated in Section 5 in a way directly related to the automatic
differentiation process. Sections 4 and 5 lead us to the description of a corresponding new adjoint
programover a field, in Section 6. The algorithm thatwe obtain to some extent calls tomind thematrix
factorization of Eberly (1997, (3.4)). We note that our objectives are similar to those of Eberly, whose
aimwas to obtain an explicit inversion algorithm from the parallel determinant algorithm of Kaltofen
and Pan (1991).

Our motivation for studying the differentiation and resulting adjoint algorithm is the importance
of the determinant approach of Kaltofen (1992) andKaltofen andVillard (2005) for various complexity
estimates. Recent advances as regards the determinant of polynomial or integer matrices (see
Eberly et al. (2000), Kaltofen and Villard (2005) and Storjohann (2003, 2005)) and matrix inversion
(see Jeannerod and Villard (2006) and Storjohann (in press)) also justify the study of the general
adjoint problem.

For computing the determinant without divisions over an abstract commutative ring R, Kaltofen
applies the avoidance of divisions of Strassen (1973) to his determinant algorithm over a field. We
apply the same techniques. From the adjoint algorithm of Section 6 over a field, we deduce an adjoint
algorithm over an arbitrary ring R in Section 7. The avoidance of divisions involves computations with
truncated power series. A crucial point in Kaltofen’s approach is a ‘‘baby steps/giant steps’’ scheme for
reducing the arithmetic cost of the corresponding power series operations. Since we use the reverse
mode of differentiation (see Section 3), the flowof computation ismodified, and the benefit of the baby
steps/giant steps is partly lost for the adjoint. This asks us to introduce an early and lazy polynomial
evaluation strategy so as not to increase the complexity estimate.

Our adjoint algorithm over a field is obtained by differentiating Kaltofen’s determinant algorithm.
However, as illustrated in Fig. 1, the adjoint algorithmover a ring thatwe propose, using the avoidance
of divisions of Strassen (1973), does not correspond to the one that could be obtained bydifferentiating
Kaltofen’s algorithm over a ring directly. It has been unclear to us how to obtain an explicit version of
the latter.
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Determinant over K −→ avoidance of divisions −→ Determinant over R
↓

differentiation
↓

Adjoint over K −→ avoidance of divisions −→ Adjoint over R

Fig. 1. Approach followed for designing the division-free adjoint algorithm.

The division-free determinant algorithm of Kaltofen (1992) uses O (̃n3.5) operations in R. The
adjoint algorithm that we propose has essentially the same cost; we also discuss some aspects of its
space complexity in Section 8. Our study may be seen as a first step towards the differentiation of the
more efficient algorithm of Kaltofen and Villard (2005). The latter would require us, in particular, to
consider asymptotically fast matrix multiplication algorithms that are not discussed in what follows.

Especially in our matrix context, we note that interpreting programs obtained by automatic
differentiation may have connections with the interpretation of programs derived using the
transposition principle.We refer the reader to, for instance, the discussion of Kaltofen (2000, Sec. 6) or
Bostan et al. (2003). To our knowledge, apart from the already noted link with the work Eberly (1997),
there exists no other study or interpretation of the differentiation of determinant programs.

Cost functions.We letM(n) be such that two univariate polynomials of degree n over an arbitrary ring
R can be multiplied using M(n) operations in R. The algorithm of Cantor and Kaltofen (1991) allows
M(n) = O(n log n log log n). The function O(M(n)) also measures the cost of truncated power series
arithmetic over R (see Sieveking, 1972; Kung, 1974; Cantor and Kaltofen, 1991). For bounding the
cost of polynomial gcd-type computations over a commutative field K we define the function G. Let
G(n) be such that the extended gcd problem (see von zur Gathen and Gerhard, 1999, Chap. 11) can be
solvedwithG(n) operations in K for polynomials of degree 2n in K[x]. The recursive Knuth/Schönhage
half-Gcd algorithm (see Knuth, 1970; Schönhage, 1971; Moenck, 1973) allows G(n) = O(M(n) log n).
The minimum polynomial of degree n of a linearly generated sequence given by its first 2n terms can
be computed in G(n) + O(n) operations (see von zur Gathen and Gerhard, 1999, Algorithm 12.9 and
Section 4.2). We will often use the notation O˜that indicates missing factors of the form α(log n)β for
two positive real numbers α and β .

2. Kaltofen’s determinant algorithm over a field

Kaltofen’s determinant algorithm extends the Krylov-based method of Wiedemann (1986). The
latter approach is successful in various situations. We refer the reader especially to the algorithms of
Kaltofen and Pan (1991) and Kaltofen and Saunders (1991) as regards exact linear system solution that
have served as basis for subsequent works. We may also point out the various questions investigated
by Chen et al. (2002), and references therein.

Let K be a commutative field. We consider A ∈ Kn×n, u ∈ K1×n, and v ∈ Kn×1. We introduce the
Hankel matrix H =

�
uAi+j−2v

�
1≤i,j≤n ∈ Kn×n, and let hk = uAkv for 0 ≤ k ≤ 2n − 1. We also assume

that H is non-singular:

detH = det





uv uAv . . . uAn−1v
uAv uA2v . . . uAnv
...

. . .
...

...
uAn−1v . . . . . . uA2n−2v




�= 0. (1)

In the applications, (1) is ensured either by construction of A, u, and v, as in Kaltofen (1992) and
Kaltofen and Villard (2005), or by randomization (see the above cited references aroundWiedemann’s
approach, and Kaltofen (1992) and Kaltofen and Villard (2005).

A key idea of Kaltofen (1992) for reducing the division-free complexity estimate for computing the
determinant is to introduce a ‘‘baby steps/giant steps’’ strategy in the Krylov subspace construction.
With baby steps/giant steps parameters s = �√n� and r = �2n/s� (rs ≥ 2n; the notation �x� stands
for smallest integer greater than or equal to x) we consider the following algorithm.
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Algorithm Det (Kaltofen, 1992)
Input: A ∈ Kn×n, u ∈ K1×n, v ∈ Kn×1

step i. v0 := v; For i = 1, . . . , r − 1 do vi := Avi−1
step ii. B := Ar

step iii. u0 := u; For j = 1, . . . , s − 1 do uj := uj−1B
step iv. For i = 0, 1, . . . , r − 1 do

For j = 0, 1, . . . , s − 1 do hi+jr := ujvi
step v. f := the minimum polynomial of {hk}0≤k≤2n−1

det A := (−1)nf (0)
Output: det A.

Note that Algorithm Det is a straight-line one, by which we mean that it has no branching, apart
possibly from the computation of the minimum polynomial. We will apply automatic differentiation
for straight-line programs to all parts of Algorithm Det but to step v, which we will treat analytically.
In Kaltofen (1992) the determinant algorithm is called on specific inputs A, u and v such that actually
no branching occurs.

We omit the proof of the next theorem that establishes the correctness and the cost of
Algorithm Det, and refer the reader to Kaltofen (1992). We may simply note that the sequence
{hk}0≤k≤2n−1 is linearly generated. In addition, if (1) is true, then the minimum polynomial f of
{hk}0≤k≤2n−1, the minimum polynomial of A, and the characteristic polynomial of A coincide. Hence
(−1)nf (0) is equal to the determinant of A.

Theorem 1. If A ∈ Kn×n, u ∈ K1×n, and v ∈ Kn×1 satisfy (1), then Algorithm Det computes the
determinant of A in O(n3 log n) operations in K.

Via an algorithm that can multiply two matrices in Kn×n in time O(nω), and a doubling approach
for computing the ui’s and the vi’s (see Borodin and Munro (1975, Cor. 6.1.5) or Keller-Gehrig (1985)),
an implementation using O(nω log n) operation may be derived. For the matrix product we may set
for instance ω = 2.376 using the algorithm of Coppersmith and Winograd (1990).

In the rest of the paper we work with a cubic matrix multiplication algorithm. Our study has to be
generalized if fast matrix multiplication is introduced.

3. Backward automatic differentiation

The determinant of A ∈ Kn×n is a polynomial ∆ in K[a1,1, . . . , ai,j, . . . , an,n] of the entries of A. We
denote the adjoint matrix by A∗ such that AA∗ = A∗A = (det A)I . As noticed by Baur and Strassen
(1983), the entries of A∗ satisfy

a∗
j,i = ∂∆

∂ai,j
, 1 ≤ i, j ≤ n. (2)

The reverse mode of automatic differentiation allows us to transform a program which computes
∆ into a programwhich computes all the partial derivatives in (2). Among the rich literature about the
reversemode of automatic differentiationwemay refer the reader to the seminalworks of Linnainmaa
(1970, 1976) and Ostrowski et al. (1971). For deriving the adjoint program from the determinant
program we follow the lines of Baur and Strassen (1983) and Morgenstern (1985). We also refer the
reader to the adjoint code method of Gilbert et al. (1991, Sec. 4.1.2).

Apart from the minimum polynomial computation, Algorithm Det is a straight-line program over
K. For a comprehensive study of straight-line programs see for instance (Bürgisser et al., 1997, Chap. 4).
We assume that the entries of A are stored initially in n2 variables δi, −n2 < i ≤ 0. Then we assume
that the algorithm is a sequence of arithmetic operations in K, or assignments to constants of K. Let
L be the number of such operations. We assume that the result of each instruction is stored in a new
variable δi, and hence the algorithm is seen as a sequence of instructions

δi := δj op δk, op ∈ {+, −, ×, ÷}, − n2 < j, k < i, (3)
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or

δi := c, c ∈ K, (4)

for 1 ≤ i ≤ L. Note that a binary arithmetic operation (3) where one of the operands is a constant of K
can be implemented with the aid of (4). For any 0 ≤ i ≤ L, the determinant may be seen as a rational
function ∆i of δ−n2+1, . . . , δi, such that

∆0(δ−n2+1, . . . , δ0) = ∆(a1,1, . . . , an,n), (5)

and such that the last instruction gives the result

det A = δL = ∆L(δ−n2+1, . . . , δL). (6)

The reversemodeof automatic differentiation computes the derivatives (2) in a backward recursive
way, from the derivatives of (6) to those of (5). For any 0 ≤ i ≤ L the quantities δ−n2+1, . . . , δi
are considered to be algebraically independent variables, and ∆i is interpreted as a new straight-line
program with inputs δj for −n2 < j ≤ i. Using (6) we start the recursion with

∂∆L

∂δL
= 1,

∂∆L

∂δl
= 0, −n2 < l ≤ L − 1.

Then, writing

∆i−1(δ−n2+1, . . . , δi−1) = ∆i(δ−n2+1, . . . , δi) = ∆i(δ−n2+1, . . . , g(δj, δk)), (7)

where g is given by (3) or (4), using the chain rule we have
∂∆i−1

∂δl
= ∂∆i

∂δl
+ ∂∆i

∂δi

∂g
∂δl

, −n2 < l ≤ i − 1, (8)

for 1 ≤ i ≤ L. Depending on g , several cases may be examined. For instance, for an addition
δi := g(δj, δk) = δj + δk, (8) becomes

∂∆i−1

∂δj
= ∂∆i

∂δj
+ ∂∆i

∂δi
,

∂∆i−1

∂δk
= ∂∆i

∂δk
+ ∂∆i

∂δi
, (9)

with the other derivatives (l �= j or k) remaining unchanged. In the case of a multiplication δi :=
g(δj, δk) = δj × δk, (8) gives that the only derivatives that are modified are

∂∆i−1

∂δj
= ∂∆i

∂δj
+ ∂∆i

∂δi
δk,

∂∆i−1

∂δk
= ∂∆i

∂δk
+ ∂∆i

∂δi
δj. (10)

We see for instance in (10), where δk is used for updating the derivative with respect to δj, that the
recursion uses intermediary results of the determinant algorithm. For the adjoint algorithm, we will
assume that the determinant algorithm has been executed once, and that the δi’s are stored in n2 + L
memory locations (also see Section 8).

Recursion (8) gives a practical means, and a program, for computing the N = n2 derivatives of ∆
with respect to the ai,j’s. For any rational function Q (resp. polynomial P), inN variables δ−N+1, . . . , δ0
the corresponding general statement is:

Theorem 2. [Baur and Strassen, 1983] Let P be a straight-line program computing Q (resp. P) in L
operations in K (resp. R). One can derive an algorithm ∂P that computes Q (resp. P) and the N partial
derivatives ∂Q/∂δl (resp. ∂P/∂δl) in less than 5L operations in K (resp. R).

Combining Theorem 2 with Theorem 1 gives the construction of an algorithm ∂Det for computing
the adjoint matrix A∗ (see Baur and Strassen, 1983, Corollary 5). The algorithm can be generated
automatically via an automatic differentiation tool.1 However, it seems unclear how it could be
programmed directly, and, to our knowledge, it has no interpretation of its own.

1 We refer the reader to, for instance, http://www.autodiff.org.

http://www.autodiff.org
http://www.autodiff.org
http://www.autodiff.org
http://www.autodiff.org
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4. Differentiation of the minimum polynomial constant term computation

Here and in next section we apply the backward recursion (8) to Algorithm Det of Section 2
for deriving the algorithm ∂Det. We assume that A is non-singular, and hence A∗ is non-trivial.
By construction, the flow of computation for the adjoint is reversed compared to the flow of
Algorithm Det; therefore we start with the differentiation of step v. Section 5 will then focus on
differentiating step iv to step i.

For computing the derivatives of step vwe first give an analytical interpretation of the derivatives
in Section 4.1; thenwe propose a corresponding implementation for their evaluation in Section 4.2. As
underlined in the introduction, another approach could be to directly apply automatic differentiation
to a concrete implementation of step v—we mean to a particular minimum polynomial algorithm.
However, in this case, the question of providing an ‘‘explicit’’ algorithm would remain open.

4.1. Constant term differentiation: interpreting the problem

At step v, Algorithm Det computes the constant term of the minimum polynomial f of the linearly
generated sequence {hk}0≤k≤2n−1. Let λ be the first instruction index at which all the hk’s are known.
We apply the recursion until step λ, globally—we mean that we compute the derivatives of ∆λ. After
the instruction λ, the determinant is viewed as a function ∆v of the hk’s only. Following (7) we have

det(A) = ∆λ(δ−n2+1, . . . , δλ) = ∆v(h1, . . . , h2n−1).

Hence we may focus on the derivatives ∂∆v/∂hk, 0 ≤ k ≤ 2n − 1; the remaining ones are zero.
Using assumption (1) we know that the minimum polynomial f of {hk}0≤k≤2n−1 has degree n, and

if f (x) = f0 + f1x + · · · + fn−1xn−1 + xn, then f satisfies

H





f0
f1
...

fn−1



 =





h0 h1 . . . hn−1
h1 h2 . . . hn
...

. . .
...

...
hn−1 . . . . . . h2n−2









f0
f1
...

fn−1



 = −





hn
hn+1

...
h2n−1



 ; (11)

see, e.g., Kaltofen (1992), or von zur Gathen and Gerhard (1999, Algorithm 12.9) together with Brent
et al. (1980). Applying Cramer’s rule we see that

f0 = (−1)n det





h1 h2 . . . hn
h2 h3 . . . hn+1
...

. . .
...

...
hn . . . . . . h2n−1





�

detH,

and hence, defining HA =
�
uAi+j−1v

�
1≤i,j≤n =

�
hi+j−1

�
1≤i,j≤n ∈ Kn×n, we obtain

∆v = detHA

detH
. (12)

Let K̃u and Kv be the Krylov matrices
K̃u = [uT , ATuT , . . . , (AT )n−1uT ]T ∈ Kn×n, (13)

and
Kv = [v, Av, . . . , An−1v] ∈ Kn×n. (14)

Since H = K̃uKv , assumption (1) implies that both K̃u and Kv are non-singular. Hence, using that A
is non-singular, we note that HA = K̃uAKv also is non-singular.

For differentiating (12), let us first specialize (2) to Hankel matrices. We denote by (∂∆/∂ai,j)(H)
the substitution of the entries of H for the ai,j’s in ∂∆/∂ai,j, for 1 ≤ i, j ≤ n. From (2) we have

h∗
j,i = ∂∆

∂ai,j
(H), 1 ≤ i, j ≤ n.
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Since the entries of H are constant along the anti-diagonals, we deduce that
∂ detH

∂hk
=

�

i+j−2=k

∂∆

∂ai,j
(H) =

�

i+j−2=k

h∗
j,i =

�

i+j−2=k

h∗
i,j, 0 ≤ k ≤ 2n − 2.

In other words, we may write
∂ detH

∂hk
= σk(H∗), 0 ≤ k ≤ 2n − 2, (15)

where, for a matrix M = (mij)1≤i,j≤n, we define

σk(M) =
�

i+j−2=k

mij, 0 ≤ k ≤ 2n − 2.

The function σk(M) is the sum of the entries in the anti-diagonal ofM starting withm1,k+1 if 0 ≤ k ≤
n − 1, and mk−n+2,n if n ≤ k ≤ 2n − 2. Shifting the entries of H for obtaining HA we also have

∂ detHA

∂hk
= σk−1(H∗

A ), 1 ≤ k ≤ 2n − 1. (16)

Since H does not contain h2n−1 and HA does not contain h0, (15) and (16) are trivial for k = 2n − 1
(or higher values of k) and k = −1, respectively. Hence we define σ2n−1(M) = σ−1(M) = 0. Now,
differentiating (12), together with (15) and (16), leads to

∂∆v

∂hk
= (∂ detHA/∂hk)

detH
− (∂ detH/∂hk)

detH
detHA

detH
= (∂ detHA/∂hk)

detHA

detHA

detH
− σk(H−1)∆v

and, consequently, to
�
∂∆v/∂hk =

�
σk−1(H−1

A ) − σk(H−1)
�
∆v, 0 ≤ k ≤ 2n − 1,

∂∆v/∂hk = 0, k ≥ 2n. (17)

4.2. Constant term differentiation: concrete implementation

For implementing (17), we study the computation of the anti-diagonal sums σk of H−1 and H−1
A .

We first use the formula of Labahn et al. (1990) for Hankelmatrix inversion. Theminimumpolynomial
f of {hk}0≤k≤2n−1 is f (x) = f0 + f1x+ · · · + fn−1xn−1 + xn, and satisfies (11). Let the last column of H−1

be given by

H [g0, g1, . . . , gn−1]T = [0, . . . , 0, 1]T ∈ Kn. (18)

Applying (Labahn et al., 1990, Theorem3.1) with (11) and (18), we know that

H−1 =





f1 . . . fn−1 1
... . .

.
. .
.

fn−1 . .
.

0
1








g0 . . . gn−1

. . .
...

0 g0





−





g1 . . . gn−1 0
... . .

.
. .
.

gn−1 . .
.

0
0








f0 . . . fn−1

. . .
...

0 f0



 . (19)

For deriving an analogous formula for H−1
A , using the notation of (13) and (14), we first recall that

H = K̃uKv and HA = K̃uAKv . Multiplying (11) on the left by K̃uAK̃−1
u gives

HA [f0, f1, . . . , fn−1]T = −[hn+1, hn+2, . . . , h2n]T . (20)
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We also notice that

HAH−1 =
�
K−1

u ATKu
�T

,

and, using the action of AT on the vectors uT , . . . , (AT )n−2uT , we check that HAH−1 is the companion
matrix

HAH−1 =





0 1 0
...

. . .

0 . . . 0 1
−f0 −f1 . . . −fn−1



 .

Hence the last column [g∗
0 , g∗

1 , . . . , g∗
n−1] of H−1

A is the first column of H−1 divided by −f0. Using (19)
for determining the first column of H−1, we get

[g∗
0 , g∗

1 , . . . , g∗
n−1]T = −g0

f0
[f1, . . . , fn−1, 1]T + [g1, . . . , gn−1, 0]T . (21)

Applying (Labahn et al., 1990, Theorem3.1), now with (20) and (21), we obtain

H−1
A =





f1 . . . fn−1 1
... . .

.
. .
.

fn−1 . .
.

0
1








g∗
0 . . . g∗

n−1
. . .

...
0 g∗

0





−





g∗
1 . . . g∗

n−1 0
... . .

.
. .
.

g∗
n−1 . .

.
0

0








f0 . . . fn−1

. . .
...

0 f0



 . (22)

From (19) and (22) we see that computing σk(H−1) and σk−1(H−1
A ), for 0 ≤ k ≤ 2n − 1, reduces

to computing the anti-diagonal sums for a product of triangular Hankel times triangular Toeplitz
matrices. Let

M = LR =





l0 l1 . . . ln−1

l1 . .
.

. .
.

... . .
.

0
ln−1









r0 r1 . . . rn−1
. . .

. . . rn−2

0
. . .

...
r0




.

We have

mi,j =
i+j−2�

s=i−1

lsri+j−s−2, 1 ≤ i + j − 1 ≤ n, (23)

and

mi,j =
n−1�

s=i−1

lsri+j−s−2, n ≤ i + j − 1 ≤ 2n − 1. (24)

For 0 ≤ k ≤ 2n − 2, σk(M) is defined by summing the mi,j’s such that i + j − 2 = k. Using (23) we
obtain

σk(M) =
k+1�

i=1

mi,k−i+2 =
k+1�

i=1

k�

s=i−1

lsrk−s

=
k�

s=0

(s + 1)lsrk−s, 0 ≤ k ≤ n − 1,
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and hence
�

n−1�

s=0

lsxs+1

�� �n−1�

s=0

rsxs
�

mod xn =
n−1�

k=0

σk(M) xk. (25)

In the same way, using (24) with k̄ = k − n + 2, we have

σk(M) =
n−k̄+1�

i=1

mi+k̄−1,n−i+1 =
n−k̄+1�

i=1

n−k̄+1�

s=i

ls+k̄−2rn−s

=
n−1�

s=k̄−1

(s + n − k) lsrk−s, n − 1 ≤ k ≤ 2n − 2,

and
�

n�

s=1

rn−sxs
�� �n−1�

s=0

ln−s−1xs
�

mod xn =
n−1�

k=0

σ2n−k−2(M) xk. (26)

It remains to apply (25) and (26) to the structured matrix products in (19) and (22), for computing
the σk(H−1)’s and σk(H−1

A )’s. Together with taking theminimumpolynomial f = f0+· · ·+ fn−1xn−1+
xn, let g = g0 + · · · + gn−1xn−1 (see (18)), and g∗ = g∗

0 + · · · + g∗
n−1x

n−1 (see (21)). We may now
combine, respectively (19) and (22) with (25) to obtain

f �g − g �f mod xn =
n−1�

k=0

σk(H−1) xk, (27)

and

f �g∗ − (g∗)�f mod xn =
n−1�

k=0

σk(H−1
A ) xk. (28)

Defining also rev(f ) = 1 + fn−1x + · · · + f0xn, rev(g) = gn−1x + · · · + g0xn, and rev(g∗) =
g∗
n−1x + · · · + g∗

0 x
n, the combination of, respectively, (19) and (22) with (26) leads to

rev(g)�rev(f ) − rev(f )�rev(g) mod xn =
n−1�

k=0

σ2n−k−2(H) xk, (29)

and

rev(g∗)�rev(f ) − rev(f )�rev(g∗) mod xn =
n−1�

k=0

σ2n−k−2(HA) xk. (30)

From (27)–(30) we may now derive an algorithm for computing the anti-diagonal sums. We first
reduce the computation of f and g to the following version of the Extended Euclidean Algorithm,
where q(i) is the quotient resulting from the Euclidean division of r (i−1) by r (i).

Algorithm EEA — Extended Euclidean Algorithm
Input: r (0) ∈ K[x], r (1) ∈ K[x], d ∈ N

t(0) := 0; t(1) := 1; i := 1
While deg r (i) ≥ d do

r (i+1) := r (i−1) − q(i)r (i)

t(i+1) := t(i−1) − q(i)t(i)
i := i + 1

Output: r := r (i), t := t(i).
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Following von zur Gathen and Gerhard (1999, Algorithm 12.9), the minimum polynomial f of
{hk}0≤k≤2n−1 is obtained as follows:

r, t := EEA(x2n, h2n−1 + h2n−2x + · · · + h0x2n−1, n)
f := t/tn.

(31)

Using the approach of Brent et al. (1980, Sec. 6) we know that computing the polynomial g , whose
coefficients are given by the last column of H−1, reduces to

r, t := EEA(x2n−1, h2n−2 + h2n−3x + · · · + h0x2n−2, n)
g := t/rn−1.

(32)

Once f and g are known, the next procedure returns

σ =
2n−1�

k=0

σk(H−1) xk, and σA =
2n−1�

k=0

σk−1(H−1
A ) xk−1,

and hence two polynomials whose coefficients are the quantities involved in (17).

Algorithm Anti-diagonal sums
Input: {hk}0≤k≤2n−1
step i. Compute f and g using (31) and (32)
step ii. [g∗

0 , g∗
1 , . . . , g∗

n−1]T = − g0
f0

[f1, . . . , fn−1, 1]T + [g1, . . . , gn−1, 0]T
step iii. σ (L) := f �g − g �f mod xn /* (27) */

σ
(L)
A := f �g∗ − (g∗)�f mod xn /* (28) */

σ (H) := rev
�
rev(g)�rev(f ) − rev(f )�rev(g) mod xn−1

�
/* (29) */

σ
(H)
A := rev

�
rev(g∗)�rev(f ) − rev(f )�rev(g∗) mod xn−1

�
/* (30) */

Output: σ (L) + xn−2σ (H), σ
(L)
A + xn−2σ

(H)
A .

For the sake of completeness we have included the computation of f in the anti-diagonal sums
computation. Actually, with the automatic differentiation approach, since we assume that algorithm
Det has been executed once (see Section 3), f is known and stored, and should not be recomputed.

Proposition 3. Assume that the minimum polynomial f and the Hankel matrices H and HA are given. The
anti-diagonal sums σk(H−1) and σk(H−1

A ), for 0 ≤ k ≤ 2n − 1, and hence the derivatives of step v
through (17), can be computed in G(n) + O(M(n)) operations in K.

Proof. Using (32) the polynomial g is computed inG(n)+O(n) operations. From there, the execution
of Algorithm Anti-diagonal sums costs O(M(n)). �

5. Differentiating dot products, and matrix times vector and matrix products

Once the derivatives of step v are known, those of step iv to step i can be computed recursively
using the chain rule (8).

5.1. Differentiation of the dot products

For differentiating step iv, ∆ is seen as a function ∆iv of the uj’s and vi’s. The entries of uj are used
for computing the r scalars hjr , h1+jr , . . . , h(r−1)+jr for 0 ≤ j ≤ s − 1. The entries of vi are involved in
the computation of the s scalars hi, hi+r , . . . , hi+(s−1)r for 0 ≤ i ≤ r − 1.

In (8), the new derivative ∂∆i−1/∂δl is obtained by adding the current instruction contribution
to the previously computed derivative ∂∆i/∂δl. Since all the hi+jr ’s are computed independently
according to

hi+jr =
n�

l=1

(uj)l(vi)l,
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it follows that the derivative of ∆iv with respect to an entry (uj)l or (vi)l is obtained by summing up
the contributions of the multiplications (uj)l(vi)l. Since all ∂∆v/∂(uj)l and ∂∆v/∂(vi)l are zero, (10)
leads to

∂∆iv

∂(uj)l
=

r−1�

i=0

∂∆v

∂hi+jr
· (vi)l, 0 ≤ j ≤ s − 1, 1 ≤ l ≤ n, (33)

and

∂∆iv

∂(vi)l
=

s−1�

j=0

∂∆v

∂hi+jr
· (uj)l, 0 ≤ i ≤ r − 1, 1 ≤ l ≤ n. (34)

By abuse of notation (of the sign ∂), we let ∂uj be the n × 1 vector (resp. ∂vi be the 1 × n vector)
whose entries are the derivatives of ∆iv with respect to the entries of uj (resp. vi). Note that because
of the index transposition in (2), it is convenient, here and in the following, to take the transpose form
(column versus row) for the derivative vectors. Defining also

∂H =
�

∂∆v

∂hi+jr

�

0≤i≤r−1,0≤j≤s−1
∈ Kr×s,

we deduce, from (33) and (34), that

[∂u0, ∂u1, . . . , ∂us−1] = [v0, v1, . . . , vr−1] ∂H ∈ Kn×s (35)

and




∂v0
∂v1
...

∂vr−1



 = ∂H





u0
u1
...

us−1



 ∈ Kr×n. (36)

Identities (35) and (36) give the second step of the adjoint algorithm. In Algorithm Det, step iv
costs essentially 2rsn additions and multiplications in K. Here we have essentially 4rsn additions and
multiplications using basic loops (as in step iv) for calculating thematrix products—wemeanwithout
an asymptotically fast matrix multiplication algorithm.

5.2. Differentiation of the matrix times vector and matrix products

The recursive process for differentiating step iii to step i may be written in terms of the
differentiation of the basic operation (or its transposed operation)

q := p · M ∈ K1×n, (37)

where p and q are row vectors of dimension n, and M is an n × n matrix. Let l be such that (37) starts
at the lth instruction of the determinant program. By recursion, we assume that the derivatives of ∆l
are known.We let ∂p and ∂q be the column vectors of the derivatives of ∆l with respect to the entries
of p and q, and ∂M be the n×nmatrix whose transpose gives the derivatives of ∆l with respect to the
mij’s. Following the lines of previous section for obtaining (35) and (36),we see that differentiating (37)
amounts to updating ∂p and ∂M according to

�
∂p := ∂p + M · ∂q ∈ Kn,
∂M := ∂M + ∂q · p ∈ Kn×n,

(38)

where the symbols ∂p and ∂M are re-used for the new derivatives.
Differentiation of step iii. The differentiation (38) of (37) directly allows us to differentiate

uj := uj−1B.
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We start from the values ∂uj’s of the derivatives of step iv computed with (35), and, since the
derivatives of step v and step ivwith respect to the bij’s are zero, from ∂B = 0. This gives

�
∂uj−1 := ∂uj−1 + B · ∂uj,
∂B := ∂B + ∂uj · uj−1, j = s − 1, . . . , 1. (39)

Differentiation of step ii. For B := Ar , we show that the backward recursion leads to

∂A :=
r�

k=1

Ar−k · ∂B · Ak−1. (40)

Here, the notation ∂A stands for the n×nmatrix whose transpose gives the derivatives ∂∆ii/∂ai,j. We
may show (40) by induction on r . For r = 1, ∂A = ∂B is true. If (40) is true for r − 1, then let C = Ar−1

and B = CA. Using (38), and overloading the notation ∂A, we have
�
∂C = A · ∂B ∈ Kn×n,
∂A = ∂B · C ∈ Kn×n.

Hence, using (40) for r − 1, we establish that

∂A = ∂A +
r−1�

k=1

Ar−k−1 · ∂C · Ak−1,

= ∂B · C +
r−1�

k=1

Ar−k−1 · (A · ∂B) · Ak−1

= ∂B · Ar−1 +
r−1�

k=1

Ar−k · ∂B · Ak−1 =
r�

k=1

Ar−k · ∂B · Ak−1.

Any specific approach for computing Ar will lead to an associated program for computing ∂A. Let
us look, in particular, at the case where step ii of Algorithm Det is implemented by repeated squaring,
in essentially log2 r matrix products. Consider the recursion

A1 := A
For k = 1, . . . , log2 r do A2k := A2k−1 · A2k−1

B := Ar

that computes B := Ar . The associated program for computing the derivatives is

∂Ar := ∂B
For k = log2 r, . . . , 1 do ∂A2k−1 := A2k−1 · ∂A2k + ∂A2k · A2k−1

∂A := ∂A1,
(41)

and costs essentially 2 log2 r matrix products.
Differentiation of step i.We apply the differentiation (38) of (37) for differentiating

vi := Avi−1,

starting from the values of the ∂vi’s computed with (36), and from ∂A computed with (40). We get
�
∂vi−1 := ∂vi−1 + ∂vi · A,
∂A := ∂A + vi−1 · ∂vi, i = r − 1, . . . , 1. (42)

Now, ∂A is the n × n matrix whose transpose gives the derivatives ∂∆i/∂ai,j = ∂∆/∂ai,j, and hence
from (2) we know that A∗ = ∂A. step iii and step i both cost essentially r (≈ s) matrix times vector
products. From (39) and (42) the differentiated steps both require r matrix times vector products and
2rn2 + O(rn) additional operations in K.
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6. The adjoint algorithm over a field

We name as Adjoint the algorithm obtained from the successive differentiations of Sections 4 and
5 . We keep the notation of previous sections. We use in addition U ∈ Ks×n and V ∈ Kn×r (resp.
∂U ∈ Kn×s and ∂V ∈ Kr×n) for the right sides (resp. the left sides) of (35) and (36).

Algorithm Adjoint (∂Det)
Input: A ∈ Kn×n non-singular, and the intermediary data of Algorithm Det

All the derivatives are initialized to zero
step i∗. /* Requires det A, H and HA; see (17) */

∂H :=
�
∂∆v/∂hi+jr

�
i,j using Anti-diagonal sums

step ii∗. /* Requires the uj’s and vi’s see (35) and (36) */
∂U := V · ∂H
∂V := ∂H · U

step iii∗. /* Requires B = Ar ; see (39) */
For j = s − 1, . . . , 1 do

∂uj−1 := ∂uj−1 + B · ∂uj
∂B := ∂B + ∂uj · uj−1

step iv∗. /* Requires the powers of A; see (40) or (41) */
A∗ := �r

k=1 A
r−k · ∂B · Ak−1

step v∗. /* See (42) */
For i = r − 1, . . . , 1 do

∂vi−1 := ∂vi−1 + ∂vi · A
A∗ := A∗ + vi−1 · ∂vi

Output: The adjoint matrix A∗ ∈ Kn×n.

The cost of Adjoint is dominated by step iv∗, which is the differentiation of the matrix power
computation. As we have seen with (41), the number of operations is essentially twice that for
Algorithm Det. The code that we give allows an easy implementation.

Wenote that if the product by det A is avoided in step i∗ (see (17)), then the algorithm computes the
matrix inverse A−1. Wemay put this into perspective with the algorithm given by Eberly (1997). With
K̃u and Kv the Krylov matrices of (13) and (14), Eberly has proposed a processor-efficient inversion
algorithm based on

A−1 = KvH−1
A K̃u. (43)

Seeing whether a baby steps/giant steps version of (43) would lead to an algorithm similar to Adjoint
deserves further investigations.

7. Adjoint computation without divisions

Now let A be an n × n matrix over an abstract commutative ring R. As shown by Kaltofen
(1992), the determinant algorithm of Section 2 (with divisions) may be transformed into an algorithm
for computing the determinant using only operations in R (without divisions). By application of
Theorem 2, the differentiation of the latter algorithm gives an algorithm without divisions for
computing the adjoint using O (̃n3.5) operations in R. However it is unclear to us how to propose an
explicit version of this division-free algorithm.

As illustrated by Fig. 1 in the introduction, we rather transform Algorithm Adjoint, using the same
means as Kaltofen for his determinant algorithm, for obtaining a division-free adjoint algorithm. The
transformation uses truncated power seriesmanipulations andwe need to introduce a lazy evaluation
scheme for ensuring the complexity bound O (̃n3.5).

Kaltofen’s algorithm for computing the determinant of A without divisions applies Algorithm Det
on a well chosen univariate polynomial matrix Z(z) = C + z(A − C) where C ∈ Zn×n, with the
following dedicated choice of projections: u = ϕ ∈ Z1×n and v = ψ ∈ Zn×1. Defining

αi =
�

i
�i/2�

�
, βi = −(−1)�(n−i+1)/2�

��(n + i)/2�
i

�
,
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we take

ϕ =
�
1 0 . . . 0

�
, C =





0 1 0 . . . 0

0 0 1
. . . 0

...
...

. . .
. . . 0

0 0 0 1
β0 β1 . . . βn−2 βn−1




, ψ =





α0
α1
...

αn−1




. (44)

The algorithm uses Strassen’s avoidance of divisions (see Strassen, 1973; Kaltofen, 1992). Since
the determinant of Z is a polynomial of degree n in z, the arithmetic operations over K in Det may
be replaced by operations on power series in R[[z]] modulo zn+1. Once the determinant of Z(z) is
computed, the evaluation (det Z)(1) = det(C +1× (A−C)) gives the determinant of A. The choice of
C, ϕ and ψ is such that, whenever a division by a truncated power series is performed, the constant
coefficients are ±1. Therefore the algorithm necessitates no divisions. Note that, by construction of
Z(z), the constant terms of the power series involved when Det is called with inputs Z(z), ϕ and ψ
are the intermediary values computed by Detwith inputs C, ϕ and ψ .

The cost for computing the determinant of A without divisions is then deduced as follows. In step
i and step ii of Algorithm Det applied to Z(z), the vector and matrix entries are polynomials of degree
O(

√
n). The cost of step ii dominates, and is O(n3M(

√
n) log n) = O (̃n3√n) operations in R. step iii,

iv, and v cost O(n2√n) operations on power series modulo zn+1, that is O(n2M(n)
√
n) operations in R.

Hence det Z(z) is computed in O (̃n3√n) operations in R, and det A is obtained with the same cost
bound.

A main property of Kaltofen’s approach (which also holds for the improved blocked version
of Kaltofen and Villard (2005)), is that the scalar value det A is obtained via the computation of the
polynomial value det Z(z). This property seems to be lost with the adjoint computation. We are going
to see how Algorithm Adjoint applied to Z(z) allows us to compute A∗ ∈ Rn×n in time O (̃n3√n)
operations in R, but does not seem to allow the computation of Z∗(z) ∈ R[z]n×n with the same
complexity estimate. Indeed, a key point in Kaltofen’s approach for reducing the overall complexity
estimate is to compute with small degree polynomials (degree O(

√
n)) in step i and step ii. However,

since the adjoint algorithm has a reversed flow, this point does not seem to be relevant for Adjoint,
where polynomials of degree n are involved from the beginning.

Our approach for computing A∗ over R keeps the idea of running Algorithm Adjoint with input
Z(z) = C + z(A − C) such that Z∗(z) has degree less than n, and gives A∗ = Z∗(1). In Section 7.1, we
verify that the implementation using Proposition 3 needs no divisions. We then show in Section 7.2
how to establish the cost estimate O (̃n3√n). The principle that we follow is to start evaluating
polynomials at z = 1 as soon as computing with the entire polynomials is prohibitive.

7.1. Division-free Hankel matrix inversion and anti-diagonal sums

In Algorithm Adjoint, divisions may only occur during the anti-diagonal sums computation. We
verify here that with the matrix Z(z), and the special projections ϕ ∈ Z1×n, ψ ∈ Zn×1, the approach
described in Section 4.2 for computing the anti-diagonal sums requires no divisions. Equivalently,
since we use Strassen’s avoidance of divisions, we verify that with the matrix C and the projections
ϕ, ψ , the approach necessitates no divisions. As we are going to see, this a direct consequence of the
construction of Kaltofen (1992).

Here we let hk = ϕCkψ for 0 ≤ k ≤ 2n − 1, r (0)(x) = x2n, and r (1)(x) = h0x2n−1 + h1x2n−2 +
· · ·+h2n−1. The Extended Euclidean Algorithm (see Section 4.2) with these specific inputs r (0) and r (1)

leads to a normal sequence, and after n − 1 and n steps, we get (see Kaltofen, 1992, Sec. 2)

s(n)r (0) + t(n)r (1) = r (n) (45)

with

deg s(n) = n − 2, deg t(n) = n − 1, deg r (n) = n,
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and

s(n+1)r (0) + t(n+1)r (1) = r (n+1)

with

deg s(n+1) = n − 1, deg t(n+1) = n, deg r (n+1) = n − 1.

The polynomial t(n+1) is such that

t(n+1) = ±xn + intermediate monomials + 1 = ±f , (46)

with f the minimum polynomial of {hk}0≤k≤2n−1 (see (31)). The polynomial r (n) also has leading
coefficient ±1. By identifying the coefficients of degree 2n − 1 ≥ k ≥ n in (45), we obtain

H





t(n)0
t(n)1
...

t(n)n−1




=





h0 h1 . . . hn−1
h1 h2 . . . hn
...

. . .
...

...
hn−1 . . . . . . h2n−2









t(n)0
t(n)1
...

t(n)n−1




= ±





0
0
...
1



 . (47)

Therefore t(n) = ±g with g the polynomial involved in Algorithm Anti-diagonal sums (see (18)) in
addition to f .

Since C, ϕ, and ψ are such that the above application of the Extended Euclidean Algorithm
necessitates no divisions (see Kaltofen, 1992, Sec. 2), we see that both f and g may be computed with
no divisions. The only remaining division in the algorithm for Proposition 3 is at (21). From (46), this
division is by f0 = 1. It may seem somewhat fortuitous that, in the sameway as for AlgorithmDet, the
input C, ϕ,ψ identified by Kaltofen (1992) introduces no divisions other than by ±1 in Algorithm
Anti-diagonal sums. However, since ∂(a/b)

∂a = 1/b and ∂(a/b)
∂b = −a/b2, we may first note that

differentiation should not introduce divisions other than by ±1. Wemay also note that our algorithm
is derived from identity (17) that has been obtained analytically.

7.2. Lazy polynomial evaluation and division-free adjoint computation

We run Algorithm Adjoint with input Z(z) ∈ R[z]n×n, and start with operations on truncated
power series modulo zn+1. Using Section 7.1 we know that any division is by a power series having
constant term ±1; hence all the operations are in R. We keep the assumption that Algorithm Det has
been executed, and that its intermediate results have been stored.

Using Proposition 3, step i∗ requires O(G(n)) operations in K. Taking into account the truncated
power series operations, this gives O(G(n)M(n)) = O (̃n2) operations in R for computing ∂H(z) of
degree n in R[z]r×s. step ii∗, step iii∗, and v∗ cost O(n2√n) operations in K, and hence O(n2M(n)

√
n) =

O (̃n3√n) operations in R for the division-free version. The cost analysis of step iv∗, using (41) over
power series modulo zn+1, leads to log2 r matrix products, and hence to the time bound O (̃n4),
greater than the target estimate O (̃n3√n). We recall that we work with a cubic matrix multiplication
algorithm. As noticed previously, step ii of AlgorithmDet only involves polynomials of degree O(

√
n),

while the reversed program for step iv∗ of Algorithm Adjoint relies on ∂B(z) whose degree is n.
Since only Z∗(1) = A∗ is needed, our solution, for restricting the cost to O (̃n3√n), is to start

evaluating at z = 1 during step iv∗. However, since power series multiplications are done modulo
zn+1, this evaluation must be lazy. The fact that matrices Zk(z), 1 ≤ k ≤ r − 1, of degree at most r − 1
are involved enables the following. Let a and c be two polynomials such that deg a + deg c = r − 1
in R[z], and let b be of degree n ≥ r − 2 in R[z]. Considering the highest degree part of b, and
evaluating the lowest degree part at z = 1, we define bH(z) = bnzr−2 + · · · + bn−r+2 ∈ R[z] and
bL = bn−r+1 + · · · + b0 ∈ R. We then remark that

�
a(z)b(z)c(z) mod zn+1� (1) =

�
a(z)(bH(z)zn−r+2 + bL)c(z) mod zn+1� (1)

=
�
a(z)bH(z)c(z) mod zr−1� (1) + (a(z)bLc(z)) (1). (48)
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For modifying step iv∗ accordingly, we follow the definitions of bH and bL, and first compute ∂BH(z) ∈
R[z]n×n of degree r − 2, and ∂BL ∈ Rn×n. Applying (48), we arrive at

Z � :=
�

r�

k=1

Zr−k(z) · ∂BH(z) · Zk−1(z) mod zr−1

�

(1)

+
�

r�

k=1

Zr−k(z) · ∂BL · Zk−1(z)

�

(1). (49)

In Algorithm Adjoint without divisions below we implement (49) using (41) twice. The notation
‘‘modzn+1’’ indicates an execution over truncated power series.

Algorithm Adjoint without divisions
Input: A ∈ Rn×n

Z(z) = C + z(A − C); u := ϕ; v := ψ /* See C in (44) */
/* The intermediary data of Algorithm Det(Z, u, v) mod zn+1

are available */
All the derivatives are initialized to zero
step i–iii∗ of Adjoint(Z) mod zn+1

step iv∗. /* Uses the powers of Z, application of (49) to loop (41) */
∂BH :=quo(∂B, zn−r+2) /* Division quotient */
∂BL :=rem(∂B, zn−r+2) /* Division remainder */
∂BL := ∂BL(1)
For k = log2(r), . . . , 1 do

∂BH := Z2k−1 · ∂BH + ∂BHZ2k−1 mod zr−1

∂BL :=
�
Z2k−1 · ∂BL + ∂BLZ2k−1

�
(1)

Z � := ∂BH(1) + ∂BL
step v∗. /* See (42) */

For i = r − 1, . . . , 1 do
∂vi−1 := ∂vi−1 + ∂vi · Z mod zn+1

Z � := Z � + vi−1 · ∂vi mod zn+1

A∗ = Z �(1)
Output: The adjoint matrix A∗ ∈ Rn×n.

The modification of step iv∗ leads to an intermediary value Z � ∈ Rn×n before step v∗ using
O (̃n3M(r)) = O (̃n3√n) operations in R. The value is updated at step v∗ with power series operations,
and a final evaluation at z = 1 in timeO (̃n2rM(n)) = O (̃n3√n). Since only step iv∗ has beenmodified,
we obtain the following result.
Theorem 4. Let A ∈ Rn×n. Algorithm Adjoint without divisions computes the matrix adjoint A∗ in
O (̃n3√n) operations in R.

8. Space complexity

In general, backward differentiation increases memory requirements. We have used in Section 3
the assumption that all the intermediary quantities of the initial program are stored during the
forward phase for subsequent use during the backward phase. This leads to the theoretical bounds
O (̃n3) and O (̃n3.5) on the number of memory locations (field and ring elements) for Algorithms
Adjoint and Adjoint without divisions.

However, using the adjoint code approach, the algorithms keep the same structure as Algorithm
Det, which minimizes the number of memory locations used. The largest memory cost of Algorithm
Adjoint is for step iv∗, and using (41) we actually see that only log r matrix powers need to be stored.
Hence Algorithm Adjoint can be implemented using O(n2 log n) memory locations. In Algorithm
Adjoint without divisions O(n3) locations are required for storing ∂B (whose degree is n), which
dominates the cost of the program.
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9. Concluding remarks

We have developed an explicit algorithm for computing the matrix adjoint using only ring
arithmetic operations. The algorithm has complexity estimate O (̃n3.5). It represents a practical
alternative to previously existing solutions for the problem, that rely on automatic differentiation
of a determinant algorithm. Our description of the algorithm allows direct implementations. It
should help in understanding how the adjoint is computed using Kaltofen’s baby steps/giant steps
construction. Still, a full mathematical explanation deserves to be investigated. In particular, we have
no interpretation of the differentiation of the map from {hk}0≤k≤2n−1 to the minimum polynomial.
We have proposed an algorithm for the evaluation of (17), but interpreting the differentiation of one
of the existing algorithms for computing the minimum polynomial remains to be accomplished. Our
work also has to be generalized to the block algorithm of Kaltofen and Villard (2005) (with the use
of fast matrix multiplication algorithms) whose complexity estimate is currently the best known for
computing the determinant, and the adjoint without divisions.
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