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ABSTRACT

We devise an algorithm, L̃1, with the following specifica-
tions: It takes as input an arbitrary basis B = (bi)i ∈ Z

d×d

of a Euclidean lattice L; It computes a basis of L which is re-
duced for a mild modification of the Lenstra-Lenstra-Lovász
reduction; It terminates in time O(d5+εβ + dω+1+εβ1+ε)
where β = logmax ‖bi‖ (for any ε > 0 and ω is a valid
exponent for matrix multiplication). This is the first LLL-
reducing algorithm with a time complexity that is quasi-
linear in β and polynomial in d.
The backbone structure of L̃1 is able to mimic the Knuth-

Schönhage fast gcd algorithm thanks to a combination of
cutting-edge ingredients. First the bit-size of our lattice
bases can be decreased via truncations whose validity are
backed by recent numerical stability results on the QR ma-
trix factorization. Also we establish a new framework for
analyzing unimodular transformation matrices which reduce
shifts of reduced bases, this includes bit-size control and new
perturbation tools. We illustrate the power of this frame-
work by generating a family of reduction algorithms.

Categories and Subject Descriptors

I.1.2 [Symbolic and Algebraic Manipulation]: Algo-
rithms; F.2.1 [Analysis of Algorithms and Problem
Complexity]: Numerical Algorithms and Problems

General Terms

Algorithms
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1. INTRODUCTION
We present the first lattice reduction algorithm which has

complexity both quasi-linear in the bit-length of the en-
tries and polynomial time overall for an input basis B =
(bi)i ∈ Z

d×d. This is the first progress on quasi-linear lat-
tice reduction in nearly 10 years, improving Schönhage [29],
Yap [33], and Eisenbrand and Rote [7] whose algorithm is
exponential in d. Our result can be seen as a generaliza-
tion of the Knuth-Schönhage quasi-linear GCD [13, 27] from
integers to matrices. For solving the matrix case difficul-
ties which relate to multi-dimensionality we combine several
new main ingredients. We establish a theoretical framework
for analyzing and designing general lattice reduction algo-
rithms. In particular we discover an underlying structure on
any transformation matrix which reduces shifts of reduced
lattices; this new structure reveals some of the inefficien-
cies of traditional lattice reduction algorithms. The multi-
dimensional difficulty also leads us to establish new pertur-
bation analysis results for mastering the complexity bounds.
The Knuth-Schönhage scalar approach essentially relies on
truncations of the Euclidean remainders [13, 27] , while the
matrix case requires truncating both the “remainder” and
“quotient” matrices. We can use our theoretical framework
to propose a family of new reduction algorithms, which in-
cludes a Lehmer-type sub-quadratic algorithm in addition
to L̃1.

In 1982, Lenstra, Lenstra and Lovász devised an algo-
rithm, L3, that computes reduced bases of integral Euclidean
lattices (i.e., subgroups of a Z

d) in polynomial time [16].
This typically allows one to solve approximate variants of
computationally hard problems such as the Shortest Vec-
tor, Closest Vector, and the Shortest Independent Vectors
problems (see [18]). L3 has since proven useful in dozens of
applications in a wide range including cryptanalysis, com-
puter algebra, communications theory, combinatorial opti-
mization, algorithmic number theory, etc (see [22, 6] for two
recent surveys).

In [16], Lenstra, Lenstra and Lovász bounded the bit-
complexity of L3 by O(d5+εβ2+ε) when the input basis B =
(bi)i ∈ Z

d×d satisfies max ‖bi‖ ≤ 2β . For the sake of sim-
plicity, we will only consider full-rank lattices. The current
best algorithm for integer multiplication is Fürer’s, which al-
lows one to multiply two k-bit long integers in time M(k) =
O(k(log k)2log

∗ k). The analysis of L3 was quickly refined
by Kaltofen [11], who showed a O(d5β2(d + β)ε) complex-
ity bound. Schnorr [25] later proposed an algorithm of bit-
complexity O(d4β(d+ β)1+ε), using approximate computa-
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tions for internal Gram-Schmidt orthogonalizations. Some
works have since focused on improving the complexity bounds
with respect to the dimension d, including [28, 31, 14, 26],
but they have not lowered the cost with respect to β (for
fixed d). More recently, Nguyen and Stehlé devised L2 [21],
a variant of L3 with complexity O(d4+εβ(d+β)). The latter
bound is quadratic with respect to β (even with naive in-
teger multiplication), which led to the name L2. The same
complexity bound was also obtained in [20] for a different
algorithm, H-LLL, but with a simpler complexity analysis.
As a broad approximation, L3, L2 and H-LLL are gen-

eralizations of Euclid’s greatest common divisor algorithm.
The successive bases computed during the execution play
the role of Euclid’s remainders, and the elementary matrix
operations performed on the bases play the role of Euclid’s
quotients. L3 may be interpreted in such a framework. It
is slow because it computes its “quotients” using all the bits
from the “remainders” rather than the most significant bits:
The cost of computing one Euclidean division in an L3 way
is O(β1+ε), leading to an overall O(β2+ε) bound for Eu-
clid’s algorithm. Lehmer [15] proposed an acceleration of
Euclid’s algorithm by the means of truncations. Since the $
most significant bits of the remainders provide the first Ω($)
bits of the sequence of quotients, one may: Truncate the
remainders to precision $; Compute the sequence of quo-
tients for the truncated remainders; Store the first Ω($) bits
of the quotients into an Ω($)-bit matrix; Apply the latter
to the input remainders, which are shortened by Ω($) bits;
And iterate. The cost gain stems from the decrease of the
bit-lengths of the computed remainders. Choosing $ ≈

√
β

leads to a complexity bound of O(β3/2+ε). In the early 70’s,
Knuth [13] and Schönhage [27] independently observed that
using Lehmer’s idea recursively leads to a gcd algorithm with
complexity bound O(β1+ε). The above approach for the
computation of gcds has been successfully adapted to two-
dimensional lattices [33, 29, 5], and the resulting algorithm
was then used in [7] to reduce lattices in arbitrary dimen-
sions in quasi-linear time. Unfortunately, the best known
cost bound for the latter is O(β1+ε(log β)d−1) for fixed d.

Our result. We adapt the Lehmer-Knuth-Schönhage gcd
framework to the case of LLL-reduction. L̃1 takes as in-
put a non-singular B ∈ Z

d×d; terminates within O(d5+εβ +
dω+1+εβ1+ε) bit operations, where β = logmax ‖bi‖; and
returns a basis of the lattice L(B) spanned by B which is
LLL-reduced in the sense of Definition 1 given hereafter.
(L3 reduces bases for Ξ = (3/4, 1/2, 0).) The time bound is
obtained via an algorithm that can multiply two d×d matri-
ces in O(dω) scalar operations. (We can set ω ≈ 2.376 [4].)
Our complexity improvement is particularly relevant for ap-
plications of LLL reduction where β is large. These include
the recognition of algebraic numbers [12] and Coppersmith’s
method for finding the small roots of polynomials [3].

Definition 1 ([2, Def. 5.3]). Let Ξ = (δ, η, θ) with η ∈
(1/2, 1), θ > 0 and δ ∈ (η2, 1). Let B ∈ R

d×d be non-
singular with QR factorization B = Q · R (i.e., the unique
decomposition of B as a product of an orthogonal matrix and
an upper triangular matrix with positive diagonal entries).
The matrix B is Ξ-LLL-reduced if:

• for all i < j, we have |ri,j | ≤ ηri,i + θrj,j (B is size-
reduced);

• for all i, we have δ · r2i,i ≤ r2i,i+1 + r2i+1,i+1 (B is said
to satisfy Lovász’ conditions).

Let Ξi = (δi, ηi, θi) be valid LLL-parameters for i ∈ {1, 2}.
We say that Ξ1 is stronger than Ξ2 and write Ξ1 > Ξ2 if δ1 >
δ2, η1 < η2 and θ1 < θ2.

This modified LLL-reduction is as powerful as the clas-
sical one (note that by choosing (δ, η, θ) close to the ideal
parameters (1, 1/2, 0), the derived α tends to 2/

√
3):

Theorem 1 ([2, Th. 5.4]). Let B ∈ R
d×d be (δ, η, θ)-

LLL-reduced with R-factor R. Let α =
ηθ+

√
(1+θ2)δ−η2

δ−η2 .

Then, for all i, ri,i ≤ α · ri+1,i+1 and ri,i ≤ ‖bi‖ ≤ αi · ri,i.
This implies that ‖b1‖ ≤ α

d−1

2 | detB|1/d and αi−dri,i ≤
λi ≤ αiri,i, where λi is the ith minimum of the lattice L(B).

L̃1 and its analysis rely on two recent lattice reduction
techniques (described below), whose contributions can be
easily explained in the gcd framework. The efficiency of the
fast gcd algorithms [13, 27] stems from two sources: Per-
forming operations on truncated remainders is meaningful
(which allows one to consider remainders with smaller bit-
sizes), and the obtained transformations corresponding to
the quotients sequence have small bit-sizes (which allows
one to transmit at low cost the information obtained on the
truncated remainders back to the genuine remainders). We
achieve an analogue of the latter by gradually feeding the
input to the reduction algorithm, and the former is ensured
thanks to the modified notion of LLL-reduction which is re-
silient to truncations.

The main difficulty in adapting the fast gcd framework lies
in the multi-dimensionality of lattice reduction. In particu-
lar, the basis vectors may have significantly differing mag-
nitudes. This means that basis truncations must be per-
formed vector-wise. (Column-wise using the matrix setting.)
Also, the resulting unimodular transformation matrices (in-
tegral with determinant ±1 so that the spanned lattice is
preserved) may have large magnitudes, hence need to be
truncated for being be stored on few bits.

To solve these dilemmas we focus on reducing bases which
are a mere scalar shift from being reduced. We call this pro-
cess lift-reducing, and it can be used to provide a family of
new reduction algorithms. We illustrate in Section 2 that
the general lattice reduction problem can be reduced to the
problem of lift-reduction. Indeed, the LLL-reduction of B
can be implemented as a sequence of lift-reductions by per-
forming a Hermite Normal Form (HNF) computation on B
beforehand. Note that there could be other means of seeding
the lift-reduction process. Our lift-reductions are a general-
ization of recent gradual feeding algorithms.

Gradual feeding of the input. Gradual feeding was in-
troduced by Belabas [1], Novocin, and van Hoeij [23, 10],
in the context of specific lattice bases that are encountered
while factoring rational polynomials (e.g., with the algo-
rithm from [9]). Gradual feeding was restricted to reduc-
ing specific sub-lattices which avoid the above dimension-
ality difficulties. We generalize these results to the follow-
ing. Suppose that we wish to reduce a matrix B with the
property that B0 := σ−k

' B is reduced for some k and σ' is
the diagonal matrix diag(2', 1, . . . , 1). If one runs L3 on B
directly then the structure of B0 is not being exploited. In-
stead, the matrix B can be slowly reduced allowing us to
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control and understand the intermediate transformations:
Compute the unimodular transform U1 (with any reduction
algorithm) such that σ'B0U1 is reduced and repeat until we
have σk

'B0U1 · · ·Uk = B(U1 · · ·Uk). Each entry of Ui and
each entry of U1 · · ·Ui can be bounded sensitive to the shape
of the lattice. Further we will illustrate that the bit-size of
any entry of Ui can be madeO($+d) (see Theorems 2 and 4).
In addition, control over U gives us the ability to analyze

the impact of efficient truncations on lift-reductions.

Truncations of basis matrices. In order to work on
as few bits of basis matrices as possible during our lift-
reductions, we apply column-wise truncations. A trunca-
tion of precision p replaces a matrix B by a truncated ma-
trix B + ∆B such that max ‖∆bi‖

‖bi‖
≤ 2−p holds for all i,

and only the most significant p+O(log d) bits of every col-
umn of B + ∆B are allowed to be non-zero. Each entry
of B +∆B is an integer multiplied by some power of 2. (In
the notation ∆B, ∆ does not represent anything, i.e., the
matrix ∆B is not a product of ∆ and B.) A truncation
is an efficiency-motivated column-wise perturbation. The
following lemmata explain why we are interested in such
perturbations.

Lemma 1 ([2, Se. 2], refined from [8]). Let p > 0,
B ∈ R

d×d non-singular with R-factor R, and let ∆B with
max ‖∆bi‖

‖bi‖
≤ 2−p. If cond(R) = ‖|R||R−1|‖2 (using the

induced norm) satisfies c0 · cond(R) · 2−p < 1 with c0 =
8d3/2, then B+∆B is non-singular and its R-factor R+∆R
satisfies max ‖∆ri‖

‖ri‖
≤ c0 · cond(R) · 2−p.

Lemma 2 ([2, Le. 5.5]). If B ∈ R
d×d with R-factor R

is (δ, η, θ)-reduced then cond(R) ≤ ρ+1
ρ−1ρ

d, with ρ = (1+ η+

θ)α, with α as in Theorem 1.

These results imply that a column-wise truncation of a
reduced basis with precision Ω(d) remains reduced. This ex-
plains why the parameter θ was introduced in Definition 1,
as such a property does not hold if LLL-reduction is re-
stricted to θ = 0 (see [30, Se. 3.1]).

Lemma 3 ([2, Co. 5.1]). Let Ξ1 > Ξ2 be valid reduc-
tion parameters. There exists a constant c1 such that for any
Ξ1-reduced B ∈ R

d×d and any ∆B with max ‖∆bi‖
‖bi‖

≤ 2−c1·d,
the matrix B +∆B is non-singular and Ξ2-reduced.

As we will see in Section 3 (see Lemma 7) the latter lem-
mata will allow us to develop the gradual reduction strat-
egy with truncation, which is to approximate the matrix to
be reduced, reduce that approximation, and apply the uni-
modular transform to the original matrix, and repeat the
process.

Lift-L̃1. Our quasi-linear general lattice reduction algo-
rithm, L̃1, is composed of a sequence of calls to a specialized
lift-reduction algorithm, Lift-L̃1. Sections 2 and 4.4 shows
the relationship between general reduction and lift-reduction
via HNF. When we combine lift-reduction (gradual feeding)
and truncation we see another difficulty which must be ad-
dressed. That is, lift-reducing a truncation of B0 will not
give the same transformation as lift-reducing B0 directly;
likewise any truncation of U weakens our reduction even
further. Thus after working with truncations we must apply

any transformations to a higher precision lattice and refine
the result. In other words, we will need to have a method for
strengthening the quality of a weakly reduced basis. Such
an algorithm exists in [19] and we adapt it to performing
lift-reductions in section 3.2. Small lift-reductions with this
algorithm also become the leaves of our recursive tree. The
Lift-L̃1 algorithm in Figure 4 is a rigorous implementation
of the pseudo algorithm in Figure 1: Lift-L̃1 must refine
current matrices more often than this pseudo algorithm to
properly handle a specified reduction.

Inputs: B0 reduced, and target lift !.
Output: Usmall such that σ'B0Usmall is reduced.

1. Get U1,small from pseudo-Lift-L̃1(truncate(B0), !/2).
2. B1 := σ'/2B0U1,small.
3. Get U from refineReduction(C).
4. Get U2,small from pseudo-Lift-L̃1(truncate(B1U), !/2).
5. Usmall :=clean(U1,small · U · U2,small).
6. Return Usmall.

Figure 1: pseudo-Lift-L̃1.

It could be noted that clean is stronger than mere trun-
cation. It can utilize our new understanding of the structure
of any lift-reducing U to provide an appropriate transforma-
tion which is well structured and efficiently stored.

Comments on the cost of L̃1. The term O(d5+εβ) stems
from a series of β calls to H-LLL [20] or L2 [21] on integral
matrices whose entries have bit-lengths O(d). These calls
are at the leaves of the tree of the recursive algorithm. An
amortized analysis allows us to show that the total number
of LLL switches performed summed over all calls is O(d2β)
(see Lemma 11). We recall that known LLL reduction algo-
rithms perform two types of vector operations: Either trans-
lations or switches. The number of switches performed is a
key factor of the complexity bounds. The H-LLL compo-
nent of the cost of L̃1 could be lowered by using faster LLL-
reducing algorithms than H-LLL (with respect to d), but
for our amortization to hold, they have to satisfy a stan-
dard property (see Section 3.2). The term O(dω+1+εβ1+ε)
derives from both the HNF computation mentioned above
and a series of product trees of balanced matrix multiplica-
tions whose overall product has bit-length O(dβ). Further-

more, the precise cost dependence of L̃1 in β is Poly(d) ·
M(β) log β. We also remark that the cost can be proven to
be O(d4+ε log | detB|+d5+ε+dω(log | detB|)1+ε)+H(d,β),
where H(d,β) denotes the cost of computing the Hermite
normal form. Finally, we may note that if the size-reduction
parameter θ is not considered as a constant, then a factor
Poly(log(1/θ)) is involved in the cost of the leaf calls.

Road-map. We construct L̃1 in several generalization steps
which, in the gcd framework, respectively correspond to
Euclid’s algorithm (Section 2), Lehmer’s inclusion of trun-
cations in Euclid’s algorithm (Section 3) and the Knuth-
Schönhage recursive generalization of Lehmer’s algorithm
(Section 4).

2. LIFT-REDUCTION
In order to enable the adaptation of the gcd framework

to lattice reduction, we introduce a new type of reduction
which behaves more predictively and regularly. In this new
framework, called lift-reduction, we are given a reduced ma-
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trix B and a lifting target $ ≥ 0, and we aim at comput-
ing a unimodular U such that σ'BU is reduced (with σ' =
diag(2', 1, . . . , 1)). Lift-reduction can naturally be performed
using any general purpose reduction algorithm, however we
will design fast algorithms specific to lift-reduction in Sec-
tions 3 and 4. Lifting a lattice basis has a predictable impact
on the ri,i’s and the successive minima.

Lemma 4. Let B be non-singular and $ ≥ 0. If R (resp.
R′) is the R-factor of B (resp. B′ = σ'B), then r′i,i ≥ ri,i
for all i and

∏
r′i,i = 2'

∏
ri,i. Furthermore, if (λi)i (resp.

(λ′
i)i) are the successive minima of L = L(B) (resp. L′ =

L(B′)), then λi ≤ λ′
i ≤ 2'λi for all i.

Proof. The first statement is proven in [10, Le. 4]. For
the second one, notice that

∏
r′i,i = | detB′| = 2'| detB| =

2'
∏

ri,i. We now prove the third statement. Let (vi)i and
(v′

i)i be linearly independent vectors in L and L′ respectively
with ‖vi‖ = λi and ‖v′

i‖ = λ′
i for all i. For any i, we

define S′
i = {σ'vj , j ≤ i} and Si = {σ−1

' v′
j , j ≤ i}. These

are linearly independent sets in L′ and L respectively. Then
for any i we have λi ≤ max‖·‖(Si) ≤ λ′

i ≤ max‖·‖(S
′
i) ≤

2'λi.

We can now bound the entries of any matrix which per-
forms lift-reduction.

Lemma 5. Let Ξ1,Ξ2 be valid parameters and α1 and α2

as in Theorem 1. Let $ ≥ 0, B ∈ R
d×d be Ξ1-reduced and U

such that C = σ'BU is Ξ2-reduced. Letting ζ1 = (1 + η1 +
θ1)α1α2, we have:

∀i, j : |ui,j | ≤ 4d3ζd1 ·
r′j,j
ri,i

≤ 2'+2d3ζ2d1 · rj,j
ri,i

,

where R (resp. R′) is the R-factor of B (resp. C). In addi-
tion, if V = U−1 and ζ2 = (1 + η2 + θ2)α2α1:

∀i, j : |vj,i| ≤ 2'+2d3ζd2 · ri,i
r′j,j

≤ 2'+2d3ζ2d2 · ri,i
rj,j

.

Proof. Let B = QR, C = Q′R′ be the QR-factorizations
of B and C. Then

U = R−1Qtσ−1
' Q′R′

= diag(r−1
i,i )R̄

−1
(
Qtσ−1

' Q′
)
R̄′diag(r′j,j),

with R̄ = R · diag(1/ri,i) and R̄′ = R′ · diag(1/r′j,j). From
the proof of [2, Le. 5.5], we know that |R̄−1| ≤ 2((1 + η1 +
θ1)α1)

dT , where ti,j = 1 if i ≤ j and ti,j = 0 otherwise.
By Theorem 1, we have |R̄′| ≤ (η2α

d−1
2 + θ2)T ≤ 2αd

2T
(using θ2 ≤ α2 and η2 ≤ 1). Finally, we have |Q|, |Q′| ≤ M ,
where mi,j = 1 for all i, j. Using the triangular inequality,
we obtain:

|U | ≤ 4ζddiag(r−1
i,i )TM

2Tdiag(r′j,j)
≤ 4d3ζddiag(r−1

i,i )Mdiag(r′j,j).

Now, by Theorem 1 and Lemma 4, we have r′j,j ≤ αd−j
2 λ′

j ≤
2'αd−j

2 λj ≤ 2'αj
1α

d−j
2 rj,j , which completes the proof of the

first statement.
For the second statement note that

V = diag(r′
−1
i,i )R̄′−1 (

Q′tσ'Q
)
R̄diag(rj,j)

is similar to the expression for U in the proof of the first
statement, except that σ' can increase the innermost prod-
uct by a factor 2'.

LLL-reduction as a sequence of lift-reductions. In
the remainder of this section we illustrate that LLL-reduction
can be achieved with an efficient sequence of lift-reductions.
Lift-reduction is specialized to reducing a scalar-shift/lift of
an already reduced basis. In Figure 2 we create reduced
bases (of distinct lattices from the input lattice) which we
use to progressively create a reduced basis for the input lat-
tice. Here we use an HNF triangularization and scalar shifts
to find suitable reduced lattice bases. We analyze the cost
and accuracy of Figure 2 using a generic lift-reduction algo-
rithm. The remainder of the paper can then focus on spe-
cialized lift-reduction algorithms which each use Figure 2 to
achieve generic reduction. We note that other wrappers of
lift-reduction are possible.

Recall that the HNF of a (full-rank) lattice L ⊆ Z
d is the

unique upper triangular basis H of L such that −hi,i/2 ≤
hi,j < hi,i/2 for any i < j and hi,i > 0 for any i. Using [17,
32], it can be computed in time O(dω+1+εβ1+ε), where the
input matrix B ∈ Z

d×d satisfies max ‖bi‖ ≤ 2β .

Inputs: LLL parameters Ξ; a non-singular B ∈ Zd×d.
Output: A Ξ-reduced basis of L(B).

1. B := HNF(B).
2. For k from d− 1 down to 1 do
3. Let C be the bottom-right (d− k + 1)-dimensional

submatrix of B.
4. !k := #log2(bk,k)$, C := σ−1

'k
C.

5. Lift-reduction:
Find U ′ unimodular such that σ'kCU ′ is Ξ-reduced.

6. Let U be the block-diagonal matrix diag(I, U ′).
7. Compute B := B · U ,

reducing row i symmetrically modulo bi,i for i < k.
8. Return B.

Figure 2: Reducing LLL-reduction to lift-reduction.

Let H be the HNF of L(B). At the end of Step 1, the
matrix B = H is upper triangular,

∏
bi,i = | detH| ≤ 2dβ ,

and the 1× 1 bottom rightmost sub-matrix of H is trivially
Ξ-reduced. In each iteration we Ξ-reduce a lower-right sub-
matrix of B via lift-reduction (increasing the dimension with
each iteration). This is done by augmenting the previous Ξ-
reduced sub-matrix by a scaling down of the next row (such
that the new values are tiny). This creates a C which is
reduced and such that a lift-reduction of C will be a complete
Ξ-reduction of the next largest sub-matrix of B. The column
operations of the lift-reduction are then applied to rest of
B with the triangular structure allowing us to reduce each
remaining row modulo bi,i. From a cost point of view, it is
worth noting that the sum of the lifts $k is O(log | detH|) =
O(dβ).

Lemma 6. The algorithm of Figure 2 Ξ-reduces B such
that max ‖bi‖ ≤ 2β using

O(dω+1+ε(β1+ε + d)) +
1∑

k=d−1

Ck

bit operations, where Ck is the cost of Step 5 for the specific
value of k.

Proof. We first prove the correctness of the algorithm.
We let UH be the unimodular transformation such that H =
BUH . For k < d, we let U ′

k be the (d − k + 1) × (d − k +
1) unimodular transformation that reduces σ'kC at Step 5
and U ′′

k be the unimodular transformation that reduces rows
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1 ≤ i < k at Step 7. With input B the algorithm returns
B ·UH ·diag(I, U ′

d−1)·U ′′
d−1 . . .·diag(I, U ′

2)·U ′′
2 ·U ′

1. Since B is
multiplied by a product of unimodular matrices, the output
matrix is a basis of the lattice spanned by the columns of B.
We show by induction on k from d down to 1 that at the

end of the (d − k)-th loop iteration, the bottom-right (d −
k+1)-dimensional submatrix of the current B is Ξ-reduced.
The statement is valid for k = d, as a non-zero matrix in
dimension 1 is always reduced, and instanciating the state-
ment with k = 1 ensures that the matrix resturned by the
algorithm is Ξ-reduced. The non-trivial ingredient of the
proof of the statement is to show that for k < d, the input of
the lift-reduction of Step 5 is valid, i.e., that at the beginning
of Step 5 the matrix C is Ξ-reduced. Let R be the R-factor
of C. Let C′ be the bottom-right (d−k)× (d−k) submatrix
of C. By induction, we know that C′ is Ξ-reduced. It thus
remains to show that the first row of R satisfies the size-
reducedness condition, and that Lovász’ condition between
the first two rows is satisfied. We have r1,j = hk,k+j−1/2

'k ,
for j ≤ d − k + 1, thus ensuring the size-reducedness con-
dition. Furthermore, by the shape of the unimodular trans-
formations applied so far, we know that C′ is a basis of
the lattice L′ generated by the columns of the bottom-right
(d − k)-dimensional submatrix of H, which has first mini-
mum λ1(L

′) ≥ mini>k hi,i ≥ 1. As r2,2 is the norm of the
first vector of C′, we have r2,2 ≥ λ1(L

′) ≥ 1. Independently,
by choice of $k, we have r1,1 ≤ 1. This ensures that Lovász’
condition is satisfied, and completes the proof of correctness.
We now bound the cost of the algorithm of Figure 2. We

bound the overall cost of the d − 1 calls to lift-reduction
by

∑
k<d Ck. It remains to bound the contribution of Step 7

to the cost. The cost dominating component of Step 7 is the
computation of the product of the last d− k+1 columns of
(the current value of) B by U ′. We consider separately the
costs of computing the products by U ′ of the k× (d− k+1)
top-right submatrix B of B, and of the (d− k)× (d− k+1)
bottom-right submatrix B of B
For i ≤ k, the magnitudes of the entries of the i-th row

of B are uniformly bounded by hi,i. By Lemma 5, if e, j <
d− k+ 1, then |u′

e,j | ≤ 2'k+2d3ζd1 · rj,j
re,e

(recall that R is the

R-factor of C at the beginning of Step 5). As we saw above,
we have r2,2 ≥ 1, and, by reducedness, we have re,e ≥ α−e

for any e ≥ 2 (using Theorem 1). Also, by choice of $k, we
have r1,1 ≥ 1/2. Overall, this gives that the jth column of U ′

is uniformly bounded as log ‖u′
j‖ = O($k+d+log rj,j). The

bounds on the bit-lengths of the rows of B and the bounds on
the bit-lengths of the columns of U ′ may be very unbalanced.
We do not perform matrix multiplication naively, as this
unbalancedness may lead to too large a cost (the maxima
of row and column bounds may be much larger than the
averages). To circumvent this difficulty we use Recipe 1
of [24] with“S = log detH+d2+d$k”. Since detH = | detB|
the multiplication of B with U ′ can be performed within
O(dωM((log | detB|)/d+ d+ $k)) bit operations.
We now consider the product P := BU ′. By reducedness

of B, we have ‖bj‖ ≤ αdrj,j (from Theorem 1). Recall

that we have |u′
e,j | ≤ 2'k+2d3ζd1 · rj,j

re,e
. As a consequence,

we can uniformly bound log ‖u′
j‖ and log ‖pj‖ by O($k +

d + log rj,j) for any j. We can thus use Recipe 3 of [24]
to compute P , with “S = O(log detH + d2 + d$k)” using
O(dω+εM((log | detB|)/d+ d+ $k)) bit operations.
The proof can be completed by noting that the above

matrix products are performed d − 1 times during the ex-
ecution of the algorithm and by also considering the cost
O(dω+1+εβ1+ε) of convertingB to Hermite normal form.

We use the term Ck in order to amortize over the loop iter-
ations the costs of the calls to the lift-reducing algorithm. In
the algorithm of Figure 2 and in Lemma 6, the lift-reducing
algorithm is not specified. It may be a general-purpose
LLL-reducing algorithm [16, 11, 21, 20] or a specifically de-

signed lift-reducing algorithm such as Lift-L̃1, described in
Section 4.

It can be noted from the proof of Lemma 6 that the non-
reduction costs can be refined as O(dω+εM(log | detB|) +
dω+1+εM(d))+H(d,β). We note that the HNF is only used
as a triangularization, thus any triangularization of the in-
put B will suffice, however then it may be needed to perform
d2 reductions of entries bi,j modulo bi,i. Thus we could re-
place H(d,β) by O(d2β1+ε) for upper triangular inputs. Us-
ing the cost of H-LLL for lift-reduction, we can bound the
complexity of Figure 2 by Poly(d) · β2. This is comparable
to L2 and H-LLL.

3. TRUNCATING MATRIX ENTRIES
We will now focus on improving the lift-reduction step in-

troduced in the previous section. In this section we show
how to truncate the “remainder” matrix and we give an ef-
ficient factorization for the “quotient” matrices encountered
in the process. This way the unimodular transformations
can be found and stored at low cost. In the first part of this
section, we show that given any B reduced and $ ≥ 0, find-
ing U such that σ'BU is reduced can be done by looking
at only the most significant bits of each column of B. In
the context of gcd algorithms, this is equivalent to saying
that the quotients can be computed by looking at the most
significant bits of the remainders only. In the gcd case, us-
ing only the most significant bits of the remainders allows
one to efficiently compute the quotients. Unfortunately, this
is where the gcd analogy stops as a lift-reduction transfor-
mation U may still have entries that are much larger than
the number of bits kept of B. In particular, if the diagonal
coefficients of the R-factor of B are very unbalanced, then
Lemma 5 does not prevent some entries of U from being as
large as the magnitudes of the entries of B (as opposed to
just the precision kept). The second part of this section is
devoted to showing how to make the bit-size of U and the
cost of computing it essentially independent of these magni-
tudes. In this framework we can then describe and analyze
a Lehmer-like lift-reduction algorithm.

3.1 The most significant bits of B suffice for
reducing σ'B

It is a natural strategy to reduce a truncation of B rather
than B, but in general it is unclear if some U which reduces a
truncation of B would also reduce B even in a weaker sense.
However, with lift-reduction we can control the size of U
which allows us to overcome this problem. In this section
we aim at computing a unimodular U such that σ'BU is
reduced, when B is reduced, by working on a truncation
of B. We use the bounds of Lemma 5 on the magnitude of U
to show that a column-wise truncation precision of $+O(d)
bits suffices for that purpose.
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Lemma 7. Let Ξ1,Ξ2,Ξ3 be valid reduction parameters
with Ξ3 > Ξ2. There exists a constant c3 such that the fol-
lowing holds for any $ ≥ 0. Let B ∈ R

d×d be Ξ1-reduced and
∆B be such that max ‖∆bi‖

‖bi‖
≤ 2−'−c3·d. If σ'(B + ∆B)U

is Ξ3-reduced for some U , then σ'BU is Ξ2-reduced.

The above result implies that to find a U such that σ'BU
is reduced, it suffices to find U such that σ'(B

′ · E)U is re-
duced (for a stronger Ξ), for well chosen matrices B′ and E,
outlined as follows.

Definition 2. For B ∈ Z
d×d with β = logmax ‖bj‖ and

precision p, we chose to store the p most significant bits of B,
MSBp(B), as a matrix product B′E or just the pair (B′, E).
This pair should satisfy B′ ∈ Z

d×d with p = logmax ‖b′
j‖,

E = diag(2ei−p) with ei ∈ Z such that 2ei−‖bi‖
‖bi‖

≤ 2d, and

max
‖(bj−b

′
j ·2

ei−p‖

‖bj‖
≤ 2−p.

3.2 Finding a unimodular U reducing σ'B at
low cost

The algorithm TrLiftLLL (a truncated lift-LLL) we pro-
pose is an adaptation of the StrengthenLLL from [19], which
aims at strengthening the LLL-reducedness of an already re-
duced basis, i.e., Ξ2-reducing a Ξ1-reduced basis with Ξ1 <
Ξ2. One can recover a variant of StrengthenLLL by set-
ting $ = 0 below. We refer the reader to [24] for a complete
description of TrLiftLLL.

Theorem 2. For any valid parameters Ξ1 < Ξ2 and con-
stant c4, there exists a constant c′4 and an algorithm Tr-
LiftLLL with the following specifications. It takes as in-
puts $ ≥ 0, B ∈ Z

d×d and E = diag(2ei) with max ‖bi‖ ≤
2c4('+d), ei ∈ Z and BE is Ξ1-reduced; It runs in time
O(d2+ε(d + $)(d + $+ τ) + d2 logmax(1 + |ei|)), where τ =
O(d2($+ d)) is the number of switches performed during the
single call it makes to H-LLL; And it returns two matrices U
and D such that:

1. D = diag(2di) with di ∈ Z satisfying max |ei − di| ≤
c′4($+ d),

2. U is unimodular and max |ui,j | ≤ 2'+c′
4
·d,

3. D−1UD is unimodular and σ'(BE)(D−1UD) is Ξ2-
reduced.

When setting $ = O(d), we obtain the base case of lift-L̃1,
the quasi-linear time recursive algorithm to be introduced
in the next section. The most expensive step of TrLiftLLL
is a call to an LLL-type algorithm, which must satisfy a
standard property that we identify hereafter.
When called on a basis matrix B with R-factor R, the L3,

L2 and H-LLL algorithms perform two types of basis opera-
tions: They either subtract to a vector bk an integer combi-
nation of b1, . . . ,bk−1 (translation), or they exchange bk−1

and bk (switches). Translations leave the ri,i’s unchanged.
Switches are never perfomed when the optimal Lovász con-
dition r2i,i ≤ r2i,i+1 + r2i+1,i+1 is satisfied, and thus cannot
increase any of the quantities maxj≤i rj,j (for varying i),
nor decrease any of the quantities minj≥i rj,j . This implies
that if we have maxi<k ri,i < mini≥k ri,i for some k at the
beginning of the execution, then the computed matrix U will
be such that ui,j = 0 for any (i, j) such that i ≥ k and j < k.

We say that a LLL-reducing algorithm satisfies Property (P)
if for any k such that maxi<k ri,i < mini≥k ri,i holds at the
beginning of the execution, then it also holds at the end of
the execution.

Property (P) is for instance satisfied by L3 ([16, p. 523]),
L2 ([21, Th. 6]) and H-LLL ([20, Th. 4.3]). We choose H-
LLL as this currently provides the best complexity bound,
although L̃1 would remain quasi-linear with L3 or L2.
TrLiftLLL will also be used with $ = 0 in the recursive

algorithm for strengthening the reduction parameters. Such
refinement is needed after the truncation of bases and trans-
formation matrices which we will need to ensure that the
recursive calls get valid inputs.

3.3 A Lehmer-like lift-LLL algorithm
By combining Lemma 7 and Theorem 2, we obtain a

Lehmer-like Lift-LLL algorithm, given in Figure 3. In the
input, we assume the base-case lifting target t divides $. If
it is not the case, we may replace $ by t,$/t-, and add some
more lifting at the end.

Inputs: LLL parameters Ξ; a Ξ-reduced matrix B ∈ Zd×d;
a lifting target !; a divisor t of !.

Output: A Ξ-reduced basis of σ'B.

1. Let Ξ0,Ξ1 be valid parameters with Ξ0 < Ξ < Ξ1,
c3 as in Le. 7 for “(Ξ1,Ξ2,Ξ3) := (Ξ,Ξ,Ξ1)”,
c1 as in Le. 3 with “(Ξ1,Ξ2) := (Ξ,Ξ0)”,
and c′4 as in Th. 2 with “(Ξ1,Ξ2, c4) := (Ξ0,Ξ1, c3 + 2)”.

2. For k from 1 to !/t do
3. (B′, E) := MSB(t+c3d)(B).
4. (D,U) := TrLiftLLL(B′, E, t).
5. B := σtBD−1UD.
6. Return B.

Figure 3: The Lehmer-LiftLLL algorithm.

Theorem 3. Lehmer-LiftLLL is correct. Furthermore,
if the input matrix B satisfies max ‖bi‖ ≤ 2β, then its bit-
complexity is O(d3$(d1+εt+ t−1+ε($+ β))).

Note that if $ is sufficiently large with respect to d, then
we may choose t = $a for a ∈ (0, 1), to get a complexity
bound that is subquadratic with respect to $. By using
Lehmer-LiftLLL at Step 5 of the algorithm of Figure 2 (with
t = $.5), it is possible to obtain an LLL-reducing algorithm
of complexity Poly(d) · β1.5+ε.

4. QUASI-LINEAR ALGORITHM
We now aim at constructing a recursive variant of the

Lehmer-LiftLLL algorithm of the previous section. Because
the lift-reducing unimodular transformations will be pro-
duced by recursive calls, we have little control over their
structure (as opposed to those produced by TrLiftLLL). Be-

fore describing Lift-L̃1, we thus study lift-reducing unimodu-
lar transformations, without considering how they were com-
puted. In particular, we are interested in how to work on
them at low cost. This study is robust and fully general,
and afterwards is used to analyze lift-L̃1.

4.1 Sanitizing unimodular transforms
In the previous section we have seen that working on the

most significant bits of the input matrix B suffices to find a
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matrix U such that σ'BU is reduced. Furthermore, as shown
in Theorem 2, the unimodular U can be found and stored on
few bits. Since the complexity of Theorem 2 is quadratic in $
we will use it only for small lift-reductions (the leaves of our
recursive tree) and repairing reduction quality (when $ = 0).
For large lifts we will use recursive lift-reduction. However,
that means we no longer have a direct application of a well-
understood LLL-reducing algorithm which was what allowed
such efficient unimodular transforms to be found. Thus, in
this section we show how any U which reduces σ'B can
be transformed into a factored unimodular U ′ which also
reduces σ'B and for which each entry can be stored with
only O($+ d) bits. We also explain how to quickly compute
the products of such factored matrices. This analysis can be
used as a general framework for studying lift-reductions.
The following lemmata work because lift-reducing trans-

forms have a special structure which we gave in Lemma 5.
Here we show a class of additive perturbations which, when
viewed as a transformations, are in fact unimodular trans-
formations themselves. Note that these entry-wise pertur-
bations are stronger than mere truncations since ∆ui,j could
be larger than ui,j . Lemma 8 shows that a sufficiently small
perturbation of a unimodular lift-reducing matrix remains
unimodular.

Lemma 8. Let Ξ1,Ξ2 be valid LLL parameters. There
exists a contant c7 such that the following holds for any $ ≥
0. Let B ∈ R

d×d (with R-factor R) be Ξ1-reduced, and U
be unimodular such that σ'BU (with R-factor R′) is Ξ2-

reduced. If ∆U ∈ Z
d×d satisfies |∆ui,j | ≤ 2−('+c7·d) · r′j,j

ri,i

for all i, j, then U +∆U is unimodular.

Proof. Since U is unimodular, the matrix V = U−1 ex-
ists and has integer entries. We can thus write U + ∆U =
U(I+U−1∆U), and prove the result by showing that U−1∆U
is strictly upper triangular, i.e., that (U−1∆U)i,j = 0 for i ≥
j. We have (U−1∆U)i,j =

∑
k≤d vi,k ·∆uk,j . We now show

that if ∆uk,j .= 0 and i ≥ j, then we must have vi,k = 0 (for
a large enough c7).
The inequality ∆uk,j .= 0 and the hypothesis on ∆U im-

ply that
rk,k

r′
j,j

≤ 2−('+c7·d). Since i ≥ j and σ'BU is reduced,

Theorem 1 implies that
rk,k

r′
i,i

≤ 2−'+(c−c7)d, for some con-

stant c > 0. By using the second part of Lemma 5, we ob-
tain that there exists c′ > 0 such that |vi,k| ≤ 2'+c′·d · rk,k

r′
i,i

≤

2(c+c′−c7)d. As V is integral, setting c7 > c+ c′ allows us to
ensure that vi,k = 0, as desired.

Lemma 9 shows that a sufficiently small perturbation of
a unimodular lift-reducing matrix remains lift-reducing.

Lemma 9. Let Ξ1,Ξ2,Ξ3 be valid LLL parameters such
that Ξ2 > Ξ3. There exists a contant c8 such that the fol-
lowing holds for any $ ≥ 0. Let B ∈ R

d×d (with R-factor R)
be Ξ1-reduced, and U be unimodular such that σ'BU (with
R-factor R′) is Ξ2-reduced. If ∆U ∈ Z

d×d satisfies |∆ui,j | ≤
2−('+c8·d) · r′j,j

ri,i
for all i, j, then σ'B(U +∆U) is Ξ3-reduced.

Proof. We proceed by showing that |σ'B∆U | is column-
wise small compared to |σ'BU | and by applying Lemma 3.
We have |∆U | ≤ 2−('+c8·d)diag(r−1

i,i )Cdiag(r′j,j) by assump-
tion, where ci,j = 1 for all i, j. Since B is Ξ1-reduced,
we also have |R| ≤ diag(ri,i)T + θ1Tdiag(rj,j), where T is

upper triangular with ti,j = 1 for all i ≤ j. Then using
|R∆U | ≤ |R||∆U | we get

|R∆U | ≤ 2−('+c8·d)
(
diag(ri,i)Tdiag(r

−1
j,j )+θ1T

)
Cdiag(r′j,j).

Since B is Ξ1-reduced, by Theorem 1, we have ri,i ≤ αd
1rj,j

for all i ≤ j, hence it follows that

|R∆U | ≤ 2−('+c8·d)(αd
1 + θ1)TCdiag(r′j,j).

As a consequence, there exists a constant c > 0 such that
for any j:

‖(σ'B∆U)j‖ ≤ 2'‖(B∆U)j‖ = 2'‖(R∆U)j‖ ≤ 2(c−c8)dr′j,j .

We complete the proof by noting that r′j,j ≤ ‖(σ'BU)j‖
and by applying Lemma 3 (which requires that c8 is set
sufficiently large).

Lemmata 8 and 9 allow us to design an algorithmically
efficient representation for lift-reducing unimodular trans-
forms.

Theorem 4. Let Ξ1,Ξ2,Ξ3 be valid LLL parameters with
Ξ2 > Ξ3. There exist contants c9, c10 > 0 such that the fol-
lowing holds for any $ ≥ 0. Let B ∈ R

d×d be Ξ1-reduced, and
U be unimodular such that σ'BU is Ξ2-reduced. Let di :=
,log ‖bi‖- for all i. Let D := diag(2di), x := $ + c9 ·
d, Û := 2xDUD−1 and U ′ := 2−xD−1,Û-D. We write
Clean(U, (di)i, $) := (U ′, D, x). Then U ′ is unimodular and

σ'BU ′ is Ξ3-reduced. Furthermore, the matrix Û satisfies
max |ûi,j | ≤ 22'+c10·d.

Proof. We first show that U ′ is integral. If ,ûi,j- = ûi,j ,
then u′

i,j = ui,j ∈ Z. Otherwise, we have ûi,j .∈ Z, and
thus x+di−dj ≤ 0. This gives that ,ûi,j- ∈ Z ⊆ 2x+di−djZ.
We conclude that u′

i,j ∈ Z.

Now, consider ∆U = U ′−U . Since ∆U = 2−xD−1(,Û-−
Û)D, we have |∆ui,j | ≤ 2dj−di−x, for all i, j. Thus by The-

orem 1 and Lemma 4, we have |∆ui,j | ≤ 2−x+c·d · r′j,j
ri,i

for

some constant c. Applying Lemmata 8 and 9 shows that U ′

is unimodular and σ'BU ′ is Ξ3-reduced (if c9 is chosen suf-
ficiently large).

By Lemma 5, we have for all i, j:

|ûi,j | = |ui,j |2x+di−dj ≤ 2x+'+c′d · rj,j
2'log ‖bj‖(

2'log ‖bi‖(

ri,i
,

for some constant c′. Theorem 1 then provides the re-
sult.

The above representation of lift-reducing transforms is
computationally powerful. Firstly, it can be efficiently com-
bined with Theorem 2: Applying the process described in
Theorem 4 to the unimodular matrix produced by TrLiftLLL
may be performed in O(d2(d + $) + d logmax(1 + |ei|)) bit
operations, which is negligible comparable to the cost bound
of TrLiftLLL. We call TrLiftLLL’ the algorithm resulting
from the combination of Theorems 2 and 4. TrLiftLLL’ is
to be used as base case of the recursion process of Lift-L̃1.
Secondly, the following result shows how to combine lift-
LLL-reducing unimodular transforms. This is an engine of
the recursion process of Lift-L̃1.

Lemma 10. Let U = 2−xD−1U ′D ∈ Z
d×d with U ′ ∈

Z
d×d and D = diag(2di). Let V = 2−yE−1V ′E ∈ Z

d×d with
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V ′ ∈ Z
d×d and E = diag(2ei). Let $ ∈ Z and fi ∈ Z for i ≤

d. Then it is possible to compute the output (W ′, F, z) of
Clean(U · V, (fi)i, $) (see Theorem 4) from x, y, $, U ′, V ′,
(di)i, (ei)i, (fi)i, in time O(dωM(t+ log d)), where

max
i,j

max(|u′
i,j |, |v′i,j |) ≤ 2t

and

max
i

max(|di − ei|, |fi − ei|, |$− (x+ y)|) ≤ t.

For short, we will write W := U/V , with W = 2−zF−1W ′F
and F = diag(2fi).

Proof. We first compute m = max |di − ei|. We have

UV = 2(−x−y−m) · F−1T · F,

where

T = (FD−1)U ′diag(2di−ei+m)V ′(EF−1).

Then we compute T . We multiply U ′ by diag(2di−ei+m),
which is a mere multiplication by a non-negative power of 2
of each column of U ′. This gives an integral matrix with
coefficients of bit-sizes ≤ 3t. We then multiply the latter
by V ′, which costs O(dωM(t + log d)). We multiply the
result from the left by (FD−1) and from the right by EF−1.

From T , the matrix Ŵ of Theorem 4 may be computed and
rounded within O(d2t) bit operations.

It is crucial in the complexity analysis of Lift-L̃1 that
the cost of the merging process above is independent of the
magnitude scalings (di, ei and fi).

4.2 Lift-L̃1 algorithm
The Lift-L̃1 algorithm relies on two recursive calls, on

MSB, truncations, and on calls to TrLiftLLL’. The latter is
used as base case of the recursion, and also to strengthen the
reducedness parameters (to ensure that the recursive calls
get valid inputs). When strengthening, the lifting target is
always 0, and we do not specify it explicitly in Figure 4.

Theorem 5. Lift-L̃1 is correct.

Proof. When $ ≤ d the output is correct by Theorems 2
and 4. In Step 2, Theorems 2 and 4 give that BU1 is Ξ2-
reduced and that U1 has the desired format. In Step 3, the
constant c3 ≥ c1 is chosen so that Lemma 3 applies now
and Lemma 7 will apply later in the proof. Thus B1 is Ξ1-
reduced and has the correct structure by definition of MSB.
Step 4 works (by induction) because B1 satisfies the input

requirements of Lift-L̃1. Thus σ'/2B1UR1
is Ξ1-reduced.

Because of the selection of c3 in Step 3 we know also that
σ'/2BU1UR1

is reduced (weaker than Ξ1) using Lemma 7.
Thus by Theorem 4, the matrix B2 is reduced (weakly) and
has an appropriate format for TrLiftLLL’. By Theorem 2,
the matrix σ'/2BU1R1

U2 is Ξ3-reduced and by Theorem 4
we have that σ'/2BU1R12 is Ξ2-reduced. By choice of c3 and
Lemma 3, we know that the matrix B3 is Ξ1-reduced and
satisfies the input requirements of Lift-L̃1. Thus, by recur-
sion, we know that σ'/2B3UR2

is Ξ1-reduced. By choice
of c3 and Lemma 7, the matrix σ'BU1R12UR2

is weakly
reduced. By Theorem 4, the matrix B4 is reduced and
satisfies the input requirements of TrLiftLLL’. Therefore,

Inputs: Valid LLL-parameters Ξ3 > Ξ2 ≥ Ξ4 > Ξ1;
a lifting target !;
(B′, (ei)i) such that B = B′diag(2ei ) is Ξ1-reduced

and max |b′i,j | ≤ 2'+c·d.
Output: (U ′, (di)i, x) such that σ'BU is Ξ1-reduced,

with U = 2−xdiag(2−di )U ′diag(2di )
and max |u′

i,j | ≤ 22'+2c·d.

1. If ! ≤ d, then use TrLiftLLL’ with lifting target !.
Otherwise:

2. /∗ Prepare 1st recursive call ∗/
Call TrLiftLLL’ on (B,Ξ2); Let U1 be the output.

3. B1 := MSB('/2+c3·d)(B · U1).
4. /∗ 1st recursive call ∗/

Call Lift-L1 on B1, with lifting target !/2;
Let UR1

be the output.
5. /∗ Prepare 2nd recursive call ∗/

U1R1
:= U1 ( UR1

.
6. B2 := σ'/2BU1R1

.
7. Call TrLiftLLL’ on (B2,Ξ3). Let U2 be the output.
8. U1R12 := U1R1

( U2.
9. B3 := MSB('/2+c3·d)(σ'/2BU1R12).
10. /∗ 2nd recursive call ∗/

Call Lift-L1 on B3, with lifting target !/2;
Let UR2

be the output.
11. /∗ Prepare output ∗/

U1R12R2
:= U1R12 ( UR2

.
12. B4 := σ'BU1R12R2

.
13. Call TrLiftLLL’ on (B4,Ξ4); Let U3 be the output.
14. U := U1R12R2

( U3; Return U .

Figure 4: The Lift-L̃1 algorithm.

the matrix σ'BU1R12R2
is Ξ4-reduced. Theorem 4 can be

used to ensure U has the correct format and σ'BU is Ξ1-
reduced.

4.3 Complexity analysis

Theorem 6. Lift-L̃1 has bit-complexity

O
(
d3+ε(d+ $+ τ) + dωM($) log $+ $ log(β + $)

)
,

where τ is the total number of LLL-switches performed by the
calls to H-LLL (through TrLiftLLL), and max |bi,j | ≤ 2β.

Proof. We first bound the total cost of the calls to Tr-
LiftLLL’. There are O(1 + $/d) such calls, and for any of
these the lifting target is O(d). Their contribution to the

cost of Lift-L̃1 is therefore O(d3+ε(d + $ + τ)). Also, the
cost of handling the exponents in the diverse diagonal ma-
trices is O(d(1 + $/d) log(β + $)).

Now, let C(d, $) be the cost of the remaining operations

performed by Lift-L̃1, in dimension d and with lifting tar-
get $. If $ ≤ d, then C(d, $) = O(1) (as the cost of Tr-
LiftLLL’ has been put aside). Assume now that $ > d.
The operations to be taken into account include two recur-
sive calls (each of them costing C(d, $/2)), and O(1) mul-
tiplications of d-dimensional integer matrices whose coeffi-
cients have bit-length O(d + $). This leads to the inequal-
ity C(d, $) ≤ 2C(d, $/2) +K · dωM(d+ $), for some absolute
constant K. This leads to C(d, $) = O(dωM(d + $) log(d +
$)).

4.4 L̃1 algorithm
The algorithm of Figure 4 is the Knuth-Schönhage-like

generalization of the Lehmer-like algorithm of Figure 3. Now
we are ready to analyze a general lattice reduction algorithm
by creating a wrapper for Lift-L̃1.
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Algorithm L̃1: We define L̃1 as the algorithm from Fig-
ure 2, where Figure 5 is used to implement lift-reduction.

As we will see Figure 5 uses the truncation process MSB
described in Definition 2 and TrLiftLLL to ensure that L̃1

provides valid inputs to Lift-L̃1. Its function is to process
the input C from Step 5 of Figure 2 (the lift-reduction step)
which is a full-precision basis with no special format into a
valid input of Lift-L̃1 which requires a truncated basisB′·E.
Just as in Lift-L̃1 we use a stronger reduction parameter to
compensate for needing a truncation.

Inputs: Valid LLL parameters Ξ1 > Ξ;
C Ξ-reduced with βk = logmax ‖C‖;

a lifting target !k;
Output: U unimodular, such that σ'CU is Ξ-reduced

1. C′F := MSB'k+c3d(C)
2. Call TrLiftLLL on (C′F,Ξ1). Let D−1U0D be the output.
3. B′ := C′FD−1U0; E := D
4. Call Lift-L̃1 on (B′, E,Ξ1). Let U'k be the output.
5. Return U := D−1U0DU'k .

Figure 5: From Figure 2 to Lift-L̃1

This processing before Lift-L̃1 is similar to what goes
on inside of Lift-L̃1. The accuracy follows from Lemma 3,
Theorem 2, Theorem 5, and Lemma 7. While the complexity
of this processing is necessarily less than the bit-complexity
of Lift-L̃1, O(d3+ε(d+$k+τk)+dωM($k) log $k+$k log(βk+
$k)) from Theorem 6, which we can use as Ck from Lemma 6.
We now amortize the costs of all calls to Step 5 using

Figure 5. More precisely, we bound
∑

k $k and
∑

k τk more
tightly than using a generic bound for the $k’s (resp. τk’s).
For the $k’s, we have

∑
k $k ≤ log detH ≤ dβ. To handle

the τk’s, we adjust the standard LLL energy/potential anal-
ysis to allow for the small perturbations of ri,i’s due to the
various truncations.

Lemma 11. Consider the execution of Steps 2–8 of L̃1

(Figure 2). Let H ∈ Z
d×d be the initial Hermite Nor-

mal Form. Let Ξ0 = (δ0, η0, θ0) be the strongest set of
LLL-parameters used within the execution. Let B be a ba-
sis occuring at any moment of Step 5 during the execution.
Let R be the R-factor of B and nMSB be the number of
times MSB has been called so far. We define the energy of
B as E(B,nMSB) := 1

log 1/δ0

(∑
i[(i− 1) · log ri,i] + d2nMSB

)

(using the natural logarithm). Then the number of LLL-
switches performed so far satisfies τ ≤ E(B,nMSB) = O(d ·
log detH).

Proof. The basis operations modifying the energy func-
tion are the LLL switches, the truncations (and returns from
truncations), the adjunctions of a vector at Steps 3–4 of the
algorithm from Figure 2 and the lifts. We show that any of
these operations cannot decrease the energy function.
As Ξ0 is the strongest set of LLL parameters ever consid-

ered during the execution of the algorithm, each LLL switch
increases the weighted sum of the ri,i’s (see [16, (1.23)]) and
hence E by at least 1.
We now consider truncations. Each increase of nMSB pos-

sibly decreases each ri,i (and again when we return from the
truncation). We see from Lemma 1 and our choices of preci-
sions p that for any two LLL parameters Ξ′ < Ξ there exists

an ε < 1 such that each ri,i decreases by a factor no smaller
than (1 + ε). Overall, the possible decrease of the weighted
sum of the ri,i’s is counterbalanced by the term “d2nMSB”
from the energy function, and hence E cannot decrease.

Now, the act of adjoining a new row in Figure 2 does not
change the previous ri,i’s but increases their weights. Since
at the moment of an adjoining all log ri,i’s except possibly
the first one are non-negative and since the weight of the
first one is zero, Steps 3–4 cannot decrease E .

Finally, each product by σ' (including those within the
calls to TrLiftLLL’) cannot decrease any ri,i, by Lemma 4.

To conclude, the energy never decreases and any switch
increases it by at least 1. This implies that the number of
switches is bounded by the growth E(B,nMSB)−E((hd,d), 0).
The initial value E((hd,d), 0) of the energy is ≥ 0. Also,
at the end of the execution, the term

∑
[(i − 1) log ri,i]

is O(log detH). As there are 5 calls to MSB in the algo-
rithm from Figure 4 (including those contained in the calls
to TrLiftLLL’), we can bound d2nMSB by 5d2

∑
k($k/d) =

5 log detH.

We obtain our main result by combining Theorems 5 and 6,
and Lemma 11 to amortize the LLL-costs in Lemma 6 (we
bound log detH by dβ).

Theorem 7. Given as inputs Ξ and a matrix B ∈ Z
d×d

with max ‖bj‖ ≤ 2β, the L̃1 algorithm returns a Ξ-reduced
basis of L(B) within O(d5+εβ+dω+1+εβ1+ε) bit operations.
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