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ABSTRACT
We describe some major recent progress in exact and sym-
bolic linear algebra. These advances concern the improve-
ment of complexity estimates for fundamental problems such
as linear system solution, determinant, inversion and com-
putation of canonical forms. The matrices are over a fi-
nite field, the integers, or univariate polynomials. We show
how selected techniques are key ingredients for the new so-
lutions: randomization and algebraic conditioning, lifting,
subspace approach, divide-double and conquer, minimum
matrix polynomial, matrix approximants. These algorith-
mic progress allow the design of new generation high perfor-
mance libraries such as LinBox, and open various research
directions.

We refer to [3] for an overview of methods in exact linear
algebra, see also [37], [1] (in French), and [7, §2.3]. For
fundamentals of computer algebra we refer to [16, 7].

Categories and Subject Descriptors: I.1.0; F.2.1; G.4.

General Terms: Algorithms.

1. Introduction. Past recent years have seen several major
steps forward in linear algebra with matrices having exact or
symbolic entries. For dense matrices, we illustrate this with
the problem of computing the determinant of an n×n integer
matrix with entries on β bits. Let MM(n) (between Ω(n2)
and O(n3)) be the cost for multiplying to n×n matrices over
a field F [4]. The “classical” use of Bareiss’ algorithm or Chi-
nese remaindering leads to a bit complexity (nβ MM(n))1+ε,
i.e. the algebraic complexity times the bit length of the
output. First estimates below the latter product are given
in [14, 31] (actually, avant-garde ingredients for breaking
the product were already available in [23]). We now know
that the determinant can be computed in (β MM(n))1+ε bit
operations [39] (randomized). In other words, and more gen-
erally (the determinant is not an isolated problem), several
polynomial or integer dense matrix problems can be solved
with about the same number of operations (within log fac-
tors) as required to multiply two matrices having the same
size (dimension and degree or bit size) as the input matrix.
We will present some of these problems and introduce the
main techniques that are involved in their new solutions.

The improvements for dense matrices have arised in strong
connection with those made for black box matrices (e.g.
sparse matrices) over finite fields or the integers. Black box
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matrices have been studied intensively in various applica-
tions (polynomial systems, group computation, cryptogra-
phy, etc.). We will see some new directions in this domain
such as fast basic linear algebra subroutines and adaptive
and hybrid algorithms, especially with the example of the
dedicated design of the LinBox library.

2. Randomized algorithms and conditioning. Most
of the currently fastest algorithms are randomized (Monte
Carlo or Las Vegas). Randomization has led to the notion of
algebraic matrix conditioning for ensuring good properties
on matrices in view of easier solutions [5]. A central paper
is [25] where a sort of equivalence between the Hermite and
the Smith normal form of a conditioned matrix is identified.
The latter is essential for understanding the recent fact that
computing the Smith normal form may be surprisingly not
harder than computing the determinant.

3. Hensel lifting. Lifting [9, 33] is a key iterative al-
gorithm for system solution in symbolic linear algebra. It
can be implemented at about the cost of the corresponding
matrix product [38, 39]. Since the remark that system solu-
tion may be used for computing the determinant [34], lifting
plays an important role for solving a lot of matrix problems.
For instance, we refer to the elegant ideas of [17] for linear
Diophantine systems.

4. Krylov/Lanczos subspace methods. Subspace meth-
ods such as the Krylov one are the counterpart of lifting for
black box matrices. The seminal papers [45, 28, 29, 30]
have established the importance and applications of the ap-
proach (see [15] for the Lanczos alternative). Blocking [8,
24, 26] and the notion of matrix minimum polynomial [43]
are main ingredients for further cost improvements. For
instance see [31] concerning the determinant and the Frobe-
nius normal form, and [41] (and references therein) about
the discrete logarithm.

5. Divide-double and conquer. Divide and conquer
is a crucial paradigm for matrices over an abstract set of
entries. Since it may not take into account the behaviour of
the entry sizes during the computation, the paradigm have
to be enriched for the symbolic setting. A “divide-double
and conquer” strategy, which not only divides dimensions
but also minimizes size rises, is used for essentially optimal
polynomial matrix inversion [21], and for the outstanding
determinant approach of [38, 39].
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6. Minimum matrix polynomial and approximants.
The role of the uniform approach of [2] for computing poly-
nomial matrix approximants is essential for some asymtoti-
cally fastest known algorithms on univariate polynomial ma-
trices [22]. We rely on approximants for showing that poly-
nomial basis reduction [19] or nullspace computation [40]
can be solved at about the cost of the polynomial matrix
product. Approximants complement a lifting or a subspace
approach by solving the matrix reconstruction problem, and
may provide minimal, if not unimodular, transformations.

7. High performance software: LinBox library. Most
of the above novelties have been carried over to practical
algorithms and implementations in the LinBox library [10,
32] (see also [6]). We refer to [42, 18, 20, 27, 44, 35] for pre-
sentations of the main advances in algorithm, library and
code design. New concepts such as exact basic linear alge-
bra subroutines are described in [11]. In addition to better
complexity estimates, performance also relies on the use of
clever adaptive and hybrid algorithms [36, 13, 12].

Related topics and perspectives. Important related
topics that we do not discuss are structured matrices and
numerical techniques. Some future directions will be identi-
fied.
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