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We present a new algorithm to compute the Integer Smith normal form of large sparse

matrices. We reduce the computation of the Smith form to independent, and therefore
parallel, computations modulo powers of word-size primes. Consequently, the algorithm

does not suffer from coefficient growth. We have implemented several variants of this al-

gorithm (elimination and/or black box techniques) since practical performance depends
strongly on the memory available. Our method has proven useful in algebraic topology
for the computation of the homology of some large simplicial complexes.

c© 2001 Academic Press

1. Introduction

In this article we study the computation of the integer Smith form of sparse matri-
ces. The classical Smith form algorithm performs an elimination process with some gcd
computations over the integers or modulo large primes (Bachem and Kannan, 1979;
Rayward-Smith, 1979; Iliopoulos, 1989). The best known complexities may be found in
Storjohann (1996, 2000) for a deterministic algorithm or in Eberly et al. (2000) for a
probabilistic algorithm of the Monte Carlo type. For sparse matrices, one should expect
to accelerate the solution by exploiting the sparsity. There exists few theoretical advances
in this direction. The method in Giesbrecht (1996) is based on iterative methods and does
substantially better for sparse matrices than the methods cited above, but the approach
is not very practical yet.

Our new probabilistic algorithm reduces the Smith form to computations modulo pow-
ers of small primes. Consequently the algorithm does not suffer from coefficient growth.
Moreover, the modular computations are independent of each other, permitting an easy
and very effective parallelization. Depending on some space/time tradeoff considerations,
we may choose either iterative or direct methods at certain stages of our algorithm. Some
salient features of our approach are that: (1) we use the ovals of Cassini to get a better
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determinant bound than Hadamard’s; and (2) we begin with the trailing coefficient (va-
lence) of the minimal polynomial of the symmetrized but unpreconditioned matrix AAt.
The method is particularly effective when this polynomial is of low degree and hence fast
to compute by Wiedemann’s method. This has proven to be the case for many of the
boundary map matrices of the simplicial complexes given to us by Volkmar Welker (Bab-
son et al., 1999; Björner and Welker, 1999). We report on experiments involving these
matrices which arise in the computation of the homology of the complexes. Indeed, the
reduced homology of a simplicial complex is equivalent information to the integer Smith
form of its boundary maps (Munkres, 1994). In the cases we studied, the boundary maps
can be very large, e.g. around 105 rows and columns, and very sparse, e.g. six nonzero
entries per row.

A preliminary version of this article appeared in Dumas et al. (2000). Here we give
sharper estimates on the number of primes involved, give a complete probabilistic analysis
of the valence computation, include an analysis of the asymptotic space and time cost of
the algorithm, and offer more experimental results.

We present an overview of our algorithm in Section 2. It works in three main steps:
(i) Computation of the valence; (ii) Construction—from the valence—of a set L of primes
candidates for being factors of the entries of the Smith form; (iii) Reconstruction of the
Smith form from the local Smith forms at the primes in L. Step (i) is implemented in
Section 3 where an integer minimal polynomial has to be computed. The main concern
is to take advantage of some special properties of the boundary map matrices, to reduce
the number of primes used in the proposed homomorphic scheme. Step (ii) is studied
in Section 4 where a precise characterization of the primes occurring in the valence and
involved in the Smith form is given. This leads to a very small set L of primes candidates
for the next step. The latter is detailed in Section 5 where we show how to compute the
local Smith form at a given prime p. Once these are computed at all the primes of L
the Smith form itself is easily derived. We also propose a specialized memory efficient
algorithm to check the value of the largest entry of the Smith form.

This presentation of the algorithm is followed by asymptotic cost analyses in Sec-
tion 6. Finally we report on experiments using matrices from homology in Section 7 and
demonstrate how effective our approach can be.

2. Valence-based Smith Form Algorithm

In this section we describe an algorithm for the computation of the Smith form of an
integer matrix. This algorithm has proven effective on some of the boundary matrices
discussed in this paper, though the worst case asymptotic complexity is not better than
for Giesbrecht’s algorithm (Giesbrecht, 1996, Theorem 2.5). The method is particularly
effective when the degree of the minimal polynomial of AAt is small. We begin with
some definitions.

Definitions 2.1.

• The valence of a polynomial is its trailing nonzero coefficient. By extension, the
characteristic valence of a matrix is the valence of its characteristic polynomial.
The minimal valence or simply the valence of a matrix is the valence of its minimal
polynomial.
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• The valuation is the degree of the corresponding term. The characteristic and
minimal valuations of a matrix are similarly defined.

• For 1 ≤ i ≤ min(m,n), the ith determinantal divisor of a matrix A, di(A), is the
greatest common divisor of the i× i minors of A. Define d0(A) = 1.
• For 1 ≤ i ≤ min(m,n), the ith invariant factor of A is si(A) = di(A)/di−1(A), or

0 if di(A) = 0. Let s0 = 1.
• The Smith form of A is the diagonal matrix S = diag(s1(A), . . . , smin(m,n)(A)) of

the same shape as A.

It is well known that for 1 ≤ i ≤ min(m,n), we have di−1|di, si−1|si, and that A is
unimodularly equivalent to its Smith form.

Notations 2.1.

• For a positive integer q, we denote by Zq the quotient ring Z/qZ.
• The set of invertible elements in Zq is denoted by Zq∗.

Definitions 2.2.

• For a positive integer q, we define rank of A mod q, to be the greatest i such
that q does not divide the ith invariant factor of A, and we denote this rank by
rq = rankq(A).

• The rank of A as an integer matrix will be denoted r = rank(A).

First we present an overview of the valence method. The individual steps can be done
in many ways. Afterwards we will discuss the implementation details.

Algorithm: VSF [Valence-Smith-Form]
Input: – a matrix A ∈ Zm×n. A may be a “black box” meaning that the only

requirement is that left and right matrix-vector products may be computed:
x −→ Ax for x ∈ Zn, y −→ yA for yt ∈ Zm.

Output: – S = diag(s1, . . . , smin(m,n)), the integer Smith form of A.

(1) [Valence computation]
If m < n, let B = AAt, otherwise let B = AtA.
Let N = min(m,n)
Compute the (minimal) valence v of B. [See Section 3.]

(2) [Integer factorization.]
Factor the valence v.
Let L be the list of primes which divide v.
[If v is hard to factor, see Section 6.]

(3) [Rank and first estimate of Smith form.]
Choose a prime p not in L (i.e. p - v).
Compute r = rankp(A). [ This is the integer rank. The first r invariant factors
are nonzero and the last N − r are 0’s. ]
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Set S = diag(s1, . . . , sN ), where si = 1 for i ≤ r and si = 0 for i > r.

(4) [Nontrivial invariant factors.]
For each prime p ∈ L

Compute Sp = diag(sp,1, . . . , sp,N ), the Smith form of A over the local ring
Z

(p). [See Section 5 ]
Set S = SSp. [That is, set si = sisp,i for those sp,i which are nontrivial

powers of p. ]

(5) [Return invariants]
Return S = diag(s1 . . . sN ) ∈ Zm×n.

In order to prove the correctness of the method we will need the following theorem.

Theorem 2.1. Let A be a matrix in Z
m×n. Let (s1, . . . , sr) be its nonzero invariant

factors. If a prime p ∈ Z divides some nonzero si, then p2 divides the characteristic
valence of AAt and p divides the minimal valence(AAt). The same is true of the valences
of AtA as well.

Proof. Let B = AtA. The argument will apply equally well to B = AAt. Let M(x) =
minpoly(B) and let v = valence(M) = valence(B). Let C(x) = charpoly(B), and let
F1(x), . . . , Fk(x) be the invariant factors of B. It is well known that these are monic
integer polynomials with

F1(x)|F2(x)| . . . |Fk(x) = minpoly(B) and C(x) =
∏

Fi(x).

Let vc = valence(C) = characteristic valence(B) and let vi = valence(Fi). It follows
easily from the nature of polynomial arithmetic that v1|v2| . . . |vk = v, and vc =

∏
vi,

Hence all primes that occur in vc occur in v. Thus the second part of the conclusion
follows from the first and it suffices now to show any prime occurring in the Smith form
of A occurs squared in vc.

Notations 2.2. As in Kaltofen et al. (1990), we denote by Sni the set of all length i
subsequences of [1..n] and by AIJ , I ∈ Sni , J ∈ Sni , the i×i determinant of the submatrix
of A in the rows I and columns J .

Using the Cauchy–Binet formula (Gantmacher, 1959, Proposition I. Section 2.14), note
that vc, as a coefficient of the characteristic polynomial, satisfies for some i:

±vc =
∑
I∈Sni

BII =
∑
I∈Sni

∑
K∈Sni

AIKA
t
KI =

∑
I∈Sni

∑
K∈Sni

A2
IK .

As a sum of squares, such a coefficient is nonzero if and only if some AIK is nonzero.
Hence vc is the coefficient for the case i = rank(A). Moreover, if p occurs in the Smith
form, then p|gcd(AIK), the rth determinantal divisor of A. It follows that p2|vc. 2

It is straightforward to show that this theorem holds when Z is replaced by any prin-
cipal ideal domain of characteristic zero (in general replacing transpose by conjugate
transpose).
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Corollary 2.1. Algorithm Valence-Smith-Form correctly computes the Smith Form.

Proof. The theorem shows that we consider the relevant primes. It is evident that the
integer Smith form may be composed from the relevant local Smith forms, since the
integer Smith form is the local Smith form at p up to multiples which are units mod p. 2

The remaining sections are devoted to details, variants, and experiments concerning
the valence algorithm (Sections 3 and 4 are devoted to details on part 1 of the valence
algorithm and Section 5 will focus on part 4).

3. Computing the Valence

The first two steps of the valence algorithm have the purpose of determining a small,
or at any rate finite, set of primes which includes all primes occurring in the Smith form.

3.1. a point about the symmetrization

The choice between AtA and AAt is easily made in view of the following.

Theorem 3.1. minpolyAtA and minpolyAAt are equal or differ by a factor of x.

Proof. Let mAtA(X) and mAAt(X) be respectively the minimal polynomials of AtA
and AAt. The Cayley–Hamilton theorem (Gantmacher, 1959, Theorem IV. Section 4.2)
states that mAtA(AtA) = 0. Then, by multiplying on both sides by A and At we have
AmAtA(AtA)At = 0 which means (XmAtA)(AAt) = 0. Since mAAt is the minimal poly-
nomial of AAt it follows that mAAt |XmAtA. We can similarly prove that mAtA|XmAAt .
Then either mAAt = XmAtA or mAAt = mAtA or XmAAt = mAtA. 2

Thus the difference of degree has a negligible effect on the run time of the algorithm. It
is advantageous to choose the smaller of AAt and AtA in the algorithm, to reduce the cost
of the inner products involved. Moreover any bound on the coefficients of minpolyAtA
can then be applied to those of minpolyAAt and vice versa.

3.2. chinese remaindering

We compute the integer minimal valence, v, of a matrix B (the valence of its minimal
polynomial over the integers) by Chinese remaindering valences of its minimal polynomi-
als mod p for various primes p. The algorithm has three steps. First compute the degree
of the minimal polynomial by doing a few trials modulo some primes. Then compute a
sharp bound on the size of the valence using this degree. End by Chinese remaindering
the valences modulo several primes.

The first question is how many primes must be used for the Chinese remaindering.
Using Hadamard’s inequality (Gathen and Gerhard, 1999, Theorem 16.6) would induce
a use of O(n) primes. We found several methods to reduce this number. In the two next
sections we develop two methods for this purpose. First is an early termination of the
Chinese remaindering, which is directly useful for sequential computation. Then, for a
deterministic computation, it is interesting to have a sharper estimate. We can use the
ovals of Cassini to bound the spectral radius and thence the valence. We end this section
by considerations on probabilistic computations of the integer minimal polynomial.
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3.3. early termination

In the computations for which timings and results are reported here, we compute vpi ,
the minimal valence mod pi, for several primes chosen at random in the vicinity of 216. We
accept the result of Chinese remaindering when the product of the primes pi exceeds the
smaller of the Hadamard bound or a bound computed by considering ovals of Cassini as
discussed in Section 3.4. But when both of these bounds are large, we use a probabilistic
termination condition. Let v be the valence and let vk be v reduced mod M =

∏k
i=1 pi

for randomly chosen primes pi. Thus 0 ≤ vk < M and vk = v mod M . Suppose at this
point that we believe vk = v, that is to say we believe to have sufficiently many primes
even if M is lower than our bound (we may believe this for instance if this vk remains
the same for successive k). Then it is possible to compute a quick check of this belief in
the following manner. Choose another random prime p∗ in a sufficiently large set and
compute v∗, the minimal valence mod p∗. Thus 0 ≤ v∗ < p∗ and v∗ = v mod p∗. Also
reduce vk mod p∗, 0 ≤ v∗k < p∗ and v∗k = vk mod p∗. Then if vk = v, the two values
modulo p∗ must also be equal. Now there are two cases. On the one hand if those two
values are distinct we know that our computation is not finished. On the other hand
if the values modulo p∗ are equal then vk is v with a high probability which we make
explicit in the following lemma.

Lemma 3.1. Let v ∈ Z and an upper bound U be given such that v < U . Let P be a set
of primes and let {p1 . . . pk, p

∗} be a random subset of P . Let l be a lower bound such that
p∗ > l and let M =

∏k
i=1 pi. Let vk = v mod M , v∗ = v mod p∗ and v∗k = vk mod p∗

as above. Suppose now that v∗k = v∗. Then v = vk with probability at least 1− logl(
U−vk
M )

|P | .

Proof. The only way to give an incorrect answer is to have v 6= vk and at the same time
v∗k = v∗. This means that vk = v mod M and vk = v mod p∗ and therefore, as M and
p∗ are coprime, p∗ must divide v−vk

M . To finish we see that there are at most logl(
v−vk
M )

distinct prime numbers greater than l dividing this quotient and that v− vk < U − vk. 2

For instance, the worst example given in Table 2 is a matrix for which the valence is
bounded by U = 117827. We choose some primes greater than l = 215. We can suppose
that M , the product of primes, is greater than 2, therefore logl(

U
M ) ≤ 379. On the other

hand, we know that there are exactly 3030 primes between 215 and 216. Therefore by
choosing a prime between 215 and 216 we still have more than an 87% chance of being
right and by using this trick four times this grows to 99.97%. Usually, for the homology
matrices the bound is closer to 10200. There, only one application of the trick gives more
than 98.5% confidence.

3.4. ovals of Cassini

For a parallel computation of the valence, in particular, or to improve the probability
of success, a sharp bound on the valence is very useful. The Hadamard bound may be
used, but is too pessimistic an estimate for many sparse matrices. Therefore, we use a
bound determined by consideration of Gershgörin disks and ovals of Cassini. This bound
is of the form βd where β is a bound on the eigenvalues and d is the degree of the minimal
polynomial.
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Table 1. Valence Smith form algorithm complexities (small valence).

Step Expected Time Memory Probability Section

Input dependent Worst case of correctness

Cassini bound O(Ω) O(Ω) O(n) 1 3.4

Valence O(sdΩ log(ε−1)) O(n2Ω log(ε−1)) O (̃n+ s) 1− ε 3.6

Elimination techniques

Integer rank O(rmn) O(n3) O(n2) 1− ε 2

Prime ranks O (̃rmn) O (̃n3) O (̃n2) 1 5.1

Prime Powers O (̃rmn) O (̃n3) O (̃n2) 1 5.1

Black box techniques

Integer rank O (̃rΩ log(ε−1)) O (̃nΩ log(ε−1)) O (̃n) 1− ε 5.2

Prime ranks O (̃rΩ log(ε−1)) O (̃nΩ log(ε−1)) O (̃n) 1− ε 5.2

Last invariant O (̃rΩ log(ε−1)) O (̃nΩ log(ε−1)) O (̃n) 1− ε 5.2

Overall with

Elimination O (̃srmn+ dΩ log(ε−1)) O (̃n2 + s) 1− ε
Black box O (̃snΩ log(ε−1)) O (̃n+ s) 1− ε

The ith Gershgörin disk is centered at ai,i and has for a radius the sum of the absolute
values of the other entries on the ith row. Gershgörin’s theorem is that all of the eigen-
values are contained in the union of the Gershgörin disks (Brauer, 1946; Taussky, 1948;
Golub and Van Loan, 1996). One can then go further and consider the ovals of Cassini
(Brauer, 1947; Brualdi and Mellendorf, 1994; Varga, 2000), which may produce sharper
bounds. For our purposes here it suffices to note that each Cassini oval is a subset of
two Gershgörin circles, and that all of the eigenvalues are contained in the union of the
ovals. We can then use the following proposition to bound the coefficients of the minimal
polynomial.

Proposition 3.1. Let B ∈ Cn×n with its spectral radius bounded by β. Let minpolyB(X)
=
∑d
k=0miX

i. Then | valence(B)| ≤ βd, and ∀i ∈ [0..d], |mi| ≤ max{
√
dβ;β}d.

Proof. It suffices to note that the valence is a product of d eigenvalues and that |mi| ≤(
d
i

)
βi (Mignotte, 1989, Theorem IV. Section 4.1), and then bound each one of these with

either βd when β ≥ d or d
d
2 β

d
2 when β ≤ d. 2

For matrices of constant size entries, both β and d are O(n). However, when d and/or β
is small relative to n (especially d) this may be a striking improvement over the Hadamard
bound since the length of latter would be of order n log(n) rather than d log(β).

This is the case for the Homology matrices in our experiments. Indeed, for those, AAt

has very small minimal polynomial degree and has some other useful properties which
limit β (e.g. the matrix AAt is diagonally dominant).

There remains to compute the bound on the spectral radius. We remark that it is
expensive to compute any of the bounds mentioned above while staying strictly in the
black box model. It seems to require two matrix vector products (with A) to extract each
row or column of B. But, if one has access to the elements of A, a bound for the spectral
radius of B can easily be obtained with very few arbitrary precision operations.
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Algorithm: OCB [Ovals-of-Cassini-Bound]
Input: – a matrix A ∈ Cm×n.
Output: – β ∈ R, such that for every eigenvalue λ of AAt, |λ| ≤ β.

(1) [Centers]
∀i ∈ [1..m], set qi =

∑
j∈[1..n] a

2
ij .

(2) [Radii]
Form |A|, the matrix whose entries are the absolute values of those of A.
Compute v = |A||A|t[1, 1, . . . , 1]t.
∀i ∈ [1..m], set ri = vi − |qi|.

(3) [Gershgörin bound]
Set q = maxi∈[1..m] |qi|.
Set i1 such that ri1 = maxi∈[1..m] ri.
Set i2 such that ri2 = maxi∈[1..m]\{i1} ri.

(3) [Return Cassini bound]
Return β = q +√ri1ri2 .

For a matrix A ∈ Cm×n let Ω = max{m;n; number of nonzero elements in A}. Then
2Ω bounds the number of field operations for the matrix vector product, Ax, and for a
vector inner product, xTx.

Theorem 3.2. Let A ∈ Cm×n with Ω as described above. Algorithm Ovals-of-Cassini-
Bound correctly computes a bound on the eigenvalues of AAt, using no more than 7Ω
field operations and 3m comparisons.

Proof. For the correctness of the bound we use the fact that the eigenvalues lie in
the union of the ovals of Cassini. Now suppose that q1, q2, r1, r2 are the two centers
and two radii of such an oval. Then any point λ of this oval satisfies the following:
|λ−q1||λ−q2| ≤ r1r2 (Brauer, 1947, Theorem 1). We want to know the maximal absolute
value of such a λ. First, if |λ−q2| ≤ |λ−q1|, then |λ−q2| ≤

√
r1r2, as |λ|−|q2| ≤ |λ−q2|,

we conclude by |λ| ≤ |q2| +
√
r1r2. Replacing q2 by q1, the second case is analogous.

Therefore β as in the algorithm matches the requirements. The complexity analysis is
straightforward. 2

3.5. bad primes and degree of the minimal polynomial

We begin with some definitions.

Definitions 3.1. Let B be a matrix in Fn×n

• The Krylov subspace related to B and a vector u ∈ Fn is the vector subspace
generated by the products of powers of B by u : Krylov(u,B) = K(u,B) =
span{u,Bu,B2u, . . . } = span{u,Bu,B2u, . . . , Bn−1u}. By extension, the Krylov
subspace of a nonsquare matrix is the Krylov subspace related to the square matrix
obtained by addition of zero-columns or zero-rows.
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• The minimal polynomial of a vector u related to B is minpolyu,B(x), the monic
polynomial of minimal degree annihilating u. By extension, the minimal polynomial
of a subspace S related to B, minpolyS(x), is the monic polynomial of minimal
degree annihilating all the vectors of S.

The domain of entries for these definitions may be Z or GF (q). When the domain is not
clear from context we add q or Z to the parameter list, e.g. minpolyu,B,q.

It is well known that the degree of the minimal polynomial of a vector is the dimension
of its associated Krylov subspace and that the minimal polynomial of a subspace is the
least common multiple of the minimal polynomials of the vectors in a basis.

To compute the minimal polynomial of a matrix modulo primes we use Wiedemann’s
probabilistic algorithm. In order to complete the valence computation we must be sure
of the degree of this polynomial over the integers. To compute this degree, we choose
some primes at random. The degree of the integer minimal polynomial will be the max-
imal degree of the minimal polynomials mod p with high probability. Some primes may
give a lower degree minimal polynomial. We call them bad primes. We next bound the
probability of choosing a bad prime at random, by bounding the size of a minor of the
matrix that such a prime must divide.

Let δ be the degree of the integer minimal polynomial. There exists a vector u such
that the Krylov subspace, Krylov(u,B), associated to B and u is of rank δ. This fact can
be easily proved by consideration of the rational canonical form of B. Therefore there
exists a square δ × δ nonzero minor, Mδ, of the matrix [u,Bu, . . . , Bn−1u]. Bad primes
must divide this minor. Given an upper bound on Mδ we can then give an upper bound U
on the number of bad primes. Let β be an upper bound to the norm of the rows of B. On
the one hand, using Hadamard’s inequality (Gathen and Gerhard, 1999, Theorem 16.6),
we can state that

|Mδ| ≤ ||u||.||Bu|| . . . ||Bδu|| ≤ β
δ2
2 ||u||.

On the other hand, Ozello proved that there exists a vector u with entries less than d δ2e
such that its minimal polynomial is that of B, minpolyu,B = minpolyB (Ozello, 1987,
Theorem III.4.a). We can therefore bound ||u|| by d δ2e

√
n and finally state that

|Mδ| ≤ d
δ

2
e
√
nβ

δ2
2 = U.

Suppose we choose primes at random from a set P of primes each greater than a lower
bound l. There can be no more than logl(U) primes greater than l dividing Mδ. It suffices
to pick from an adequately large set P to reduce the probability of choosing bad primes.
The distribution of primes assures that adequately large P can be constructed containing
primes that are not excessively large. For instance, we know these bounds on the kth
prime, pk.

k(ln(k) + ln(ln(k))− 1) ≤ pk k ≥ 2 (1)

pk ≤ k
(

ln(k) + ln(ln(k))− 1 + 1.8
ln(ln(k))

ln(k)

)
k ≥ 13 (2)

pk ≤ k(ln(k) + ln(ln(k))− 0.9427) k ≥ 15 985 (3)

pk ≤ k
(

ln(k) + ln(ln(k))− 1 +
ln(ln(k))− 1.8

ln(k)

)
k ≥ 27 076. (4)
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Inequality (1) is from Dusart (1999) and (2), (3), (4) are from Massias and Robin (1996,
Theorem A).

Now, it is of great importance to reduce this U in order to pick small primes for the
computations. The bound depends on the size of the vector u and on δ; and since δ is
unknown, we only can bound it by n. Therefore logl(U) can be quite large, (O(n2)) in
practice. We will show next that there exists a vector u with small entries, and that,
depending on preliminary computations, we can bound U using a computed degree δ
which may be much smaller than n.

In order to prove that fact we need a generalization of Ozello’s theorem (Ozello, 1987,
Theorem III.4.a) to bound the size of the coefficients of a vector which has a minimal
polynomial of at least a certain degree.

Lemma 3.2. Let B be a symmetric matrix in Zn with minimal polynomial of degree δ.
For d ≤ δ, there exists a vector u with integer entries of absolute value less than dd2e such
that minpolyu,B is of at least degree d.

Proof. Consider u = [U1, U2, . . . , Un] as a vector of indeterminates and form the ma-
trix polynomial Cd(U1, U2, . . . , Un) with columns u,Bu, . . . , Bd−1u. We know that there
exists a vector u0 ∈ Zn such that the Krylov subspace, Krylov(u0, B), associated to B
and u0 is of rank δ. Now as d ≤ δ, there must also exist a nonidentically zero d×d minor
of Cd(U1, U2, . . . , Un). This minor is a homogeneous polynomial in the Ui, of total de-
gree d. By the Zippel–Schwartz lemma (see Zippel, 1993, or Gathen and Gerhard, 1999,
Lemma 6.44), this minor cannot have more than dsn−1 zeroes in Sn where S ⊂ Z is a set
of size s. First if we choose s = d + 1, we see that there are at most d(d + 1)n−1 zeroes
for this polynomial in a lattice with (d + 1)n elements. We may take S to be the set of
integers of absolute values less than dd2e. Then there must exist a vector u[d+1] in Sn for
which the minor is nonzero. This vector has a minimum polynomial of degree at least d.
Otherwise Cd(u[d+1]) could not be of rank d. 2

Indeed with d = δ we have another proof of Ozello’s theorem.

3.6. integer minimal polynomial and valence

We now give the complete algorithm for the computation of the valence, ending the
section with the probabilistic analysis. The algorithm involves computation of minimal
polynomials over Zp. For fast probabilistic computation of these we use Wiedemann’s
method (and probability estimates) (Wiedemann, 1986) with early termination as in
Kaltofen et al. (2000). We then construct the integer minimal polynomial using Chinese
remaindering.

In the following we will denote by µl(x) a lower bound on the number of distinct
primes between l and x; this bound is easily computed using reciprocals of inequalities
(2), (3), (4), and direct bounds on π(x), the number of primes lower than x, (Dusart,
1998, Theorem 1.10):

π(x) ≤ x

ln(x)

(
1 +

1.2762
ln(x)

)
x ≥ 1 (5)
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π(x) ≤ x

ln(x)− 1.1
x ≥ 60 184 (6)

π(x) ≤ x

ln(x)

(
1 +

1
ln(x)

+
2.51

ln2(x)

)
x ≥ 355 391 (7)

π(x) ≤ x

ln(x)

(
1 +

1.0992
ln(x)

)
x ≥ 13 320 000 000. (8)

Indeed, we want to have µl(x) ≤ π(x)−π(l). Therefore, we compute an upper bound η(l)
of π(l) with inequalities (5), (6), (7) and (8). Then, in some cases, direct lower bounds
for π(x) (Dusart, 1998) can be used or, in general, an integer k such that pk ≤ x is
computed (via Newton’s iteration for instance) using inequalities (2), (3) or (4). Now, as
pk ≤ x, we have k ≤ π(x) and we conclude with µl(x) = k − η(l).

Algorithm: IMP [Integer-Minimal-Polynomial]

Input: – a matrix A in Zn×n.
– an error tolerance ε, such that 0 < ε < 1.
– an upper bound m on primes for which computations are fast, m > 215.

Output: – the integer minimal polynomial of A, correct with probability at least 1−ε.

(1) [Initialization, first set of primes]
set l = 215;
set d = 0; set F = ∅; set P = ∅;
β = Ovals of Cassini Bound of A;
set M = m; [ Computations will be fast ]

(3) [ Compute polynomials modulo pi ]
Do

Choose a prime pi, with l < pi < M . [ at least µl(M) of those ]
Compute polynomial wA,pi by Wiedemann’s method.

[ wA,pi = minpolyA,pi with probability at least 1− 1
pi

]
if deg(wA,pi) > d then

set d = deg(wA,pi); set F = {pi}; set P = {wA,pi};
set U =

√
ndd2eβ

(d+1)2

2 ;
set bad = logl(U); [ At most that many bad primes ]
set bi = 2× bad(1 + 2

l−2 ) + 3512 ; [3512 primes < 215]
set Mi = upper bound for pbi ; [ At least bi primes are < Mi]
if (Mi > M) then

set M = Mi; [ Computations will be slower,
degree will be correct with probability at least 1

2 ]
endif

else, if deg(minpolyA,pi) = d then
F = F ∪ {pi};
P = P ∪ {minpolyA,pi};

endif
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While
∏
F pi < max{

√
dβ;β}d or ε <

∏
F ( 1

pi
+ bad

µl(M) );

(4) [ Chinese remainders ]

Return minpolyA =
d∑
j=1

αjX
j , where each αj ∈ Z is built from P and F .

The binary cost of the multiplication of two integers of length n, will be denoted by
I(n): classical multiplication uses I(n) = 2n2 bit operations, Karatsuba’s method uses
I(n) = O(n1.59) and Schönhage & Strassen’s method uses I(n) = O(n log(n) log log(n))
(Gathen and Gerhard, 1999). For convenience, we will also use “soft-Oh” notation: for
any cost functions f and g, we write f = O (̃g) if and only if f = O(g logc(g)) for some
constant c > 0.

Theorem 3.3. Algorithm Integer-Minimal-Polynomial is correct.
Let s = dmax{log2(β(A)); log2(d)}, which bounds the lengths of the minimal polynomial
coefficients. The algorithm uses expected time

O(sdΩ log(ε−1))

for constant size entries. It uses O(n log(s) + ds) memory if every coefficient of the
minimal polynomial is computed, and O(n log(s) + s) if only the valence is computed.

Proof. For the correctness, the first issue is to be able to choose small primes, i.e. close to
word size, in order to use fast computations. But the bound given in Section 3.5 might be
too large because of its n2 exponent. However, it is possible to start to compute with small
random primes and readjust this bound as some degrees are computed. Indeed, consider
again the vector u such that the Krylov subspace associated to B and u, Krylov(u,B) is
of rank δ, the degree of the integer minimal polynomial, and suppose we picked a prime p
producing a degree d polynomial. Then Krylov(u,B) is of rank d mod p, and therefore

p must divide a (d+1)×(d+1) minor in the first d+1 columns. There are at most β
(d+1)2

2

such primes. We can then sharpen the bound on the size of the primes from n2

2 log(β) to
(d+1)2

2 log(β). The next issue is the ending of the loop. The first member of the stopping
condition ensures to have enough primes to Chinese remainder the coefficients. When
computing only the valence this can be reduced from max(

√
dβ, β)d to βd. The second

member is to have a sufficiently large probability of success: having |F | polynomials of
the same degree means that either they are all correct or they are all wrong. Moreover
the probability that any one of them is wrong is no more than the probability that
Wiedemann’s algorithm failed, 1

pi
, plus the probability that pi was a bad prime, which

is bounded by the number of bad primes over the total number of primes in our set.
Now consider the memory complexity. On the one hand, the valence is bounded by

βd. To store it and the primes, or equivalently the remainders of the valence and their
associated primes, we need O(s) memory; O(ds) for the whole polynomial. On the other
hand, Wiedemann’s algorithm uses only a constant number of extra polynomials and
vectors over the prime fields. The primes are bounded by M , therefore they are of size
log2(M) ≤ log2(pbi). This size, computed with inequalities (2), (3) and (4), is therefore
O(log(bi(ln(bi) + ln ln(bi))) = O(log(bi)). Using bi as in the algorithm, we conclude that
O(log(bi)) = O(log(d2 logl(β))) = O(log(s)). Each vector being of size n the amount of
space needed to store them is O(n log(s)). At each new Wiedemann’s algorithm call, we
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keep only the remainders of the minimal polynomial and their associated primes. The
space allocated for the vectors during the preceding call is reused. Therefore the overall
memory cost remains O(ds+ n log(s)) for the whole polynomial and O(s+ n log(s)) for
the valence only.

We complete the proof with the expected time analysis. On the one hand, for each
iteration Wiedemann’s method requires O(dΩ) operations on its ground field; every one
of these using at most I(log2(pi)) = O(log2(pi)) bit operations. The overall cost of the
Wiedemann’s iterations is then O(

∑
dΩ log(pi)) = O(dΩs) as s bounds the size of the

integer coefficients. On the other hand, as

1
pi

+
bad

µl(M)
≤ 1
l

+
bad

2bad(1 + 2
l−2 )

=
1
2
,

the success probability of 1 − ε is achieved with at most − log(ε)
− log(0.5) = O(log(1

ε )) good
primes. Now for each iteration, Wiedemann’s polynomial is correct with probability at
least 1

2 . The expected number of iteration will thus not exceed twice the wanted number
of good primes. The complexity of this part is then

O(sdΩ log(ε−1)).

Last, the Chinese remaindering cost is negligible. Indeed O(I(s) log(log(s))) operations
are needed for each coefficient of the minimal polynomial, (cf. Gathen and Gerhard, 1999,
Theorem 10.25). The latter is O (̃ds) for the whole polynomial and O (̃s) for the Valence
only. 2

In practice the actual number of distinct primes greater than 215 dividing valences
of homology matrices is very small (no more than 50, say) and we often picked primes
between 215 and 216 where there are 3030 primes. This giving us, at most, only 1.7% of
bad primes. With only 10 polynomials this reduces to a probability of failure less than
2× 10−16.

4. Reducing the Prime Set: Null Space Method

Consider a prime p which occurs in the Smith form of A. We know that p2 divides the
characteristic valence of AAt. It seems more likely in general that p2 divides the minimal
valence than that it divides two or more successive invariant factors of the characteristic
polynomial. Of course one can construct examples to the contrary. For instance consider
A =

[
1 1
−1 1

]
, which has Smith form

[
1 0
0 2

]
. However AAt = AtA =

[
2 0
0 2

]
and has minimal

polynomial x − 2 and characteristic polynomial (x − 2)2. At any rate, in the boundary
matrix examples from homology that we examined we have never encountered a prime
occurring singly in the valence which actually occurs in the Smith form of A.

Thus we take as the next goal after the valence computation in algorithm VSF, to
determine for a prime p occurring singly in the valence, if the rank mod p is the integer
rank. Moreover we would like to be able to decide this as quickly as possible. This job
may be done by computing the rank mod p via Wiedemann’s algorithm as is discussed
below or via elimination. However the run time of those methods is a function of the
rank. We therefore propose here a method with run time a function of the degree of
the minimal polynomial of B = AAt. However this method requires arbitrary precision
integer arithmetic while the rank mod p approach does not. Despite this, when the rank
is large relative to this degree, this method is likely to be less costly.



Valence Smith Form 85

The idea is to use an irreducible factor R of M = minpoly(B) such that M = RN .
We would like to know if this factor is repeated in the Frobenius normal form of A, i.e.
if the dimension of the kernel of R(B) is the degree of R or is a multiple of this degree.
We will show in the following lemma that in the case where R and N are coprime, the
dimension of the span of N(B) is equal to the dimension of the kernel of R(B). This
leads to a probabilistic algorithm: for d = deg(R), we try d+1 random vectors ui and see
if the vi = N(B)ui are dependent. Then if the vectors are dependent we know that with
high probability the dimension of the kernel of R(B) is d and that R is not repeated.
It follows that any prime occurring singly in valence(R) and valence(M) will occur also
singly in the characteristic valence of AAT . And then such a prime cannot appear in the
Smith form of A.

We now give the complete algorithm, then the dimension lemma and end this section
with the probabilistic analysis.

Algorithm: NSD [Null-Space-Dimension]
Input: – a matrix A ∈ Zm×n, A may be a black box.

– the minimal polynomial M of AtA, and a factor R of M , irreducible over
Q and coprime to M/R.

– ε ∈ R such that 0 < ε < 1.
Output: – a list L of all the primes in valence(R) which do not occur in the Smith

form of A. The list is correct with probability at least 1− ε.

(1) [ Initializations ]
Set L = ∅
Set d = deg(R).
Set N = M

R

Set g = dε− 1
d e.

Set q a random prime such that q > g and q - valence(M).
Form the black box N(B).

(2) [ Probabilistic Null-Space dimension ]
Select d+ 1 random nonzero vectors ui ∈ (Zq)n.
∀i ∈ [0..d], set vi = N(B)ui.
if rank([v0, v1, . . . , vd]) < d+ 1 modulo q.

for each prime p dividing valence(R)
if p2 does not divide valence(M), add p to L.

(3) [ Return not occurring primes ]
return L.

Of course this algorithm can be applied to any factor of M to determine primes which
can be removed from the candidate list L of primes dividing valence(M). To prove its
correctness we need the following lemma.
Lemma 4.1. Let B ∈ Zn×n. Let N,R ∈ Z[X] be coprime such that N(B)R(B) = 0 ∈
Z
n×n. Then span(R(B)) = ker(N(B)) and span(N(B)) = ker(R(B)).

Proof. First, since R(B)N(B) = N(B)R(B) = 0 the span of one matrix polynomial is
included in the kernel of the other one. Now, as R and N are coprime, we use Gantmacher,



86 J.-G. Dumas et al.

Theorem VII. Section 2.1 (1959) which establishes that ker(R(B)) and ker(N(B)) are
supplementary. The theorem is stated for the case NR = minpoly(B), but the proof
applies as well to the case that NR is a multiple of the minimum polynomial, as is
implied by our hypothesis N(B)R(B) = 0. We conclude the proof by use of the dimension
theorem: dim(span(X)) + dim(ker(X)) = n, for X ∈ Zn×n. 2

Theorem 4.1. Algorithm Null-Space-Dimension is correct.

Proof. Let B = AtA. B is symmetric, so its minimal polynomial P is square free.
We now suppose that this minimal polynomial is not irreducible. Let N and R be two
cofactors of P , R being irreducible. As P is square free, N and R are coprime. By the
lemma, the span of N(B) is the nullspace of R(B). Thus the nullspace of R(B) has
dimension kd, where k is the multiplicity of R in the characteristic polynomial of B.
Here we use the fact that R is irreducible to obtain better probabilities (kd instead of
only d+ 1 if R was reducible). Hence algorithm NSD may give incorrect result only if its
d + 1 random vectors are preimages of d + 1 dependent vectors in a space of dimension
kd over a field with more than g scalars. Note that the vi are uniformly distributed in
span(N(B)) if the ui are uniformly distributed in (Zq)n.

We now quantify the probability of such a dependence. Let P (j, n) be the probability
of a dependency among j random vectors in a space of dimension n (j ≤ n) over the field
Zq with q elements. Then

P (j, n) = P (j − 1, n) + P (first j − 1 independent but jth dependent)

which gives

P (j, n) ≤ P (j − 1, n) +
qj−1

qn
≤ qj − 1

(q − 1)qn
< (q − 1)j−1−n.

Hence, as q > g, if k ≥ 2 then: P (d+ 1, kd) ≤ gd−kd ≤ 1
gd
≤ ε. 2

If R is reducible, algorithm NSD may still be used with a slight variation. Let e be
the least degree of an irreducible factor of R. Then we know that the least two possible
dimensions of the nullspace of R(B) are d and d+ e. Thus g may be taken to be dε− 1

e e
in the algorithm, justified by straightforward modification of the proof above.

5. Local Smith Form at p

Next consider the question of computing the local Smith form in Z(p). This is equivalent
to a computation of the rank mod pk for sufficiently many k. Recall that we define the
rank mod pk as the number of nonzero invariant factors mod pk. We do not mean the
McCoy rank, the size of the largest nonzero minor mod pk. In a number of cases, we have
had success with an elimination approach, despite the fill-in problem. We first present
this elimination method then the iterative method with lower space requirements.

5.1. elimination method

Due to intermediate expression swell, it is not effective to compute directly in Z(p), the
local ring at p, so we perform a computation mod pe, which determines the ranks mod
pk for k < e and hence the powers of p in the Smith form up to pe−1. Suppose by this
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means we find that sr is not zero mod pe, where r is the previously determined integer
rank of A. Then we have determined the Smith form of A locally at p. If, however, the
rank mod pe is less than r, we can repeat the LRE computation with larger exponent e
until sr is nonzero mod pe.

Algorithm: LRE [Local-Ranks-by-Elimination-mod-pe]
Input: – a matrix A ∈ Z(m+1)×(n+1), with elements (aij) for i, j ∈ [0..m]× [0..n].

– a prime p.
– a positive integer e.

Output: – the ranks rpi , for 1 ≤ i ≤ e.

(1) [ Initializations ]
set k = e
set r = 0

(2) [ e successive Gauss steps ]
for (exponent k = 1 to e) do

while (∃(s, t) ∈ [r..m]× [r..n], p 6 |ast)
[ ast is the pivot ]
Swap rows r, s, and columns r, t
for all (i, j) ∈ [r + 1..m]× [r + 1..n] do

[ elimination, with division, mod pe−k+1 ]
set ai,j = ai,j − ar,jai,r/ar,r(mod pe−k+1)

set r = r + 1.
set rpk = r.
[ and invariant factors si = pk−1 for rpk−1 < i ≤ rpk .]
for all (i, j) ∈ [r..m]× [r..n] do

set aij = aij/p

(3) [ Return local ranks ]
return rpi , for i ∈ [1..e]

Theorem 5.1. For a positive integer e, algorithm Local Ranks by Elimination mod
pe is correct and runs using O(r m n) arithmetic operations and O(r m n) memory
mod pe where r is the rank mod pe.

Proof. It is equivalent to consider the case when the row and column permutations are
done in advance so that the pivots are already in the (r, r) position in the while loop. For
each k, then, we have an elimination phase determining rpk followed by a division phase.
The elimination may be viewed as multiplication by a unit lower triangular matrix, call
its inverse Lk. The division is multiplication by D−1

k , where Dk = diag(1, . . . , 1, p, . . . , p),
with rpk 1’s. Then, in effect, A has been factored as P

∏e
k=1 LkDkA

′Q, where P and Q
are permutations, A′ is the upper triangular final form of A after the elimination, and
the D’s and L’s are as above. We note that

∏e
k=1 LkDkA

′ =
∏e
k=1 LkDkU in Zpe , where

U is the unimodular matrix obtained by replacing the last n − rpe rows of A′ by those
of the identity matrix. It follows that A is equivalent to B =

∏e
k=1 LkDk. Matrices are

equivalent just in case they have the same determinantal divisors. The jth determinantal
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divisor of an integer matrix is the greatest common divisor of its j× j minors. From this
it is easily seen that the Smith form of A in Zpe is S = diag(si) =

∏e
k=1Dk, because for

both B and S and for each j, the leading principal j × j minor contains the least power
of p, namely

∏j
i=0 si. To see this for B, we use Cauchy–Binet expansion (Gantmacher,

1959, Proposition I. Section 2.14) on the minors of B. The expansion of a minor of size j
of B is a sum of terms in which each term is a product of minors of size j, one from each
Lk and each Dk. In particular the leading principal minor of size j has a term which is
the product of the leading principal minors of all the Lk and Dk. It is easily seen that
this term contains the least power of p possible. The leading j × j minor of Lk, a unit
lower triangular matrix, is 1. The leading j × j minor of Dk has the lowest power of p of
any j× j minor in Dk. Thus this term determines the power of p in the leading principal
j × j minor of B, and no other j × j minor can contain a lower power. 2

5.2. iterative methods

Wiedemann’s algorithm and diagonal scaling

For some matrices the elimination approach just described fails due to excessive mem-
ory demand (thrashing). It is desirable to have a memory efficient method for such cases.
Two iterative methods are proposed for use here. The first one is “off the shelf”. It is
to use Wiedemann’s algorithm with the diagonal scaling of (Eberly and Kaltofen, 1997)
to compute the rank mod p. This scaling ensures with high probability that the mini-
mal polynomial is a shift of the characteristic polynomial, in fact that it is of the form
m(x) = xf(x) where f(0) 6= 0 and the characteristic polynomial is of the form xkf(x)
for some k. It follows that the rank is the degree of f . For a given ε, to do this with prob-
ability of correctness greater than 1 − ε requires computation in a field of size O(n2/ε)
(Eberly and Kaltofen, 1997). If p if insufficiently large, an extension field may be used.
To avoid the large field requirement, we may use the technique as an heuristic, comput-
ing the Wiedemann polynomial over a smaller field. The resulting polynomial, w(x), is
guaranteed to be a factor of the true minimal polynomial, so that it suffices to verify
that w(A) = 0. This may be probabilistically done by choosing a vector v at random and
computing w(A)v. The probability that w(A)v is zero while w(A) is nonzero is no more
than 1/p, hence repetition of this process log2(ε−1) times ensures that the rank has been
computed correctly with probability no less than 1− ε.

This algorithm has much lower memory requirements than elimination, requiring O(Ω)
field elements, it has better asymptotic time complexity, O(dΩ log2(ε−1)) field operations,
and it is effective in practice for large sparse matrices over large fields. However it does not
give the complete local Smith form at p. In 5.2 we propose a p-adic way to compute the
last invariant factor of this local Smith form at p. From this one may infer the complete
structure of the local Smith form at p in many cases.

the last invariant factor of the local Smith form at p

We have not entirely worked out an extension of Wiedemann’s approach suitable for
computation of the rank mod a power pe. The method of Reeds and Sloane (1985) can
be adapted to compute the annihilator of our matrix in Zpe . It may be possible to adapt
this to the purpose of computing the rank of the matrix in Zpe . We do not currently
know how to do this in a memory-efficient way.
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In practice we have encountered matrices whose invariant factors are square free. To
verify this it suffices to show that the exponent of p is 1 in the last invariant factor (last
nonzero Smith form entry). The following method will do this and a little more.

Let A be a matrix of rank r in Zm×n whose local Smith normal form at p is Sp =
diag (pk1 , pk2 , . . . , pkr , 0, . . . , 0). The problem is to compute the multiplicity κ = kr of
p in the last nonzero invariant factor. Since determining whether κ is zero reduces to
comparing the rank modulo p and the rank over Q, we assume that κ ≥ 1.

Our purpose is to derive a black box algorithm with cost linear in κ rather than in
Σiki, say.

• Invertible matrix case

We assume for the moment that A is n × n invertible. For a vector x of reduced
integer fractions, we define the order ordp(x) of x as the largest exponent of p in the
denominators of the entries of x. For a random b the solution x to Ax = b satisfies in
general ordp(x) = κ. To reduce the cost of computing κ, let us ensure the same property
for the order of the first entry of a well chosen system solution. Let v be a nonzero n× 1
vector with first nonzero entry vI , 1 ≤ I ≤ n, and let u be the first canonical vector.
Define the n× n matrix E(v) by:{

Ei+1,i = 1 for 1 ≤ i < I and Ei,i = 1 for I < i ≤ n,
Ei,j = 0, otherwise.

Lemma 5.1. Let b and v be two random integer vectors with entries chosen uniformly
in [0, p − 1]. With probability (1 − 1/p)2, E(v) + uvt is invertible (v 6= 0) and κ is the
order of the first entry of the solution y to A(E(v) +uvt)−1y = b. When v 6= 0, the order
cannot be strictly greater than κ.

Proof. If E(v) + uvt is invertible and x denotes the solution to Ax = b then y =
(E(v) + uvt)x and the first entry of y is y1 = Σivixi. Let U and V be unimodular
transformations such that S = UAV is in Smith form. Then U and V also define bijections
on Znp . Thus:

Pb = Probb(ordp(x) = κ;Ax = b)
= Probb(ordp(x) = κ;S(V −1x) = Ub)
= Probb(ordp(z) = κ;Sz = b)
≥ Probb(1 ≤ bn ≤ p− 1) = 1− 1/p.

If ordp(x) = κ then pκx 6≡ 0 mod p. With probability 1−1/p we have also pκ
∑
i vixi 6≡ 0

mod p and the order of y1 is κ. In this latter case v is nonzero and by construction
E(v)+uvt is invertible. This proves the first assertion of the lemma. For the last assertion
it suffices to notice that since the vi’s are integers, the order of Σivixi is no higher than
the order of x. 2

Let us now associate to A a new matrix Ã whose Smith form is related to that of A
and such that one entry of the solution to Ãx = b can be computed fast.

Lemma 5.2. Let q 6= p be a prime, for τ ≥ 1 integer define Ã = pτ +qA. Locally at p, the
nonzero invariant factors of A and Ã having exponents strictly lower than τ are the same.
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Proof. The matrices A and Ã as matrices in Zn×npτ are equivalent. 2

Lemma 5.3. Let b be an integer vector with ||b||∞ ≤ ||A||∞ = β. Any entry of the
solution x to Ãx = b may be computed in

N = n(log2 n+ 2 log2(pτ + qβ))/(log2 q) + 2 (9)

multiplications of Ã times a vector with entries bounded by q and

O(n2(log n+ log(pτ + qβ))2) (10)

additional binary operations. In addition to the matrix storage, the algorithm requires an
O(n(log n+ log(pτ + qβ))) bits of storage.

Proof. We apply the algorithm of Dixon (1982) based on a q-adic expansion of the
solution. The matrix Ã is invertible in Qn×n and in Zn×np : Ã−1 ≡ p−τId mod q. The
number N of iterations is given by (9) in the lemma. Each iteration consists in dividing
by q a vector of dimension n whose entries have absolute values in O(n(pτ + qβ)) and in
multiplying by q an integer of absolute value in O(qN ). Here we have used the fact that
the q-adic expansion of only one entry of the solution is computed. The binary cost of
one iteration is thus bounded by O((n log(n(pτ + qβ)) + log(qN ))M(log q)/(log q) which
is also O(NM(log q)) and gives (10) once multiplied by N iterations. The rational value
of the target entry of the solution vector is constructed from its expansion within the
same cost. The extra amount of storage needed is O(N log q). 2

For any integer τ , from Lemma 5.1 and Lemma 5.2 we may give a randomized algorithm
which compares τ to κ with an arbitrary error tolerance ε > 0: by repeated random
choices of q, b, v, it is possible to produce an algorithm returning κ, with probability of
error as low as required. The pre-conditioning of A by (E(v)+uvt)−1 is required in order
to restrict the computation to only one component of the solution vectors.

Algorithm: LIF [Largest Invariant Factor] order

Input: – A ∈ Zn×n invertible,
– a prime p, an integer τ ≥ 1,
– an error tolerance ε, such that 0 < ε < 1.

Output: – with probability at least 1 − ε, returns κ if κ ≤ τ (maybe wrong) and re-
ports that κ is strictly greater than τ otherwise (always correct).

(1) [ Conditioning ]
Set max order = 0.
Choose a prime q 6= p.
Build Ã = pτ+1 + qA.

(2) [ Order ]
For t from 1 to dlog(ε)/ log(1− (1− 1/p)2)e do

Choose random b and v in [0, p− 1]n.
If v 6= 0 construct E(v) + uvt

Compute y1 ∈ Q the first entry of y such that Ã(E(v) + uvt)−1y = b.
If ordp(y1) > τ then Return(“κ >” τ).
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max order := max{max order, ordp(y1)}.
Return(“κ =” max order).

Theorem 5.2. The algorithm LIF works as specified, if κ ≤ τ then it returns κ with
probability at least 1 − ε or a lower value with probability less than ε. If κ > τ then it
discovers the latter inequality with probability at least 1−ε, this result is always correct, or
returns a wrong value lower than τ with probability less than ε. The cost of the algorithm
is bounded by

O(nΩ(log n+ 2 log(pτ + qβ))2 log(ε−1)).

Proof. If κ ≤ τ then by Lemma 5.2 all the invariant factors of Ã = pτ+1 + qA are also
of order less than κ. By Lemma 5.1, the probability that v = 0 or that y1 gives an order
strictly less than κ is 1− (1− 1/p)2. The computed order cannot be strictly greater than
κ. After dlog(ε)/ log(1 − (1 − 1/p)2)e trials, the probability of having a wrong result is
less than ε. In the same way, if κ > τ , i.e. the largest invariant factor of Ã is at least of
order τ + 1, the algorithm will certify it with probability at least 1− ε. The certificate is
by Lemma 5.1 since the computed order cannot be greater than the actual one. The cost
bound is immediately derived from (9) and (10) (multiplying by the inverse of E(v)+uvt

requires linear time only) times the number of trials. 2

One may see for instance that with 24 random choices for b and v, it is possible with
probability more than 1− 10−6 independently of the dimension of the matrix, to certify
that κ ≥ 2 for p = 3. By constructing orders of number fields, as done in Giesbrecht
(1997, Section 5) for Diophantine equations, the number of trials could be reduced up to
some increase in time for the applications of Lemma 5.3.

• General case

When A is m × n singular of rank r, unlike in Lemma 5.2, the use of the modi-
fied matrix Ã will always introduce new nonzero invariant factors that prevent us from
computing κ using algorithm LIF. An alternative way to proceed is to apply the algo-
rithm to an invertible r × r matrix AS constructed from A, whose local Smith form is
SI = diag (pk1 , pk2 , . . . , pkr ). Such a matrix AS may be obtained by conditioning A. We
generalize the construction of Mulders and Storjohann (1999, Lemma 11). Let us denote
by U and V two unimodular multipliers such that UAV is in Smith form: UAV =

[
SI 0
0 0

]
and consider two preconditioners P ∈ Zr×m and Q ∈ Zn×r. If T ∈ Zm×r is the matrix
constructed with the first r columns of U−1 and if W ∈ Zr×n is constructed with the
first r rows of V −1 then: A = TSIW thus PAQ = (PT )SI(WQ). We see that if PT and
WQ are invertible modulo p, we can take AS = PAQ. Since U and V are unimodular,
T and W have rank r modulo p and the condition depends on the choice of P and Q.
We have proven the following lemma.

Lemma 5.4. There exists two matrices W ∈ Zr×n, T ∈ Zm×r only depending on A
giving: if P ∈ Zr×m and Q ∈ Zn×r are such that

p 6 |det(PT ) and p 6 |det(WQ) (11)

then AS = PAQ is invertible and its local Smith form at p is the invertible submatrix
SI = diag (pk1 , pk2 , . . . , pkr ) of the local Smith form of A.
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For preconditions satisfying the lemma condition one may consider Toeplitz matrices
as used in Kaltofen and Saunders (1991, Theorem 2) or in Giesbrecht (1997, Section 5).
Define η = dlog2 2r(r+1)e and let Γ ∈ Z[x] be a monic polynomial irreducible modulo p,
of degree η and with coefficients bounded in absolute value by p. Let θ ≡ x mod Γ and
Vp be the set of the polynomials of degree less than η with coefficients 0 or 1 over Z[θ].

Proposition 5.1. (Giesbrecht, 1997) Let A ∈ Zm×n be of rank r, p a prime. Con-
sider as preconditioners P and Q, an upper and a lower triangular Toeplitz matrix each
with unit diagonal and whose other entries are randomly chosen in Vp. The local Smith
form of AS = PAQ at p is SI with probability greater than 1/2.

The algorithm LIF may then be applied to AS or the random choice of the conditioners
may be included in the for loop of a modified algorithm. In that case (Giesbrecht, 1997),
if y1 =

∑
0≤l<η y

(l)
1 θl ∈ Q(θ) is the first entry of the solution to ÃS(E(v) + uvt)y = b,

one looks at the order of y(0)
1 . The sizes of the integers (numerators and denominators)

involved in the computations are a factor O(η) i.e. O(log r) greater than for the regular
case. The cost bounds of Lemma 5.3 will be modified by the same factor.

Instead of Toeplitz matrices one may use sparse matrices as in Wiedemann (1986,
Section III) to avoid extension fields. The Hamming weight of a matrix is the number of
nonzero entries.

Proposition 5.2. (Wiedemann, 1986, Theorem 1′) Let A ∈ Zm×n be of rank r, p
a prime. A random procedure exists for generating sparse preconditioners P and Q with
coefficients in {0, 1} and of total Hamming weight O(r log r). With probability at least
1− ε they satisfies that the local Smith form of AS = PAQ at p is SI .

In any case, one can include the preconditioning in the preceding process; thus only
increasing the computation of the matrix-vector products by a factor O(log(r)).

6. Asymptotic Analysis

In this section we collect from the previous sections and summarize the bit complexities,
memory requirements, and probabilities of correctness of the various parts and variants
of our algorithm. As our motivation comes from matrices with entries in {−1, 0, 1}, this
analysis is for integer matrices with constant size entries. Recall that for a matrix A,
we have Ω = max{n;m; number of nonzero elements in A}, r is the integer rank of A,
d = dAAt is the degree of minpolyAAt , β bounds the eigenvalues of A, and s ≤ d log2(β)
is the number of primes dividing the valence of minpolyAAt . Also, Figure 1 gives the
organization of the algorithm.

In Table 1 we assume the valence is small, as it is for the matrices for which this
algorithm is particularly effective. We neglect two consequences of a large valence.

First, there can be large prime factors of the valence not rejected by the method of
Section 4. Existence of large primes could introduce a factor for the cost of arithmetic
modulo primes of size O(s). To include this effect multiply the table entries for prime
ranks (elimination and black box), prime powers, last invariant, and thus the entries for
the overall complexities by the cost of arithmetic modulo a size s prime.

Second we do not show complexities for the integer factorization of the valence. In
fact the valence factorization need not be precomputed. Indeed it is possible to start the
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Figure 1. Valence algorithm.

rank computations with the composite valence (using an arithmetic which is O (̃s) per
operation mod the valence, say). Then in both cases, elimination and black box, problems
arising from the nonprimality of the valence will show some of its factors. In the first case,
elimination, problems arise when a noninvertible nonzero pivot is found. Then the gcd of
this pivot and the valence reveals two nontrivial factors. Moreover, the elimination can
resume modulo both of these factors. Similarly, in the second case, Wiedemann’s method,
problems arise when a noninvertible nonzero discrepancy is computed. Then again the
gcd of this discrepancy and the valence reveals two nontrivial factors and computations
can resume modulo both of these factors.

However, for homology matrices, the valence was usually small with small factors and
therefore easy to factor using elliptic curves, for instance. We factor as much as we can,
which means completely for most of the cases, to isolate small primes, as computations
are faster modulo word-sized primes. It is conjectured that the elliptic curve factorization
algorithm determines a nontrivial divisor of a composite number t in expected time

ln(t)2e
√

ln(p) ln ln(p)(2+o(1))

where p is the least prime dividing t (Lenstra, 1987, Conjecture 2.10). As we will see
in Table 2, for the cases we considered, s is usually very small with very small least
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prime divisors; therefore enabling practical performances of the algorithm despite the
super-polynomial complexity of the factorization.

7. Experiments with Homology Matrices

In this section we describe the structure of the boundary maps of a simplicial complex.
More details on the connection between homology groups of simplicial complexes and
linear algebra can be found in Munkres (1994). We will talk mainly about three homol-
ogy matrix classes. The matrices will be denoted by three naming patterns:

• mki.bj denotes the boundary matrix j from the matching complex with i vertices.
• chi-k.bj denotes the boundary matrix j from the i by k chessboard complex.
• nick.bj denotes the boundary matrix j from the not i-connected graph with k

vertices.

For details on those simplicial complexes see Babson et al. (1999) and Bjöerner et al.
(1994).

The boundary matrices are sparse matrices with a fixed number k of nonzero elements
per row and l per column. If Ai is the boundary map between the dimensions i and
i − 1 of a simplicial complex then k = i + 1. All entries are −1, 0 or 1. Moreover, the
Laplacians AiAti and AtiAi also have−1, 0 and 1 as entries except for the diagonal which is
respectively all k and all l. However, as expected, those Laplacians have more than twice
as many nonzero elements as Ai. Thus, we did not perform the matrix multiplications
to compute AiAtiv. We performed two matrix-vector products, Ai(Ativ), instead.

We will also check in Table 2 that the Laplacians have indeed a very low degree
minimal polynomial (say up to 25 for the matching and chessboard matrices, close to
200 for the not-connected). This fact was our chief motivation to develop the valence
method. Figure 2 illustrates the patterns occurring in these matrices. It shows ch4-4.b2,
the boundary map between the second and first dimensions of the 4 × 4 chessboard
complex, together with its Laplacians. It is of size 96× 72 with 288 nonzero elements. It
has 3 elements per row and 4 per column. On the other hand AAt is of size 96× 96 with
960 nonzero elements and AtA is of size 72× 72 with 648 nonzero elements.

Our experiments were realized on a cluster of 20 Sun Microsystem Ultra Enterprise
450 each with four 250 MHz Ultra-II processor and 1024 Mb or 512 Mb of memory.
We computed ranks of matrices over finite fields GF (q) where q has half word size. The
chosen arithmetic used discrete logarithms with precomputed tables, as in Sibert et al.
(1990). The algorithms were implemented in C++ with the Linbox

† library for computer
algebra and the Athapascan

‡ environment for parallelism.
We will call ω the number of nonzero elements per row, N × n the shape and r the

integer rank of the matrix under consideration. We will produce these elements only in
Table 2. The name of the matrix will be repeated in the following tables. For several
cases, fill-in causes a failure of elimination. This is due to memory thrashing (MT). All
the timings presented are in seconds except as otherwise specified and reflect the cpu
time for sequential computations and the real time for parallel computations.

†Symbolic linear algebra library, http://www.cis.udel.edu/~caviness/linbox
‡Parallel execution support of the APACHE Project, http://www-id.imag.fr/software

http://www.cis.udel.edu/~caviness/linbox
http://www-id.imag.fr/software
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Figure 2. Chessboard complex 4-4, boundary matrix 2 with AAt and AtA.

In Table 2 we present computations of the integer minimal polynomial of some homol-
ogy matrices. We indicate the Cassini bound, CB, for those and present the number of
Chinese remainders needed, Rem, the degree of the minimal polynomial, dm, the com-
puted upper bound for the number of bad primes, the associated upper bound for the
value of the random primes, M , and the minimal valence, vm. As some vm are quite large,
we write explicitly only the smaller prime factors and denote by Ci a product of i larger
prime factors. In one case, C59+ denotes a product of at least 59 primes. This number has
57 known prime factors and another composite factor of 376 digits that we were unable
to factor. We recall that there are respectively 3030, 8746, 19 510, 39 915 primes between
215 and 216, 215 and 217, 215 and 218, 215 and 219, and 560 821 primes between 215 and
223, these results implying the given values for M . We give timings for sequential and
parallel computation of the minimal valence. A first approach for parallel computation
is to use sequential routines for Cassini bounds, minimal polynomial over Zp, and Chi-
nese remaindering of integers. The algorithm has three steps. First compute the Cassini
bound and some minimal polynomials in parallel. Using the bound and the degree of
the minimal polynomials, the maximum number of remainders needed is known. There-
fore, the second step is the computation in parallel of some more minimal polynomials
as required (Dumas, 2000). The last step is a Chinese remaindering of the coefficients.
A future implementation will also use parallel matrix-vector products as well as block
methods (Kaltofen, 1995; Villard, 1997) to improve speed.
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Table 3. Rank modulo 65 521, Elimination vs. Wiedemann.

Matrix Elimination Wiedemann

mk9.b3 0.26 2.11
mk13.b5 MT 23 hours
ch7-7.b6 4.67 119.53
ch7-6.b4 49.32 412.42
ch7-7.b5 2179.62 4141.32
ch8-8.b4 19 hours 33 hours
ch8-8.b5 MT 55 hours
n2c6.b6 6.44 64.66
n2c6.b7 3.64 49.46
n4c5.b6 2.73 47.17
n4c6.b12 231.34 4131.06
n4c6.b13 8.92 288.57

Table 4. Fermat vs. Hom-Elim-GMP vs. SFV.

Matrix Fermat Hom-Elim-GMP Valence (Eliminations)

ch6-6.b4 49.4 2.151 27.417 (6)
mk9.b3 2.03 0.211 0.946 (4)
mk10.b3 8.4 0.936 13.971 (7)
mk11.b4 98937.27 2789.707 384.51 (7)
mk12.b3 189.9 26.111 304.22 (7)
mk12.b4 MT MT 13173.49 (7)

In Table 3 we report some comparisons between Wiedemann’s algorithm and elimina-
tion with reordering for computing the rank. We just want to emphasize the fact that
for these matrices from homology, as long as enough memory is available, elimination is
more efficient. However, for larger matrices, Wiedemann’s algorithm is competitive and
is sometimes the only solution.

In Table 4 we compare timings of our algorithm to some implementations of other
methods. We compare here only the results obtained using the version of the Valence
Smith Form algorithm in which we use Wiedemann’s algorithm to compute the Valence
and then elimination modulo small powers of primes p to compute the invariant factors
locally at p. Simplicial Homology (Dumas et al., 2000) is a proposed GAP share package.
It computes homology groups of simplicial complexes via the Smith form of their bound-
ary maps. It features a version of our Valence algorithm as well as an elimination method
for homology groups by Frank Heckenbach. The latter is a variant of the classical elimi-
nation method over arbitrary precision integers for Smith form (Munkres, 1994), taking
advantage of the particular structures of the boundary maps. The entry “Hom-Elim-
GMP” in this table refers to this elimination-based method using Gnu Multi Precision
integers. Fermat (Lewis, 1997) is computer algebra system for Macs and Windows. Its
Smith form routine is an implementation of Bachem and Kannan (1979).

“Hom-Elim-GMP” and “Valence” ran on a 400 MHz sparc SUNW, Ultra-4 processor
with 512 Mb, but Fermat is only available on Mac and Windows. We therefore report
on experiments with Fermat on a 400 MHz Intel i860 processor with only 512 Mb. First
we see that “Fermat” cannot compete with “Hom-Elim-GMP” in any case. The main
explanation is that the pivot strategy used by “Hom-Elim-GMP” is very well suited
to the homology matrices. We can see also that, as long as no coefficient growth is
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Table 5. Valence Smith form with black box techniques.

Matrix Time Results

mk13.b5 98 hours Partial : 133 991 ones & 220 powers of 3
ch7-8.b5 180 hours Partial : 92 916 ones & 35 powers of 3 & 8 powers of 2 and 3
ch8-8.b4 264 hours Complete : 100 289 ones

involved, “Hom-Elim-GMP” is often better than “Valence”. Indeed, where “Hom-Elim-
GMP” performs only one integer elimination, “Valence” performs an elimination for
every prime involved (the number of those eliminations is shown between parenthesis
in the column Valence (Eliminations) of the table)—of course in parallel this difference
will weaken. But as soon as coefficient growth becomes important “Valence” is winning.
Moreover, “Valence” using only memory efficient iterative methods can give some partial
results where memory exhaustion due to fill-in prevents any eliminations from running
to completion. In Table 3 we can see some of these effects and we present some of those
partial results in Table 5: for some matrices we were able to compute ranks modulo
some primes, and therefore the occurrence of these primes in the Smith form, but not
the actual powers of these primes. These, however, are the only currently known results
about these matrices.

8. Conclusion

The preceding comparison of two elimination implementations and our Valence method
provides a convenient basis for summary remarks.

(1) Elimination can be effective on these sparse but patterned simplicial complex
boundary matrices. However this is true only if the pivoting strategy is well suited
to this situation.

(2) For large enough sparse matrices, fill-in makes elimination more time consuming
than the Valence method, and for the largest examples, elimination fails altogether
due to excessive memory demand. With the Valence approach, we were able to com-
pute the rank modulo primes for matrices with 500 000 or more rows and columns,
while elimination was failing for matrices of sizes larger than about 50 000.

(3) It remains open how to efficiently determine the ranks modulo powers (>1) of
primes while using memory-efficient iterative methods.
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