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Abstract

We show that certain matrices built from Vandermonde matrices are of full rank. This result
plays a key role in the construction of the “limit theory of generic polynomials”.
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1. Introduction

Let V = Vd(x1, . . . , xn) denote the n× (d + 1) Vandermonde matrix built from
the complex numbers x1, . . . , xn (that is, Vij = x

j−1
i ). The main purpose of this note

is to prove the following result.

Theorem 1.1. Let n, r and d be three positive integers. Let A be an r × (d + 1)
matrix with entries in an algebraically closed field K ⊂ C. Let x = (x1, . . . , xn) be
a vector of n distinct elements of C \ K.

If A has rank r then the (n+ r)× (d + 1) matrix

V (x,A) =
[
Vd(x1, . . . , xn)

A

]

has rank n+ r as soon as d + 1 � n(r + 1).

One may of course assume without loss of generality that K is the algebraic clo-
sure of the extension of Q generated by the entries of A.
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This theorem and Theorem 1.2 below (a kind of nonlinear version of Theorem 1.1)
play a key role in the construction of the “limit theory of generic polynomials”.
Readers interested in this model-theoretic construction may consult [1–4].

Theorem 1.2. There exists a function φ : N2 → N such that the following property
holds for any r � 1, any n � 1 and any D � φ(r, n).

Let V be an algebraic subset of CD of codimension r, defined over an alge-
braically closed subfield K ⊆ C. Given two sequences x = (x1, . . . , xn) and y =
(y1, . . . , yn) of complex numbers, denote by W(x, y) the affine subspace of all α in
CD satisfying the system of equations

∑D
j=1 x

j
i αj = yi (i = 1, . . . , n). Then V ∩

W(x, y) /= ∅ if x and y satisfy the following two conditions:

(i) The xi’s are pairwise distinct and all lie outside K.
(ii) There exists u1 ∈ {x1, y1}, . . . , un ∈ {xn, yn} such that (u1, . . . , un) is of tran-

scendence degree n over K.

An equivalent formulation of condition (ii) (the “marriage condition”) can be
found in [1]. Theorem 1.1 implies that one may take φ(r, n) = n(r + 1) if we
restrict our attention to algebraic subsets V which are affine subspaces (set d =
D − 1). Moreover, there is no need for condition (ii) in this case. As pointed out
in Section 1.1, this condition is nevertheless necessary in the general case.

The remainder of this note is organized as follows. Section 2 is devoted to some
special cases. In particular we show that Theorem 1.1 is tight for all values of n and
r . As explained in Section 1.1 below, this implies that the function φ in Theorem 1.2
must satisfy the condition φ(r, n) � n(r + 1). We then propose two different proofs
of Theorem 1.1. The first one in Section 3 relies on dimension arguments. An alter-
native proof in Section 4 is based on methods from the theory of linear recurrences.
The latter proof does not use any special property of the field of complex numbers
besides its algebraic closedness, so that Theorem 1.1 holds in fact for any algebra-
ically closed field. The first proof uses the fact that C has infinite transcendence
degree, but this is not a real restriction because any field can be embedded in a field
of infinite transcendence degree.

1.1. Remarks on Theorem 1.2

We have seen that one may take φ(r, n) = n(r + 1) for affine subspaces, which
yields the boundD � 4 for n = 2 and r = 1. Without condition (ii) this bound is not
valid for arbitrary algebraic subsets of codimension 1. Indeed, let D = 4 and let V
be the hypersurface α1α4 − α2α3 = 1. Let x1 be a transcendental number (in fact it
would be enough to have x1 /= 0). Set x2 = −x1 and y1 = y2 = 0. One can check
that V ∩W(x, y) = ∅.

We now generalize this construction to higher values of D. This shows that
Theorem 1.2 would not be true without condition (ii). We keep y1 = y2 = 0 and
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x2 = −x1. Let Pα(X) and Qα(X) be the two polynomials
∑D
i=1 αiX

i−1 and∑D
i=1 αi(−X)i−1. Their resultant R(α1, . . . , αD) is a nonzero polynomial in

α1, . . . , αD (this follows for instance from the fact that the polynomials
XD−1 +X + 1 and (−X)D−1 −X + 1 have no common root). Let V be
defined by the equation R(α1, . . . , αD) = 1. We claim that V ∩W(x, y) = ∅.
Indeed, for any α ∈ W(x, y) we have Pα(x1) = Qα(x1) = 0 since x1 /= 0. Since
Pα and Qα have a common root one must have R(α) = 0, hence α/∈V .

Let d = n(r + 1)− 2. In Proposition 2.4 we show that there exists a vector
(x1, . . . , xn) of distinct transcendental numbers and an r × (d + 1)matrix A of rank
r with rational (even boolean) entries such that V (x,A) has rank n+ r − 1. This
implies that Theorem 1.2 fails forD = n(r + 1)− 1. Indeed, let (y1, . . . , yn+r ) be a
vector of complex numbers which are algebraically independent over Q(x1, . . . , xn).
Let K be the algebraic closure of Q(yn+1, . . . , yn+r ) and let V be the affine subspace
of CD defined by the system of equations Aα = (yn+1, . . . , yn+r )T. The sequences
(x1, . . . , xn) and (y1, . . . , yn) satisfy conditions (i) and (ii), but still V ∩W = ∅. To
see this note that α ∈ V ∩W is equivalent to the satisfaction of a system of equations
of the form V ′α = (y1, . . . , yn+r )T where V ′ has its entries in Q(x1, . . . , xn) and
same rank as V (x,A). This system is not satisfiable since the transcendence degree
of (y1, . . . , yn+r ) over Q(x1, . . . , xn) is higher than the rank of V ′.

2. Some special cases

In this section we assume as in Theorem 1.1 that the field K is algebraically closed.
In the case of algebraically independent xi’s we can prove the main theorem with an
improved (and optimal) bound: d � n+ r − 1. We need a very simple but crucial
lemma.

Lemma 2.1. Given x ∈ C, denote by vd(x) the vector (1, x, x2, . . . , xd) of Cd+1.
For any proper linear subspace E ⊂ Cd+1, vd(x) ∈ E for at most d values of x.
Moreover, if E is defined over a field k ⊂ C these values of x are in the algebraic
closure of k.

Proof. We may assume without loss of generality thatE is a hyperplane. The condi-
tion vd(x) ∈ E is equivalent to P(x) = 0, where P ∈ k[X] is a nonzero polynomial
of degree at most d . �

Theorem 2.2. If x1, . . . , xn are algebraically independent over K, V (x,A) has rank
n+ r as soon as d � n+ r − 1.

Proof. By induction on n. For n = 1, since A is of rank r , V (x1, A) can fail to be
of rank r + 1 only if vd(x1) belongs to the subspace of Cd+1 spanned by the rows of
A. By Lemma 2.1, this would imply x1 ∈ K.
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Induction step: assume that n � 2 and that the result is true for n− 1. It follows
from the induction hypothesis that the n− 1 + r last rows form a minor of V (x,A)
of rank n− 1 + r . Hence V (x,A) can fail to be of rank n+ r only if vd(x1) belongs
to the subspace of Cd+1 generated by the last n− 1 + r rows. By Lemma 2.1, this
would imply that x1 belongs to the algebraic closure of K(x2, . . . , xn). �

A variation on this argument gives the same bound in a few other cases. For
instance, we have the following result.

Proposition 2.3. Let P ∈ K[X] be a polynomial of degree at least two. If x1 /∈K,
V ((x1, P (x1)), A) has rank r + 2 as soon as d � r + 1.

Proof. Consider the sequence (xk)k�1 generated by the iteration xk+1 = P(xk).
Since x1 /∈K the same is true of all the elements of this sequence. This implies in
particular that these elements are pairwise distinct since P has degree at least 2.
Note also that the case n = 1 of Theorem 2.2 implies that V (x1, A) has rank r + 1.

Assume by contradiction that x1 is a counterexample. This implies that vd(x2)

belongs to the linear space E spanned by vd(x1) and the rows of A. More generally,
since xk is transcendental over K for any k � 1, vd(xk+1) belongs to the linear space
spanned by vd(xk) and the rows of A. We conclude by an immediate induction on k
that the vectors vd(xk) all belong to E. This is in contradiction with Lemma 2.1. �

The conclusion of Proposition 2.3 does not hold for the degree one polynomial
P(x1) = −x1 and for several other functions f satisfying f ◦ f = id . The following
matrices have rank 2, for instance if a and c are algebraic numbers:




1 x1 x2
1

1 a
x1

a2

x2
1−1 0 a


 ,




1 x1 x2
1

1 ax1
cx1−a

(
ax1
cx1−a

)2

c a 0


 ,


1 x1 x2

1
1 a − x1 (a − x1)

2

0 1 a


.

Our proof of the optimality of Theorem 1.1 is based on a generalization of the exam-
ple with P(x1) = −x1.

Proposition 2.4. Let n and r be two positive integers, d = n(r + 1)− 2 and let
K ⊂ C be an algebraically closed field. Then there is a vector x = (x1, . . . , xn) of n
distinct elements of C \ K and an r × (d + 1) matrix A of rank r with entries in K
such that the (n+ r)× (d + 1) matrix V (x,A) has rank n+ r − 1.

Proof. If n = 1 and if a (1 + r, d + 1)matrix has rank 1 + r then of course d + 1 �
1 + r . Suppose now that n � 2 and let d = n(r + 1)− 2. Let x1 be transcendental
over K and b = exp(2iπ/n). Let x = (x1, bx1, b

2x1, . . . , b
n−1x1). Note that we use

the function f (x) = bx which satisfies f ◦ · · · ◦ f = f (n) = id . The (r, d + 1) ma-
trix A is defined as follows: for every integer i between 1 and r the (i, ni) entry is 1
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and others entries are 0. Its rank is clearly r . Let C0, . . . , Cd denote the columns of
V (x,A):

V (x,A) =




C0 C1 · · · Cn−1 Cn · · · Cnr−1 Cnr · · · Cd

1 x1 · · · xn−1
1 xn1 · · · xnr−1

1 xnr1 · · · xd1
1 bx1 · · · bn−1xn−1

1 xn1 · · · bn−1xnr−1
1 xnr1 · · · bn−2xd1

...
...

...

1 bn−1x1 · · · bxn−1
1 xn1 · · · bxnr−1

1 xnr1 · · · b2xd1

1
· · · · · ·

1




.

For every integer j ∈ [0, n− 2] we have

xnr1 Cj = x
n(r−1)
1 Cj+n = x

n(r−2)
1 Cj+2n = · · · = xn1Cj+(r−1)n = Cj+rn.

Thus it is easy to check that a basis of the space spanned by the columns is
C0, C1, . . . , Cn−1, C2n−1, C3n−1, . . . , Crn−1 and that the rank of V (x,A) is
n+ r − 1. �

3. First proof of the main theorem

Let D(n, r) = n(r + 1)− 1 be the bound in the statement of Theorem 1.1. Call
A(n, r, d) the assertion which is to be established for d � D(n, r). The case n =
1 was taken care of in Theorem 2.2. Note also that the theorem still makes sense
for r = 0: in this case V (x,A) is just an n× n Vandermonde matrix. We there-
fore fix two integers n, r such that n � 2 and r � 1. Our induction hypothesis is
that A(n′, r ′, d ′) holds for all triples (n′, r ′, d ′) such that n′ + r ′ < n+ r and d ′ �
D(n′, r ′). Our first goal is to show that A(n, r, d) holds for d = D(n, r).

Assume by contradiction that V (x,A) is a counterexample, i.e., has rank at most
n+ r − 1. Assume also without loss of generality that K is the algebraic closure
of the extension of Q generated by the entries of A. Since D(n, r) � D(n− 1, r),
by induction hypothesis the last n+ r − 1 rows of V (x,A) form a minor of rank
n+ r − 1. The first row vd(x1) of V (x,A) thus belongs to the linear space spanned
by the last n+ r − 1 rows. We consider now r “copies” y(1), . . . , y(r) of x which are
independent over K. More precisely, we assume the following two properties:

(i) y(j) = (y
(j)

1 , . . . , y
(j)
n ) has same type over K as x = (x1, . . . , xn).

In field-theoretic terminology, this means that there is an isomorphism of fields
from K(x1, . . . , xn) to K(y

(j)

1 , . . . , y
(j)
n ) which leaves K invariant and maps
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x1, . . . , xn to y
(j)

1 , . . . , y
(j)
n . Since x1, . . . , xn are distinct, this implies in

particular that y(j)1 , . . . , y
(j)
n are distinct.

(ii) The n(r + 1) components of x and its copies are pairwise distinct.

These r copies exist since x1, . . . , xn are transcendental over K. It follows from
(i) that the first row vd(y

(j)

1 ) of V (y(j), A) belongs to the linear space spanned by
the last n+ r − 1 rows, since the corresponding property is true of x. Let E be the
linear space spanned by the r + n− 1 last rows of V (x,A) and the corresponding
rows in the matrices V (y(j), A) as j ranges from 1 to r . This space has dimension at
most r + (r + 1)(n− 1) < d + 1 since d + 1 = n(r + 1). We have just shown that
vd(z) ∈ E, where z is any component of x or of its r copies. There are n(r + 1) > d

such components, and they are pairwise distinct. This is in contradiction with Lem-
ma 2.1, and the proof of A(n, r, d) for d = D(n, r) is thus complete. To finish off
the proof of the theorem, we show by a second induction (on d) that A(n, r, d) also
holds for d > D(n, r). Assume therefore that A(n, r, d − 1) holds. In order to show
that V (x,A) has rank n+ r under the hypotheses of Theorem 1.1, we distinguish
two cases.

First case: the first d columns of A have rank r . We conclude from our second
induction hypothesis that the first d columns of V (x,A) have rank n+ r , and this
must also be the rank of the whole matrix.

Second case: the first d columns of A have rank r − 1. Since d − 1 � D(n, r) �
D(n, r − 1), we conclude from our first induction hypothesis that the first d columns
of V (x,A) have rank n+ r − 1. But the last column of V (x,A) does not belong to
the span of the first d columns since the same is true of A itself. The rank of V (x,A)
is therefore equal to 1 + (n+ r − 1) = n+ r .

4. A proof based on linear recurring sequences

This alternative proof will also give a slightly more precise result for r = 1 (see
Lemma 4.5 below). We rely on a generalization of linear recurring sequences. The
case r = 1 can be handled with the standard notion of a linear recurring sequence,
and the corresponding proof can be found in [5]. We recall that K is a subfield of C.
We do not need to assume that K is algebraically closed until Lemma 4.5.

Definition 4.1. Let q be a nonzero vector in Cr . A sequence (Ai)i�0 of vectors
in Kr is a q-recurrent sequence of order n if one can find a polynomial f (X) =
f0 + f1X + · · · + fnX

n ∈ C[X] such that

qT · (f0Ai + f1Ai+1 + · · · + fnAi+n) = 0 ∀i � 0. (1)

For r = 1 or for any fixed q, the set of the generating polynomials f is an ideal
that can be determined from the first 2n terms of the sequence (see for instance [6]
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or Corollary 5.6.3 of [7]). For r � 2, the set of all possible f in (1) contains an ideal
of K[X] that can be determined from the first n(r + 1) terms:

Lemma 4.2. Let q be nonzero vector in Cr and let (Ai)i�0 be a q-recurrent se-
quence of order n � 1 in Kr , where n is as small as possible. There exists a poly-
nomial c ∈ K[x] of degree m ∈ [n, nr] such that

qT · (c0Ai + c1Ai+1 + · · · + cmAi+m) = 0 ∀i � 0. (2)

Such a polynomial can be computed from the first n(r + 1) terms A0, . . . , An(r+1)−1
of the vector sequence.

Note that by definition of a q-recurrent sequence, there exists a polynomial c
of degree m = n which satisfies (2). The point of the lemma is that we can find a
generating polynomial in K[X] even though q is in Cr . Note also that the fact such
a polynomial can be computed from the first n(r + 1) terms of the sequence implies
in particular that we do not need to know the actual value of q to compute c. Before
proving the lemma we illustrate these points on two examples.

Example 4.3. Let K = Q,A2i =
(

2i

0

)
, andA2i+1 =

(
0
2i

)
. Let q =

(
1√
2

)
and vj =

qT · Aj . The sequence (vj )j�0 satisfies the linear recurrence vj+1 = √
2vj , but the

corresponding polynomial X − √
2 is not in Q[X]. By going from order 1 to order 2

we can find a generating polynomial in Q[X] since vj+2 = 2vj .

Example 4.4. Take again r = 2 andAi =
(
ai
bi

)
, where ai and bi are the coefficients

of the expansions at infinity

a(x) = 1

xn
=

∑
i�0

ai

xi+1
and

b(x) = 1

xn(xn − α)
= 1

x2n
+ α

x3n
+ O

(
1

x4n

)
=

∑
i�0

bi

xi+1
.

For any α we have a(x)+ αb(x) = 1/(xn − α) thus the minimal polynomial of the
sequence (qTAi)i�0 for qT = [1 α] is xn − α. This example expresses the opti-
mality of Lemma 4.2 since only the 3nth term of b fixes the value of α and hence of
a generating polynomial.

Proof of Lemma 4.2. The construction of c is the computation of a simultaneous
generating polynomial of degree lower than nr for the r component sequences of
(Ai)i�0. This polynomial may be seen as a common multiple of at most r polyno-
mials of degree n in (1). It is therefore natural to introduce nr shifts of the sequence
and to work with the (r × 1)-block Hankel matrix
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Hn,r =




A0 A1 · · · Anr−1 Anr
A1 A2 · · · Anr Anr+1
...

...
...

...

An−2 An−1 · · · An(r+1)−3 An(r+1)−2
An−1 An · · · An(r+1)−2 An(r+1)−1




∈ Knr×(nr+1).

This matrix is constructed from the first n(r + 1) terms of (Ai)i�0. We claim that
one can find the coefficients of c from a vector in its kernel. We first notice that the
first n columns of Hn,r are linearly independent. Otherwise, the Hankel matrix

Hu(n, n) =



uTA0 uTA1 · · · uTAn−1

uTA1 uTA2 · · · uTAn
...

...
...

uTAn−1 uTAn · · · uTA2n−2


 ∈ Kn×n

would be singular for any u in Kr , therefore using (1) the infinite Hankel matrix
Hu(n,∞) would have rank less than n for any u and n would not be minimal as
assumed for u = q. Now, let c = [c0, c1, . . . , cm, 0, . . . , 0]T ∈ Knr+1 be a nonzero
vector in the kernel of Hn,r (n � m � nr). Such a vector exists since Hn,r has
a greater number of columns than of rows. The vector c is in the kernel of
Hu(n,m+ 1) ∈ Kn×(m+1) for any u. In particular, the corresponding polynomial
c ∈ K[X] is thus a generating polynomial for q. �

Lemma 4.5. For d � n(r + 1)− 1 and any nonzero vector q ∈ Cr there exists,
under the hypotheses of Theorem 1.1, a submatrix of rank n+ 1 made up of n+ 1
consecutive columns of V (x, qTA).

Proof. Assume by contradiction that for some q the determinants of all matrices
made up of n+ 1 consecutive columns of V (x, qTA) are equal to zero. Let us expand
the determinant made up of columns i through i + nwith respect to its last row. After
factoring out (x1x2 · · · xn)i we obtain the relation

V0q
TAi + V1q

TAi+1 + · · · + Vnq
TAi+n = 0,

where V0, . . . , Vn are cofactors of V (x, qTA) restricted to its first n+ 1 columns.
This relation is nontrivial since Vn = detVn−1(x1, . . . , xn) /= 0. The sequence
(Ai)0�i�d is thus q-recurrent of order n with minimal order greater than 1 (A has
rank r) and Lemma 4.2 provides a generating polynomial c ∈ K[X] for (qTAi)0�i�d .
This implies that V0 + V1x + · · · + Vnx

n must be a multiple of a nontrivial divisor
of c (for any q the minimal polynomial is nontrivial). This yields a contradiction
since the roots x1, . . . , xn of the first polynomial are all outside K and the roots of
the second polynomial must be in K. �

Proof of Theorem 1.1. If rankV (x,A) < n+ r there must exist a q such that rank
V (x, qTA) < n+ 1. This is in contradiction with Lemma 4.5. �
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For r = 1, Lemma 4.5 gives a property stronger than Theorem 1.1 but does not
generalize to minors of higher dimensions, as shown by the following example with
r = 2. Take n = 1 and (for instance) d = 100. Take aij identically 0 except that
a1,1 = 1 and a2,50 = 1. Then no submatrix of V (x1, A)made up of three consecutive
columns has rank 3. Still, this matrix has rank 3 since the minor made of columns 1,
2, and 50 has rank 3 for any x1 /= 0.
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