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Problem:

Study of the complexity of fundamental problems

in exact linear algebra over K[x] and Z.

. Worst case complexity;

. Time complexity i.e. fastest algorithms;

. Up to logarithmic factors, soft “O” notation: O (̃f) = f1+o(1);

. Deterministic or randomized algorithms.
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Models of computation/matrix domains.

Algebraic complexity,

matrices in Kn×n with K a commutative field,

arithmetic operations +,×, / in K.

versus

↪→ K[x]n×n, arithmetic operations +,×, / in K.

↪→ Bit complexity,

Zn×n, bit operations.
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Motivations.

• Complexity estimates with “concrete” entry domains,

• Better understanding of linear algebra under bit complexity models,

• Improved algorithms for exact (or accurate) results.
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Organization of the talk

I - Algebraic versus bit complexity.

II - Reductions between problems and target complexity.

III - Polynomial matrix computations.

IV - Integer matrix computations.

Conclusion
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Algebraic complexity over K

Equivalence to matrix multiplication (straight-line)

Matrix multiplication n× n Determinant, inversion,

A×B rank, characteristic polynomial,

Frobenius form, QR decomposition...

nω, n3 ou n2.376 Ram algorithms in O (̃nω)

• [Strassen 69, Bunch & Hopcroft 74] Det � MM ↪→ MM � Det � MM

• [Strassen 73, Baur & Strassen 83] MM � Det
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K[x] or Bit complexity

Inputs and outputs have a size or a precision.

; Impact on the problem’s complexity?
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K[x] or Bit complexity

Inputs and outputs have a size or a precision.

; Impact on the problem’s complexity?

◦ A ∈ K[x]n×n: deg detA = O(nd).

‖A‖ = maxi,j |ai,j| (or d).

◦ A ∈ Zn×n: size(det A) = O (̃n log ‖A‖).

◦ A ∈ Zn×n: O(log cond(A))) = O (̃n log ‖A‖) bits for accuracy.
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Impact of data size?

Ex. Determinant computation/Output size: nd or O (̃nlog ‖A‖),

Evaluation/interpolation scheme or Chinese remaindering

or O (̃nlog ‖A‖) bits a priori:

↑
nω

↓
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Impact of data size?

Ex. Determinant computation/Output size: nd or O (̃nlog ‖A‖),

Evaluation/interpolation scheme or Chinese remaindering

or O (̃nlog ‖A‖) bits a priori:

← nd points or O (̃nlog ‖A‖) bits →

↑
nω

↓

Complexity estimates:

O (̃nω × nd) = O (̃nω+1d),
O (̃nω+1 log ‖A‖).
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Fundamentals of symbolic dense linear algebra
over K[x] or Z:

System solution O (̃nωlog ‖A‖)
[Moenck & Carter 79, Dixon 82] Hensel lifting Las Vegas

Determinant, inversion, nullspace. . . O (̃n·nωlog ‖A‖)
[Edmonds 67, Bareiss 69, Moenck & Carter 79] Deterministic

Fraction-free, Chinese remaindering, Newton-Hensel lifting

Frobenius form (minimum, characteristic polynomial) O (̃n·nωlog ‖A‖)
[Giesbrecht 93, Giesbrecht & Storjohann 02] Las Vegas

Danilevsky elimination, Keller-Gehrig, Chinese remaindering

Hermite and Smith forms, (diophantine systems) O (̃n·nωlog ‖A‖)
[Kannan & Bachem 79, Domich 85, Giesbrecht 95, Storjohann 96-00] Deterministic

Unimodular eliminations
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Bit complexity � algebraic complexity × output size
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Bit complexity � algebraic complexity × output size

Is this bound pessimistic?
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Bit complexity � algebraic complexity × output size

Is this bound pessimistic?

Clue. The output length may not be necessary a priori, i.e. at the

beginning of the computation, but only at its very end.
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Change of the situation: reduced overhead or no overhead

Theorem. The determinant and the Smith normal form of

A ∈ Zn×n can be computed by a Monte Carlo algorithm in

O (̃
√

n · n3 log1.5 ‖A‖) bit operations.

- Search and structured rank-k perturbations for the characteristic polynomial of a sparse matrix;

- Search and dense integer rank-k perturbations for the Smith form of an integer matrix.

[Eberly, Giesbrecht & Villard 00, Kaltofen 92/00, Villard 00]

Theorem. The determinant and the Hermite normal form of

A ∈ K[x]n×n can be computed in O(n3d2) operations in K.

- Column reduction [Mulders & Storjohann 00].
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Organization of the talk

I - Algebraic versus bit complexity.
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A ∈ K[x]n×n or A ∈ Zn×n

Target problems: determinant, characteristic polynomial,

nullspace, rank, inversion, Frobenius, Hermite, Smith normal form

and associated transform, minimal bases, matrix gcd . . .
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A ∈ K[x]n×n or A ∈ Zn×n

Target problems: determinant, characteristic polynomial,

nullspace, rank, inversion, Frobenius, Hermite, Smith normal form

and associated transform, minimal bases, matrix gcd . . .

Target complexity estimate?

Nota. Known algebraic complexity reduction techniques between

problems may not be preserved in bit complexity.
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Example.

. Over K, Determinant in nω =⇒ Inversion in nω

Derivative inequality [Linnainmaa 76, Baur et Strassen 83, Morgenstern 85].

a∗j,i =
∂ det A

∂ ai,j
.
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Example.

. Over K, Determinant in nω =⇒ Inversion in nω

Derivative inequality [Linnainmaa 76, Baur et Strassen 83, Morgenstern 85].

a∗j,i =
∂ det A

∂ ai,j
.

. Over Z, x and y vectors with constant entries, c a large constant,

φ = c · xt · y takes O(n + log |c|) bit operations,

[∂φ/∂xi] = c · y takes O(n log |c|) bit operations.
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; Link with polynomial or integer matrix multiplication?

Theorem. If there is a straight-line program of length D(n, d) over

K which computes the (d+1)st coefficient of the determinant of

an n×n matrix of degree d, then there is a straight-line program of

length no more than 8D(n, d) which multiplies two n×n matrices
of degree d [Giorgi, Jeannerod & Villard 03].
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; Link with polynomial or integer matrix multiplication?

Theorem. If there is a straight-line program of length D(n, d) over

K which computes the (d+1)st coefficient of the determinant of

an n×n matrix of degree d, then there is a straight-line program of

length no more than 8D(n, d) which multiplies two n×n matrices
of degree d [Giorgi, Jeannerod & Villard 03].

C.f. the relation between estimating error bounds (condition

estimation) and testing matrix multiplication

[Demmel, Diament & Malajovich 01].
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Candidate target complexity estimate:

MM(n, log ‖A‖) + input/output size

Which integer (resp. polynomial) exact matrix problems can be

solved with roughly the same number of arithmetic operations

than integer (resp. polynomial) matrix multiplication plus the

input/output size?
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Organization of the talk
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A ∈ K[x]n×n of degree d, MM(n, d) = O (̃nω+1d) or O(n3d2).

. Inversion
(generic inputs) [Jeannerod & Villard 02]

. Determinant
[Storjohann 02]

. Column reduction
[Giorgi, Jeannerod & Villard 03]
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III-1/ Matrix inversion

Size of the output: n2 × n(d + 1) = O(n3d) elements in K.
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III-1/ Matrix inversion

Size of the output: n2 × n(d + 1) = O(n3d) elements in K.

Rich literature on the subject,

[Gauss, Hensel, Hermite/Lagrange, Le Verrier . . . ]

; Algorithms in O (̃nd× n3) or O (̃nd× nω).
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Essentially optimal computation of the inverse
[Jeannerod & Villard 02]

Theorem. Except on a subvariety, the inverse of A ∈ K[x]n×n

of degree d can be computed in O (̃n3d) operations in K.
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Diagonalization in log2(n) steps

A =



∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗


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Diagonalization in log2(n) steps

BA =



∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗


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Diagonalization in log2(n) steps

B′BA =



∗ ∗
∗ ∗

∗ ∗
∗ ∗

∗ ∗
∗ ∗

∗ ∗
∗ ∗


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Diagonalization in log2(n) steps

B′′B′BA =



∗
∗
∗
∗
∗
∗
∗
∗


= D
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[
× ×
? ?

] [
A1 ×
A2 ×

]
=

[
× ×
0 ×

]
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[
× ×

−A2A
−1
1 In

] [
A1 ×
A2 ×

]
=

[
× ×
0 ×

]

Schur complement: too fast increase of the degrees,

the first step already uses O(nω × nd) operations in K,

=⇒ O(nω+1 × d).
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Minimal kernel bases over K[x] [Forney 75]

A =


∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

 → BA =


∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗


[

B

B

] [
AL AR

]
=

[
A′

L 0
0 A′

R

]
with B (and B) minimal basis of ker AL as a K[x]-submodule.
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The row degrees of B and of B are the smallest possible ones.

Example.

BAL =
[

0 0 0 0 1
−1 x −x2 x3 0

]
x 0 0
1 x 0
0 1 x
0 0 1
0 0 0

 = 0.

The degree may be as large as nd/2 for ker AL in the worst case.
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The row degrees of B and of B are the smallest possible ones.

Example.

BAL =
[

0 0 0 0 1
−1 x −x2 x3 0

]
x 0 0
1 x 0
0 1 x
0 0 1
0 0 0

 = 0.

The degree may be as large as nd/2 for ker AL in the worst case.

Lemma. For a generic AL the degree is d exactly.
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Inversion: operation count

Generic minimal basis computation: O (̃n3d) or O (̃nωd)
[e.g. matrix Padé approximation, Beckermann & Labahn 94]

[or Knuth/Schönhage/Moenck Euclidean algorithm for matrix polynomials]

Determinant - Computation of the minimal kernels and of D:∑log n−1
i=0 2i+1 ×O (̃

(
n
2i

)ω × 2id) = O (̃nωd).

Inversion - Product of the log n transformations:∑log n−1
i=0 2i × 2i ×O (̃

(
n
2i

)ω × 2id) = O (̃n3d).
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III-2/ Matrix determinant

O (̃nω+1d) ≤ n3.38d1+ε
[Classical approaches]
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III-2/ Matrix determinant

O (̃nω+1d) ≤ n3.38d1+ε
[Classical approaches]

n3.19d1+ε
[Eberly, Giesbrecht, Villard 2000]

n3.03d1+ε
[Kaltofen 1992/2000]

n2.7d1+ε
[Kaltofen, Villard 2001]

O (̃nωd) ≤ n2.38d1+ε
[Storjohann 2002]

One of the ingredients: high-order lifting
(quadratic iterative refinement for computing the error)
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III-3/ Column reduction

Matrix pencils and Kronecker indices,

[Van Dooren 79-81, Beelen, Van den Hurk & Praagman 88, Praagman et al. 88-98].

Basis reduction,

[Wolovitch 78, Kailath 80, Paulus 98, Mulders & Storjohann 00].

; Algorithms in O(n3d2).
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Definition

A(x) =

[
x + 1 x2

x2 x3 + x2 + 1

]
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Definition

A(x) =

[
x + 1 x2

x2 x3 + x2 + 1

]
↓[

x + 1 x

x2 x2 + 1

]
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Definition

A(x) =

[
x + 1 x2

x2 x3 + x2 + 1

]
↓[

x + 1 x

x2 x2 + 1

]
→ C(x) =

[
x + 1 1

x2 1

]

The column leading matrix [C]l of C = AU has maximal rank.

Consequence. The columns of C provide a minimal degree basis

of the corresponding K[x]-module.
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; Link with polynomial matrix multiplication?
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“Easier” than polynomial matrix multiplication
[Giorgi, Jeannerod & Villard 03]

Theorem. A column reduced form of a non singular matrix A

of degree d in K[x]n×n can be computed by a Las Vegas

(certified) algorithms in MM′(n, d) + O (̃n2d) or O (̃nωd)
operations in K.

NB. MM′(n, d) = O(MM(n, d) +
∑log d

i=0 2iMM(n, 2−id) +
∑log d

i=0 4iMM(2−in, d).
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Difficulty

Small degrees in the matrix but large degrees in the transformation

(possibly long chain of cancellations)

Example.
1 x 0 0

0 1 x 0

0 0 1 x

0 0 0 1

 ·


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 =


1 x 0 0

0 1 x 0

0 0 1 x

0 0 0 1


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Difficulty

Small degrees in the matrix but large degrees in the transformation

(possibly long chain of cancellations)

Example.
1 x 0 0

0 1 x 0

0 0 1 x

0 0 0 1

 ·


1 −x x2 −x3

0 1 −x x2

0 0 1 −x

0 0 0 1

 =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


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Column reduction: the approach

Minimal basis or matrix approximation,

[Beelen, van den Hurk & Praagman 88]

[Villard 96] [Beckermann, Labahn & Villard 99]

A(x)U(x) = C(x) ⇐⇒
[

A−1(x) I
]
·
[

C(x)
U(x)

]
= 0
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Column reduction: the approach

Minimal basis or matrix approximation,

[Beelen, van den Hurk & Praagman 88]

[Villard 96] [Beckermann, Labahn & Villard 99]

A(x)U(x) = C(x) ⇐⇒
[

A−1(x) I
]
·
[

C(x)
U(x)

]
= 0

Not enough: too big degrees (nd) in the transformation U .
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High-order lifting and fraction reconstruction

A−1 = (A−1 mod xh) + xhRA−1.

Left fraction ←→ Right fraction

Non proper ←→ Proper
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High-order lifting and fraction reconstruction

A−1 = (A−1 mod xh) + xhRA−1.

Left fraction ←→ Right fraction

Non proper ←→ Proper

A(x)U(x) = C(x) ⇐⇒
[

R(x)A−1(x) I
]
·
[

C(x)
U ′(x)

]
= 0

Degree d everywhere.
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Column reduction

Input : A ∈ K[x]n×n of degree d

Output : C = AU column reduced
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Column reduction
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Column reduction

Input : A ∈ K[x]n×n of degree d

Output : C = AU column reduced

2d terms of the expansion of A−1 of order higher than (n− 1)d

Reconstruction of the fraction description U ′C−1

Second step: Knuth/Schönhage/Moenck fast recursive algorithm extended to

matrix polynomials.

34



First step: High-order lifting [Storjohann 02]

(quadratic iterative refinement for computing the error)
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Computing the expansion of A−1

Quadratic approximation

• ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ • • • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • • • • • • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • • • • • • • • • • • • • • •
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Computing the expansion of A−1

Quadratic approximation
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◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
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= (A−1(x) mod xk)+ xk+1RL(A−1)L + x2k−1RH(A−1)H
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Organization of the talk

I - Algebraic versus bit complexity.

II - Reductions between problems and target complexity.

III - Polynomial matrix computations.

IV - Integer matrix computations.

Conclusion
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A ∈ Zn×n,

MM(n, log ‖A‖) = O (̃nω+1 log ‖A‖) or O(n3 log2 ‖A‖).

Nota. More difficult than the polynomial case.

. Integer determinant
[Storjohann 03]

. Integer characteristic polynomial
[Kaltofen & Villard 03]

39



IV-1/ Matrix determinant

b = logα ‖A‖

O (̃nω+1 log ‖A‖) ≤ n3.38b [Classical approaches]
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IV-1/ Matrix determinant

b = logα ‖A‖

O (̃nω+1 log ‖A‖) ≤ n3.38b [Classical approaches]

n3.19b [Eberly, Giesbrecht, Villard 2000]

n3.03b [Kaltofen 1992/2000]

n2.7b [Kaltofen, Villard 2001]

O (̃nω log ‖A‖) ≤ n2.38b [Storjohann 2002]

Nota. Apparently no progress on this side of O (̃nω+1 log ‖A‖) bit

operations for matrix inversion.
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IV-2/ Integer characteristic polynomial

Iterated powers or Krylov approach and Chinese remaindering,

; O (̃nω+1 log ‖A‖) bit operations

Las Vegas randomized

[Giesbrecht & Storjohann 02]
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Via algebraic complexity without divisions
[Kaltofen & Villard 01-03]

Theorem. The determinant of any matrix A in Rn×n can be

computed with O (̃n3+1/5) or n2.7 ring operations.

Theorem. The characteristic polynomial of any matrix A

in Zn×n can be computed by a randomized Monte Carlo

algorithm with O (̃n3+1/5 log ‖A‖) or O (̃n2.7 log ‖A‖) bit

operations.
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To postpone the size increase?

Exemple:

x and y two vectors in Zn with constant entries,

c a large constant,

Compute c · xt · y ?

→ Solution 1. c · xt then (c · xt) · y Cost: O(log |c|2).
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To postpone the size increase?

Exemple:

x and y two vectors in Zn with constant entries,

c a large constant,

Compute c · xt · y ?

→ Solution 1. c · xt then (c · xt) · y Cost: O(log2 |c|).

→ Solution 2. xt · y then c · (xt · y) Cost: O(log |c|).
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Integer determinant and characteristic polynomial,

Ingredients:

- Elimination of divisions [Strassen 73]

- Baby step/giant step [Kaltofen 92]

- Krylov/Lanczos [Wiedemann 86]

- Block Krylov/Lanczos [Coppersmith 86, Villard 97]

- Multifactor Hensel lifting [Sorjohann 00]

44



1. Computation of utv, utAv, utA2v, . . . , utA2nv

2. Computation of the minimum polynomial
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From scalar polynomials in K[x] to matrix polynomials in

(K[x])m×m = (Km×m)[x].
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Matrix minimum polynomial,

U, V ∈ Kn×m, U tV, U tAV, U tA2V, . . . , U tA2n/mV

↓

F (x) = xdI + xd−1Fd−1 + . . . + F0 ∈ K[x]m×m,

A, n× n → F (x),m×m → det F (x)

. Postpone the size increase: less powers of A.

Nota. First gain by using baby steps/giant steps, additional gain with the

minimum matrix polynomial.
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Conclusion.

des resultats de l’expose: dire ce qu’il reste a faire pour les finir

inversion cas general ?

reunifier les complexites

pgcd recursif

without divisions

inverse cas general

MMprime

all problems had the “same” complexity, and now
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lien + numerique avec pepier Demmel. Eg complexity calcul du

conditionnement?

recapituler le meilleurs exposants connus

certified rank? char poly? transfor matrices ?

revenir au titre (how does cost?)

matrices creuses, structurees

Linbox

floating points / accuracy
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Suppression du facteur n / Modle binaire sur Z (en O )̃

Facteur Total

Dterminant (LV) n1/5 n2.7 log ‖A‖
Storjohann 2003 logα n nω log ‖A‖∗

Forme de Smith (LV) logα n nω log ‖A‖∗

Polynme caractristique (MC) n1/5 n2.7 log ‖A‖
+ Forme normale de Frobenius
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Suppression du facteur n / Modle algbrique sur K[x] (en O )̃

Facteur Total

Dterminant, Smith (LV)1 logα n nωd∗

Déterminant sans division2 n1/5 n2.7

Rduction en colonnes, pgcd (LV)3 logβ n nωd∗

Inversion4 (SLP) logγ n n3d∗

1
[Sto2002], 2

[KaVi2001-03], 3
[GiJeVi2003], 4

[JeVi2002].
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