
Lattice-Based Memory Allocation

Gilles Villard
CNRS, Laboratoire LIP, ENS Lyon France

Joint work with Alain Darte (CNRS, LIP) and Rob Schreiber (HP Labs)
Int. Conf. Compilers, Architecture and Synthesis for Embedded Systems, ACM Press, Nov. 2003

Research Report LIP, May 2004, http://www.ens-lyon.fr/LIP/Pub

MOCAA, May 6, 2004, University of Waterloo

Introduction

1

Example 1.

do i = 0, N − 1
do j = 0, N − 1

S: A(i, j) = . . .
end

end

Schedule: θ(S, i, j) = Ni + j

do i = 0, N − 1
do j = 0, N − 1

T: B(i, j) = A(i, j) + . . .
end

end

θ(S, i, j) = Ni + j + 1
i.e., one “clock-cycle” later

Introduction and context

Example 1.

do i = 0, N − 1
do j = 0, N − 1

S: A(i, j) = . . .
end

end

Schedule: θ(S, i, j) = Ni + j

do i = 0, N − 1
do j = 0, N − 1

T: B(i, j) = A(i, j) + . . .
end

end

θ(S, i, j) = Ni + j + 1
i.e., one “clock-cycle” later

Design intermediate buffers for A with memory reuse?

Introduction and context

Some array values cannot share the same buffer location,

e.g. A(i, j) and A(i, j + 1) since A(i, j) is required later by the second loop,

we say that corresponding indices are conflicting (relation ./):

i

j

(i, j) ./ (i, j + 1)

i

j

(i,N − 1) ./ (i + 1, 0) (N = 6)

Introduction and context

The allocation function

σ : (i, j) 7→ Ni + j mod 2,

which stores A(i, j) in Buffer[σ(i, j)], is a valid allocation (1D), indeed,

(i, j) ./ (i, j + 1): Ni + j 6= Ni + j + 1 mod 2

(i,N − 1) ./ (i + 1, 0): Ni + N − 1 6= Ni + N mod 2

Conflicting indices are stored in different memory locations

Preserves the program semantics

Introduction and context

Example 2. DCT-like code

do br = 0, 63
do bc = 0, 63

do r = 0, 7
S:A(br, bc, r, ∗) = . . .

end
end

end

Pipelined
with

do br = 0, 63
do bc = 0, 63

do c = 0, 7
T: . . . = A(br, bc, ∗, c)

end
end

end

How to allocate elements of A in local memory, and minimize the size?

 Full array: 64× 64× 8× 8 = 218 = 256K

 Optimal linear allocation: 112 elements, σ :
{

r mod 4
16(br + bc) + 2r + c mod 28.

Introduction and context

How a compiler can automatically find a valid allocation?

Main constraints:

- Optimization of the size of the allocation (size of the buffer)

- Simplicity of the addressing function for implementation aspects

General context:

Compilers, parallelizers (static optimization, loop transformation, . . .)

Application-specific circuit, communicating hardware processes

Automatic synthesis of hardware accelerators

Introduction and context

P rogram In

C Outode
hip

PICO: Program In Chip Out

Similar tools: MMAlpha (INRIA), Atomium (IMEC), Compaan (Leiden)

Compiler

CAD Tools
Logical Synthesis
Physical Design

Architecture Synthesis
PICO

Input C code

Output "code"
− synthesizable VHDL
− netlists for FPGA
− VLIW code

VHDL for processors

Introduction and context

Outline

Introduction and context

I - Problem statement, and previous heuristic limitations

II - Model: Integral lattices and linear allocations

III - Application: Memory allocation constructions and heuristics

Conclusion

Outline

Introduction and context

I - Problem statement, and previous heuristic limitations

II - Model: Integral lattices and linear allocations

III - Application: Memory allocation constructions and heuristics

Conclusion

Scheduled program or communicating processes

+

Dependence analysis (lifetime)

+

Choice of vector indices (e.g., loop indices or array, etc.)

Problem statement

Scheduled program or communicating processes

+

Dependence analysis (lifetime)

+

Choice of vector indices (e.g., loop indices or array, etc.)

↓

Data storage optimization with respect to a representation

Problem statement

Previous approaches

De Greef, Catthoor and De Man (1996-1997)

Lefebvre and Feautrier (1996-1997)

Wilde and Rajopadhye (1996), Quilleré and Rajopadhye (2000)

Strout, Carter, Ferrante and Simon (1998)

Thies, Vivien, Sheldon and Amarasinghe (2001)

Problem statement

All these approaches may be formalized using:

Definition: Two indices ~i and ~j of Zn are conflicting (~i ./ ~j) if they correspond
to two values that are simultaneously alive during the execution with schedule θ.

CS = {(~i,~j)}|~i ./ ~j}: the set of all pairs of conflicting indices.

Ex: {(
»

0
0

–
,

»
0
1

–
), (

»
0
1

–
,

»
0
2

–
), . . . , (

»
0
5

–
,

»
1
0

–
), (

»
1
5

–
,

»
2
0

–
), . . .}

Definition: a linear allocation of size m is a homomorphism σ : Zn → M,
where M⊂ Zp is a finite abelian group of m elements.

Problem statement

Valid linear allocation

For conflicting indices~i and ~j,~i 6= ~j one must have σ(~i) 6= σ(~j), i.e. σ(~i−~j) 6= 0

DS = {~i−~j ∈ Zn|~i ./ ~j}

Definition: σ is valid iff DS ∩ ker σ = {~0}.

Example of

(0,N−1)−(1,0)=
(i,j)−(i,j+1)=

(−1,N−1)
(0,1)

j

i

Difference Set

Problem statement

For affine schedules, regular sets of iteration, and affine access functions, CS is
represented as all integral points in a union of polytopes.

Depending on the dependence analysis, CS and DS are super-approximated, let
CS ⊆ C and DS ⊆ D.

Let D be an approximation of the difference set: DS ⊆ D.

D is the set of integral points within a 0-symmetric polytope K: D =
◦
K

(or a body)

Problem: Minimize the size of linear allocations valid for D (or K).

Problem statement

Previous heuristics: ex. storage in a 2d buffer

[Successive projections — Lefebvre and Feautrier, loop indices]

[Canonical linearizations — De Greef et al., array indices]

For a given index basis
Choice of appropriate moduli such that

σ(~i) =~i mod ~b =
[

i1
i2

]
mod

[
b1

b2

]
or one of the 2nn! canonical linearization

σ(~i) = ±Ni1 ± i2 mod b or σ(~i) = ±i1 ±Ni2 mod b

is a valid allocation.

Previous heuristic limitations

Ex. σ must be nonzero on D = {(0, 1), (1, 1−N), . . .}

Largest component along e1:[
1 0
· ·

] [
1

1−N

]
=

[
1
·

]
Largest component in the orthogonal:[
· ·
0 1

] [
0
1

]
=

[
0
1

]
⇒

[
1 0
0 1

] [
i1
i2

]
mod

[
2
2

]
Size = 4

or best canonical linearization

maxD{Ni + j} = 1 ⇒ Ni + j mod 2, Size = 2

Previous heuristic limitations

Limitations

i

j

j

i

Optimal size: 2
(unchanged)

θNew schedule: (i,j)=(i−j,i)

D = {(1, 1), (N − 1, N), . . .}

Previous heuristic limitations

Limitations

i

j

j

i

Optimal size: 2
(unchanged)

θNew schedule: (i,j)=(i−j,i)

D = {(1, 1), (N − 1, N), . . .}[
1 0
· ·

] [
N − 1

N

]
=

[
N − 1
·

]
⇒ modulo N ⇒ Size = N

or

maxD{| ±Ni± j|} = maxD{| ± i±Nj|} = N(N − 1) ⇒ Size = O(N2)

Previous heuristic limitations

Our contribution

. Geometrical framework for formalizing and studying heuristics

. Lower and upper bounds on performance with respect to D and K

. Guaranteed heuristics, i.e., whose size cannot be “arbitrarily bad”

Previous heuristic limitations

Outline

Introduction and context

I - Problem statement, and previous heuristic limitations

II - Model: Integral lattices and linear allocations

III - Application: Memory allocation constructions and heuristics

Conclusion

Geometrical interpretation
[Early work on skewing schemes: Budnik and Kuck 1971, Shapiro 78, Wijshoff and Van Leeuwen 1985]

Validity: K ∩ ker σ = {~0}

Kernel of σ: ~i,~j ∈ ker σ ⊂ Zn ⇒ u~i + v~j ∈ ker σ, u, v ∈ Z.

The kernel of a
linear allocation is an

integral lattice

Integral lattices and linear allocations

Validity ≡ strictly admissible lattice

Definition: The lattice Λ = kerσ is strictly admissible for the polytope K iff

K ∩ Λ = {~0}

j

i

Size N allocation

Integral lattices and linear allocations

“Good” allocation ≡ “accurate” strictly admissible lattice

j

i

Optimal size: 2

Integral lattices and linear allocations

Up to equivalence (same kernel),

σ :~i 7→ U ·~i mod ~s =

 u11i1 + . . . + u1nin mod s1

. . .
un1i1 . . . + unnin mod sn

with U unimodular and diag(~s) in Smith normal form.

Integral lattices and linear allocations

Up to equivalence (same kernel),

σ :~i 7→ U ·~i mod ~s =

 u11i1 + . . . + u1nin mod s1

. . .
un1i1 . . . + unnin mod sn

with U unimodular and diag(~s) in Smith normal form.

Storage Underlying lattice Λ (the kernel)

Size = s1s2 . . . sn det Λ = s1s2 . . . sn

i
i
i
i4
3
2
1 2

4
4
8

A mod

Size = 256 (dim 4)
Λ : U−1

 s1

. . .
sn

Integral lattices and linear allocations

Λ :
[

N 0
0 1

]
, det Λ = N

j

i

Surface = N

Λ :
[

1−N 2
−N 2

]
, det Λ = 2

Surface = 2

j

i

Integral lattices and linear allocations

K a 0-symmetric polytope (or a body)

Problem: Find a lattice, integral and strictly admissible for K,
of small determinant

Nota: then, one constructs a valid allocation whose kernel is Λ (always possible).

Integral lattices and linear allocations

Admissible lattice and lattice packing

Admissible lattice for K Lattice packing for K/2

Integral lattices and linear allocations

Admissible lattice and lattice packing

Admissible lattice for K Lattice packing for K/2

Density of a lattice packing of K:

δ(K, Λ) =
Vol(K)
det Λ

Hard question: densest lattice packing? [Rogers 64, Gruber and Lekkerkerker 87]

Integral lattices and linear allocations

The critical determinant of K:

∆(K) = infΛ{ det Λ | Λ is admissible for K }

[Minkowski 1rst Theorem, Minkowski-Hlawka]

Vol(K)
2n

≤ ∆(K) ≤ Vol(K)

Integral lattices and linear allocations

The critical determinant of K:

∆(K) = infΛ{ det Λ | Λ is admissible for K }

[Minkowski 1rst Theorem 1893, Minkowski-Hlawka]

Vol(K)
2n

≤ ∆(K) ≤ Vol(K)

Best memory allocation (linear):

∆Z(K) = infΛ integral{ det Λ | Λ is strictly admissible for K }

Vol(K)
2n

≤ ∆Z(K) ≤ ?

Integral lattices and linear allocations

Outline

Introduction and context

I - Problem statement, and previous heuristic limitations

II - Model: Integral lattices and linear allocations

III - Application: Memory allocation constructions and heuristics

Conclusion

Scheme I

Input: K
Output: an integral lattice Λ, strictly admissible for K

1. Start from an integral lattice with basis (~c1, . . . ,~cn)

2.

3. Compute appropriate integer scaling factors ρi, 1 ≤ i ≤ n

Return the lattice with basis (ρ1~c1, . . . , ρn~cn)

Memory allocation constructions and heuristics

Scheme I

Input: K
Output: an integral lattice Λ, strictly admissible for K, det(Λ) ≤ cnVol(K)

1. Start from an integral lattice with basis (~c1, . . . ,~cn)

2. “Improve” the basis

3. Compute appropriate integer scaling factors ρi, 1 ≤ i ≤ n

Return the lattice with basis (ρ1~c1, . . . , ρn~cn)

Memory allocation constructions and heuristics

Arbitrary basis for the ball

Memory allocation constructions and heuristics

c1

c2

Arbitrary working basis for the ball

Memory allocation constructions and heuristics

Arbitrary working basis for the ball

x 2

c2

c1

x 2

Memory allocation constructions and heuristics

Arbitrary working basis for the ball

c’2

c1

Memory allocation constructions and heuristics

Arbitrary basis for a polytope

Memory allocation constructions and heuristics

Arbitrary working basis for a polytope

c 2

c 1

Memory allocation constructions and heuristics

Arbitrary working basis for a polytope

x 8

"Depth" of the
second projection

x 8

= 0.14F (c) 2 2

Memory allocation constructions and heuristics

Definition: ith “depth” [Lovász and Scarf 1992]

- F (~c) = inf{ ρ > 0 | ~c ∈ ρK }

- Fi(~ci) = inf{ F (~x) | ~x ∈ ~ci + Vect(~c1, . . . ,~ci−1) }

or, working in the dual K∗ of K,

Definition: ith “width”

- F ∗
i (~ci) = sup{ ~ci · ~y | ~y ∈ K,~y · ~c1 = ~y · ~c2 = . . . = ~y · ~ci−1 = 0}

Memory allocation constructions and heuristics

11

~ 3/4

~ 3/4

Memory allocation constructions and heuristics

~ 1/2

F (c) ~ 1/22 2

Memory allocation constructions and heuristics

Arbitrary working basis for a polytope

Memory allocation constructions and heuristics

What’s wrong with the working basis?

Memory allocation constructions and heuristics

The determinant of the output basis is related to

n∏
i=1

ρi ≈
n∏

i=1

1
Fi(~ci)

,

hence, for upper bounding the determinant,

n∏
i=1

Fi(~ci) ≥ ?

Memory allocation constructions and heuristics

The determinant of the output basis is related to

n∏
i=1

ρi ≈
n∏

i=1

1
Fi(~ci)

,

hence, for upper bounding the determinant,

n∏
i=1

Fi(~ci) ≥ ?

⇒ use a generalized reduced basis [Lovász and Scarf 92] with

Fi(~ci) ≥ λi(K)(
1
2
− ε)i−1

and for the successive minima λi(K), use the Second Theorem of Minkowski.

Memory allocation constructions and heuristics

c
1

c
2

Generalized lattice basis reduction

Memory allocation constructions and heuristics

c
2

c
1

New norm ~ 0.4
Reduce c using c 12

Generalized lattice basis reduction

Memory allocation constructions and heuristics

c
2

c
1

Generalized lattice basis reduction

Memory allocation constructions and heuristics

c is small compared to c
2 1

c
2

1
c

1

swap c and c
1 2

Generalized lattice basis reduction

Memory allocation constructions and heuristics

c
1

c2

Generalized lattice basis reduction

Memory allocation constructions and heuristics

Application to memory allocations

1. Better understanding of previous heuristics

Based on “fixed” bases (loops, arrays, schedule, . . .)

⇒ may fail if the basis is not adequate with respect to DS

2. Upper bound for the strictly admissible determinant ∆Z

3. Provides heuristics with guaranteed size

Memory allocation constructions and heuristics

Improved basis for a polytope

Memory allocation constructions and heuristics

1

Arbitrary working basis for a polytope Arbitrary working basis for a polytope Arbitrary working basis for a polytope Arbitrary working basis for a polytope

c

Arbitrary working basis for a polytope Arbitrary working basis for a polytope Arbitrary working basis for a polytope Arbitrary working basis for a polytope

Improved basis for a polytope

c

2

Memory allocation constructions and heuristics

Arbitrary working basis for a polytope Arbitrary working basis for a polytope Arbitrary working basis for a polytope Arbitrary working basis for a polytope Arbitrary working basis for a polytope Arbitrary working basis for a polytope Arbitrary working basis for a polytope Arbitrary working basis for a polytope

x 2

Arbitrary working basis for a polytope Arbitrary working basis for a polytope Arbitrary working basis for a polytope Arbitrary working basis for a polytope

Improved basis for a polytope

Memory allocation constructions and heuristics

Arbitrary working basis for a polytope Arbitrary working basis for a polytope Arbitrary working basis for a polytope Arbitrary working basis for a polytope

x 2

x 2

Arbitrary working basis for a polytope Arbitrary working basis for a polytope Arbitrary working basis for a polytope Arbitrary working basis for a polytope

Improved basis for a polytope

Memory allocation constructions and heuristics

Arbitrary working basis for a polytope Arbitrary working basis for a polytope Arbitrary working basis for a polytope Arbitrary working basis for a polytope

Improved basis for a polytope

Memory allocation constructions and heuristics

For a given K, the critical determinant (Λ ⊂ Rn) satisfies [Minkowski-Hlawka]

∆(K) ≤ Vol(K)

Scheme II

Using the successive minima of K we establish that there exists a strictly
admissible and integer lattice such that

∆Z(K) ≤ n! Vol(K)

Memory allocation constructions and heuristics

Guaranteed heuristics det Λ ≤ cnVol(K)
Full dimensional polytope, arbitrary set in some cases

Enumeration, Λ such that det(Λ) ≤ n!Vol(K) Optimal linear

Using the successive minima (Scheme II) (adapting [Rogers]) cn = n!

Based on K (Scheme I, Fi(~ai) ≤ 1) cn = (n!)2

Generalized reduction (Scheme I) cn = 2n2
n!

Based on K∗ (Scheme I, F ∗
i (~ci) ≤ 1) (cf [Lefebvre and Feautrier]) cn = (n!)2

Lenstra-Lenstra-Lovász reduction (ellipsoid approximation) cn = 2n(n+3)/4nn

+ 1D allocations, and power of two moduli

Memory allocation constructions and heuristics

Cf Limitations

i

j

j

i

Optimal size: 2
(unchanged)

θNew schedule: (i,j)=(i−j,i)

Previous heuristics: size O(N) or O(N2)

Guaranteed heuristics, n = 2:

Size = det Λ ≤ 2 Vol(K) = 4.

Memory allocation constructions and heuristics

Outline

Introduction and context

I - Problem statement, and previous heuristic limitations

II - Model: Integral lattices and linear allocations

III - Application: Memory allocation constructions and heuristics

Conclusion

In practice

Performance is guaranteed as soon as the basis is appropriate w.r.t K

- access functions to arrays are “simple”
- scheduling functions are not “too degenerated”
- writing domains are “not too skewed”

⇒ Mixing Lefebvre-Feautrier and Quilleré-Rajopadhye (schedule basis)

Computational aspects

Integer matrix manipulation for enumerative construction
Generalized basis reduction (Linear Programming)
Integer Linear Programming

Discussion and open questions

Questions

Another approach for obtaining integral and strictly admissible lattices?

Power of linear allocations with respect to the optimum?

More general allocations, e.g. multi-periodic schemes?

More general conflicting indices set?

Discussion and open questions

