Assignment 1

$$
\text { 1/ and 2/ - Due November } 4 \text { th (extended), } 2015
$$

Your implementations may be in the form of a maple worksheet or of maple code in plain text files (in a single tarball).

1/ A matrix Toeplitz is a matrix in which each diagonal is constant, for instance:

$$
T=\left[\begin{array}{llll}
f_{3} & f_{2} & f_{1} & f_{0} \\
f_{4} & f_{3} & f_{2} & f_{1} \\
f_{5} & f_{4} & f_{3} & f_{2} \\
f_{6} & f_{5} & f_{4} & f_{3}
\end{array}\right]
$$

$\mathrm{a} /$ Let R be a ring supporting the FFT. If T is square $n \times n$ with entries in R , and g is a column vector in R^{n}, then show that the matrix times vector product $T \cdot u$ can be computed using one univariate polynomial multiplication. What is the corresponding cost (with an explicit constant in front of the dominating term) using Karatsuba's algorithm? Using the FFT?
b/ We consider the following algorithm ${ }^{1}$:
Algorithm 1. "Middle Product"
Input: $f=f_{0}+f_{1} x+f_{2} x^{2}$, and $g=g_{0}+g_{1} x$

1. $m_{1}:=\left(f_{0}+f_{1}\right) g_{1}$
2. $m_{2}:=\left(f_{1}+f_{2}\right) g_{0}$
3. $m_{3}:=f_{1}\left(g_{1}-g_{0}\right)$
4. $h_{1}:=m_{1}-m_{3}$
5. $h_{2}:=m_{2}+m_{3}$

Ouput: h_{1}, and h_{2}.
Given f of degree less than $2 n-1$ and g of degree less than n in R^{n}, Show that Algorithm 1 can be used recursively for computing the n coefficients of $x^{n-1}, x^{n}, \ldots, x^{2 n-2}$ in the polynomial $h=f g$. What is the corresponding cost (assuming that n is a power of 2)? Conclude that you can compute the product $T \cdot u$ faster than in question a/ using Karatsuba's algorithm.
c/ Improve the cost given in a/ using the FFT.

Implementation. Given f and g as in $\mathrm{b} /$, implement the recursive algorithm for computing the coefficients of $x^{n-1}, x^{n}, \ldots, x^{2 n-2}$ in the product $f g$.

Note. Another version of the middle product algorithm is given in the "transposition principle" worksheet.

[^0]2/ Let R be a commutative ring such that $n!$ is invertible in R . We study Brent \& Kung's algorithm ${ }^{2}$ for the composition modulo powers of x. We consider two polynomials (truncated power series) f and g in $\mathrm{R}[x]$ of degree less than n, with $g^{\prime}(0)$ invertible.
a/ For f and g given of degree less than n in $\mathrm{R}[x]$, with $g^{\prime}(0)$ invertible in R , and knowing $f(g) \bmod x^{n}$, show that $f^{\prime}(g) \bmod x^{n}$ can be computed in $O(\mathrm{M}(n))$ operations.
Hint: use the chain rule $(f \circ g)^{\prime}=\left(f^{\prime} \circ g\right) g^{\prime}$.
We write $g=g_{0}+g_{1} x^{m}$ with g_{0} of degree less than m, and let $k=\lceil n / m\rceil$, and consider the Taylor expansion:

$$
\begin{equation*}
f\left(g_{0}+g_{1} x^{m}\right) \equiv f\left(g_{0}\right)+f^{\prime}\left(g_{0}\right) x^{m} g_{1}+\frac{f^{\prime \prime}\left(g_{0}\right)}{2!} x^{2 m} g_{1}^{2}+\ldots \quad \bmod x^{n} . \tag{1}
\end{equation*}
$$

b/ Use a/ to prove that $f(g) \bmod x^{n}$ can be computed at the cost of computing $f\left(g_{0}\right) \bmod x^{n}$ plus $O(k \mathrm{M}(n))$ operations.
c/ With f of degree less than d, such that d is a power of two, and g_{0} of degree less than m, devise a divide-and-conquer algorithm for computing $f(g) \bmod x^{n}$, with cost $O(\mathrm{M}(n) \log n)$ if $d m \leq n$, and $O((d m / n) \mathrm{M}(n) \log n)$ in general.
Hint: divide f into two blocks of size $d / 2$.
d/ Prove that $f(g) \bmod x^{n}$ can be computed in $O((m \log n+k) \mathrm{M}(n))$ operations in R. Which choice of m minimizes the bound?

Implementation. Given f, g, give a recursive procedure for c/; a procedure for the whole composition (do not rewrite polynomial multiplication and power series inversion).

[^1]
[^0]: ${ }^{1}$ G. Hanrot, M. Quercia, and P. Zimmermann, The Middle Product Algorithm I, Applicable Algebra in Engineering, Communication and Computing, 14, 6, 415-438, 2004.

[^1]: 581-595, 1978. See also Exercise 12.4 in "Modern Computer Algebra".

