
MAT1901HF 2015-2016 First Term University of Toronto 10/26/2015

Assignment 1

1/ and 2/ - Due November 4th (extended), 2015

Your implementations may be in the form of a maple worksheet or of maple code in plain text files (in a
single tarball).

1/ A matrix Toeplitz is a matrix in which each diagonal is constant, for instance:

T =


f3 f2 f1 f0
f4 f3 f2 f1
f5 f4 f3 f2
f6 f5 f4 f3

 .

a/ Let R be a ring supporting the FFT. If T is square n×n with entries in R, and g is a column vector in Rn,
then show that the matrix times vector product T · u can be computed using one univariate polynomial
multiplication. What is the corresponding cost (with an explicit constant in front of the dominating
term) using Karatsuba’s algorithm? Using the FFT?

b/ We consider the following algorithm1:

Algorithm 1. “Middle Product”
Input: f = f0 + f1x+ f2x

2, and g = g0 + g1x
1. m1 := (f0 + f1)g1
2. m2 := (f1 + f2)g0
3. m3 := f1(g1 − g0)
1. h1 := m1 −m3

5. h2 := m2 +m3

Ouput: h1, and h2.

Given f of degree less than 2n− 1 and g of degree less than n in Rn, Show that Algorithm 1 can be used
recursively for computing the n coefficients of xn−1, xn, . . . , x2n−2 in the polynomial h = fg. What is
the corresponding cost (assuming that n is a power of 2)? Conclude that you can compute the product
T · u faster than in question a/ using Karatsuba’s algorithm.

c/ Improve the cost given in a/ using the FFT.

Implementation. Given f and g as in b/, implement the recursive algorithm for computing the coefficients
of xn−1, xn, . . . , x2n−2 in the product fg.

Note. Another version of the middle product algorithm is given in the “transposition principle” worksheet.

1 G. Hanrot , M. Quercia, and P. Zimmermann, The Middle Product Algorithm I, Applicable Algebra in Engineering,
Communication and Computing, 14, 6, 415–438, 2004.

1



2/ Let R be a commutative ring such that n! is invertible in R. We study Brent & Kung’s algorithm2 for the
composition modulo powers of x. We consider two polynomials (truncated power series) f and g in R[x] of
degree less than n, with g′(0) invertible.

a/ For f and g given of degree less than n in R[x], with g′(0) invertible in R, and knowing f(g) mod xn,
show that f ′(g) mod xn can be computed in O(M(n)) operations.
Hint: use the chain rule (f ◦ g)′ = (f ′ ◦ g)g′.

We write g = g0+g1x
m with g0 of degree less than m, and let k = dn/me, and consider the Taylor expansion:

f(g0 + g1x
m) ≡ f(g0) + f ′(g0)x

mg1 +
f ′′(g0)

2!
x2mg21 + . . . mod xn. (1)

b/ Use a/ to prove that f(g) mod xn can be computed at the cost of computing f(g0) mod xn plus
O(kM(n)) operations.

c/ With f of degree less than d, such that d is a power of two, and g0 of degree less than m, devise
a divide-and-conquer algorithm for computing f(g) mod xn, with cost O(M(n) log n) if dm ≤ n, and
O((dm/n)M(n) log n) in general.
Hint: divide f into two blocks of size d/2.

d/ Prove that f(g) mod xn can be computed in O((m log n+ k)M(n)) operations in R. Which choice of m
minimizes the bound?

Implementation. Given f , g, give a recursive procedure for c/; a procedure for the whole composition (do
not rewrite polynomial multiplication and power series inversion).

2 R.P. Brent, and H.T. Kung. Fast algorithms for manipulating formal power series. Journal of the ACM, 25, 4,
581–595, 1978. See also Exercise 12.4 in “Modern Computer Algebra”.

2


