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Ore. quedkion

What does a random metric on the 2d-sphere/plane look like ?
(and how to define it ?)

o
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/IY/‘ial\gu(aEia\g

Definition
Triangulation := finite connected graph properly drawn on the
sphere (seen up to continuous deformations) such that the faces

are all triangles.
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/IY/‘ial\gu(aEia\g

Definition
Triangulation := finite connected graph properly drawn on the
sphere (seen up to continuous deformations) such that the faces

are all triangles 4 one distinguished oriented edge.
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William Thomas Tutte (1917 — 2002)

2-4m=1(3n)!!
(n+1)!(n+2)!11"

# Triangulations with n faces =

Other ways to count maps — Matrix integrals, bijective methods
(Cori-Vauquelin-Schaeffer type bijections).
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Laroe gale druckure

Let T, be a random uniform triangulation with n faces.

o
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Larae grale dhruckure

Let T, be a random uniform triangulation with n faces.

N
07

N/

Figure : A (non isometric) embedding of T1237.



Larae grale dhruckure

Let T, be a random uniform triangulation with n faces.

Figure : A (non isometric) embedding of Ti7429.
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Laroe gale druckure

Let T, be a random uniform triangulation with n faces.

Theorem (Le Gall (11), see also Miermont)

We have the following convergence in diStribution e s g et oy

d
(Tnv n71/4dgr) L) (moo, D)
. ) n—oo H/—/
random metric space random metric space
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Laroe gale druckure

Let T, be a random uniform triangulation with n faces.

Theorem (Le Gall (11), see also Miermont)

We have the following convergence in diStribution e s g et oy

—— n—oo N—_——
random metric space random metric space

a.s. homeomorphic to S, [Le Gall & Paulin 06] (see also Miermont)
a.s. of Hausdorff dimension 4 [Le Gall]
Universality [Le Gall].
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Laroe gale druckure

Let T, be a random uniform triangulation with n faces.

Theorem (Le Gall (11), see also Miermont)

We have the following convergence in diStribution e s g et oy

—— n—oo N—_——
random metric space random metric space

a.s. homeomorphic to S, [Le Gall & Paulin 06] (see also Miermont)
a.s. of Hausdorff dimension 4 [Le Gall]
Universality [Le Gall].

— a random fractal metric space with the topology of the sphere
ESS
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£nd of the dory?

Although homeomorphic to Sy, the Brownian map does not
canonically embed onto the sphere (not yet).
We still do not have a “random metric living on 55"
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£nd of the dory?

Although homeomorphic to Sy, the Brownian map does not
canonically embed onto the sphere (not yet).
We still do not have a “random metric living on 55"

By definition a triangulation has no canonical embedding :

Really ?

o
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K Lriangletion o a Kemann <rface

A triangulation can be seen as a topological surface but also as a
compact (simply connected) Riemann surface. See Gill & Rohde.

Figure : The three different types of charts
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Remann untormizakion theorerm

— 3! a conformal map from the triangulation onto Sy (up to
Mébius transformations) : canonical drawing.

“uniformization”
%
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Remann untormizakion theorerm

— 3! a conformal map from the triangulation onto Sy (up to
Mébius transformations) : canonical drawing.

“uniformization”
%

‘7”4 vl

1
=" Sy.
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Well-known open conjectures. This form is due to
[Duplantier-Sheffield 2008] :

» Prove that y, converges as n — oo towards a random
probability measure .
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Well-known open conjectures. This form is due to
[Duplantier-Sheffield 2008] :

» Prove that y, converges as n — oo towards a random
probability measure pe.

> Prove that pe =" exp(\/gGFF)dxdy where GFF is the
Gaussian Free Field on the 2-sphere.
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Well-known open conjectures. This form is due to
[Duplantier-Sheffield 2008] :
» Prove that y, converges as n — oo towards a random
probability measure pe.

> Prove that pe =" exp(\/gGFF)dxdy where GFF is the
Gaussian Free Field on the 2-sphere.

» This would imply the very famous KPZ relations between
critical exponents of statistical mechanics models on
deterministic and random lattices (at least for percolation,
SAW, SRW).

o
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Gehking of doday
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Vefining infintke. planar mapg

We will define infinite planar triangulations as limit of finite
triangulations. If t; and t, are two triangulations define their local
distance as

dioc(t1, 1) = (14sup{r > 0: B,(t1) = B,(2)}) ",

where B, (t) is the graph made of all the vertices and edges of t
which are within distance r from the root edge.
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Vefining infintke. planar mapg

We will define infinite planar triangulations as limit of finite
triangulations. If t; and t, are two triangulations define their local
distance as

dioc(t1, 1) = (14sup{r > 0: B,(t1) = B,(2)}) ",

where B, (t) is the graph made of all the vertices and edges of t
which are within distance r from the root edge.

Distance OK. {Finite triangulations} is not a closed set
— add infinite triangulations.
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“Wokokype = UTH

Theorem (Angel & Schramm 03)

If Ty, is a uniform (rooted) triangulation with n faces then we have
the following convergence in distribution for djo.
d
T, %5 T,
n— o0
where T is an infinite triangulation of the plane called the
Uniform Infinite Planar Triangulation.
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Ui

If now T, is a uniform triangulation of the p-gon with n faces
then we have [Angel]

RGNS GRS
n—o0o — 00

where the latter is an infinite triangulation with an infinite simple
boundary (or triangulation of the half-plane).
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Untormizakion
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Untormizakion
See Tw.oo as a Riemann surface and use RUT by sending the root
edge to [—1/2;1/2] and co — oo to get a canonical drawing :

=
K/mi(/\ /W\? """ |

Figure : Uniformization of the UIHPT (artistic drawing)
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Untormizakion
See Tw.oo as a Riemann surface and use RUT by sending the root
edge to [—1/2;1/2] and co — oo to get a canonical drawing :

(/k

V%X/\ / W\ ....... |

WA=

Figure : Uniformization of the UIHPT (artistic drawing)

In the uniformization, denote by X, the location of the nth vertex
on the right of the root edge and consider the random probability
measure on [0,1] :

1 —~
Hn n kg,l X/ X, g/a



The regi

Theorem (Under a reasonable technical assumption «)
The sequence of random probability measures i, is tight and any
subsequential limit Yo satisfies a.s.

>l IS not atomic,

> leo has topological support = [0, 1],
1

> oo has dimension 3.
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The regi

Theorem (Under a reasonable technical assumption x)

The sequence of random probability measures i, is tight and any
subsequential limit Yo satisfies a.s.

>l IS not atomic,

> leo has topological support = [0, 1],

1

> oo has dimension 3.

Conjecture [Duplantier-Sheffield 08] :

o) = oy 26, .3 (0).

normalized

where (Xy),c[o,1] is a centered Gaussian process with covariance
E[X(x)X(y)] = 3log™" [x —yI.
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The regi

Theorem (Under a reasonable technical assumption x)

The sequence of random probability measures i, is tight and any
subsequential limit Yo satisfies a.s.

>l IS not atomic,

> leo has topological support = [0, 1],

1

> oo has dimension 3.

Conjecture [Duplantier-Sheffield 08] :

o) = oy 26, .3 (0).

normalized

where (Xy),c[o,1] is a centered Gaussian process with covariance
E[X(x)X(y)] = 3 log™!|x — y|. See Kahane [85].
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firdk ingredient : Spakial NMarkov property

Assume you reveal the root triangle in the UIHPT (one step
peeling) :

o
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firdk ingredient : Spakial NMarkov property

Assume you reveal the root triangle in the UIHPT (one step
peeling) :

The probability of the first event is % and the second is

. (2k—2)!
Tk = Gk (k —1)I(k + 1)!

~ C_k75/2,

and furthermore the unexplored region in light gray is independent
of the explored region (with holes filled-in) and is distributed as an, —~
(&

UIHPT. (@23



Explorakion proces

An exploration process is Markovian if for every i > 0 the edge to
peel at time 7 is chosen using a (possibly random) algorithm that

can use the knowledge of the discovered part but does not depend
on the “unknown” part.

\
)

\;
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Explorakion proces

An exploration process is Markovian if for every i > 0 the edge to
peel at time 7 is chosen using a (possibly random) algorithm that

can use the knowledge of the discovered part but does not depend
on the “unknown” part.

In this case the peeling steps are i.i.d.

o
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Vidkances, along the. boundary

We keep track of the position of the peeling position with respect
to —oo and oo by using the distances H_ and H . from o0.

o
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Speond ingredient = (=6 procey

We define the SLEg process on the UIHPT using its conformal
representation in IH. This induces an exploration of the UIHPT.

o
\0})

\;
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Speond ingredient = (=6 procey

We define the SLEg process on the UIHPT using its conformal
representation in IH. This induces an exploration of the UIHPT.

The key : The locality property of the SLEg implies that this
exploration is MARKOVIAN !
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Speond ingredient = (=6 procey

We define the SLEg process on the UIHPT using its conformal
representation in IH. This induces an exploration of the UIHPT.

The key : The locality property of the SLEg implies that this
exploration is MARKOVIAN !

From now on, we focus on the SLEg exploration of the UIHPT and
by the above remark the peeling steps are i.i.d.

o
\9})
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We decompose the variation of the distances from +o0 as

weE= P2+
~— ~—~—
peeling  SLEg noise

Step @

SIRA
SV SN

w w

Proposition
We have
> The P,?—L are i.i.d, bounded by 1, have zero expectation and
P(PF = —k) ~ C-k—5/2,

> The 11 are centered and have (almost) exponential tails.

S
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We decompose the variation of the distances from +o0 as

§Stepi+l

Proposition
We have
> The P,?—L are i.i.d, bounded by 1, have zero expectation and
P(PF = —k) ~ C-k—5/2, \
> The 11 are centered and have (almost) exponential tails. %@

weE= P2+
~— ~—~—
peeling  SLEg noise

Step @




Sarring ()

Unfortunately the 17,.jE are not independent (though they decorrelate
but we have no explicit rate). We introduce our working
assumption

(X)) = o(n??),

in probability so that
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Sarring ()

Unfortunately the 17,.jE are not independent (though they decorrelate
but we have no explicit rate). We introduce our working
assumption

(X)) = o(n??),

in probability so that

Theorem (%)
We have the following convergence in distribution

o
(H (nt) H <”t)> D 32 (57,5 ez

n2/3 ' p2/3 oo

in the Skorokhod sense where (S*,S™) is a pair of independent
standard %-stable processes with no positive jumps.

L—\
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Figure : Two (approximated) samples of the process S.
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Lak ingredient. : bouncing off the valk

A time when the SLEg hits R ...

... approximately corresponds to a new minimum of the
horodistance H* and vice-versa.
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“Woof’

Compute in two ways the number N, of commutings done by the
SLEg between IRy and IR_ after having swallowed mass ¢ :

0 X 1
—_—
:uOC[O: XE} =&

o



“Woof’

Compute in two ways the number N, of commutings done by the
SLEg between IRy and IR_ after having swallowed mass ¢ :

0 X. 1
—_—
:uOC[O: X:"} =&

Using (quite standard) SLE
techniques :

3
N, ~ \7{ log X!
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“Woof’

Compute in two ways the number N, of commutings done by the
SLEg between IRy and IR_ after having swallowed mass ¢ :

0 X. 1
w_}
Hool0, Xe| =€

Using (quite standard) SLE Using  alternative  minimal

techniques : records of (S*,57) :
3v3
N, =~ \7/§ IogXe’1 N, =~ \7( Iog;es’1



“Woof’

Compute in two ways the number N, of commutings done by the
SLEg between IRy and IR_ after having swallowed mass ¢ :

0 X. 1
w_}
Hool0, Xe| =€

Using (quite standard) SLE Using  alternative  minimal

techniques : records of (S*,57) :
V3. 3v3,
Ng% 7|OgX€ ! Ng%7|0g8 ! L~
X, ~ g3toll) COS}
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fokure vorkg, direckiong

1. Remove *

2. Prove that the SLEg is the scaling limit of percolation
interfaces

3. Go the the full-plane (using winding number instead of
bouncing on the walls)

4. Does the law of the bouncings characterize the measure ? If
yes, then KPZ and the convergence p, — pgrr would follow
(since the %—stable process appears in the SLEg exploration of

a GFF).
5. Otherwise, branching structure of SLEg exploration ?

6. What about planar maps decorated with “matter”?

~
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