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One question

What does a random metric on the 2d-sphere/plane look like ?
(and how to define it ?)



Triangulations

Definition
Triangulation := finite connected graph properly drawn on the
sphere (seen up to continuous deformations) such that the faces
are all triangles.

=



Triangulations

Definition
Triangulation := finite connected graph properly drawn on the
sphere (seen up to continuous deformations) such that the faces
are all triangles + one distinguished oriented edge.

=



Enumeration

William Thomas Tutte (1917 – 2002)

# Triangulations with n faces =
2 · 4n−1(3n)!!

(n + 1)!(n + 2)!!
.

Other ways to count maps → Matrix integrals, bijective methods
(Cori-Vauquelin-Schaeffer type bijections).



Large scale structure
Let Tn be a random uniform triangulation with n faces.

Figure : A (non isometric) embedding of T21237.



Large scale structure
Let Tn be a random uniform triangulation with n faces.

Figure : A (non isometric) embedding of T21237.



Large scale structure
Let Tn be a random uniform triangulation with n faces.

Figure : A (non isometric) embedding of T17429.



Large scale structure
Let Tn be a random uniform triangulation with n faces.

Theorem (Le Gall (11), see also Miermont)

We have the following convergence in distribution for the Gromov-Hausdorff topology(
Tn, n−1/4dgr

)︸ ︷︷ ︸
random metric space

(d)−−−→
n→∞

(m∞, D).︸ ︷︷ ︸
random metric space

the Brownian map

a.s. homeomorphic to S2 [Le Gall & Paulin 06] (see also Miermont)
a.s. of Hausdorff dimension 4 [Le Gall]
Universality [Le Gall].

→ a random fractal metric space with the topology of the sphere
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End of the story ?

Although homeomorphic to S2, the Brownian map does not
canonically embed onto the sphere (not yet).
We still do not have a “random metric living on S2”.

By definition a triangulation has no canonical embedding :

=

Really ?
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A triangulation as a Riemann surface
A triangulation can be seen as a topological surface but also as a
compact (simply connected) Riemann surface. See Gill & Rohde.

z 7→ zd/6

Figure : The three different types of charts



Riemann uniformization theorem
→ ∃! a conformal map from the triangulation onto S2 (up to
Möbius transformations) : canonical drawing.

“uniformization”−−−−−−−−−→

Define µn =
1

#Vertices ∑
v∈Vertices

δv .
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Möbius transformations) : canonical drawing.

“uniformization”−−−−−−−−−→

Define µn =
1

#Vertices ∑
v∈Vertices

δv .



2. La géométrie des cartes
planaires aléatoires

2.1 à la gravité quantique

Well-known open conjectures. This form is due to
[Duplantier-Sheffield 2008] :

I Prove that µn converges as n→ ∞ towards a random
probability measure µ∞.

I Prove that µ∞ “=” exp(
√

8
3GFF)dxdy where GFF is the

Gaussian Free Field on the 2-sphere.

I This would imply the very famous KPZ relations between
critical exponents of statistical mechanics models on
deterministic and random lattices (at least for percolation,
SAW, SRW).
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Setting of today



Defining infinite planar maps

We will define infinite planar triangulations as limit of finite
triangulations. If t1 and t2 are two triangulations define their local
distance as

dloc(t1, t2) = (1 + sup{r > 0 : Br (t1) = Br (t2)})−1 ,

where Br (t) is the graph made of all the vertices and edges of t
which are within distance r from the root edge.

Distance OK. {Finite triangulations} is not a closed set
→ add infinite triangulations.
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Prototype : UIPT

Theorem (Angel & Schramm 03)

If Tn is a uniform (rooted) triangulation with n faces then we have
the following convergence in distribution for dloc

Tn
(d)−−−→

n→∞
T∞,

where T∞ is an infinite triangulation of the plane called the
Uniform Infinite Planar Triangulation.



Illustration (in the quadrangular case)



UIHPT

If now Tn,p is a uniform triangulation of the p-gon with n faces
then we have [Angel]

Tn,p
(d)−−−→

n→∞
T∞,p

(d)−−−→
p→∞

T∞,∞,

where the latter is an infinite triangulation with an infinite simple
boundary (or triangulation of the half-plane).



Uniformization

Riemann



Uniformization
See T∞,∞ as a Riemann surface and use RUT by sending the root
edge to [−1/2; 1/2] and ∞→ ∞ to get a canonical drawing :

Figure : Uniformization of the UIHPT (artistic drawing)

In the uniformization, denote by Xn the location of the nth vertex
on the right of the root edge and consider the random probability
measure on [0, 1] :

µn =
1

n

n

∑
k=1

δXk/Xn
.
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The result
Theorem (Under a reasonable technical assumption ?)

The sequence of random probability measures µn is tight and any
subsequential limit µ∞ satisfies a.s.

I µ∞ is not atomic,

I µ∞ has topological support = [0, 1],

I µ∞ has dimension 1
3 .

Conjecture [Duplantier-Sheffield 08] :

µ∞(du) = exp(

√
8

3
Xu)du1[0,1](u)︸ ︷︷ ︸

normalized

,

where (Xu)u∈[0,1] is a centered Gaussian process with covariance

E [X (x)X (y)] = 1
2 log−1 |x − y |. See Kahane [85].
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Elements of proof



First ingredient : Spatial Markov property
Assume you reveal the root triangle in the UIHPT (one step
peeling) :

k

The probability of the first event is 2
3 and the second is

q−k =
(2k − 2)!

4k(k − 1)!(k + 1)!
∼ C .k−5/2,

and furthermore the unexplored region in light gray is independent
of the explored region (with holes filled-in) and is distributed as an
UIHPT.
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Exploration process

An exploration process is Markovian if for every i > 0 the edge to
peel at time i is chosen using a (possibly random) algorithm that
can use the knowledge of the discovered part but does not depend
on the “unknown” part.

In this case the peeling steps are i.i.d.
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Distances along the boundary

We keep track of the position of the peeling position with respect
to −∞ and +∞ by using the distances H− and H+ from ±∞.

Ki

H− = 5− 4 = 1 H+ = 7− 2 = 5

Ti

~e

~ai



Second ingredient : SLE6 process

We define the SLE6 process on the UIHPT using its conformal
representation in H. This induces an exploration of the UIHPT.

The key : The locality property of the SLE6 implies that this
exploration is MARKOVIAN !

From now on, we focus on the SLE6 exploration of the UIHPT and
by the above remark the peeling steps are i.i.d.
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We decompose the variation of the distances from ±∞ as

∆H±i = P±i︸︷︷︸
peeling

+ η+
i︸︷︷︸

SLE6 noise

.

Step i

Proposition

We have

I The P±i are i.i.d, bounded by 1, have zero expectation and
P(P±i = −k) ∼ C · k−5/2.

I The η±i are centered and have (almost) exponential tails.
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Starring (?)

Unfortunately the η±i are not independent (though they decorrelate
but we have no explicit rate). We introduce our working
assumption

(?) η+
1 + ... + η+

n = o(n2/3),

in probability so that

Theorem (?)

We have the following convergence in distribution(H+(nt)

n2/3 ,
H−(nt)

n2/3

)
(d)−−−→

n→∞
3−2/3 · (S+

t , S−t )t>0

in the Skorokhod sense where (S+, S−) is a pair of independent
standard 3

2 -stable processes with no positive jumps.
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3/2-stable processes with no positive jumps

Figure : Two (approximated) samples of the process S .



Last ingredient : bouncing off the walls

A time when the SLE6 hits R+...

... approximately corresponds to a new minimum of the
horodistance H+ and vice-versa.



Proof
Compute in two ways the number Nε of commutings done by the
SLE6 between R+ and R− after having swallowed mass ε :

0 Xε 1

µ∞[0, Xε] = ε

Using (quite standard) SLE
techniques :

Nε ≈
√

3

π
log X−1ε

Using alternative minimal
records of (S+, S−) :

Nε ≈
3
√

3

π
log ε−1

Xε ≈ ε3+o(1).
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Future works, directions

1. Remove *

2. Prove that the SLE6 is the scaling limit of percolation
interfaces

3. Go the the full-plane (using winding number instead of
bouncing on the walls)

4. Does the law of the bouncings characterize the measure ? If
yes, then KPZ and the convergence µn → µGFF would follow
(since the 3

2 -stable process appears in the SLE6 exploration of
a GFF).

5. Otherwise, branching structure of SLE6 exploration ?

6. What about planar maps decorated with “matter”?

...




