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Planar graphs

planar graph = graph that can be
D B embedded in the plane
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0‘@ Encoding: list of edges

Yo {12} {23} {13}
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Planar maps

planar map = graph equipped with
a planar embedding

Encoding: two
permutations

or = (1,2)(3,4)(5,6)(7,8)(9, 10)
oy = (1,2,3,10)(4,5,7)(6,9,8)
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typically: labelled at vertices
no loops nor multiple edges

Encoding: list of edges

11,2}, 12,3}, 11,3}
{1,4},{2,4}

Planar maps

planar map = graph equipped with
a planar embedding

Encoding: two
permutations

5 o = (1,2)(3,4)(5,6)(7,8)(9, 1)
oy = (1,2,3,10)(4,5,7)(6,9,8)

typically: rooted, unlabelled

(root is enough to determine the labels)

possibly loops & multiple edges



Planar graphs

planar graph = graph that can be
D B embedded in the plane
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typically: labelled at vertices
no loops nor multiple edges

Encoding: list of edges

11,2}, 12,3}, 11,3}
{1,4},{2,4}

Characterization of planarity:

- positive: existence of a planar
embedding

- negative: 4 K5 or K3 3 minor
(Kuratowski

Planar maps

planar map = graph equipped with
a planar embedding

Encoding: two
permutations

5 o = (1,2)(3,4)(5,6)(7,8)(9, 1)
oy = (1,2,3,10)(4,5,7)(6,9,8)

typically: rooted, unlabelled

(root is enough to determine the labels)

possibly loops & multiple edges
Characterization of planarity:

l(oy)+ Loy oor)=4L(cg)+ 2
Euler relation




Planar graphs

planar graph = graph that can be
embedded in the plane
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So o {12} {23} {13}
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typically: labelled at vertices
no loops nor multiple edges

Characterization of planarity:

- positive: existence of a planar
embedding

- negative: 4 K5 or K3 3 minor
(Kuratowski)
Enumeration methods:

composition method (Tutte+Whitney)

planar graph = tree of 3-connected
maps components

(asymptotics in [Giménez,Noy'05])

Planar maps

planar map = graph equipped with
a planar embedding

Encoding: two
permutations

or = (1,2)(3,4)(5,6)(7,8)(9, 10)
oy = (1,2,3,10)(4,5,7)(6,9,8)

typically: rooted, unlabelled

(root is enough to determine the labels)

possibly loops & multiple edges
Characterization of planarity:

l(oy)+ Loy oor)=4L(cg)+ 2
Euler relation

Enumeration methods:
- loop-equations [Tutte'60s]

- composition method [Tutte'60s]

- matrix integrals [Brezin et al]
- Bijections [Cori-Vauquelin,Schaeffer,...]



Simple planar maps
A simple planar map (also called a plane graph) is a planar map with
no loops nor multiple edges, i.e., an embedded (simple) planar graph




Simple planar maps
A simple planar map (also called a plane graph) is a planar map with
no loops nor multiple edges, i.e., an embedded (simple) planar graph

Counting by composition (core-extraction) from rooted maps
For i € {1,2,3}, let M; = M,;(t;) = GF rooted maps girth > i (by edges)
M (t1): maps, Ms(t2): loopless maps, M3(t3): simple maps
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Known ([Tutte'63], [Schaeffer'97]): | My = (1—|—u)3(3—u), t1 = 3y
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[Lehman-Walsh'75]




Simple planar maps
A simple planar map (also called a plane graph) is a planar map with
no loops nor multiple edges, i.e., an embedded (simple) planar graph

Counting by composition (core-extraction) from rooted maps

For i € {1,2,3}, let M; = M,;(t;) = GF rooted maps girth > i (by edges)
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Simple planar maps
A simple planar map (also called a plane graph) is a planar map with
no loops nor multiple edges, i.e., an embedded (simple) planar graph

Counting by composition (core-extraction) from rooted maps

For i € {1,2,3}, let M; = M,;(t;) = GF rooted maps girth > i (by edges)
M;i(t1): maps, Ms(t2): loopless maps, Ms(t3): simple maps

Known ([Tutte'63], [Schaeffer'97]): | M; = (1—|—u)3(3 w t = STty

e |oopless-core extraction

S0 =M (ty) = t1 My (t)?
+Ms(ts),

with to = (1—t1]€411(t1))2

[Lehman-Walsh'75]

o simple core extraction

@ @ D = |Ma(t2) = Ms(ts),
with t3 = tzMQ(tg)
_ (14-2u)? [Banderier et al’03]
= Ms = araT> 18 = froap [Noy'12]




Simple planar maps
A simple planar map (also called a plane graph) is a planar map with
no loops nor multiple edges, i.e., an embedded (simple) planar graph

The series M = M (t) of rooted simple maps (by edges) is given by
(14 2u)?
(1+u)”

with u = ¢(1 + 2u)? the series of rooted oriented binary trees

M =

M(t) =1+t + 2t2 + 6t3 + 23t* + 103t> + 512t5 4 27407 4 15485t8 + - - -
Rk: appears in Sloane, #1342-avoiding permutations of size n [Bona'97]



Simple planar maps
A simple planar map (also called a plane graph) is a planar map with
no loops nor multiple edges, i.e., an embedded (simple) planar graph

The series M = M (t) of rooted simple maps (by edges) is given by
(14 2u)?
(1+u)”

with u = ¢(1 + 2u)? the series of rooted oriented binary trees

M =

M(t) =1+t + 2t2 + 6t3 + 23t* + 103t> + 512t5 4 27407 4 15485t8 + - - -
Rk: appears in Sloane, #1342-avoiding permutations of size n [Bona'97]

Rk: the GF B = B(t) of rooted bipartite maps is expressed in terms of same u
B =1+4u—u? with u = t(1 + 2u)?

1 — 2n)!
(also b= 1+Zn2132 1n!((n—|22)!)

} 1
- 1—tB(%)

=M (t)




Overview
e Bijective proof of the formula

- 1
1 —tB(t)

M(t)

that links (the GFs of) simple maps and bipartite maps

e Applications
- enumeration of simple maps

- distance profile and convergence to the brownian map (sketch)



First observations (1)

Consider subfamily C of
outertriangular simple maps

C'(z) generating series for rooted ones
according to edges

e Decomposition of M =1 + M in terms of C

~U N e
w w

u,w adjacent wu,w not adjacent

= M) =1+tM(t)+ CH)(M(@E)— 1)+ 1C(t)

| M () = 1 N Have to prove bijectively that
11+ C1)/1?) B(t) =1+ C(1)/1?




First observations (2)
Well known (Tutte's “trinity mapping”):

B(t) — 1 is the generating function of rooted eulerian triangulations
where t marks the number of dark triangles

o 3

= proving M (¢ bijectively reduces to finding a bijection

— 1- tB(t)
between outer—trlangular simple maps with n inner edges and
eulerian triangulations with n inner dark faces

A A




Canonical orientations for outer-triang. simple maps
Well-known: the (maximal) case of simple triangulations [Schnyder’'89]
Each simple triangulation has a unique orientation such that

- Inner (resp. outer) vertices have outdegree 3 (resp. 0)
- no clockwise circuit

Rk: the outer face is accessible from every inner vertex



Canonical orientations for outer-triang. simple maps
General case: [Bernardi,F'11] Each outer-triangular simple map has a
unique orientation “with buds” such that:

- Inner (resp. outer) vertices have outdegree 3 (resp. 0)
- each inner face of degree 3 + d has d buds

- no clockwise circuit
- Local property: — implies —<y

N




Canonical orientations for outer-triang. simple maps
General case: [Bernardi,F'11] Each outer-triangular simple map has a
unique orientation “with buds” such that:

- Inner (resp. outer) vertices have outdegree 3 (resp. 0)
- each inner face of degree 3 + d has d buds

- no clockwise circuit
- Local property: — implies —<y

—»
surjection

N

~ - -

-~ o

Rk: yields canonical way to triangulate an outer-triangular simple map



Canonical orientations for eulerian triangulations
[Bousquet-Mélou-Schaeffer’00]: each eulerian triangulation has
a unique (partial) orientation such that:

- the oriented edges form a forest of 3 trees (one toward each outer vertex)

- each inner dark face is of the form /i




Canonical orientations for eulerian triangulations
[Bousquet-Mélou-Schaeffer’00]: each eulerian triangulation has
a unique (partial) orientation such that:

- the oriented edges form a forest of 3 trees (one toward each outer vertex)

- each inner dark face is of the form /i /i

color red each “base-edge”




Simple triangulation to eulerian triangulation




Simple triangulation to eulerian triangulation




Simple triangulation to eulerian triangulation

f A

Not bijective ! (each white triangle has 0 or 3 red edges)



Simple outer-triang. map to eulerian triangulation




Simple outer-triang. map to eulerian triangulation

P




Simple outer-triang. map to eulerian triangulation

Second step:

Generic situation in a face face becomes white triangle

with no red edge



Inverse mapping

As long as there is a é do
Case a % = /6
/Z
N\

Case b % —



Inverse mapping

A -4

As long as there is a é do
Case a % = /6
/Z
N\

Case b % —



Inverse mapping (more local formulation)
Rk: Inner vertices of the simple map are in white triangles with > 0 red edge

Each dark triangle
yields an edge



Summary

There is a bijection between outer-triangular simple maps with n inner edges
and eulerian triangulations with n inner dark faces

inner face — white face with no red edge

inner vertex with ¢ € {0,1,2} buds <>  white face with 3 — ¢ red edges

gives bijective proof of the formula

M) = 1~ tB(t)

that links (the GFs of) rooted simple maps and bipartite maps



Eulerian triangulations < oriented binary trees

|[Bousquet-Mélou-Schaeffer'00] eulerian triangulations are in bijection
with oriented binary trees




Outer-triang. simple maps < oriented binary trees

Composing the bijections, we obtain a bijection:

outer-triangular simple maps <> oriented binary trees

where inner face < source inner node
Inner vertex <> non-source inner node




Specialization to simple triangulations

=
v v




Specialization to simple triangulations

binary trees with
all leaves to

only o—eo

white nodes o
recover bijection in

[F, Poulalhon, Schaeffer'05]



Specialization to simple triangulations

rooted one binary trees with |
~ pair of all leaves to only &=
quaternary trees  white nodes =3

recover bijection in
[F, Poulalhon, Schaeffer'05]
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Specialization to simple triangulations

binary trees with
~ pair of all leaves to

quaternary trees  White nodes o>
recover bijection in

[F, Poulalhon, Schaeffer'05]

rooted one



Counting results
e Exact bivariate enumeration,

The series M (t,x) of rooted simple maps by edges & vertices satisfies

v’t + 23U - (1 = V/t)

T 1—at—aU-(1-V/t)

{ U= ((t+V)2+22U(t+ V)2 + 2U>?
where

V=zt+U+V)?

e Asymptotic expected number of planar embeddings
Let e, ,,, = number of embeddings in a random (connected unembedded)

planar graph with n vertices and m edges

Then, for fixed € (1, 3)
asn — oo and m/n — u

E(enm) ~ cuby,

with ¢, b, explicit

] T~
1.5 ./'/ ™

N

\)Iot of b,

AN

\\
\\
\\\\
N

\\\

Conjecture: log(e,, | ,n1)/n is concentrated around a,, < log(b,)



Similarities with the Ambjgrn-Budd bijection

e Our bijection
(via eulerian triangulations)

inner edge <> inner edge
Inner face <> source

e The Ambjgrn-Budd bijection

(via quadrangulations)

edge <> edge
face <+ local max (=~ source)



Typical distances, scaling limit



Rightmost paths

Let O be an orientation of a rooted ]Planar map with no cw circuit
and such that the root Is accessible from every vertex

For e an edge of O, the rightmost path from e is the unique
directed path P(e) starting at e that turns right “as much as possible”
i v

e N
e o

[Bernardi'06] the rightmost path ends at the root (does not loop)

Rightmost paths can be considered on canonical 3-orientations of
simple triangulations (more generally of outer-triangular simple maps)



Rightmost paths are quasi-geodesic in 3-orientations
[Addario-Berry& Albenque2013]

Lemma: Let 1" a simple triangulation with n vertices, e an edge of T°
If there is another path () from e to the root such that

Q| < |P(e)| — en'/*

then one can extract from P(e) U @ a cycle C' of length O(1/¢)
such that both parts 1), T’ after cutting along C' have diameter Q(en1/4)

Proposition: Let A, . the event that a random simple triangulation with
n vertices has an edge e such that dist(e,root) < |P(e)| — en'/%.

Then P(A, ) — 0asn— oo



Rightmost paths are quasi-geodesic in 3-orientations
[Addario-Berry& Albenque2013]

Lemma: Let 1" a simple triangulation with n vertices, e an edge of T°
If there is another path () from e to the root such that

Q| < |P(e)| — en'/*

then one can extract from P(e) U @ a cycle C' of length O(1/¢)
such that both parts 1), T’ after cutting along C' have diameter Q(en1/4)

Proposition: Let A, . the event that a random simple triangulation with

n vertices has an edge e such that dist(e,root) < |P(e)| — en'/%.

Then P(A, ) — 0asn— oo

From the same lemma, we can prove the analogue proposition for random
simple outer-triangular maps with n edges



The bijection starting from oriented binary trees

|[Bousquet-Mélou& Schaeffer'00]: Turning ccw around the tree, consider
t as opening parentheses
as closing parentheses

oriented binary tree
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The bijection starting from oriented binary trees

|[Bousquet-Mélou& Schaeffer'00]: Turning ccw around the tree, consider
t as opening parentheses
as closing parentheses

oriented binary tree



The bijection starting from oriented binary trees
Ist step: oriented binary tree — vertex-pointed bipartite cubic map

|[Bousquet-Mélou& Schaeffer'00]: Turning ccw around the tree, consider
t as opening parentheses
as closing parentheses

L
oriented binary tree vertex-pointed bipartite cubic map
(dual to eulerian triangulation)




The bijection starting from oriented binary trees
2nd step: pointed bicubic map — outer-triangular simple map

pointed vertex
at infinity
hence 3 outer faces



The bijection starting from oriented binary trees
2nd step: pointed bicubic map — outer-triangular simple map

pointed vertex
at infinity
hence 3 outer faces

local rule: s——=x

one t in each inner face f
call v¢ the incident vertex



The bijection starting from oriented binary trees
2nd step: pointed bicubic map — outer-triangular simple map

pointed vertex
at infinity
hence 3 outer faces

X0 local rule: s——

one t in each inner face f
call v¢ the incident vertex
'~ .
generic situation to
f

draw a red edge
U

00T = 009 vf

In red we draw the inner edges of the outer-triangular simple map




Canonical labelling of a rooted oriented binary tree

cf [Bouttier,Di Francesco, Guitter’'03], [Chassaing&Schaeffer’'04]:
label corners such that ;. 14 ; i—1] i
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label gives “depth” of each face




Canonical labelling of a rooted oriented binary tree

cf [Bouttier,Di Francesco, Guitter’'03], [Chassaing&Schaeffer’'04]:
label corners such that ;. 14 ; i—1] i

label gives “depth” of each face
1 () 1+2

[Marckert'08]: convergence to the Brownian snake O
with the labels rescaled by (2n)!/4  i—lori i ori+l



Shortcutting bicubic maps in the bijection
Endow the rooted oriented binary tree with its canonical corner-labelling

Color red the corners that are just before a (descending) leg
0o




Shortcutting bicubic maps in the bijection
Endow the rooted oriented binary tree with its canonical corner-labelling
Color red the corners that are just before a (descending) leg

0o
Jo 0
172 0%
1 2 vl
] 11 1 ,
Im 1
2 23
1 {1 1
573 o 3
0 1\3 J2

draw a red arrow
from each red corner



Shortcutting bicubic maps in the bijection
Endow the rooted oriented binary tree with its canonical corner-labelling
Color red the corners that are just before a (descending) leg

0B,
fo 0 - draw a red arrow
f 12 & o= from each red corner
| IR QA4 7F
143" 2 connect each red arrow
02 Y3 A -
A of label 7 to the next
. red corner of label 1—1
1 | 1 in ccw order around the tree
e {3
273
7 1\3 /2



Shortcutting bicubic maps in the bijection
Endow the rooted oriented binary tree with its canonical corner-labelling
Color red the corners that are just before a (descending) leg

draw a red arrow
from each red corner

connect each red arrow
of label 7 to the next
red corner of label 1—1

In ccw order around the tree

Note that the label 7 gives
length of the rightmost path
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Endow the rooted oriented binary tree with its canonical corner-labelling
Color red the corners that are just before a (descending) leg

draw a red arrow
from each red corner

connect each red arrow
of label 7 to the next
red corner of label 1—1

In ccw order around the tree

This is typically a bijection “a la Schaeffer”

Note that the label 7 gives
length of the rightmost path



Shortcutting bicubic maps in the bijection
Endow the rooted oriented binary tree with its canonical corner-labelling
Color red the corners that are just before a (descending) leg

draw a red arrow
from each red corner

connect each red arrow
of label 7 to the next
red corner of label 1—1

In ccw order around the tree

This is typically a bijection “a la Schaeffer”
= makes It possible to prove convergence Note that the label 7 gives
using general criteria in [Le Gall'13] length of the rightmost path



Conclusion and perspectives
e \We have a bijection
outer-triang. simple map < eulerian triang. <> oriented binary trees

e \We can shortcut eulerian triangulations to obtain a “Schaeffer” bijection
from oriented binary trees to outer-triangular simple maps

e This bijection is well suited to prove convergence of the random rooted
simple map with n edges (rescaled by (2n)'/4) to the Brownian map
(using [Addario-Berry&Albenque'13] and [Le Gall'13])
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Conclusion and perspectives

e \We have a bijection
outer-triang. simple map < eulerian triang. <> oriented binary trees

e We can shortcut eulerian triangulations to obtain a “Schaeffer” bijection
from oriented binary trees to outer-triangular simple maps

e This bijection is well suited to prove convergence of the random rooted
simple map with n edges (rescaled by (2n)'/4) to the Brownian map

(using [Addario-Berry&Albenque'13] and [Le Gall'13])

We should be able to also obtain/recover convergence for
e the random loopless map with n edges (rescaled by (4n/3)'/4)
since a loopless map witn n edges has “giant” simple core of size ~ 2n/3

as proved in [Gao&Wormald'99], [Banderier et al.03]
e the random map with n edges (rescaled by (8n/9)1/4)
since a map witn n edges has “giant” loopless core of size ~ 2n /3
would recover [Bettinelli, Jacob, Miermont'13]

e [he random simple triangulation with n vertices
using Proposition in [Addario-Berry&Albenque’'13] (rightmost paths)

& since our bijection specializes well (canonically labelled quaternary trees)
would recover [Addario-Berry& Albenque’13] for simple triang.



