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Planar graphs Planar maps
planar graph = graph that can be

embedded in the plane
planar map = graph equipped with

a planar embedding

Encoding: list of edges
Encoding: two

typically: labelled at vertices typically: rooted, unlabelled

no loops nor multiple edges possibly loops & multiple edges
Characterization of planarity:

- negative: ∃ K5 or K3,3 minor

Characterization of planarity:

`(σV ) + `(σV ◦ σE) = `(σE) + 2

Euler relation

Enumeration methods: Enumeration methods:
- loop-equations [Tutte’60s]

- matrix integrals [Brezin et al]
- Bijections [Cori-Vauquelin,Schaeffer,...]

- composition method [Tutte’60s]planar graph = tree of 3-connected
maps components

composition method (Tutte+Whitney)

(asymptotics in [Giménez,Noy’05])
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Simple planar maps
A simple planar map (also called a plane graph) is a planar map with
no loops nor multiple edges, i.e., an embedded (simple) planar graph

Counting by composition (core-extraction) from rooted maps
For i ∈ {1, 2, 3}, let Mi ≡Mi(ti) = GF rooted maps girth ≥ i (by edges)

M1(t1): maps, M2(t2): loopless maps, M3(t3): simple maps

⇒M1(t1) = t1M1(t1)2

with t2 = t1
(1−t1M1(t1))2

• loopless-core extraction

⇒M2(t2) = M3(t3),

with t3 = t2M2(t2)

• simple-core extraction

Known ([Tutte’63], [Schaeffer’97]):

+M2(t2),

M1 = (1+u)(3−u)
3 , t1 = u

3(1+u)2

⇒M3 = (1+2u)2

(1+u)3 , t3 = u
(1+2u)2

[Banderier et al’03]
[Noy’12]

[Lehman-Walsh’75]



Simple planar maps
A simple planar map (also called a plane graph) is a planar map with
no loops nor multiple edges, i.e., an embedded (simple) planar graph

The series M ≡M(t) of rooted simple maps (by edges) is given by

M =
(1 + 2u)2

(1 + u)3
,

M(t) = 1 + t+ 2t2 + 6t3 + 23t4 + 103t5 + 512t6 + 2740t7 + 15485t8 + · · ·
Rk: appears in Sloane, #1342-avoiding permutations of size n [Bona’97]

with u = t(1 + 2u)2 the series of rooted oriented binary trees



Simple planar maps
A simple planar map (also called a plane graph) is a planar map with
no loops nor multiple edges, i.e., an embedded (simple) planar graph

The series M ≡M(t) of rooted simple maps (by edges) is given by

M =
(1 + 2u)2

(1 + u)3
,

M(t) = 1 + t+ 2t2 + 6t3 + 23t4 + 103t5 + 512t6 + 2740t7 + 15485t8 + · · ·
Rk: appears in Sloane, #1342-avoiding permutations of size n [Bona’97]

Rk: the GF B ≡ B(t) of rooted bipartite maps is expressed in terms of same u

B = 1 + u− u2, with u = t(1 + 2u)2

⇒M(t) =
1

1− tB(t)

with u = t(1 + 2u)2 the series of rooted oriented binary trees

(also B = 1 +
∑

n≥1 3 · 2n−1 (2n)!
n!(n+2)!

)



Overview
• Bijective proof of the formula

M(t) =
1

1− tB(t)

that links (the GFs of) simple maps and bipartite maps

• Applications

- enumeration of simple maps

- distance profile and convergence to the brownian map (sketch)



First observations (1)

=

C(z) generating series for rooted ones
according to edges

M M M̃
C

u u = w
uu

v v
vv

ww

Consider subfamily C of
outertriangular simple maps

• Decomposition of M = 1 + M̃ in terms of C

+ + + C\e

ew
u,w adjacent u,w not adjacent

⇒M(t) = 1 + tM(t) + 1
t
C(t)(M(t)− 1) + 1

t
C(t)

⇒M(t) =
1

1− t(1 + C(t)/t2)
⇒

Have to prove bijectively that

B(t) = 1 + C(t)/t2



First observations (2)
Well known (Tutte’s “trinity mapping”):

B(t)− 1 is the generating function of rooted eulerian triangulations
where t marks the number of dark triangles

⇒ proving M(t) = 1
1−tB(t) bijectively reduces to finding a bijection

between outer-triangular simple maps with n inner edges and
eulerian triangulations with n inner dark faces



Canonical orientations for outer-triang. simple maps
Well-known: the (maximal) case of simple triangulations [Schnyder’89]

- Inner (resp. outer) vertices have outdegree 3 (resp. 0)
- no clockwise circuit

Each simple triangulation has a unique orientation such that

Rk: the outer face is accessible from every inner vertex
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- Inner (resp. outer) vertices have outdegree 3 (resp. 0)

- no clockwise circuit
- Local property: implies

General case: [Bernardi,F’11] Each outer-triangular simple map has a
unique orientation “with buds” such that:

- each inner face of degree 3 + d has d buds



Canonical orientations for outer-triang. simple maps

- Inner (resp. outer) vertices have outdegree 3 (resp. 0)

- no clockwise circuit
- Local property: implies

General case: [Bernardi,F’11] Each outer-triangular simple map has a
unique orientation “with buds” such that:

- each inner face of degree 3 + d has d buds

Rk: yields canonical way to triangulate an outer-triangular simple map

surjection



Canonical orientations for eulerian triangulations
[Bousquet-Mélou-Schaeffer’00]: each eulerian triangulation has
a unique (partial) orientation such that:
- the oriented edges form a forest of 3 trees (one toward each outer vertex)
- each inner dark face is of the form



Canonical orientations for eulerian triangulations
[Bousquet-Mélou-Schaeffer’00]: each eulerian triangulation has
a unique (partial) orientation such that:
- the oriented edges form a forest of 3 trees (one toward each outer vertex)
- each inner dark face is of the form

color red each “base-edge”



Simple triangulation to eulerian triangulation



Simple triangulation to eulerian triangulation

⇒

⇒



Simple triangulation to eulerian triangulation

⇒

Not bijective ! (each white triangle has 0 or 3 red edges)

⇒



Simple outer-triang. map to eulerian triangulation



Simple outer-triang. map to eulerian triangulation

⇒First step:

⇒



Second step:

Generic situation in a face

Simple outer-triang. map to eulerian triangulation

face becomes white triangle
with no red edge

⇒



Inverse mapping

As long as there is a do

Case a

Case b

⇒

⇒

⇒



Inverse mapping

As long as there is a do

Case a

Case b

⇒

⇒

⇒

⇒ ⇒



Inverse mapping (more local formulation)
Rk: Inner vertices of the simple map are in white triangles with > 0 red edge

⇒ =

Each dark triangle
yields an edge



Summary
There is a bijection between outer-triangular simple maps with n inner edges
and eulerian triangulations with n inner dark faces

inner face ↔

↔

white face with no red edge

inner vertex with i ∈ {0, 1, 2} buds ↔ white face with 3− i red edges

gives bijective proof of the formula

M(t) =
1

1− tB(t)

that links (the GFs of) rooted simple maps and bipartite maps



Eulerian triangulations ↔ oriented binary trees

↔ ↔

l

[Bousquet-Mélou-Schaeffer’00] eulerian triangulations are in bijection
with oriented binary trees



↔ ↔

↔ ↔

Composing the bijections, we obtain a bijection:

outer-triangular simple maps ↔ oriented binary trees

where

inner vertex ↔ non-source inner node
inner face ↔ source inner node

Outer-triang. simple maps ↔ oriented binary trees



Specialization to simple triangulations

⇒ ⇒

⇓

⇐

only
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⇐
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all leaves to
white nodes

recover bijection in
[F, Poulalhon, Schaeffer’05]
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Specialization to simple triangulations

⇒ ⇒

⇓

⇐

only

⇐

binary trees with
all leaves to
white nodes

⇐

rooted one
' pair of

quaternary trees
recover bijection in

[F, Poulalhon, Schaeffer’05]



Counting results
• Exact bivariate enumeration,

The series M(t, x) of rooted simple maps by edges & vertices satisfies

• Asymptotic expected number of planar embeddings
Let en,m = number of embeddings in a random (connected unembedded)
planar graph with n vertices and m edges

Then, for fixed µ ∈ (1, 3)
as n→∞ and m/n→ µ

E(en,m) ∼ cµbnµ
with cµ, bµ explicit

Conjecture: log(en,bµnc)/n is concentrated around aµ ≤ log(bµ)

plot of bµ

M =
x2t+ x3U · (1− V/t)

1− xt− xU · (1− V/t)

where

{
U = (t+ V )2 + 2xU(t+ V )2 + xU2

V = x(t+ U + V )2



Similarities with the Ambjørn-Budd bijection
• Our bijection

inner edge ↔ inner edge
inner face ↔ source

• The Ambjørn-Budd bijection

1

2

1

0
1

2

1

0

3

2
2

2 1

2

13

2
2

2edge ↔ edge
face ↔ local max (' source)

(via eulerian triangulations)

(via quadrangulations)



Typical distances, scaling limit



Rightmost paths
Let O be an orientation of a rooted planar map with no cw circuit

For e an edge of O, the rightmost path from e is the unique
directed path P (e) starting at e that turns right “as much as possible”

[Bernardi’06] the rightmost path ends at the root (does not loop)

e

Rightmost paths can be considered on canonical 3-orientations of
simple triangulations (more generally of outer-triangular simple maps)

e e

and such that the root is accessible from every vertex



Rightmost paths are quasi-geodesic in 3-orientations
[Addario-Berry&Albenque’2013]

Lemma: Let T a simple triangulation with n vertices, e an edge of T
If there is another path Q from e to the root such that

|Q| ≤ |P (e)| − εn1/4

then one can extract from P (e) ∪Q a cycle C of length O(1/ε)

such that both parts T`, Tr after cutting along C have diameter Ω(εn1/4)

Proposition: Let An,ε the event that a random simple triangulation with
n vertices has an edge e such that dist(e, root) ≤ |P (e)| − εn1/4.

Then P (An,ε)→ 0 as n→∞

T` Tr



Rightmost paths are quasi-geodesic in 3-orientations
[Addario-Berry&Albenque’2013]

Lemma: Let T a simple triangulation with n vertices, e an edge of T
If there is another path Q from e to the root such that

|Q| ≤ |P (e)| − εn1/4

then one can extract from P (e) ∪Q a cycle C of length O(1/ε)

such that both parts T`, Tr after cutting along C have diameter Ω(εn1/4)

Proposition: Let An,ε the event that a random simple triangulation with
n vertices has an edge e such that dist(e, root) ≤ |P (e)| − εn1/4.

Then P (An,ε)→ 0 as n→∞

From the same lemma, we can prove the analogue proposition for random
simple outer-triangular maps with n edges

T` Tr
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[Bousquet-Mélou&Schaeffer’00]: Turning ccw around the tree, consider

as opening parentheses
as closing parentheses



The bijection starting from oriented binary trees

oriented binary tree

[Bousquet-Mélou&Schaeffer’00]: Turning ccw around the tree, consider

as opening parentheses
as closing parentheses



The bijection starting from oriented binary trees

oriented binary tree

[Bousquet-Mélou&Schaeffer’00]: Turning ccw around the tree, consider

as opening parentheses
as closing parentheses



The bijection starting from oriented binary trees

oriented binary tree vertex-pointed bipartite cubic map

[Bousquet-Mélou&Schaeffer’00]: Turning ccw around the tree, consider

as opening parentheses
as closing parentheses

(dual to eulerian triangulation)

1st step: oriented binary tree → vertex-pointed bipartite cubic map



The bijection starting from oriented binary trees
2nd step: pointed bicubic map → outer-triangular simple map

pointed vertex

hence 3 outer faces
at infinity



The bijection starting from oriented binary trees

local rule:
one in each inner face f
call vf the incident vertex

2nd step: pointed bicubic map → outer-triangular simple map

pointed vertex

hence 3 outer faces
at infinity



The bijection starting from oriented binary trees

local rule:
one in each inner face f

f

f ′

vf

vf ′

call vf the incident vertex

generic situation to
draw a red edge

In red we draw the inner edges of the outer-triangular simple map

2nd step: pointed bicubic map → outer-triangular simple map

pointed vertex

∞0

∞1 ∞2

hence 3 outer faces
at infinity



Canonical labelling of a rooted oriented binary tree
cf [Bouttier,Di Francesco, Guitter’03], [Chassaing&Schaeffer’04]:
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Canonical labelling of a rooted oriented binary tree
cf [Bouttier,Di Francesco, Guitter’03], [Chassaing&Schaeffer’04]:

0
1

1
21

1

0
2

2

1

1

0 2
3

2

2
3

3

2

1 3

3 3

2

1

1

2

f0

f1

f2

0

1

1

11

0

label corners such that i+1 i ii−1

1

1

0

shape

ii
i+1

i+2

i

[Marckert’08]: convergence to the Brownian snake
with the labels rescaled by (2n)1/4 i−1 or i i or i+1

label gives “depth” of each face



Shortcutting bicubic maps in the bijection
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Shortcutting bicubic maps in the bijection
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0
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1

0 2 3
2

2
3

3

2

1 3

3
3

2

1

1

2

f0

f1

f2

Color red the corners that are just before a (descending) leg
Endow the rooted oriented binary tree with its canonical corner-labelling

1

0

2

draw a red arrow
from each red corner

connect each red arrow
of label i to the next
red corner of label i−1red corner of label i−1

in ccw order around the tree

f

f ′

vf

vf ′ i
i-1

i-2

Note that the label i gives
length of the rightmost path

f ′′

vf ′′



Shortcutting bicubic maps in the bijection

0
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1
21

1

0
2

2

1

1

0 2 3
2

2
3

3

2

1 3

3
3

2

1

1

2

f0

f1

f2

Color red the corners that are just before a (descending) leg
Endow the rooted oriented binary tree with its canonical corner-labelling

1

0

2

draw a red arrow
from each red corner

connect each red arrow
of label i to the next
red corner of label i−1red corner of label i−1

in ccw order around the tree

This is typically a bijection “à la Schaeffer”

f
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vf

vf ′ i
i-1

i-2

Note that the label i gives
length of the rightmost path

f ′′
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Shortcutting bicubic maps in the bijection

0
1

1
21

1

0
2

2

1

1

0 2 3
2

2
3

3

2

1 3

3
3

2

1

1

2

f0

f1

f2

Color red the corners that are just before a (descending) leg
Endow the rooted oriented binary tree with its canonical corner-labelling

1

0

2

draw a red arrow
from each red corner

connect each red arrow
of label i to the next
red corner of label i−1red corner of label i−1

in ccw order around the tree

This is typically a bijection “à la Schaeffer”

f

f ′

vf

vf ′ i
i-1

i-2

Note that the label i gives
length of the rightmost path

⇒ makes it possible to prove convergence
using general criteria in [Le Gall’13]

f ′′

vf ′′



Conclusion and perspectives
• We have a bijection

outer-triang. simple map ↔ eulerian triang. ↔ oriented binary trees
• We can shortcut eulerian triangulations to obtain a “Schaeffer” bijection

from oriented binary trees to outer-triangular simple maps

• This bijection is well suited to prove convergence of the random rooted
simple map with n edges (rescaled by (2n)1/4) to the Brownian map
(using [Addario-Berry&Albenque’13] and [Le Gall’13])
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• the random loopless map with n edges (rescaled by (4n/3)1/4)
since a loopless map witn n edges has “giant” simple core of size ∼ 2n/3

as proved in [Gao&Wormald’99], [Banderier et al.03]



Conclusion and perspectives
• We have a bijection

outer-triang. simple map ↔ eulerian triang. ↔ oriented binary trees
• We can shortcut eulerian triangulations to obtain a “Schaeffer” bijection

from oriented binary trees to outer-triangular simple maps

• This bijection is well suited to prove convergence of the random rooted
simple map with n edges (rescaled by (2n)1/4) to the Brownian map

We should be able to also obtain/recover convergence for

(using [Addario-Berry&Albenque’13] and [Le Gall’13])

• the random loopless map with n edges (rescaled by (4n/3)1/4)
since a loopless map witn n edges has “giant” simple core of size ∼ 2n/3

• the random map with n edges (rescaled by (8n/9)1/4)
since a map witn n edges has “giant” loopless core of size ∼ 2n/3

would recover [Bettinelli, Jacob, Miermont’13]

as proved in [Gao&Wormald’99], [Banderier et al.03]



Conclusion and perspectives
• We have a bijection

outer-triang. simple map ↔ eulerian triang. ↔ oriented binary trees
• We can shortcut eulerian triangulations to obtain a “Schaeffer” bijection

from oriented binary trees to outer-triangular simple maps

• This bijection is well suited to prove convergence of the random rooted
simple map with n edges (rescaled by (2n)1/4) to the Brownian map

We should be able to also obtain/recover convergence for

(using [Addario-Berry&Albenque’13] and [Le Gall’13])

• the random loopless map with n edges (rescaled by (4n/3)1/4)
since a loopless map witn n edges has “giant” simple core of size ∼ 2n/3

• the random map with n edges (rescaled by (8n/9)1/4)
since a map witn n edges has “giant” loopless core of size ∼ 2n/3

• The random simple triangulation with n vertices
would recover [Bettinelli, Jacob, Miermont’13]

& since our bijection specializes well (canonically labelled quaternary trees)
would recover [Addario-Berry&Albenque’13] for simple triang.

using Proposition in [Addario-Berry&Albenque’13] (rightmost paths)

as proved in [Gao&Wormald’99], [Banderier et al.03]


