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Introduction

Fragmentation processes describe a massive object

that collapses into pieces as time goes.
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Introduction

Fragmentation processes describe a massive object
(with initial mass 1)
that collapses into pieces as time goes.
State space

S =

{
s = (s1, s2, . . .) : s1 ≥ s2 ≥ . . . ≥ 0,

∞∑

i=1

si≤1

}
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Introduction

Fragmentation processes describe a massive object
(with initial mass 1)
that collapses into pieces as time goes.
State space

S =

{
s = (s1, s2, . . .) : s1 ≥ s2 ≥ . . . ≥ 0,

∞∑

i=1

si≤1

}

This allows some loss of mass.
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Self-similar fragmentations

Definition (Bertoin, 2002)

A Markovian S-valued process (F (t), t ≥ 0) starting at
(1, 0, . . .) is a ranked self-similar fragmentation with
index α ∈ R if it is continuous in probability
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Self-similar fragmentations

Definition (Bertoin, 2002)

A Markovian S-valued process (F (t), t ≥ 0) starting at
(1, 0, . . .) is a ranked self-similar fragmentation with
index α ∈ R if it is continuous in probability and
satisfies the following fragmentation property.
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Self-similar fragmentations

Definition (Bertoin, 2002)

A Markovian S-valued process (F (t), t ≥ 0) starting at
(1, 0, . . .) is a ranked self-similar fragmentation with
index α ∈ R if it is continuous in probability and
satisfies the following fragmentation property.

the fragments present at time t subsequently evolve
independently of the others, in a way similar to that of
the original mass 1 fragment, up to a space-time
renormalization depending on the mass of each
considered fragment.
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Self-similar fragmentations

Definition (Bertoin, 2002)

A Markovian S-valued process (F (t), t ≥ 0) starting at
(1, 0, . . .) is a ranked self-similar fragmentation with
index α ∈ R if it is continuous in probability and
satisfies the following fragmentation property.

For every t, t′ ≥ 0, given F (t) = (x1, x2, . . .), F (t + t′)
has the same law as the decreasing rearrangement of
the sequences

x1F
(1)(x1

αt′), x2F
(2)(x2

αt′), . . .

where the F (i)’s are independent copies of F .
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A crucial example

Let e be (twice) a standard brownian excursion.
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A crucial example

Let e be (twice) a standard brownian excursion.
For t ≥ 0 let It := {s ∈ [0, 1] : e(s) > t}.
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A crucial example

Let e be (twice) a standard brownian excursion.
For t ≥ 0 let It := {s ∈ [0, 1] : e(s) > t}.
Rank the lengths of interval components of It to get the
“Brownian fragmentation” FB(t) ∈ S, t ≥ 0.
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A crucial example

Let e be (twice) a standard brownian excursion.
For t ≥ 0 let It := {s ∈ [0, 1] : e(s) > t}.
Rank the lengths of interval components of It to get the
“Brownian fragmentation” FB(t) ∈ S, t ≥ 0. Then easy
scaling properties of Brownian motion show:

Proposition
(FB(t), t ≥ 0) is a self-similar fragmentation with index
α = −1/2.
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A crucial example

Let e be (twice) a standard brownian excursion.
For t ≥ 0 let It := {s ∈ [0, 1] : e(s) > t}.
Rank the lengths of interval components of It to get the
“Brownian fragmentation” FB(t) ∈ S, t ≥ 0. Then easy
scaling properties of Brownian motion show:

Proposition
(FB(t), t ≥ 0) is a self-similar fragmentation with index
α = −1/2.

Notice α < 0, so fragments keep on collapsing faster
and faster, implying some loss of mass (even extinction
in finite time).
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A crucial example

1

t=1/2

t=1

t

0
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A crucial example

This one (mass m) is breaking into two

t=1/2

t=1

t

0 1

fragments with sum of masses m.

The genealogy of self-similar fragmentations with negative index as a continuum random tree – p.5/20



Continuum Random Trees

Definition
An R-tree is a metric space (T, d) such that for v, w ∈ T ,
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Continuum Random Trees

Definition
An R-tree is a metric space (T, d) such that for v, w ∈ T ,

1. there exists a unique geodesic [[v, w]] going from v to w,
i.e. there exists a unique isometry ϕv,w : [0, d(v, w)] → T
with ϕv,w(0) = v and ϕv,w(d(v, w)) = w, and its image is
called [[v, w]], and ...
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Continuum Random Trees

Definition
An R-tree is a metric space (T, d) such that for v, w ∈ T ,

1. there exists a unique geodesic [[v, w]] going from v to w,
i.e. there exists a unique isometry ϕv,w : [0, d(v, w)] → T
with ϕv,w(0) = v and ϕv,w(d(v, w)) = w, and its image is
called [[v, w]], and ...

2. Any simple path going from v to w is [[v, w]] (tree prop-

erty).
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Example: the Brownian tree

This is a tree
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Example: the Brownian tree

1

t

0 1U1root
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Example: the Brownian tree

2

t

0 1U1 U2root

1
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Example: the Brownian tree

5

t

0 1U1 U2root

1 2

U3U4 U5

3

4
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Example: the Brownian tree

5

t

0 1U1 U2root

1 2

U3U4 U5

3

4

And so on: the limiting “Brownian CRT” = [0, 1], with
D(s, s′) = e(s) + e(s′) − 2 infs∧s′≤u≤s∨s′ e(u).
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Example: the Brownian tree

Therefore, the Brownian fragmentation FB can be
alternatively obtained from the Brownian CRT TB, by
recording in decreasing order the sizes of tree
components of the forest {v ∈ T : d(root, v) > t},
where the “sizes” are the µ-masses of these
components, µ= Lebesgue measure on [0, 1].

The genealogy of self-similar fragmentations with negative index as a continuum random tree – p.8/20



Example: the Brownian tree

Therefore, the Brownian fragmentation FB can be
alternatively obtained from the Brownian CRT TB, by
recording in decreasing order the sizes of tree
components of the forest {v ∈ T : d(root, v) > t},
where the “sizes” are the µ-masses of these
components, µ= Lebesgue measure on [0, 1].

Is ANY self-similar fragmentation F , which vanishes in
finite time (i.e. α < 0), of this form, for some kind of
measured R-tree TF ?
Answer: indeed.
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Fragmentation trees

Theorem 1 (Haas & M., 2004) Let F be a s.s.f. with
no erosion
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Fragmentation trees

Theorem 1 (Haas & M., 2004) Let F be a s.s.f. with
no erosion

This means that every process Fi(t), t ≥ 0, is pure-jump:
the fragments cannot “melt continuously”.
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Fragmentation trees

Theorem 1 (Haas & M., 2004) Let F be a s.s.f. with
no erosion and no sudden loss of mass,
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Fragmentation trees

Theorem 1 (Haas & M., 2004) Let F be a s.s.f. with
no erosion and no sudden loss of mass,meaning the
function M(t) =

∑∞
i=1 Fi(t) is continuous,
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Fragmentation trees

Theorem 1 (Haas & M., 2004) Let F be a s.s.f. with
no erosion and no sudden loss of mass,meaning the
function M(t) =

∑∞
i=1 Fi(t) is continuous, then there exists

a random measured R-tree (a CRT) (TF , µ) such that F
has the same law as the process obtained as in the above
construction, from the tree TF .
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Fragmentation trees

Theorem 1 (Haas & M., 2004) Let F be a s.s.f. with
no erosion and no sudden loss of mass,meaning the
function M(t) =

∑∞
i=1 Fi(t) is continuous, then there exists

a random measured R-tree (a CRT) (TF , µ) such that F
has the same law as the process obtained as in the above
construction, from the tree TF .

To see this: discretize space.
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Fragmentations and partitions of N

Suppose the massive object is given with a probability
“mass” measure µ.
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Fragmentations and partitions of N

Suppose the massive object is given with a probability
“mass” measure µ.
One can sample n (resp. an infinite number of) points
independently according to µ and create an exchangeable
partition of {1, 2, . . . , n} (resp. N).
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Fragmentations and partitions of N

Suppose the massive object is given with a probability
“mass” measure µ.
One can sample n (resp. an infinite number of) points
independently according to µ and create an exchangeable
partition of {1, 2, . . . , n} (resp. N).

{1,3},{2,5,7},{4},{6}

2

3

5 7

4
6

11 2

3
4

5

6

7

{1,2,3,4,5,6,7}
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Fragmentations and partitions of N

Suppose the massive object is given with a probability
“mass” measure µ.
One can sample n (resp. an infinite number of) points
independently according to µ and create an exchangeable
partition of {1, 2, . . . , n} (resp. N).

{1,3},{2,5,7},{4},{6}

2

3

5 7

4
6

11 2

3
4

5

6

7

{1,2,3,4,5,6,7}

This gives a partition-valued fragmentation Π(t), t ≥ 0.
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A tree from a partition

For i ∈ N let Di = inf{t ≥ 0 : {i} ∈ Π(t)} (death time,
height of leaf i)

for finite B ⊂ N let DB = inf{t ≥ 0 : #(B ∩ Π(t)) 6= 1}
first splitting time of B.
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A tree from a partition

For i ∈ N let Di = inf{t ≥ 0 : {i} ∈ Π(t)} (death time,
height of leaf i)

for finite B ⊂ N let DB = inf{t ≥ 0 : #(B ∩ Π(t)) 6= 1}
first splitting time of B.

then one may construct (Aldous’ 1993 general CRT
theory) a random measured R-tree TF , µ so that the
subtree of TF spanned by n uniform µ-picked vertices
has same law as the R-tree determined by the
DB, B ⊆ {1, . . . , n}: the branchpoint of the leaves of B
has height DB (height of i if B = {i}).
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A tree from a partition

For i ∈ N let Di = inf{t ≥ 0 : {i} ∈ Π(t)} (death time,
height of leaf i)

for finite B ⊂ N let DB = inf{t ≥ 0 : #(B ∩ Π(t)) 6= 1}
first splitting time of B.

then one may construct (Aldous’ 1993 general CRT
theory) a random measured R-tree TF , µ so that the
subtree of TF spanned by n uniform µ-picked vertices
has same law as the R-tree determined by the
DB, B ⊆ {1, . . . , n}: the branchpoint of the leaves of B
has height DB (height of i if B = {i}).
µ is the weak limit of the empirical measure on the first
n leaves.
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Question

Therefore: a self-similar fragmentation with α < 0 “is” a
random measured R-tree. One wants to look at
possible properties of this random metric space.
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Question

Therefore: a self-similar fragmentation with α < 0 “is” a
random measured R-tree. One wants to look at
possible properties of this random metric space.

The Hausdorff dimension is a natural quantity to
consider. For the Brownian tree the dimension is 2. For
the Duquesne-Le Gall β-stable tree (the associated
fragmentation process is studied in M., 2003), the
dimension is β/(β − 1). We obtain it as a Corollary of

Theorem 2 (Haas & M., 2004) Under mild further
hypotheses on F (FB matches these), the Hausdorff
dimension of TF is |α|−1 ∧ 1, a.s.
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Question

Therefore: a self-similar fragmentation with α < 0 “is” a
random measured R-tree. One wants to look at
possible properties of this random metric space.

The Hausdorff dimension is a natural quantity to
consider. For the Brownian tree the dimension is 2. For
the Duquesne-Le Gall β-stable tree (the associated
fragmentation process is studied in M., 2003), the
dimension is β/(β − 1). We obtain it as a Corollary of

Theorem 2 (Haas & M., 2004) Under mild further
hypotheses on F (FB matches these), the Hausdorff
dimension of TF is |α|−1 ∧ 1, a.s.

Notice that α ≤ −1 is thus qualitatively different from
−1 < α < 0. The genealogy of self-similar fragmentations with negative index as a continuum random tree – p.12/20



Idea of proof

Upper bound: based on known exponential control of
the tail of the death time of a marked fragment (Haas,
2002).
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Idea of proof

Upper bound: based on known exponential control of
the tail of the death time of a marked fragment (Haas,
2002).

Lower Bound: one natural method is to apply
Frostman’s energy method with the most natural
measure on TF : the mass measure µ.
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Idea of proof

Upper bound: based on known exponential control of
the tail of the death time of a marked fragment (Haas,
2002).

Lower Bound: one natural method is to apply
Frostman’s energy method with the most natural
measure on TF : the mass measure µ.

One would like to show
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Idea of proof

Upper bound: based on known exponential control of
the tail of the death time of a marked fragment (Haas,
2002).

Lower Bound: one natural method is to apply
Frostman’s energy method with the most natural
measure on TF : the mass measure µ.

One would like to show
∫

TF

∫

TF

µ(dx)µ(dy)

d(x, y)γ
< ∞

for all γ < |α|−1 ∧ 1, where L1, L2 are independent
µ-distributed.
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Idea of proof

Upper bound: based on known exponential control of
the tail of the death time of a marked fragment (Haas,
2002).

Lower Bound: one natural method is to apply
Frostman’s energy method with the most natural
measure on TF : the mass measure µ.

One would like to show

E

[∫

TF

∫

TF

µ(dx)µ(dy)

d(x, y)γ

]
= E

[
1

d(L1, L2)γ

]
< ∞

for all γ < |α|−1 ∧ 1, where L1, L2 are independent
µ-distributed.
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Idea of proof

d(L1, L2) is manageable: find the first time D{1,2} when
1 and 2 separate, evaluate the sizes λ1, λ2 of fragments
containing 1 and 2 at time D{1,2}
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Idea of proof

d(L1, L2) is manageable: find the first time D{1,2} when
1 and 2 separate, evaluate the sizes λ1, λ2 of fragments
containing 1 and 2 at time D{1,2}, then (by the
fragmentation property) d(L1, L2) has same distribution

as λ
|α|
1 D + λ

|α|
2 D̃, where D, D̃ are independent,

independent of λi, i = 1, 2 with law that of D{1}.
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Idea of proof

d(L1, L2) is manageable: find the first time D{1,2} when
1 and 2 separate, evaluate the sizes λ1, λ2 of fragments
containing 1 and 2 at time D{1,2}, then (by the
fragmentation property) d(L1, L2) has same distribution

as λ
|α|
1 D + λ

|α|
2 D̃, where D, D̃ are independent,

independent of λi, i = 1, 2 with law that of D{1}.

Therefore

E[d(L1, L2)
−γ] ≤ 2E[D−γ]E[λαγ

1 ;λ1 < λ2].
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Idea of proof

d(L1, L2) is manageable: find the first time D{1,2} when
1 and 2 separate, evaluate the sizes λ1, λ2 of fragments
containing 1 and 2 at time D{1,2}, then (by the
fragmentation property) d(L1, L2) has same distribution

as λ
|α|
1 D + λ

|α|
2 D̃, where D, D̃ are independent,

independent of λi, i = 1, 2 with law that of D{1}.

Therefore

E[d(L1, L2)
−γ] ≤ 2E[D−γ]E[λαγ

1 ;λ1 < λ2].

Rewrite (λ1, λ2) = λ(D{1,2}−)(l1, l2), where λ(t) is the
size of the fragment containing L1, L2 before
separation (t < D{1,2}).
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Idea of proof

Crucial tool: the dislocation measure of F : a σ-finite
measure ν on S s.t.

∫
S
(1 − s1)ν(ds) < ∞. Informally, a

fragment with mass x breaks in fragments xs (with
s ∈ S) at rate xαν(ds).

The knowledge of α and ν determines the law of a(n
erosionless) F (Bertoin, 2002). It is the jump measure
of F . If F has no sudden loss of mass then

∑
i si = 1,

ν-a.e.
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Idea of proof

Were it not for the xα term (i.e. when α = 0), the size F ∗(t)
of the fragment containing L1 would be exp(−ξ(t)), t ≥ 0
where ξ is a subordinator with the “size-biased” Lévy
measure

m(dx) =
∞∑

i=1

si ν(− log(si) ∈ dx).
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Idea of proof

Were it not for the xα term (i.e. when α = 0), the size F ∗(t)
of the fragment containing L1 would be exp(−ξ(t)), t ≥ 0
where ξ is a subordinator with the “size-biased” Lévy
measure

m(dx) =
∞∑

i=1

si ν(− log(si) ∈ dx).

One gets F ∗ by a Lamperti time-change (Bertoin, 2002):

F ∗(t)
d
= exp(ξ(ρ(t))) t ≥ 0

where ρ(t) = inf{s ≥ 0 :
∫ s

0
du exp(−αξ(u))}, notice ρ ex-

plodes in finite time (α < 0).
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Idea of proof

Similarly, λ(t) is a time-changed version of an exponential
of subordinator with Lévy measure

∑

i

s2
i ν(− log(si) ∈ dx)

killed at an exponential (rate k) time (corresponding to the

separation of L1 and L2),
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Idea of proof

Similarly, λ(t) is a time-changed version of an exponential
of subordinator with Lévy measure

∑

i

s2
i ν(− log(si) ∈ dx)

killed at an exponential (rate k) time (corresponding to the

separation of L1 and L2), and then the relative sizes after

separation are independent of λ(D{1,2}−) and distributed as

E[f(l1, l2)] = 1
k

∫
S

∑
i 6=j f(si, sj)sisjν(ds).
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Idea of proof

Similarly, λ(t) is a time-changed version of an exponential
of subordinator with Lévy measure

∑

i

s2
i ν(− log(si) ∈ dx)

killed at an exponential (rate k) time (corresponding to the

separation of L1 and L2), and then the relative sizes after

separation are independent of λ(D{1,2}−) and distributed as

E[f(l1, l2)] = 1
k

∫
S

∑
i 6=j f(si, sj)sisjν(ds). Then one can

compute everything needed in E[d(L1, L2)
−γ] for γ < |α|−1∧

1, but...
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We are not done yet!

Indeed, the result is not always < ∞, it is in the case ν

finite and there exists N ≥ 2 with ν(
∑N

i=1 si < 1) = 0 (at
most N -ary tree).

The idea is then to truncate the tree to make it “look like”

a fragmentation tree with the two properties above, and

then make the truncation resemble the initial tree more and

more.
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Possible developments

Finer analysis of “fragmentation trees”: level sets, local
times?

Case α ≥ 0 (ultrametrics rather than Brownian
CRT’s-looking trees)?

Extension xα → f(x) with regularity assumptions of f
near 0 is easy.

Encoding functions and their Hölder properties
(partially done in the paper).
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Zi ainde

Thank you!
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