

The genealogy of self-similar fragmentations with negative index as a continuum random tree

Electron. J. Probab. 9, 57-97 (2004)

http://www.math.washington.edu/~ejpecp

Bénédicte Haas & Grégory Miermont

LPMA, Université Paris VI

& DMA, École Normale Supérieure

Paris, France

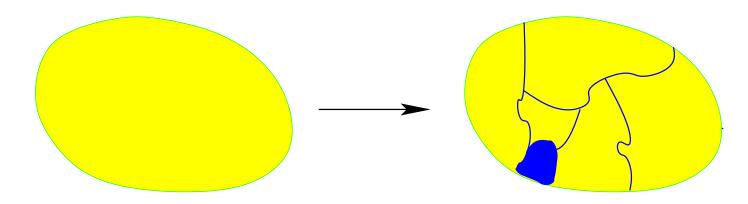
6th BS/IMSC, Barcelona, July 26-31, 2004

Fragmentation processes describe a massive object

that collapses into pieces as time goes.

Introduction

Fragmentation processes describe a massive object (with initial mass 1) that collapses into pieces as time goes.



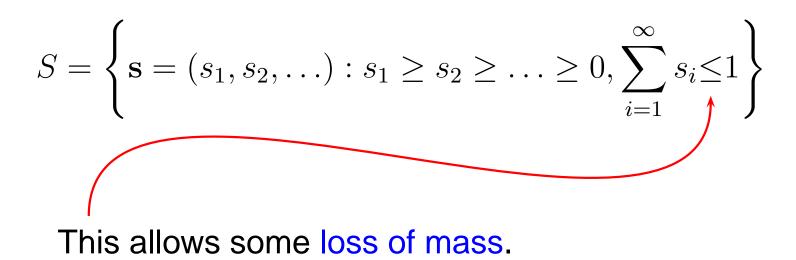
Introduction

Fragmentation processes describe a massive object (with initial mass 1) that collapses into pieces as time goes. State space

$$S = \left\{ \mathbf{s} = (s_1, s_2, \ldots) : s_1 \ge s_2 \ge \ldots \ge 0, \sum_{i=1}^{\infty} s_i \le 1 \right\}$$

Introduction

Fragmentation processes describe a massive object (with initial mass 1) that collapses into pieces as time goes. State space



Definition (Bertoin, 2002)

6 A Markovian *S*-valued process $(F(t), t \ge 0)$ starting at (1, 0, ...) is a ranked self-similar fragmentation with index $\alpha \in \mathbb{R}$ if it is continuous in probability

6 A Markovian *S*-valued process $(F(t), t \ge 0)$ starting at (1, 0, ...) is a ranked self-similar fragmentation with index $\alpha \in \mathbb{R}$ if it is continuous in probability and satisfies the following fragmentation property.

Definition (Bertoin, 2002)

- 6 A Markovian *S*-valued process $(F(t), t \ge 0)$ starting at (1, 0, ...) is a ranked self-similar fragmentation with index $\alpha \in \mathbb{R}$ if it is continuous in probability and satisfies the following fragmentation property.
- 6 the fragments present at time t subsequently evolve independently of the others, in a way similar to that of the original mass 1 fragment, up to a space-time renormalization depending on the mass of each considered fragment.

Definition (Bertoin, 2002)

- 6 A Markovian *S*-valued process $(F(t), t \ge 0)$ starting at (1, 0, ...) is a ranked self-similar fragmentation with index $\alpha \in \mathbb{R}$ if it is continuous in probability and satisfies the following fragmentation property.
- 6 For every $t, t' \ge 0$, given $F(t) = (x_1, x_2, ...)$, F(t + t')has the same law as the decreasing rearrangement of the sequences

$$x_1 F^{(1)}(x_1^{\alpha} t'), x_2 F^{(2)}(x_2^{\alpha} t'), \dots$$

where the $F^{(i)}$'s are independent copies of F.

 \bullet Let e be (twice) a standard brownian excursion.

6 Let e be (twice) a standard brownian excursion. For $t \ge 0$ let $I_t := \{s \in [0,1] : \mathbf{e}(s) > t\}$.

6 Let e be (twice) a standard brownian excursion. For $t \ge 0$ let $I_t := \{s \in [0,1] : \mathbf{e}(s) > t\}$. Rank the lengths of interval components of I_t to get the "Brownian fragmentation" $F_B(t) \in S, t \ge 0$.

6 Let e be (twice) a standard brownian excursion. For $t \ge 0$ let $I_t := \{s \in [0,1] : e(s) > t\}$. Rank the lengths of interval components of I_t to get the "Brownian fragmentation" $F_B(t) \in S, t \ge 0$. Then easy scaling properties of Brownian motion show:

Proposition

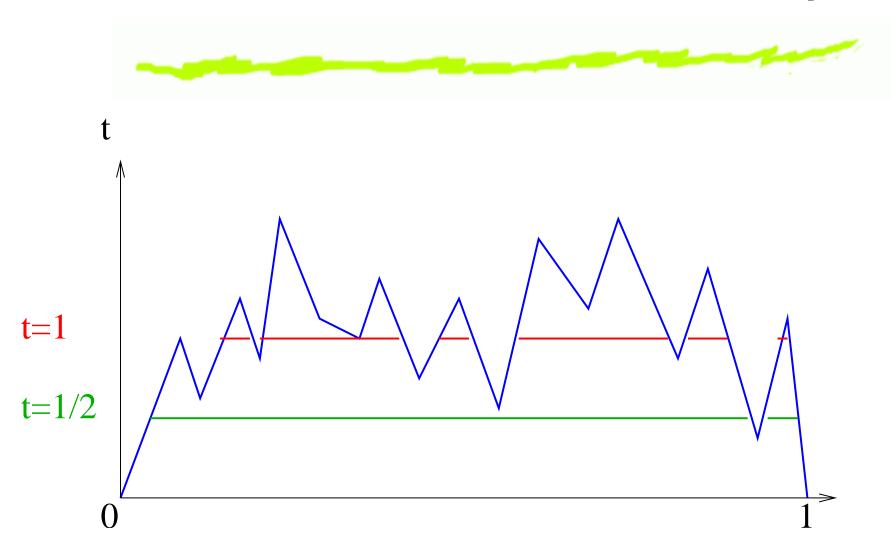
 $(F_{\rm B}(t), t \ge 0)$ is a self-similar fragmentation with index $\alpha = -1/2$.

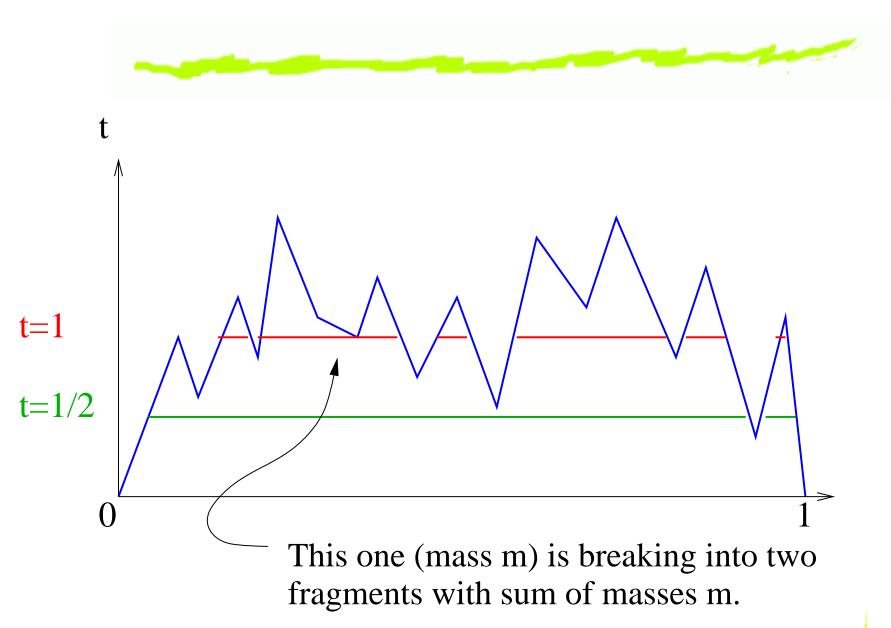
6 Let e be (twice) a standard brownian excursion. For $t \ge 0$ let $I_t := \{s \in [0,1] : e(s) > t\}$. Rank the lengths of interval components of I_t to get the "Brownian fragmentation" $F_B(t) \in S, t \ge 0$. Then easy scaling properties of Brownian motion show:

Proposition

 $(F_{\rm B}(t), t \ge 0)$ is a self-similar fragmentation with index $\alpha = -1/2$.

6 Notice $\alpha < 0$, so fragments keep on collapsing faster and faster, implying some loss of mass (even extinction in finite time).





Continuum Random Trees

Definition An \mathbb{R} -tree is a metric space (T, d) such that for $v, w \in T$,

Continuum Random Trees

Definition

An \mathbb{R} -tree is a metric space (T, d) such that for $v, w \in T$,

1. there exists a unique geodesic [[v, w]] going from v to w, i.e. there exists a unique isometry $\varphi_{v,w} : [0, d(v, w)] \to T$ with $\varphi_{v,w}(0) = v$ and $\varphi_{v,w}(d(v, w)) = w$, and its image is called [[v, w]], and ...

Continuum Random Trees

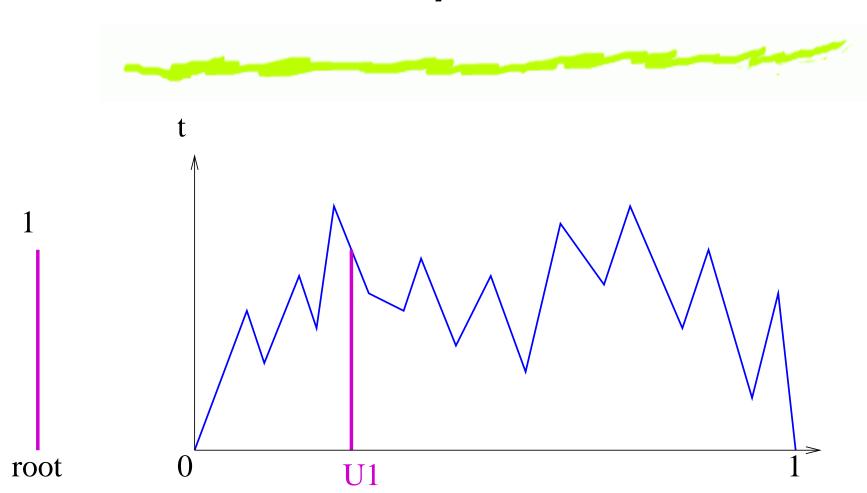
Definition

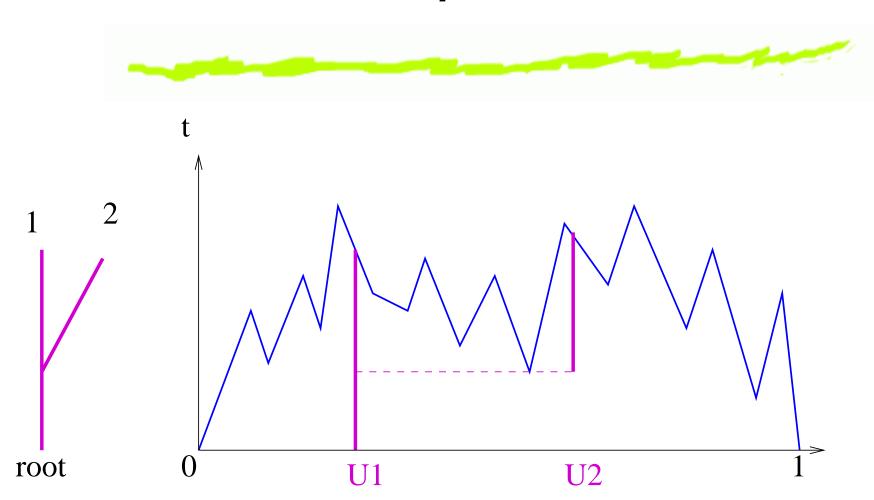
An \mathbb{R} -tree is a metric space (T, d) such that for $v, w \in T$,

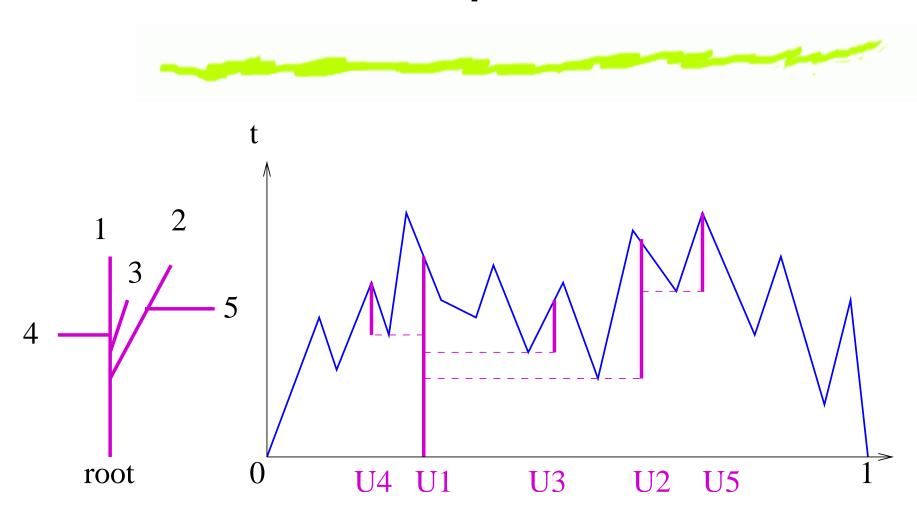
1. there exists a unique geodesic [[v, w]] going from v to w, i.e. there exists a unique isometry $\varphi_{v,w} : [0, d(v, w)] \to T$ with $\varphi_{v,w}(0) = v$ and $\varphi_{v,w}(d(v, w)) = w$, and its image is called [[v, w]], and ...

2. Any simple path going from v to w is [[v, w]] (tree property).

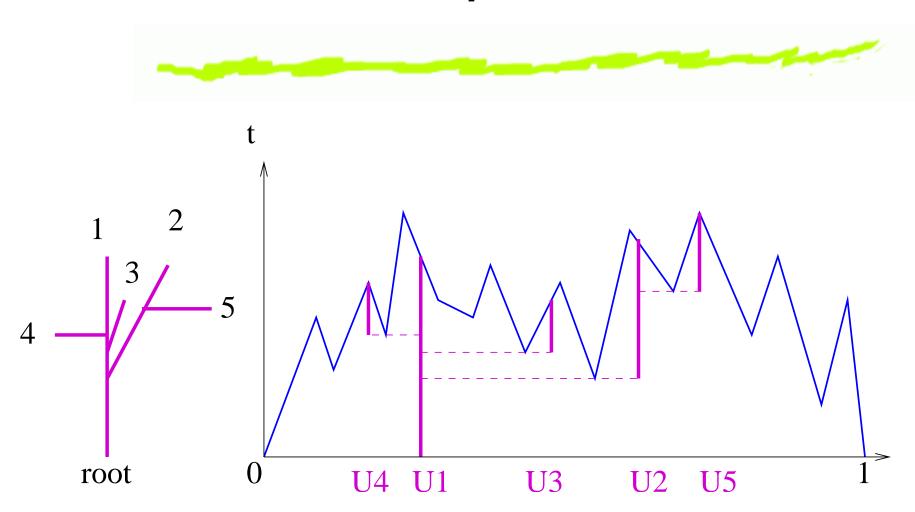
This is a tree







The genealogy of self-similar fragmentations with negative index as a continuum random tree – p.7/20



6 And so on: the limiting "Brownian CRT" = [0, 1], with $D(s, s') = \mathbf{e}(s) + \mathbf{e}(s') - 2 \inf_{s \wedge s' \leq u \leq s \lor s'} \mathbf{e}(u)$.

6 Therefore, the Brownian fragmentation $F_{\rm B}$ can be alternatively obtained from the Brownian CRT $T_{\rm B}$, by recording in decreasing order the sizes of tree components of the forest { $v \in T : d(\text{root}, v) > t$ }, where the "sizes" are the μ -masses of these components, μ = Lebesgue measure on [0, 1].

- 6 Therefore, the Brownian fragmentation $F_{\rm B}$ can be alternatively obtained from the Brownian CRT $\mathcal{T}_{\rm B}$, by recording in decreasing order the sizes of tree components of the forest { $v \in \mathcal{T} : d(\text{root}, v) > t$ }, where the "sizes" are the μ -masses of these components, μ = Lebesgue measure on [0, 1].
- Is ANY self-similar fragmentation *F*, which vanishes in finite time (i.e. α < 0), of this form, for some kind of measured ℝ-tree *T_F*? Answer: indeed.

Theorem 1 (Haas & M., 2004) Let F be a s.s.f. with no erosion

Theorem 1 (Haas & M., 2004) Let F be a s.s.f. with no erosion

This means that every process $F_i(t), t \ge 0$, is pure-jump: the fragments cannot "melt continuously".

Theorem 1 (Haas & M., 2004) Let F be a s.s.f. with no erosion and no sudden loss of mass,

Theorem 1 (Haas & M., 2004) Let *F* be a s.s.f. with no erosion and no sudden loss of mass, meaning the function $M(t) = \sum_{i=1}^{\infty} F_i(t)$ is continuous,

Theorem 1 (Haas & M., 2004) Let *F* be a s.s.f. with no erosion and no sudden loss of mass, meaning the function $M(t) = \sum_{i=1}^{\infty} F_i(t)$ is continuous, then there exists a random measured \mathbb{R} -tree (a CRT) (\mathcal{T}_F, μ) such that *F* has the same law as the process obtained as in the above construction, from the tree \mathcal{T}_F .

Theorem 1 (Haas & M., 2004) Let *F* be a s.s.f. with no erosion and no sudden loss of mass, meaning the function $M(t) = \sum_{i=1}^{\infty} F_i(t)$ is continuous, then there exists a random measured \mathbb{R} -tree (a CRT) (\mathcal{T}_F, μ) such that *F* has the same law as the process obtained as in the above construction, from the tree \mathcal{T}_F .

To see this: discretize space.

Fragmentations and partitions of N

Suppose the massive object is given with a probability "mass" measure μ .

Fragmentations and partitions of $\ensuremath{\mathbb{N}}$

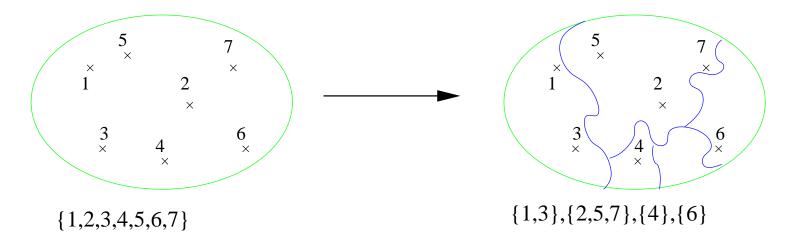
Suppose the massive object is given with a probability "mass" measure μ .

One can sample *n* (resp. an infinite number of) points independently according to μ and create an exchangeable partition of $\{1, 2, \ldots, n\}$ (resp. N).

Fragmentations and partitions of N

Suppose the massive object is given with a probability "mass" measure μ .

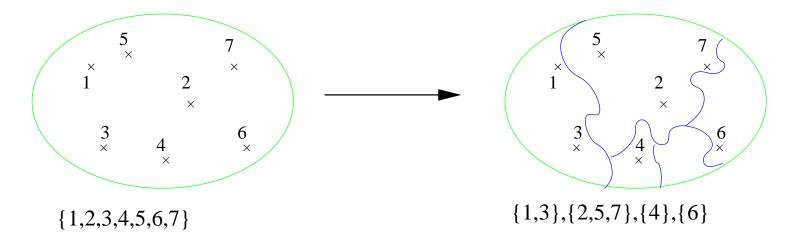
One can sample *n* (resp. an infinite number of) points independently according to μ and create an exchangeable partition of $\{1, 2, ..., n\}$ (resp. \mathbb{N}).



Fragmentations and partitions of $\ensuremath{\mathbb{N}}$

Suppose the massive object is given with a probability "mass" measure μ .

One can sample *n* (resp. an infinite number of) points independently according to μ and create an exchangeable partition of $\{1, 2, ..., n\}$ (resp. \mathbb{N}).



This gives a partition-valued fragmentation $\Pi(t), t \ge 0$.

A tree from a partition

- For $i \in \mathbb{N}$ let $D_i = \inf\{t \ge 0 : \{i\} \in \Pi(t)\}$ (death time, height of leaf *i*)
- 6 for finite $B \subset \mathbb{N}$ let $D_B = \inf\{t \ge 0 : \#(B \cap \Pi(t)) \neq 1\}$ first splitting time of B.

A tree from a partition

- For $i \in \mathbb{N}$ let $D_i = \inf\{t \ge 0 : \{i\} \in \Pi(t)\}$ (death time, height of leaf *i*)
- 6 for finite $B \subset \mathbb{N}$ let $D_B = \inf\{t \ge 0 : \#(B \cap \Pi(t)) \neq 1\}$ first splitting time of B.
- 6 then one may construct (Aldous' 1993 general CRT theory) a random measured \mathbb{R} -tree \mathcal{T}_F, μ so that the subtree of \mathcal{T}_F spanned by n uniform μ -picked vertices has same law as the \mathbb{R} -tree determined by the $D_B, B \subseteq \{1, \ldots, n\}$: the branchpoint of the leaves of Bhas height D_B (height of i if $B = \{i\}$).

A tree from a partition

- For $i \in \mathbb{N}$ let $D_i = \inf\{t \ge 0 : \{i\} \in \Pi(t)\}$ (death time, height of leaf *i*)
- 6 for finite $B \subset \mathbb{N}$ let $D_B = \inf\{t \ge 0 : \#(B \cap \Pi(t)) \neq 1\}$ first splitting time of B.
- 6 then one may construct (Aldous' 1993 general CRT theory) a random measured ℝ-tree T_F, μ so that the subtree of T_F spanned by n uniform μ-picked vertices has same law as the ℝ-tree determined by the D_B, B ⊆ {1,...,n}: the branchpoint of the leaves of B has height D_B (height of i if B = {i}). μ is the weak limit of the empirical measure on the first
 - n leaves.

6 Therefore: a self-similar fragmentation with α < 0 "is" a random measured ℝ-tree. One wants to look at possible properties of this random metric space.

Question

- 6 Therefore: a self-similar fragmentation with α < 0 "is" a random measured ℝ-tree. One wants to look at possible properties of this random metric space.
- 6 The Hausdorff dimension is a natural quantity to consider. For the Brownian tree the dimension is 2. For the Duquesne-Le Gall β -stable tree (the associated fragmentation process is studied in M., 2003), the dimension is $\beta/(\beta-1)$. We obtain it as a Corollary of

Theorem 2 (Haas & M., 2004) Under mild further hypotheses on F (F_B matches these), the Hausdorff dimension of T_F is $|\alpha|^{-1} \wedge 1$, a.s.

Question

- 6 Therefore: a self-similar fragmentation with α < 0 "is" a random measured ℝ-tree. One wants to look at possible properties of this random metric space.
- 6 The Hausdorff dimension is a natural quantity to consider. For the Brownian tree the dimension is 2. For the Duquesne-Le Gall β -stable tree (the associated fragmentation process is studied in M., 2003), the dimension is $\beta/(\beta 1)$. We obtain it as a Corollary of
 - **Theorem 2 (Haas & M., 2004)** Under mild further hypotheses on F (F_B matches these), the Hausdorff dimension of T_F is $|\alpha|^{-1} \wedge 1$, a.s.
- 6 Notice that $\alpha \leq -1$ is thus qualitatively different from $-1 < \alpha < 0$. The genealogy of self-similar fragmentations with negative index as a continuum random tree - p.12/20

 Upper bound: based on known exponential control of the tail of the death time of a marked fragment (Haas, 2002).

- Output: Upper bound: based on known exponential control of the tail of the death time of a marked fragment (Haas, 2002).
- 6 Lower Bound: one natural method is to apply Frostman's energy method with the most natural measure on T_F : the mass measure μ .

- Upper bound: based on known exponential control of the tail of the death time of a marked fragment (Haas, 2002).
- 6 Lower Bound: one natural method is to apply Frostman's energy method with the most natural measure on T_F : the mass measure μ .
- One would like to show

- Output: Upper bound: based on known exponential control of the tail of the death time of a marked fragment (Haas, 2002).
- 6 Lower Bound: one natural method is to apply Frostman's energy method with the most natural measure on T_F : the mass measure μ .
- One would like to show

$$\int_{\mathcal{T}_F} \int_{\mathcal{T}_F} \frac{\mu(\mathrm{d}x)\mu(\mathrm{d}y)}{d(x,y)^{\gamma}} < \infty$$

for all $\gamma < |\alpha|^{-1} \wedge 1$, where L_1, L_2 are independent μ -distributed.

- Output: Upper bound: based on known exponential control of the tail of the death time of a marked fragment (Haas, 2002).
- 6 Lower Bound: one natural method is to apply Frostman's energy method with the most natural measure on T_F : the mass measure μ .
- One would like to show

$$E\left[\int_{\mathcal{T}_F}\int_{\mathcal{T}_F}\frac{\mu(\mathrm{d}x)\mu(\mathrm{d}y)}{d(x,y)^{\gamma}}\right] = E\left[\frac{1}{d(L_1,L_2)^{\gamma}}\right] < \infty$$

for all $\gamma < |\alpha|^{-1} \wedge 1$, where L_1, L_2 are independent μ -distributed.

6 $d(L_1, L_2)$ is manageable: find the first time $D_{\{1,2\}}$ when 1 and 2 separate, evaluate the sizes λ_1, λ_2 of fragments containing 1 and 2 at time $D_{\{1,2\}}$

6 $d(L_1, L_2)$ is manageable: find the first time $D_{\{1,2\}}$ when 1 and 2 separate, evaluate the sizes λ_1, λ_2 of fragments containing 1 and 2 at time $D_{\{1,2\}}$, then (by the fragmentation property) $d(L_1, L_2)$ has same distribution as $\lambda_1^{|\alpha|}D + \lambda_2^{|\alpha|}\widetilde{D}$, where D, \widetilde{D} are independent, independent of $\lambda_i, i = 1, 2$ with law that of $D_{\{1\}}$.

- 6 $d(L_1, L_2)$ is manageable: find the first time $D_{\{1,2\}}$ when 1 and 2 separate, evaluate the sizes λ_1, λ_2 of fragments containing 1 and 2 at time $D_{\{1,2\}}$, then (by the fragmentation property) $d(L_1, L_2)$ has same distribution as $\lambda_1^{|\alpha|}D + \lambda_2^{|\alpha|}\widetilde{D}$, where D, \widetilde{D} are independent, independent of $\lambda_i, i = 1, 2$ with law that of $D_{\{1\}}$.
- 6 Therefore

$$E[d(L_1, L_2)^{-\gamma}] \le 2E[D^{-\gamma}]E[\lambda_1^{\alpha\gamma}; \lambda_1 < \lambda_2].$$

- 6 $d(L_1, L_2)$ is manageable: find the first time $D_{\{1,2\}}$ when 1 and 2 separate, evaluate the sizes λ_1, λ_2 of fragments containing 1 and 2 at time $D_{\{1,2\}}$, then (by the fragmentation property) $d(L_1, L_2)$ has same distribution as $\lambda_1^{|\alpha|}D + \lambda_2^{|\alpha|}\widetilde{D}$, where D, \widetilde{D} are independent, independent of $\lambda_i, i = 1, 2$ with law that of $D_{\{1\}}$.
- 6 Therefore

$$E[d(L_1, L_2)^{-\gamma}] \le 2E[D^{-\gamma}]E[\lambda_1^{\alpha\gamma}; \lambda_1 < \lambda_2].$$

Rewrite $(\lambda_1, \lambda_2) = \lambda(D_{\{1,2\}}-)(l_1, l_2)$, where $\lambda(t)$ is the size of the fragment containing L_1, L_2 before separation ($t < D_{\{1,2\}}$).

- 6 Crucial tool: the dislocation measure of *F*: a σ-finite measure ν on *S* s.t. ∫_S(1 − s₁)ν(ds) < ∞. Informally, a fragment with mass *x* breaks in fragments *xs* (with s ∈ S) at rate x^αν(ds).
- 6 The knowledge of α and ν determines the law of a(n erosionless) *F* (Bertoin, 2002). It is the jump measure of *F*. If *F* has no sudden loss of mass then $\sum_i s_i = 1$, ν -a.e.

Were it not for the x^{α} term (i.e. when $\alpha = 0$), the size $F^*(t)$ of the fragment containing L_1 would be $\exp(-\xi(t)), t \ge 0$ where ξ is a subordinator with the "size-biased" Lévy measure

$$m(\mathrm{d}x) = \sum_{i=1}^{\infty} s_i \ \nu(-\log(s_i) \in \mathrm{d}x).$$

0

Were it not for the x^{α} term (i.e. when $\alpha = 0$), the size $F^*(t)$ of the fragment containing L_1 would be $\exp(-\xi(t)), t \ge 0$ where ξ is a subordinator with the "size-biased" Lévy measure

$$m(\mathrm{d}x) = \sum_{i=1}^{\infty} s_i \ \nu(-\log(s_i) \in \mathrm{d}x).$$

One gets F^* by a Lamperti time-change (Bertoin, 2002):

$$F^*(t) \stackrel{d}{=} \exp(\xi(\rho(t))) \quad t \ge 0$$

where $\rho(t) = \inf\{s \ge 0 : \int_0^s du \exp(-\alpha \xi(u))\}$, notice ρ explodes in finite time ($\alpha < 0$).

Similarly, $\lambda(t)$ is a time-changed version of an exponential of subordinator with Lévy measure

$$\sum_{i} s_i^2 \nu(-\log(s_i) \in \mathrm{d}x)$$

killed at an exponential (rate k) time (corresponding to the separation of L_1 and L_2),

Similarly, $\lambda(t)$ is a time-changed version of an exponential of subordinator with Lévy measure

$$\sum_{i} s_i^2 \nu(-\log(s_i) \in \mathrm{d}x)$$

killed at an exponential (rate k) time (corresponding to the separation of L_1 and L_2), and then the relative sizes after separation are independent of $\lambda(D_{\{1,2\}}-)$ and distributed as $E[f(l_1, l_2)] = \frac{1}{k} \int_S \sum_{i \neq j} f(s_i, s_j) s_i s_j \nu(ds).$

Similarly, $\lambda(t)$ is a time-changed version of an exponential of subordinator with Lévy measure

$$\sum_{i} s_i^2 \nu(-\log(s_i) \in \mathrm{d}x)$$

killed at an exponential (rate k) time (corresponding to the separation of L_1 and L_2), and then the relative sizes after separation are independent of $\lambda(D_{\{1,2\}}-)$ and distributed as $E[f(l_1, l_2)] = \frac{1}{k} \int_S \sum_{i \neq j} f(s_i, s_j) s_i s_j \nu(ds)$. Then one can compute everything needed in $E[d(L_1, L_2)^{-\gamma}]$ for $\gamma < |\alpha|^{-1} \wedge 1$, but...

We are not done yet!

Indeed, the result is not always $< \infty$, it is in the case ν finite and there exists $N \ge 2$ with $\nu(\sum_{i=1}^{N} s_i < 1) = 0$ (at most *N*-ary tree).

The idea is then to truncate the tree to make it "look like" a fragmentation tree with the two properties above, and then make the truncation resemble the initial tree more and more.

Possible developments

- 6 Finer analysis of "fragmentation trees": level sets, local times?
- 6 Case $\alpha \ge 0$ (ultrametrics rather than Brownian CRT's-looking trees)?
- 6 Extension $x^{\alpha} \rightarrow f(x)$ with regularity assumptions of f near 0 is easy.
- Encoding functions and their Hölder properties (partially done in the paper).

Thank you!

The genealogy of self-similar fragmentations with negative index as a continuum random tree – p.20/20