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Introduction

Fragmentation processes describe a massive object

that collapses into pieces as time goes.
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Introduction

Fragmentation processes describe a massive object

(with initial mass 1)
that collapses into pieces as time goes.

State space

00
S = S:(Sl,SQ,...)IslZSQZ...ZO,ZSigl
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Introduction

Fragmentation processes describe a massive object

(with initial mass 1)
that collapses into pieces as time goes.

State space
S = S:(Sl,SQ,...)Isle Z

This allows some loss of mass.
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Self-similar fragmentations

Definition (Bertoin, 2002)

A Markovian S-valued process (F'(t),t > 0) starting at
(1,0,...) is a ranked self-similar fragmentation with
Index o € R if it Is continuous in probability
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A Markovian S-valued process (F'(t),t > 0) starting at
(1,0,...) is a ranked self-similar fragmentation with
Index o € R if it is continuous in probability and
satisfies the following fragmentation property.
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Self-similar fragmentations

Definition (Bertoin, 2002)

A Markovian S-valued process (F'(t),t > 0) starting at
(1,0,...) is a ranked self-similar fragmentation with
Index o € R if it is continuous in probability and
satisfies the following fragmentation property.

the fragments present at time ¢t subsequently evolve
iIndependently of the others, in a way similar to that of
the original mass 1 fragment, up to a space-time
renormalization depending on the mass of each
considered fragment.
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Self-similar fragmentations

Definition (Bertoin, 2002)

A Markovian S-valued process (F'(t),t > 0) starting at
(1,0,...) is a ranked self-similar fragmentation with
Index o € R if it is continuous in probability and
satisfies the following fragmentation property.

Forevery t,t' > 0, given F'(t) = (x1,29,...), F(t+1)
has the same law as the decreasing rearrangement of
the sequences

IlF(l) (Ilat/), IQF(Q) (Igat/), c.

where the F@'s are mdependent copies of F.
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A crucial example

Let e be (twice) a standard brownian excursion.
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A crucial example

Let e be (twice) a standard brownian excursion.
Fort>0letl, :={s € |0,1] : e(s) > t}.
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A crucial example

Let e be (twice) a standard brownian excursion.
Fort>0letl, :={s € |0,1] : e(s) > t}.

Rank the lengths of interval components of I; to get the
“Brownian fragmentation” Fg(t) € S,t > 0.
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A crucial example

Let e be (twice) a standard brownian excursion.
Fort>0letl, :={s € |0,1] : e(s) > t}.

Rank the lengths of interval components of I; to get the
“Brownian fragmentation” Fg(t) € S,t > 0. Then easy
scaling properties of Brownian motion show:

Proposition
(Fg(t),t > 0) is a self-similar fragmentation with index

a=—1/2.
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A crucial example

Let e be (twice) a standard brownian excursion.
Fort>0letl, :={s € |0,1] : e(s) > t}.

Rank the lengths of interval components of I; to get the
“Brownian fragmentation” Fg(t) € S,t > 0. Then easy
scaling properties of Brownian motion show:

Proposition
(Fg(t),t > 0) is a self-similar fragmentation with index
a=—1/2.

Notice o < 0, so fragments keep on collapsing faster
and faster, implying some loss of mass (even extinction
In finite time).
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A crucial example

o MMW”\/\\

0 1
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A crucial example

o MM\MN\
— |

0 L 1
Thisone (mass m) is breaking into two
fragments with sum of masses m.
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Continuum Random Trees

Definition
An R-tree is a metric space (7, d) such that for v, w € T,
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Continuum Random Trees

Definition
An R-tree is a metric space (7, d) such that for v, w € T,

1. there exists a unique geodesic ||v, w]|] going from v to w,
.e. there exists a unique isometry ¢, : [0,d(v,w)|] — T
with ¢, ,,(0) = v and ¢, ,(d(v,w)) = w, and its image is
called [[v, w]], and ...
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Continuum Random Trees

Definition
An R-tree is a metric space (7, d) such that for v, w € T,

1. there exists a unique geodesic ||v, w]|] going from v to w,
.e. there exists a unique isometry ¢, : [0,d(v,w)|] — T
with ¢, ,,(0) = v and ¢, ,(d(v,w)) = w, and its image is
called [[v, w]], and ...

2. Any simple path going from v to w is ||v, w]| (tree prop-

erty).
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Example: the Brownian tree

Thisisatree
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Example: the Brownian tree

root 0 U1 1
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Example: the Brownian tree

root 0 U1 U2 1
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Example: the Brownian tree

root 0 U4 Ul U3 U2 U5 1
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Example: the Brownian tree

root 0 U4 Ul U3 U2 U5 1

And so on: the limiting “Brownian CRT” = |0, 1], with
D(s,s') =e(s) +e(s") — 2infspg<ucsvs €(U).

The genealogy of self-similar fragmentations with negative index as a continuum random tree — p.7/20



Example: the Brownian tree

Therefore, the Brownian fragmentation Fy can be
alternatively obtained from the Brownian CRT 7g, by
recording in decreasing order the sizes of tree
components of the forest {v € 7 : d(root,v) > t},
where the “sizes” are the y-masses of these
components, u= Lebesgue measure on [0, 1].
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Example: the Brownian tree

Therefore, the Brownian fragmentation Fy can be
alternatively obtained from the Brownian CRT 7g, by
recording in decreasing order the sizes of tree
components of the forest {v € 7 : d(root,v) > t},
where the “sizes” are the y-masses of these
components, u= Lebesgue measure on [0, 1].

Is ANY self-similar fragmentation F’, which vanishes in
finite time (i.e. o < 0), of this form, for some kind of

measured R-tree 7,7
Answer: indeed.
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Fragmentation trees

Theorem 1 (Haas & M., 2004) Let F' be a s.s.f. with
no erosion
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Fragmentation trees

Theorem 1 (Haas & M., 2004) Let F' be a s.s.f. with
Nno erosion

This means that every process F;(t),t > 0, IS pure-jump:
the fragments cannot “melt continuously”.
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Fragmentation trees

Theorem 1 (Haas & M., 2004) Let F' be a s.s.f. with
no erosion and no sudden loss of mass,
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Fragmentation trees

Theorem 1 (Haas & M., 2004) Let F' be a s.s.f. with
no erosion and no sudden loss of mass,meaning the
function M(t) = > ", F;(t) is continuous,
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Fragmentation trees

Theorem 1 (Haas & M., 2004) Let F' be a s.s.f. with

no erosion and no sudden loss of mass,meaning the
function M(t) = > .=, F;(t) is continuous, then there exists
a random measured R-tree (a CRT) (7F, ) such that F°

has the same law as the process obtained as in the above
construction, from the tree 7.
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Fragmentation trees

Theorem 1 (Haas & M., 2004) Let F' be a s.s.f. with

no erosion and no sudden loss of mass,meaning the
function M(t) = > .=, F;(t) is continuous, then there exists
a random measured R-tree (a CRT) (7F, ) such that F°

has the same law as the process obtained as in the above
construction, from the tree 7.

To see this: discretize space.

The genealogy of self-similar fragmentations with negative index as a continuum random tree — p.9/20



Fragmentations and partitions of N

Suppose the massive object is given with a probability
‘mass” measure .

The genealogy of self-similar fragmentations with negative index as a continuum random tree — p.10/20



Fragmentations and partitions of N

Suppose the massive object is given with a probability
‘mass” measure .

One can sample n (resp. an infinite number of) points
iIndependently according to 1 and create an exchangeable
partition of {1,2,...,n} (resp. N).
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Fragmentations and partitions of N

Suppose the massive object is given with a probability
‘mass” measure .

One can sample n (resp. an infinite number of) points
iIndependently according to 1 and create an exchangeable
partition of {1,2,...,n} (resp. N).

%

{1,2,3/4,5,6,7} {13} {257} {4} {6}
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Fragmentations and partitions of N

Suppose the massive object is given with a probability
‘mass” measure .

One can sample n (resp. an infinite number of) points
iIndependently according to 1 and create an exchangeable
partition of {1,2,...,n} (resp. N).

%

{1,2,3/4,5,6,7} {13} {257} {4} {6}

This gives a partition-valued fragmentation I1(z),z > 0.
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A tree from a partition

For: e Nlet D, = inf{t > 0: {¢} € 1I(¢)} (death time,
height of leaf i)

for finite B C Nlet Dg =inf{t > 0: #(BNII(t)) # 1}
first splitting time of B.
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A tree from a partition

For: e Nlet D, = inf{t > 0: {¢} € 1I(¢)} (death time,
height of leaf i)

for finite B C Nlet Dg =inf{t > 0: #(BNII(t)) # 1}
first splitting time of B.

then one may construct (Aldous’ 1993 general CRT
theory) a random measured R-tree 7, u So that the
subtree of 7 spanned by n uniform p-picked vertices
has same law as the R-tree determined by the

Dg,B C{1,...,n}: the branchpoint of the leaves of B

has height Dg (height of i if B = {i}).
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A tree from a partition

For: e Nlet D, = inf{t > 0: {¢} € 1I(¢)} (death time,
height of leaf i)

for finite B C Nlet Dg =inf{t > 0: #(BNII(t)) # 1}
first splitting time of B.

then one may construct (Aldous’ 1993 general CRT
theory) a random measured R-tree 7, u So that the
subtree of 7 spanned by n uniform p-picked vertices
has same law as the R-tree determined by the

Dg,B C{1,...,n}: the branchpoint of the leaves of B
has height Dg (height of i if B = {i}).

1 1S the weak limit of the empirical measure on the first
n leaves.
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Question

Therefore: a self-similar fragmentation with oo < 0 “Is” a

random measured R-tree. One wants to look at
possible properties of this random metric space.
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Question

Therefore: a self-similar fragmentation with oo < 0 “Is” a

random measured R-tree. One wants to look at
possible properties of this random metric space.

The Hausdorff dimension is a natural quantity to
consider. For the Brownian tree the dimension is 2. For
the Duguesne-Le Gall ;-stable tree (the associated

fragmentation process is studied in M., 2003), the
dimensionis 5/(3 — 1). We obtain it as a Corollary of

Theorem 2 (Haas & M., 2004) Under mild further
hypotheses on F' (Fy matches these), the Hausdorff
dimension of 7 is |a|™' A 1, a.s.
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Question

Therefore: a self-similar fragmentation with oo < 0 “Is” a

random measured R-tree. One wants to look at
possible properties of this random metric space.

The Hausdorff dimension is a natural quantity to
consider. For the Brownian tree the dimension is 2. For
the Duguesne-Le Gall ;-stable tree (the associated
fragmentation process is studied in M., 2003), the

dimensionis 5/(3 — 1). We obtain it as a Corollary of

Theorem 2 (Haas & M., 2004) Under mild further
hypotheses on F' (Fy matches these), the Hausdorff
dimension of 7 is |a|™' A 1, a.s.

Notice that o < —1 Is thus qualitatively different from
—1 < a<0.
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ldea of proof

Upper bound: based on known exponential control of
the tail of the death time of a marked fragment (Haas,
2002).
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ldea of proof

Upper bound: based on known exponential control of
the tail of the death time of a marked fragment (Haas,
2002).

Lower Bound: one natural method is to apply
Frostman’s energy method with the most natural
measure on 7. the mass measure L.
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ldea of proof

Upper bound: based on known exponential control of
the tail of the death time of a marked fragment (Haas,
2002).

Lower Bound: one natural method is to apply
Frostman’s energy method with the most natural
measure on 7. the mass measure L.

One would like to show
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ldea of proof

Upper bound: based on known exponential control of
the tail of the death time of a marked fragment (Haas,
2002).

Lower Bound: one natural method is to apply
Frostman’s energy method with the most natural
measure on 7. the mass measure L.

One would like to show

[ [ oo
TF TF d(a;7 y)’y

forall v < |a|~* A 1, where L,, L, are independent
p-distributed.
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ldea of proof

Upper bound: based on known exponential control of
the tail of the death time of a marked fragment (Haas,
2002).

Lower Bound: one natural method is to apply
Frostman’s energy method with the most natural
measure on 7. the mass measure L.

One would like to show

u(dﬂ?)u(dy)] [ 1

b =k

L ) -
for all v < |a|™! A 1, where L, L, are independent
p~-distributed.

< OO
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ldea of proof

d(L1, Ly) is manageable: find the first time Dy, 5, when

1 and 2 separate, evaluate the sizes \;, A, of fragments
containing 1 and 2 at time Dy, o,
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ldea of proof

d(L1, Ly) is manageable: find the first time Dy, 5, when

1 and 2 separate, evaluate the sizes A\, A, of fragments
containing 1 and 2 at time Dy, o, then (by the

fragmentation property) d(Ll, L) has same distribution

as \'D + \' D, where D, D are independent,
mdependent of \j,te=1,2 with law that of Dq1y.
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ldea of proof

d(L1, Ly) is manageable: find the first time Dy, 5, when

1 and 2 separate, evaluate the sizes A\, A, of fragments
containing 1 and 2 at time Dy, o, then (by the

fragmentation property) d(Ll, L) has same distribution

as \'D + \' D, where D, D are independent,
mdependent of \j,te=1,2 with law that of Dq1y.

Therefore

Eld(Ly, L)~ < 2E[D™E[XY: Ay < Agl.
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ldea of proof

d(L1, Ly) is manageable: find the first time Dy, 5, when

1 and 2 separate, evaluate the sizes A\, A, of fragments
containing 1 and 2 at time Dy, o, then (by the

fragmentation property) d(Ll, L) has same distribution

as \'D + \' D, where D, D are independent,
mdependent of \j,te=1,2 with law that of Dq1y.

Therefore
Eld(L1, Ly)77] < 2E[D7E[N"; A1 < Ag).

Rewrite (A1, A2) = A(Dg1,21—)(l1,12), where A(t) is the
size of the fragment containing L, L, before
separation (t < Dy 23).
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ldea of proof

Crucial tool: the dislocation measure of F': a o-finite
measure v on S s.t. [(1 — s1)r(ds) < oco. Informally, a
fragment with mass = breaks in fragments xs (with

s € S) at rate x“v(ds).

The knowledge of o and v determines the law of a(n
erosionless) F' (Bertoin, 2002). It is the jump measure

of . If F' has no sudden loss of mass then » . s; = 1,
v-a.e.
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ldea of proof

Were it not for the z* term (i.e. when a = 0), the size F*(t)
of the fragment containing L; would be exp(—£(t)),t > 0

where ¢ is a subordinator with the “size-biased” Léevy
measure

Z s; v(—log(s;) € dx).

1=1
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ldea of proof

Were it not for the z* term (i.e. when a = 0), the size F*(t)
of the fragment containing L; would be exp(—£(t)),t > 0

where ¢ is a subordinator with the “size-biased” Léevy
measure

m(dz) = Z s; v(—log(s;) € dx).

One gets F* by a Lamperti time-change (Bertoin, 2002):

F*(t) = exp(€(p(t)) 1> 0
where p(t) = inf{s > 0 : [ duexp(—af(u))}, notice p ex-

plodes In finite time (o < 0).
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ldea of proof

Similarly, A\(¢) is a time-changed version of an exponential
of subordinator with Lévy measure

Z siv(—log(s;) € dx)
killed at an exponential (rate k) time (corresponding to the

separation of L, and L),
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ldea of proof

Similarly, A\(¢) is a time-changed version of an exponential
of subordinator with Lévy measure

Z v(—log(s;) € dx)
killed at an exponential (rate k) time (corresponding to the

separation of L; and L,), and then the relative sizes after

separation are independent of A(Dy; 23 —) and distributed as

E[f ll,l2 — fS itj SZ,Sj)SiSjV(dS).
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ldea of proof

Similarly, A\(¢) is a time-changed version of an exponential
of subordinator with Lévy measure

) siv(—log(s;) € du)
killed at an exponential (rate k) time (corresponding to the
separation of L; and L,), and then the relative sizes after
separation are independent of A(Dy; 23 —) and distributed as
E[f(li, )] = ¢ Jg2 iz f(56,85)sis;v(ds).  Then one can
compute everything needed in E[d(L, Ly)~ "] for v < |a|™' A
1, but...
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We are not done yet!

Indeed, the result is not always < oo, It is in the case v

finite and there exists N > 2 with (3", s; < 1) = 0 (at
most N-ary tree).

The idea is then to truncate the tree to make it “look like”
a fragmentation tree with the two properties above, and

then make the truncation resemble the initial tree more and

more.
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Possible developments

Finer analysis of “fragmentation trees”. level sets, local
times?

Case o > 0 (ultrametrics rather than Brownian
CRT’s-looking trees)?

Extension x* — f(x) with regularity assumptions of f
near O IS easy.

Encoding functions and their Holder properties
(partially done in the paper).
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Zl ainde

Thank you!
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