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Maps

Definition
A map is a proper embedding of a graph into a two-dimensional
(compact, oriented, connected) surface,
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Maps

Definition

A map is a proper embedding of a graph into a two-dimensional
(compact, oriented, connected) surface, cutting the latter into
topological disks, and considered up to orientation-preserving
homeomorphisms of the surface.

Rooted maps
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Maps

Definition

A map is a proper embedding of a graph into a two-dimensional
(compact, oriented, connected) surface, cutting the latter into
topological disks, and considered up to orientation-preserving
homeomorphisms of the surface.

Pointed maps
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Enumeration results
Theorem

Let QY be the set of genus-g rooted bipartite quadrangulations with n
faces (~ genus-g rooted maps with n edges), then

#QY =

2 _
3" Cat,, ~ ﬁ12”n 5/2

P [Tutte 1963]
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Enumeration results
Theorem

Let QY be the set of genus-g rooted bipartite quadrangulations with n
faces (~ genus-g rooted maps with n edges), then

#Q0 = = i 23” Caty, ~ %12%—5/2 [Tutte 1963]

#Q9 ~ t,12"n~=>x9)/4  [Bender and Canfield 1986]

Counting maps:

@ Bijective recursive equations for generating functions, leads to
Tutte’s quadratic method

@ Gaussian matrix integrals are generating functions for maps
[YHooft 1974, Brézin, Itzykson, Parisi & Zuber 1978]

@ Enumerating branching covers [Goulden-Jackson 2008]

@ Bijective approaches [Cori-Vauquelin 1981, Schaeffer 1998, =\
Chapuy-Marcus-Schaeffer 2008]
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Enumeration by bijective methods

These are, at present, the most suited to understand why random

maps should “approximate a random surface” (discretization for
2DQG, [Ambjern et al. 90’s]).
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and so on.
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Enumeration by bijective methods

These are, at present, the most suited to understand why random
maps should “approximate a random surface” (discretization for
2DQG, [Ambjern et al. 90’s]).

@ Bijective methods allow to encode maps within tree structures with
various decorations: buds, distinguished types of vertices, labels,
and so on.

@ Advantage: can keep track of geodesic distances to a base vertex

@ Using this, [Chassaing & Schaeffer, 2004] show that the typical
distance between two vertices of a n-faces planar quadrangulation
is of order n'/4, and exhibit limit distributions involving the ISE
(Integrated Super-Brownian Excursion).
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A guess

Let QY be the set of genus-g rooted bipartite quadrangulations with n
faces, and q, be a uniformly distributed element in QJ.
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A guess

Let QY be the set of genus-g rooted bipartite quadrangulations with n
faces, and q, be a uniformly distributed element in QJ. Endow the set
V(qgn) of its vertices with the graph distance dj;.

One expects
(V(dn),n n" 4dgr) _’ (S,d),

where (S, d) is a random metric space.
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A guess

Let QY be the set of genus-g rooted bipartite quadrangulations with n
faces, and q, be a uniformly distributed element in QJ. Endow the set
V(qgn) of its vertices with the graph distance dj;.

One expects
(V(@n),n~*dy) — (S,d),

where (S, d) is a random metric space.

A conjectured limit space arises in [Marckert & Mokkadem 2006], [Le
Gall 2007] in the case g = 0.
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Topologies on metric spaces

A natural framework for random metric spaces is to compare them
using the Gromov-Hausdorff distance.
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Topologies on metric spaces

A natural framework for random metric spaces is to compare them
using the Gromov-Hausdorff distance. If (X, d), (X', d") are compact
metric, let

dan(X, X') = inf 8(6(X). (X)),

the infimum being taken over isometric embeddings of X, X’ into a

common metric space (Z, d) and dy is the usual Hausdorff distance
between compact subsets of Z.

Proposition

This endows the space M of isometry classes of compact spaces with
a complete, separable distance.
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Gromov-Hausdorff-Prokhorov convergence

In order to handle measured metric spaces, we extend the definition to
isometry classes of (X, d, 1) where . is a Borel probability measure on
(X, d).
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Gromov-Hausdorff-Prokhorov convergence

In order to handle measured metric spaces, we extend the definition to
isometry classes of (X, d, 1) where . is a Borel probability measure on
(X, d). The Gromov-Hausdorff-Prokhorov distance is defined by

dGHP(X’ X/) = qiﬁnzg’ 5H(¢(X)7 ¢I(X/)) v 5P(¢*H’ @b;//) )

the minimum taken over isometries ¢, ¢’ from X, X’ to some (Z,¢), and
dp is the usual Prokhorov distance

dp(v,v') =inf{e : v(C) < V'(C®) + ¢ for all closed C},
where C° = {x € Z:46(x,C) < ¢e}.

Proposition

This endows the space of equivalence classes of measured metric
spaces M** with a separable, complete metric (compare [Gromov,
Fukaya, Evans-Winter]).
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For convenience, we consider quadrangulations with random sizes,
distributed according to Boltzmann distributions. Set Vq = #V(q)
(volume).
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For convenience, we consider quadrangulations with random sizes,
distributed according to Boltzmann distributions. Set Vq = #V(q)
(volume). Define a o-finite measure

QI({q}) =127#@  qe@’:= a7,

n>0
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For convenience, we consider quadrangulations with random sizes,
distributed according to Boltzmann distributions. Set Vq = #V(q)
(volume). Define a o-finite measure

Qg({q}):12*#F(q)’ qug — UQ ,

n>0

and for A > 0 let
QI(Vée *adq)

QI(Vge *a)

One is interested in the regime where A\ — 0 (forces large V).

Py =
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Main result

Endow a quadrangulation q with the weight

1
/_lq = V Z 5\/ .
9 vev(a)
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Main result

Endow a quadrangulation q with the weight

:_Zav

9 vev(a)

Theorem

@ Fix A\ > 0. The laws on M™ of the spaces (V(q),a™"/*dy, 1iq)
under 7?A e with a > 1, form a tight family of probability measures.
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Main result

Endow a quadrangulation q with the weight

1
,Uq = V Z (Sv.
9 vev(a)

Theorem

@ Fix A\ > 0. The laws on M™ of the spaces (V(q),a™"/*dy, 1iq)

under Pf e with a > 1, form a tight family of probability measures.

@ Any limiting law Sy, is supported by spaces (X, d, i) such that
(X, d) is a path metric space
w is diffuse with supp () = X
For u® u-a.e. (x, y), there exists a unique geodesic path between x
andy.
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Discussion

@ One of the main questions is to have uniqueness of the limiting
law. A natural conjectured Brownian map has been defined by
[Marckert & Mokkadem 06, Le Gall 07] (g = 0).
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© A fine study of geodesics to a fixed points, implying the above
essential uniqueness result, has been recently done inthe g =0
case [Le Gall 08], by different means.

© When g = 0 the limiting space is a.s. homeomorphic to the sphere
[Le Gall & Paulin, M.]. A similar ‘non-degeneracy’ property is
expected to hold in higher genera, and is work in progress.
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Discussion

@ One of the main questions is to have uniqueness of the limiting
law. A natural conjectured Brownian map has been defined by
[Marckert & Mokkadem 06, Le Gall 07] (g = 0).

@ At present, only the laws of the mutual distances between 2
[Chassaing-Schaeffer 04] or 3 [Bouttier-Guitter 08] randomly
chosen points have been obtained (g = 0).

© A fine study of geodesics to a fixed points, implying the above
essential uniqueness result, has been recently done inthe g =0
case [Le Gall 08], by different means.

© When g = 0 the limiting space is a.s. homeomorphic to the sphere
[Le Gall & Paulin, M.]. A similar ‘non-degeneracy’ property is
expected to hold in higher genera, and is work in progress.

© These results are expected to hold for a wide variety of maps
other than quadrangulations, and in particular, for k-angulations
(the bipartite cases are easier), along the lines of [Marckert & M.,
Chapuy]. \
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The Marcus-Schaeffer bijection

@ Let TY be the set of g-trees, i.e. maps of genus g with one face,
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and with n edges
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The Marcus-Schaeffer bijection

@ Let TY be the set of g-trees, i.e. maps of genus g with one face,
and with n edges,

@ TY be the set of labelled g-trees (t,1) where I : V(t) — Z is defined
up to a (global) additive constant and

W(u)—1I(v)| <1, u, v neighbors .
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The Marcus-Schaeffer bijection

@ Let TY be the set of g-trees, i.e. maps of genus g with one face,
and with n edges,

o TY be the set of labelled g-trees (t,1) where | : V(t) — Z is defined
up to a (global) additive constant and

W(u)—1I(v)| <1, u, v neighbors .

Theorem

The construction to follow yields a bijection between T, and pointed
bipartite quadrangulations of genus g with n faces.

(Induces an two-to-one mapping between rooted, pointed and rooted
labelled g-trees)
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The Marcus-Schaeffer bijection

@ Label the vertices of the
quadrangulation q according
to I(v) = dy (v, vi), Vi the
distinguished vertex
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The Marcus-Schaeffer bijection

I+1 1+2

@ Label the vertices of the
quadrangulation q according
to I(v) = dy (v, vi), Vi the
distinguished vertex

@ By the bipartite nature of the
map, only two labeling
configuration are possible
around each face 1+1 I

l I+1

I+1
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The Marcus-Schaeffer bijection

[+1 1+2

@ Label the vertices of the
quadrangulation q according
to I(v) = dy (v, vi), Vi the
distinguished vertex

@ By the bipartite nature of the
map, only two labeling
configuration are possible
around each face 1+1 I

© Add red extra edges to get a
new map

l [+1

I+1
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The Marcus-Schaeffer bijection

@ Label the vertices of the
quadrangulation q according
to I(v) = dy (v, vi), Vi the
distinguished vertex

@ By the bipartite nature of the
map, only two labeling
configuration are possible
around each face

© Add red extra edges to get a
new map

© Remove the blue edges,
yielding a map with one face,
plus the isolated vertex v,
which is removed.

[+1

I+1
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A multi-pointed analogue

Let Q9 be the set of triples (q, x, D) such that:
@ (q a bipartite genus-g quadrangulation
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A multi-pointed analogue
Let Q9 be the set of triples (q, x, D) such that:

@ (q a bipartite genus-g quadrangulation
Q x=(xq,...,xx) € V(q)¥, a sequence of k sources
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A multi-pointed analogue

Let Q2X be the set of triples (g, x, D) such that:
@ (q a bipartite genus-g quadrangulation
Q x=(xq,...,xx) € V(q)¥, a sequence of k sources

© D= (d,...,dk) € Z¥ a sequence of delays, defined up to an
additive constant and satisfying

> |di — dj| < du(xi,x;)for1 <i#j<k
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A multi-pointed analogue

Let Q2X be the set of triples (g, x, D) such that:
@ (q a bipartite genus-g quadrangulation
Q x=(xq,...,xx) € V(q)¥, a sequence of k sources

© D= (d,...,dk) € Z¥ a sequence of delays, defined up to an
additive constant and satisfying

> |di — dj| < du(xi,x;)for1 <i#j<k
> di_cjj+dgr(xiy)(j)€2Nf0r1 Sl’jgk
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A multi-pointed analogue

Let Q2X be the set of triples (g, x, D) such that:
@ (q a bipartite genus-g quadrangulation
Q x=(x,...,x) € V(q)¥, a sequence of k sources

© D= (d,...,dk) € Z¥ a sequence of delays, defined up to an
additive constant and satisfying
> |di—dj| < du(x;,x))for1 <i#j<k
> di — 0+ dye(X;, X)) € 2N for 1 < i, j < k.

Theorem
The following construction yields a bijection between Q9 and the set
of pairs (m, 1) with m a genus-g map with k faces fi,. .., f and

I: V(m) — Z, defined up to an additive constant, and such that
[I(u) — I(v)| <1 for u, v neighbors.
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The multi-pointed Marcus-Schaeffer bijection

@ Label the vertices of the
quadrangulation q by
I(v) = miny<j<k(der (v, X;) + dy),
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The multi-pointed Marcus-Schaeffer bijection

@ Label the vertices of the . L
quadrangulation q by
|(V) = min1§,-§k(dgr(v, X,') + d,‘),

@ By the bipartite nature of the
map, and the parity condition
on D, only two labeling
configuration are possible
around each face

[+1

l I+1 \
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The multi-pointed Marcus-Schaeffer bijection

@ Label the vertices of the
quadrangulation q by
|(V) = min1§,-§k(dgr(v, X,') + d,‘),

@ By the bipartite nature of the
map, and the parity condition
on D, only two labeling
configuration are possible
around each face

© Add red extra edges to get a 41 ‘
new map

I+1 [+2

1 [+1

l I+1 \
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The multi-pointed Marcus-Schaeffer bijection

2

© Add red extra edges to get a

© Remove the blue edges,

Label the vertices of the o
quadrangulation q by

|(V) = min1§,-§k(dgr(v, X,') + d,‘),
By the bipartite nature of the
map, and the parity condition
on D, only two labeling
configuration are possible
around each face

[+1

new map

yielding a map with k faces.
The only isolated vertices are
X;,1 < i < k, remove them and
label the k resulting faces
accordingly

I+1
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Example

A2 N Ge

Geometry of random maps



The general aspect of a g = 0, two-source situation

@ A green, labelled cycle, on
which labelled trees are
grafted.
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The general aspect of a g = 0, two-source situation

1(v) = dgr(v, 1) + dy = dge (v, m2) + da

@ A green, labelled cycle, on
which labelled trees are
grafted.

@ Take a geodesic path in the

quadrangulation between the
sources xy and xo.
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@ This geodesic crosses the
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The general aspect of a g = 0, two-source situation

@ A green, labelled cycle, on
which labelled trees are
grafted.

@ Take a geodesic path in the
quadrangulation between the
sources xy and xo.

@ This geodesic crosses the
green cycle at some x.

Note
dgr(xa X1) + dgr(X7 X2) = dgr(x1 s X2)
I(X) = dgr(X7X1) +dy = dgr(xa X2) + 0>,
giving that I(x) attains a minimal label along the green cycle.
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The continuum limit

@ In the continuum limit, under
P? 1o With @ — oo the length of

the green loop scales as a'/2.

geodesis
T
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discrete random bridge, which
scales like a'/4 and has a
Brownian bridge as a limit.
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Brownian bridge as a limit.

@ The latter attains its infimum at
a unique location.
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The continuum limit

@ In the continuum limit, under
P? 1o With @ — oo the length of
the green loop scales as a'/2.

@ The labels on the loop are a
discrete random bridge, which
scales like a'/4 and has a
Brownian bridge as a limit.

@ The latter attains its infimum at
a unique location.

This entails that in a scaling limit (X, d, 1) of q, and for u-a.e. xy, xo and
a.e. D unique x such that

d(x1,x) = (d(x1,x2) + D)/2
d(x,x2) = (d(x1,x2) — D)/2
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