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Maps

Definition
A map is a proper embedding of a graph into a two-dimensional
(compact, oriented, connected) surface, cutting the latter into
topological disks, and considered up to orientation-preserving
homeomorphisms of the surface.
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Maps
Definition
A map is a proper embedding of a graph into a two-dimensional
(compact, oriented, connected) surface, cutting the latter into
topological disks, and considered up to orientation-preserving
homeomorphisms of the surface.

Pointed maps
G. Miermont (Fondation SMP) Geometry of random maps IMS/BS 2008 2 / 17



Enumeration results
Theorem
Let Qg

n be the set of genus-g rooted bipartite quadrangulations with n
faces (∼ genus-g rooted maps with n edges), then

#Q0
n =

2
n + 2

3n Catn ∼
2√
π

12nn−5/2 [Tutte 1963]

#Qg
n ∼ tg 12n n−5χ(g)/4 [Bender and Canfield 1986]

Counting maps:
Bijective recursive equations for generating functions, leads to
Tutte’s quadratic method
Gaussian matrix integrals are generating functions for maps
[t’Hooft 1974, Brézin, Itzykson, Parisi & Zuber 1978]
Enumerating branching covers [Goulden-Jackson 2008]
Bijective approaches [Cori-Vauquelin 1981, Schaeffer 1998,
Chapuy-Marcus-Schaeffer 2008]
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Enumeration by bijective methods

These are, at present, the most suited to understand why random
maps should “approximate a random surface” (discretization for
2DQG, [Ambjørn et al. 90’s]).

Bijective methods allow to encode maps within tree structures with
various decorations: buds, distinguished types of vertices, labels,
and so on.
Advantage: can keep track of geodesic distances to a base vertex
Using this, [Chassaing & Schaeffer, 2004] show that the typical
distance between two vertices of a n-faces planar quadrangulation
is of order n1/4, and exhibit limit distributions involving the ISE
(Integrated Super-Brownian Excursion).
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A guess

Let Qg
n be the set of genus-g rooted bipartite quadrangulations with n

faces, and qn be a uniformly distributed element in Qg
n . Endow the set

V (qn) of its vertices with the graph distance dgr.

One expects
(V (qn), n−1/4dgr) −→n→∞

(S, d) ,

where (S, d) is a random metric space.

A conjectured limit space arises in [Marckert & Mokkadem 2006], [Le
Gall 2007] in the case g = 0.
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Topologies on metric spaces

A natural framework for random metric spaces is to compare them
using the Gromov-Hausdorff distance. If (X , d), (X ′, d ′) are compact
metric, let

dGH(X , X ′) = inf
φ,φ′

δH(φ(X ), φ′(X ′)) ,

the infimum being taken over isometric embeddings of X , X ′ into a
common metric space (Z , δ) and δH is the usual Hausdorff distance
between compact subsets of Z .

Proposition
This endows the space M of isometry classes of compact spaces with
a complete, separable distance.
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Gromov-Hausdorff-Prokhorov convergence
In order to handle measured metric spaces, we extend the definition to
isometry classes of (X , d , µ) where µ is a Borel probability measure on
(X , d). The Gromov-Hausdorff-Prokhorov distance is defined by

dGHP(X , X ′) = inf
φ,φ′

δH(φ(X ), φ′(X ′)) ∨ δP(φ∗µ, φ′∗µ
′) ,

the minimum taken over isometries φ, φ′ from X , X ′ to some (Z , δ), and
δP is the usual Prokhorov distance

δP(ν, ν ′) = inf{ε : ν(C) ≤ ν ′(Cε) + ε for all closed C} ,

where Cε = {x ∈ Z : δ(x , C) < ε} .

Proposition
This endows the space of equivalence classes of measured metric
spaces Mwt with a separable, complete metric (compare [Gromov,
Fukaya, Evans-Winter]).
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For convenience, we consider quadrangulations with random sizes,
distributed according to Boltzmann distributions. Set Vq = #V (q)
(volume). Define a σ-finite measure

Qg({q}) = 12−#F (q) , q ∈ Qg :=
⋃
n≥0

Qg
n ,

and for λ > 0 let

Pg
λ =

Qg(V 2
q e−λVq dq)

Qg(V 2
q e−λVq)

.

One is interested in the regime where λ → 0 (forces large Vq).

G. Miermont (Fondation SMP) Geometry of random maps IMS/BS 2008 8 / 17



For convenience, we consider quadrangulations with random sizes,
distributed according to Boltzmann distributions. Set Vq = #V (q)
(volume). Define a σ-finite measure

Qg({q}) = 12−#F (q) , q ∈ Qg :=
⋃
n≥0

Qg
n ,

and for λ > 0 let

Pg
λ =

Qg(V 2
q e−λVq dq)

Qg(V 2
q e−λVq)

.

One is interested in the regime where λ → 0 (forces large Vq).

G. Miermont (Fondation SMP) Geometry of random maps IMS/BS 2008 8 / 17



For convenience, we consider quadrangulations with random sizes,
distributed according to Boltzmann distributions. Set Vq = #V (q)
(volume). Define a σ-finite measure

Qg({q}) = 12−#F (q) , q ∈ Qg :=
⋃
n≥0

Qg
n ,

and for λ > 0 let

Pg
λ =

Qg(V 2
q e−λVq dq)

Qg(V 2
q e−λVq)

.

One is interested in the regime where λ → 0 (forces large Vq).

G. Miermont (Fondation SMP) Geometry of random maps IMS/BS 2008 8 / 17



Main result

Endow a quadrangulation q with the weight

µq :=
1

Vq

∑
v∈V (q)

δv .

Theorem
1 Fix λ > 0. The laws on Mwt of the spaces (V (q), a−1/4dgr, µq)

under Pg
λ/a with a > 1, form a tight family of probability measures.

2 Any limiting law Sλ is supported by spaces (X , d , µ) such that
I (X , d) is a path metric space
I µ is diffuse with supp (µ) = X
I For µ⊗ µ-a.e. (x , y), there exists a unique geodesic path between x

and y.
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Discussion
1 One of the main questions is to have uniqueness of the limiting

law. A natural conjectured Brownian map has been defined by
[Marckert & Mokkadem 06, Le Gall 07] (g = 0).

2 At present, only the laws of the mutual distances between 2
[Chassaing-Schaeffer 04] or 3 [Bouttier-Guitter 08] randomly
chosen points have been obtained (g = 0).

3 A fine study of geodesics to a fixed points, implying the above
essential uniqueness result, has been recently done in the g = 0
case [Le Gall 08], by different means.

4 When g = 0 the limiting space is a.s. homeomorphic to the sphere
[Le Gall & Paulin, M.]. A similar ‘non-degeneracy’ property is
expected to hold in higher genera, and is work in progress.

5 These results are expected to hold for a wide variety of maps
other than quadrangulations, and in particular, for k -angulations
(the bipartite cases are easier), along the lines of [Marckert & M.,
Chapuy].
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1 One of the main questions is to have uniqueness of the limiting

law. A natural conjectured Brownian map has been defined by
[Marckert & Mokkadem 06, Le Gall 07] (g = 0).

2 At present, only the laws of the mutual distances between 2
[Chassaing-Schaeffer 04] or 3 [Bouttier-Guitter 08] randomly
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The Marcus-Schaeffer bijection

Let Tg
n be the set of g-trees, i.e. maps of genus g with one face,

and with n edges,
Tg

n be the set of labelled g-trees (t, l) where l : V (t) → Z is defined
up to a (global) additive constant and

|l(u)− l(v)| ≤ 1 , u, v neighbors .

Theorem
The construction to follow yields a bijection between Tn and pointed
bipartite quadrangulations of genus g with n faces.
(Induces an two-to-one mapping between rooted, pointed and rooted
labelled g-trees)
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The Marcus-Schaeffer bijection

1 Label the vertices of the
quadrangulation q according
to l(v) = dgr(v , v∗), v∗ the
distinguished vertex

2 By the bipartite nature of the
map, only two labeling
configuration are possible
around each face

3 Add red extra edges to get a
new map

4 Remove the blue edges,
yielding a map with one face,
plus the isolated vertex v∗,
which is removed.
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A multi-pointed analogue

Let Qg,k be the set of triples (q, x, D) such that:
1 q a bipartite genus-g quadrangulation
2 x = (x1, . . . , xk ) ∈ V (q)k , a sequence of k sources
3 D = (d1, . . . , dk ) ∈ Zk a sequence of delays, defined up to an

additive constant and satisfying
I |di − dj | < dgr(xi , xj) for 1 ≤ i 6= j ≤ k
I di − dj + dgr(xi , xj) ∈ 2N for 1 ≤ i , j ≤ k .

Theorem
The following construction yields a bijection between Qg,k and the set
of pairs (m, l) with m a genus-g map with k faces f1, . . . , fk and
l : V (m) → Z, defined up to an additive constant, and such that
|l(u)− l(v)| ≤ 1 for u, v neighbors.
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The multi-pointed Marcus-Schaeffer bijection
1 Label the vertices of the

quadrangulation q by
l(v) = min1≤i≤k (dgr(v , xi)+di),

2 By the bipartite nature of the
map, and the parity condition
on D, only two labeling
configuration are possible
around each face

3 Add red extra edges to get a
new map

4 Remove the blue edges,
yielding a map with k faces.
The only isolated vertices are
xi , 1 ≤ i ≤ k , remove them and
label the k resulting faces
accordingly
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The general aspect of a g = 0, two-source situation

geodesic

l(v) = dgr(v, x1) + d1 = dgr(v, x2) + d2

x1

x2

A green, labelled cycle, on
which labelled trees are
grafted.
Take a geodesic path in the
quadrangulation between the
sources x1 and x2.
This geodesic crosses the
green cycle at some x .

Note
dgr(x , x1) + dgr(x , x2) = dgr(x1, x2)

l(x) = dgr(x , x1) + d1 = dgr(x , x2) + d2 ,

giving that l(x) attains a minimal label along the green cycle.
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The continuum limit

geodesic
x1

x2
x

In the continuum limit, under
P0

λ/a with a →∞ the length of
the green loop scales as a1/2.
The labels on the loop are a
discrete random bridge, which
scales like a1/4 and has a
Brownian bridge as a limit.
The latter attains its infimum at
a unique location.

This entails that in a scaling limit (X , d , µ) of q, and for µ-a.e. x1, x2 and
a.e. D unique x such that

d(x1, x) = (d(x1, x2) + D)/2
d(x , x2) = (d(x1, x2)− D)/2
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