Geometric aspects of scaling limits of random planar maps

G. Miermont

Fondation des Sciences Mathématiques de Paris

Second Congrès Canada-France de Mathématiques, UQÀM

G. Miermont (Fondation SMP)

Definition

A planar map is a proper embedding of a connected graph into the two-dimensional sphere, considered up to orientation-preserving homeomorphisms of the sphere.

One is interested in the properties of various families of maps. Familiar ones are triangulations of the sphere, where all faces are (topological) triangles.

H 5

Definition

A planar map is a proper embedding of a connected graph into the two-dimensional sphere, considered up to orientation-preserving homeomorphisms of the sphere.

One is interested in the properties of various families of maps. Familiar ones are triangulations of the sphere, where all faces are (topological) triangles.

Definition

A planar map is a proper embedding of a connected graph into the two-dimensional sphere, considered up to orientation-preserving homeomorphisms of the sphere.

One is interested in the properties of various families of maps. Familiar ones are triangulations of the sphere, where all faces are (topological) triangles.

Definition

A planar map is a proper embedding of a connected graph into the two-dimensional sphere, considered up to orientation-preserving homeomorphisms of the sphere.

A rooted map

One is interested in the properties of various families of maps. Familiar ones are triangulations of the sphere, where all faces are (topological) triangles.

A basic enumeration result is [Tutte 1963]

Theorem

$$\#\mathbf{M}_n = \frac{2}{n+2} 3^n \operatorname{Cat}_n \sim \frac{2}{\sqrt{\pi}} 12^n n^{-5/2}$$

 \mathbf{M}_n the set of rooted planar planar maps with n edges.

Counting maps:

- Bijective recursive equations for generating functions, leads to Tutte's quadratic method
- The limiting free energy of matrix models are generating functions for planar maps [t'Hooft 1974, Brézin, Itzykson, Parisi & Zuber 1978]
- Enumerating factorizations of permutations and branching covers, representation theory [Goulden-Jackson 2008]

A basic enumeration result is [Tutte 1963]

Theorem

$$\#\mathbf{M}_n = \frac{2}{n+2} 3^n \operatorname{Cat}_n \sim \frac{2}{\sqrt{\pi}} 12^n n^{-5/2},$$

 \mathbf{M}_n the set of rooted planar planar maps with n edges.

Counting maps:

- Bijective recursive equations for generating functions, leads to Tutte's quadratic method
- The limiting free energy of matrix models are generating functions for planar maps [t'Hooft 1974, Brézin, Itzykson, Parisi & Zuber 1978]
- Enumerating factorizations of permutations and branching covers, representation theory [Goulden-Jackson 2008]

A basic enumeration result is [Tutte 1963]

Theorem

$$\#\mathbf{M}_n = \frac{2}{n+2} 3^n \operatorname{Cat}_n \sim \frac{2}{\sqrt{\pi}} 12^n n^{-5/2},$$

 \mathbf{M}_n the set of rooted planar planar maps with n edges.

Counting maps:

- Bijective recursive equations for generating functions, leads to Tutte's quadratic method
- The limiting free energy of matrix models are generating functions for planar maps [t'Hooft 1974, Brézin, Itzykson, Parisi & Zuber 1978]
- Enumerating factorizations of permutations and branching covers, representation theory [Goulden-Jackson 2008]

A basic enumeration result is [Tutte 1963]

Theorem

$$\#\mathbf{M}_n = \frac{2}{n+2} 3^n \operatorname{Cat}_n \sim \frac{2}{\sqrt{\pi}} 12^n n^{-5/2},$$

 \mathbf{M}_n the set of rooted planar planar maps with n edges.

Counting maps:

- Bijective recursive equations for generating functions, leads to Tutte's quadratic method
- The limiting free energy of matrix models are generating functions for planar maps [t'Hooft 1974, Brézin, Itzykson, Parisi & Zuber 1978]
- Enumerating factorizations of permutations and branching covers, representation theory [Goulden-Jackson 2008]

A basic enumeration result is [Tutte 1963]

Theorem

$$\#\mathbf{M}_n = \frac{2}{n+2} 3^n \operatorname{Cat}_n \sim \frac{2}{\sqrt{\pi}} 12^n n^{-5/2},$$

 \mathbf{M}_n the set of rooted planar planar maps with n edges.

Counting maps:

- Bijective recursive equations for generating functions, leads to Tutte's quadratic method
- The limiting free energy of matrix models are generating functions for planar maps [t'Hooft 1974, Brézin, Itzykson, Parisi & Zuber 1978]
- Enumerating factorizations of permutations and branching covers, representation theory [Goulden-Jackson 2008]
- Bijective approaches [Cori-Vauquelin 1981, Schaeffer 1998]

These are, at present, the most suited to understand why random maps should "approximate a random surface" (discretization for 2DQG, [Ambjørn *et al.* 90's]).

- Bijective methods allow to encode maps within tree structures with various decorations: buds, distinguished types of vertices, labels, and so on.
- Advantage: can keep track of geodesic distances to a base vertex
- Using this, [Chassaing & Schaeffer, 2004] show that the typical distance between two vertices of a *n*-faces quadrangulation is of order n^{1/4}, and exhibit limit distributions involving the ISE (Integrated Super-Brownian Excursion).

These are, at present, the most suited to understand why random maps should "approximate a random surface" (discretization for 2DQG, [Ambjørn *et al.* 90's]).

- Bijective methods allow to encode maps within tree structures with various decorations: buds, distinguished types of vertices, labels, and so on.
- Advantage: can keep track of geodesic distances to a base vertex
- Using this, [Chassaing & Schaeffer, 2004] show that the typical distance between two vertices of a *n*-faces quadrangulation is of order n^{1/4}, and exhibit limit distributions involving the ISE (Integrated Super-Brownian Excursion).

These are, at present, the most suited to understand why random maps should "approximate a random surface" (discretization for 2DQG, [Ambjørn *et al.* 90's]).

- Bijective methods allow to encode maps within tree structures with various decorations: buds, distinguished types of vertices, labels, and so on.
- Advantage: can keep track of geodesic distances to a base vertex
- Using this, [Chassaing & Schaeffer, 2004] show that the typical distance between two vertices of a *n*-faces quadrangulation is of order n^{1/4}, and exhibit limit distributions involving the ISE (Integrated Super-Brownian Excursion).

These are, at present, the most suited to understand why random maps should "approximate a random surface" (discretization for 2DQG, [Ambjørn *et al.* 90's]).

- Bijective methods allow to encode maps within tree structures with various decorations: buds, distinguished types of vertices, labels, and so on.
- Advantage: can keep track of geodesic distances to a base vertex
- Using this, [Chassaing & Schaeffer, 2004] show that the typical distance between two vertices of a *n*-faces quadrangulation is of order n^{1/4}, and exhibit limit distributions involving the ISE (Integrated Super-Brownian Excursion).

∃ ► < ∃ ►</p>

Let \mathbf{Q}_n be the set of rooted planar quadrangulations with *n* faces, and \mathbf{q}_n be a uniformly distributed element in \mathbf{Q}_n . Endow the set V_n of its vertices with the graph distance d_{gr} .

One expects

$$(V_n, n^{-1/4}d_{\mathrm{gr}}) \xrightarrow[n \to \infty]{} (S, d),$$

where (S, d) is a random metric space.

A conjectured limit space arises in [Marckert & Mokkadem 2006], [Le Gall 2007]

Let \mathbf{Q}_n be the set of rooted planar quadrangulations with *n* faces, and \mathbf{q}_n be a uniformly distributed element in \mathbf{Q}_n . Endow the set V_n of its vertices with the graph distance d_{gr} .

One expects

$$(V_n, n^{-1/4}d_{\mathrm{gr}}) \xrightarrow[n \to \infty]{} (S, d),$$

where (S, d) is a random metric space.

A conjectured limit space arises in [Marckert & Mokkadem 2006], [Le Gall 2007]

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let \mathbf{Q}_n be the set of rooted planar quadrangulations with *n* faces, and \mathbf{q}_n be a uniformly distributed element in \mathbf{Q}_n . Endow the set V_n of its vertices with the graph distance d_{gr} .

One expects

$$(V_n, n^{-1/4}d_{\mathrm{gr}}) \xrightarrow[n \to \infty]{} (S, d),$$

where (S, d) is a random metric space.

A conjectured limit space arises in [Marckert & Mokkadem 2006], [Le Gall 2007]

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let \mathbf{Q}_n be the set of rooted planar quadrangulations with *n* faces, and \mathbf{q}_n be a uniformly distributed element in \mathbf{Q}_n . Endow the set V_n of its vertices with the graph distance d_{gr} .

One expects

$$(V_n, n^{-1/4}d_{\mathrm{gr}}) \xrightarrow[n \to \infty]{} (S, d),$$

where (S, d) is a random metric space.

A conjectured limit space arises in [Marckert & Mokkadem 2006], [Le Gall 2007]

・ ロ ト ・ 同 ト ・ 目 ト ・ 目 ト

A natural framework for random metric spaces is to compare them using the Gromov-Hausdorff distance. If (X, d), (X', d') are compact metric, let

$$d_{\mathrm{GH}}(X,X') = \inf_{\phi,\phi'} \delta_H(\phi(X),\phi'(X')),$$

the infimum being taken over isometric embeddings of X, X' into a common metric space (Z, δ) and δ_H is the usual Hausdorff distance between compact subsets of Z.

Proposition

This endows the space $\mathbb M$ of isometry classes of compact spaces with a complete, separable distance.

A natural framework for random metric spaces is to compare them using the Gromov-Hausdorff distance. If (X, d), (X', d') are compact metric, let

$$d_{\mathrm{GH}}(\boldsymbol{X},\boldsymbol{X}') = \inf_{\boldsymbol{\phi},\boldsymbol{\phi}'} \delta_{\mathcal{H}}(\boldsymbol{\phi}(\boldsymbol{X}),\boldsymbol{\phi}'(\boldsymbol{X}')),$$

the infimum being taken over isometric embeddings of X, X' into a common metric space (Z, δ) and δ_H is the usual Hausdorff distance between compact subsets of Z.

Proposition

This endows the space ${\mathbb M}$ of isometry classes of compact spaces with a complete, separable distance.

A natural framework for random metric spaces is to compare them using the Gromov-Hausdorff distance. If (X, d), (X', d') are compact metric, let

$$d_{\mathrm{GH}}(\boldsymbol{X},\boldsymbol{X}') = \inf_{\phi,\phi'} \delta_{\mathcal{H}}(\phi(\boldsymbol{X}),\phi'(\boldsymbol{X}')),$$

the infimum being taken over isometric embeddings of X, X' into a common metric space (Z, δ) and δ_H is the usual Hausdorff distance between compact subsets of Z.

Proposition

This endows the space $\mathbb M$ of isometry classes of compact spaces with a complete, separable distance.

E N 4 E N

A natural framework for random metric spaces is to compare them using the Gromov-Hausdorff distance. If (X, d), (X', d') are compact metric, let

$$d_{\mathrm{GH}}(\boldsymbol{X},\boldsymbol{X}') = \inf_{\phi,\phi'} \delta_{\mathcal{H}}(\phi(\boldsymbol{X}),\phi'(\boldsymbol{X}')),$$

the infimum being taken over isometric embeddings of X, X' into a common metric space (Z, δ) and δ_H is the usual Hausdorff distance between compact subsets of Z.

Proposition

This endows the space ${\mathbb M}$ of isometry classes of compact spaces with a complete, separable distance.

BA 4 BA

A natural framework for random metric spaces is to compare them using the Gromov-Hausdorff distance. If (X, d), (X', d') are compact metric, let

$$d_{\mathrm{GH}}(\boldsymbol{X},\boldsymbol{X}') = \inf_{\phi,\phi'} \delta_{\mathcal{H}}(\phi(\boldsymbol{X}),\phi'(\boldsymbol{X}')),$$

the infimum being taken over isometric embeddings of X, X' into a common metric space (Z, δ) and δ_H is the usual Hausdorff distance between compact subsets of Z.

Proposition

This endows the space \mathbb{M} of isometry classes of compact spaces with a complete, separable distance.

- This topology yields powerful approximation methods, a bit like weak convergence for measures. For instance, every space is well-approximated by its ε -nets. d_{GH}-convergence also preserves
- However, a caveat is that topological/dimension properties are not

- This topology yields powerful approximation methods, a bit like weak convergence for measures. For instance, every space is well-approximated by its *ε*-nets. d_{GH}-convergence also preserves closed metric conditions, like being an ℝ-tree, or being a path metric space.
- However, a *caveat* is that topological/dimension properties are not preserved under d_{GH}-convergence.

- This topology yields powerful approximation methods, a bit like weak convergence for measures. For instance, every space is well-approximated by its *ε*-nets. d_{GH}-convergence also preserves closed metric conditions, like being an ℝ-tree, or being a path metric space.
- However, a *caveat* is that topological/dimension properties are not preserved under d_{GH}-convergence.

- This topology yields powerful approximation methods, a bit like weak convergence for measures. For instance, every space is well-approximated by its *ε*-nets. d_{GH}-convergence also preserves closed metric conditions, like being an ℝ-tree, or being a path metric space.
- However, a *caveat* is that topological/dimension properties are not preserved under d_{GH}-convergence.

CCF'08

7/18

Regular convergence

Whyburn (1935) gave the following criterion for 2-sphere topology preservation under Hausdorff convergence:

Proposition

Let $\mathcal{X}_n \to \mathcal{X}$ in (\mathbb{M} , d_{GH}), where \mathcal{X}_n , $n \ge 1$ is a path metric space homeomorphic to the 2-sphere. Assume that for every $\varepsilon > 0$, there

exists δ , N > 0 such that for $n \ge N$, every loop γ on \mathcal{X}_n with diameter $\le \delta$ is contractible in its ε -neighborhood. Then either \mathcal{X} is homeomorphic to the 2-sphere, or is a singleton.

Regular convergence

Whyburn (1935) gave the following criterion for 2-sphere topology preservation under Hausdorff convergence:

Proposition

Let $\mathcal{X}_n \to \mathcal{X}$ in (\mathbb{M} , d_{GH}), where \mathcal{X}_n , $n \ge 1$ is a path metric space homeomorphic to the 2-sphere. Assume that for every $\varepsilon > 0$, there

exists δ , N > 0 such that for $n \ge N$, every loop γ on \mathcal{X}_n with diameter $\le \delta$ is contractible in its ε -neighborhood. Then either \mathcal{X} is homeomorphic to the 2-sphere, or is a singleton.

Partial answers to the approximation of random surfaces by random maps have been brought recently by [Le Gall 2007], [Le Gall & Paulin, 2008]. We are going to focus on the following result.

Theorem

The family of laws of (isometry classes of) (V_n , $n^{-1/4}d_{gr}$) is relatively compact in the set of probability measures on (\mathbb{M} , d_{GH}), endowed with the weak topology.

Moreover, any limiting point for this family is supported by spaces that are homeomorphic to the 2-sphere.

Le Gall & Paulin obtain this result by reasoning in a "continuous" framework. We discuss an alternative, "discrete-world" based approach.

A B A B A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Partial answers to the approximation of random surfaces by random maps have been brought recently by [Le Gall 2007], [Le Gall & Paulin, 2008]. We are going to focus on the following result.

Theorem

The family of laws of (isometry classes of) $(V_n, n^{-1/4}d_{gr})$ is relatively compact in the set of probability measures on (\mathbb{M}, d_{GH}) , endowed with the weak topology.

Moreover, any limiting point for this family is supported by spaces that are homeomorphic to the 2-sphere.

Le Gall & Paulin obtain this result by reasoning in a "continuous" framework. We discuss an alternative, "discrete-world" based approach.

E N 4 E N

A B A B A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Partial answers to the approximation of random surfaces by random maps have been brought recently by [Le Gall 2007], [Le Gall & Paulin, 2008]. We are going to focus on the following result.

Theorem

The family of laws of (isometry classes of) $(V_n, n^{-1/4}d_{gr})$ is relatively compact in the set of probability measures on (\mathbb{M}, d_{GH}) , endowed with the weak topology. Moreover, any limiting point for this family is supported by spaces that are homeomorphic to the 2-sphere.

Le Gall & Paulin obtain this result by reasoning in a "continuous" framework. We discuss an alternative, "discrete-world" based approach.

Partial answers to the approximation of random surfaces by random maps have been brought recently by [Le Gall 2007], [Le Gall & Paulin, 2008]. We are going to focus on the following result.

Theorem

The family of laws of (isometry classes of) $(V_n, n^{-1/4}d_{gr})$ is relatively compact in the set of probability measures on (\mathbb{M}, d_{GH}) , endowed with the weak topology. Moreover, any limiting point for this family is supported by spaces that are homeomorphic to the 2-sphere.

Le Gall & Paulin obtain this result by reasoning in a "continuous" framework. We discuss an alternative, "discrete-world" based approach.

Let T_n be the set of rooted plane trees with n edges.

• \mathbb{T}_n be the set of labelled trees (\mathbf{t}, \mathbf{I}) where $\mathbf{I} : V(\mathbf{t}) \to \mathbb{Z}$ satisfies $\mathbf{I}(\text{root}) = 1$ and

 $|\mathbf{I}(u) - \mathbf{I}(v)| \le 1$, u, v neighbors.

• Last, let $\overline{\mathbb{T}}_n$ be those $(\mathbf{t}, \mathbf{l}) \in \mathbb{T}_n$ for which $\mathbf{l} \ge 1$ (well-labeled trees).

Theorem

The construction to follow yields a bijection between $\overline{\mathbb{T}}_n$ and \mathbf{Q}_n .

b 4 = b

- Let **T**_n be the set of rooted plane trees with *n* edges,
- \mathbb{T}_n be the set of labelled trees (\mathbf{t}, \mathbf{I}) where $\mathbf{I} : V(\mathbf{t}) \to \mathbb{Z}$ satisfies $\mathbf{I}(\text{root}) = 1$ and

 $|\mathbf{I}(u) - \mathbf{I}(v)| \le 1$, u, v neighbors.

• Last, let $\overline{\mathbb{T}}_n$ be those $(\mathbf{t}, \mathbf{l}) \in \mathbb{T}_n$ for which $\mathbf{l} \geq 1$ (well-labeled trees).

Theorem

The construction to follow yields a bijection between $\overline{\mathbb{T}}_n$ and \mathbf{Q}_n .

4 E 5

- Let **T**_n be the set of rooted plane trees with *n* edges,
- \mathbb{T}_n be the set of labelled trees (\mathbf{t}, \mathbf{l}) where $\mathbf{l} : V(\mathbf{t}) \to \mathbb{Z}$ satisfies $\mathbf{l}(\operatorname{root}) = 1$ and

 $|\mathbf{I}(u) - \mathbf{I}(v)| \le 1$, u, v neighbors.

• Last, let $\overline{\mathbb{T}}_n$ be those $(\mathbf{t}, \mathbf{l}) \in \mathbb{T}_n$ for which $\mathbf{l} \geq 1$ (well-labeled trees).

Theorem

The construction to follow yields a bijection between $\overline{\mathbb{T}}_n$ and \mathbf{Q}_n .

b) A = b

- Let **T**_n be the set of rooted plane trees with *n* edges,
- \mathbb{T}_n be the set of labelled trees (\mathbf{t}, \mathbf{I}) where $\mathbf{I} : V(\mathbf{t}) \to \mathbb{Z}$ satisfies $\mathbf{I}(\text{root}) = 1$ and

 $|\mathbf{I}(u) - \mathbf{I}(v)| \le 1$, u, v neighbors.

• Last, let $\overline{\mathbb{T}}_n$ be those $(\mathbf{t}, \mathbf{l}) \in \mathbb{T}_n$ for which $\mathbf{l} \geq 1$ (well-labeled trees).

Theorem

The construction to follow yields a bijection between $\overline{\mathbb{T}}_n$ and \mathbf{Q}_n .

G. Miermont (Fondation SMP)

CCF'08 11 / 18

イロト イヨト イヨト イヨト

G. Miermont (Fondation SMP)

CCF'08 11 / 18

Anderson BGIENDES MATHEMATIQUES OS PARIS

G. Miermont (Fondation SMP)

CCF'08 11 / 18

• (10) • (10)

G. Miermont (Fondation SMP)

CCF'08 11 / 18

ъ

G. Miermont (Fondation SMP)

CCF'08 11 / 18

ъ

ヘロン 人間 とくほとく

Note that the labels are geodesic distances in the resulting map

G. Miermont (Fondation SMP)

Geometry of random planar maps

CCF'08 11 / 18

A .

The Brownian tree arises as the scaling limit of many discrete random tree models, e.g. uniform random element T_n of \mathbf{T}_n :

$$(V(T_n),(2n)^{-1/2}d_{\mathrm{gr}}) \to \mathcal{T},$$

for the Gromov-Hausdorff distance.

- Build T_o as an R-tree, by grafting segments drawn from a Poisson measure on R₊ with intensity tdt recursively at a uniform location in the tree constructed at each stage.
- Then let \mathcal{T} be (the isometry class of) the metric completion of \mathcal{T}_{\circ} .
- T has a well-know construction from the Brownian excursion [Aldous 1993], [Le Gall 1993], hence its name.

モトイモト

The Brownian tree arises as the scaling limit of many discrete random tree models, e.g. uniform random element T_n of \mathbf{T}_n :

$$(V(T_n),(2n)^{-1/2}d_{\mathrm{gr}}) \to \mathcal{T},$$

for the Gromov-Hausdorff distance.

- Build T_o as an ℝ-tree, by grafting segments drawn from a Poisson measure on ℝ₊ with intensity tdt recursively at a uniform location in the tree constructed at each stage.
- Then let T be (the isometry class of) the metric completion of T_{\circ} .
- T has a well-know construction from the Brownian excursion [Aldous 1993], [Le Gall 1993], hence its name.

モトイモト

The Brownian tree arises as the scaling limit of many discrete random tree models, e.g. uniform random element T_n of \mathbf{T}_n :

$$(V(T_n),(2n)^{-1/2}d_{\mathrm{gr}}) \to \mathcal{T},$$

for the Gromov-Hausdorff distance.

- Build T_o as an ℝ-tree, by grafting segments drawn from a Poisson measure on ℝ₊ with intensity tdt recursively at a uniform location in the tree constructed at each stage.
- Then let T be (the isometry class of) the metric completion of T_{\circ} .
- T has a well-know construction from the Brownian excursion [Aldous 1993], [Le Gall 1993], hence its name.

b) A = b

The Brownian tree arises as the scaling limit of many discrete random tree models, e.g. uniform random element T_n of \mathbf{T}_n :

$$(V(T_n),(2n)^{-1/2}d_{\mathrm{gr}}) \to \mathcal{T},$$

for the Gromov-Hausdorff distance.

- Build T_o as an ℝ-tree, by grafting segments drawn from a Poisson measure on ℝ₊ with intensity tdt recursively at a uniform location in the tree constructed at each stage.
- Then let T be (the isometry class of) the metric completion of T_o.
- T has a well-know construction from the Brownian excursion [Aldous 1993], [Le Gall 1993], hence its name.

- A - TH

Pictures

tdt 0

G. Miermont (Fondation SMP)

Geometry of random planar maps

CCF'08 13 / 18

イロト イロト イヨト イヨト

Pictures

G. Miermont (Fondation SMP)

Geometry of random planar maps

E> E つへの CCF'08 13/18

Brownian labels on the Brownian tree

- Once the tree is build, one can consider a white noise supported by the tree, or, equivalently, branching Brownian paths.
- Informally, we let Z be a centered Gaussian process run on T, with covariance function

 $\operatorname{Cov}(Z_a, Z_b) = d_T(\operatorname{root}, a \wedge b),$

 $a \wedge b$ the most recent common ancestor of a, b.

Brownian labels on the Brownian tree

- Once the tree is build, one can consider a white noise supported by the tree, or, equivalently, branching Brownian paths.
- Informally, we let Z be a centered Gaussian process run on T, with covariance function

$$\operatorname{Cov}(Z_a, Z_b) = d_T(\operatorname{root}, a \wedge b),$$

 $a \wedge b$ the most recent common ancestor of a, b.

Brownian labels on the Brownian tree

- Once the tree is build, one can consider a white noise supported by the tree, or, equivalently, branching Brownian paths.
- Informally, we let Z be a centered Gaussian process run on T, with covariance function

$$\operatorname{Cov}(Z_a, Z_b) = d_{\mathcal{T}}(\operatorname{root}, a \wedge b),$$

 $a \wedge b$ the most recent common ancestor of a, b.

Convergence of labelled trees

• Let (T_n, L_n) be uniform in \mathbb{T}_n , then

$$\left(\frac{1}{(2n)^{1/2}}T_n, \left(\frac{9}{8n}\right)^{1/4}L_n\right) \longrightarrow (\mathcal{T}, Z)$$

• Let $(\overline{T}_n, \overline{L}_n)$ be uniform in $\overline{\mathbb{T}}_n$, then

$$\left(\frac{1}{(2n)^{1/2}}\overline{T}_n, \left(\frac{9}{8n}\right)^{1/4}\overline{L}_n\right) \longrightarrow (\overline{T}, \overline{Z}),$$

the Brownian tree with Brownian labels, conditioned on the labels being non-negative.

• The latter is the same tree with labels (*T*, *Z*), but re-rooted at the point *a*_{*} where *Z* attains its infimum [Le Gall & Weill, 2005].

Convergence of labelled trees

• Let (T_n, L_n) be uniform in \mathbb{T}_n , then

$$\left(\frac{1}{(2n)^{1/2}}T_n, \left(\frac{9}{8n}\right)^{1/4}L_n\right) \longrightarrow (\mathcal{T}, Z)$$

• Let $(\overline{T}_n, \overline{L}_n)$ be uniform in $\overline{\mathbb{T}}_n$, then

$$\left(\frac{1}{(2n)^{1/2}}\overline{T}_n, \left(\frac{9}{8n}\right)^{1/4}\overline{L}_n\right) \longrightarrow (\overline{T}, \overline{Z}),$$

the Brownian tree with Brownian labels, conditioned on the labels being non-negative.

• The latter is the same tree with labels (*T*, *Z*), but re-rooted at the point *a*_{*} where *Z* attains its infimum [Le Gall & Weill, 2005].

Convergence of labelled trees

• Let (T_n, L_n) be uniform in \mathbb{T}_n , then

$$\left(\frac{1}{(2n)^{1/2}}T_n, \left(\frac{9}{8n}\right)^{1/4}L_n\right) \longrightarrow (\mathcal{T}, Z)$$

• Let $(\overline{T}_n, \overline{L}_n)$ be uniform in $\overline{\mathbb{T}}_n$, then

$$\left(\frac{1}{(2n)^{1/2}}\overline{T}_n, \left(\frac{9}{8n}\right)^{1/4}\overline{L}_n\right) \longrightarrow (\overline{T}, \overline{Z}),$$

the Brownian tree with Brownian labels, conditioned on the labels being non-negative.

The latter is the same tree with labels (*T*, *Z*), but re-rooted at the point *a*_{*} where *Z* attains its infimum [Le Gall & Weill, 2005].

Identification of points in the limit

Start from the convergence of rescaled $(\overline{T}_n, \overline{L}_n)$ to $(\overline{T}, \overline{Z})$. Let $Q_n \in \mathbf{Q}_n$ be encoded by $(\overline{T}_n, \overline{L}_n)$, assume $(V(Q_n), n^{-1/4}d_{\mathrm{gr}}) \to (S, d)$. Take points $a_n, b_n \in \overline{T}_n$ "converging" to $a, b \in \overline{T}$, identify a_n, b_n with vertices of Q_n .

$$Z_a = Z_b = \inf_{[a,b]} Z_s$$

then a_n, b_n become identified in the limit $(d_{gr}(a_n, b_n) = o(n^{1/4}))$.

A theorem by Le Gall says that these are the only identifications to be made: points a_n , b_n in \overline{T}_n such that $\overline{Z}_a + \overline{Z}_b - 2 \min_{[a,b]} Z > 0$ will be far away in the $n^{1/4}$ scale.

Identification of points in the limit

Start from the convergence of rescaled $(\overline{T}_n, \overline{L}_n)$ to $(\overline{T}, \overline{Z})$. Let $Q_n \in \mathbf{Q}_n$ be encoded by $(\overline{T}_n, \overline{L}_n)$, assume $(V(Q_n), n^{-1/4}d_{gr}) \to (S, d)$. Take points $a_n, b_n \in \overline{T}_n$ "converging" to $a, b \in \overline{T}$, identify a_n, b_n with vertices of Q_n . If

$$\overline{Z}_a = \overline{Z}_b = \inf_{[a,b]} \overline{Z},$$

then a_n, b_n become identified in the limit $(d_{gr}(a_n, b_n) = o(n^{1/4}))$.

A theorem by Le Gall says that these are the only identifications to be made: points a_n , b_n in \overline{T}_n such that $\overline{Z}_a + \overline{Z}_b - 2\min_{[a,b]} Z > 0$ will be far away in the $n^{1/4}$ scale.

Identification of points in the limit

Start from the convergence of rescaled $(\overline{T}_n, \overline{L}_n)$ to $(\overline{T}, \overline{Z})$. Let $Q_n \in \mathbf{Q}_n$ be encoded by $(\overline{T}_n, \overline{L}_n)$, assume $(V(Q_n), n^{-1/4}d_{gr}) \to (S, d)$. Take points $a_n, b_n \in \overline{T}_n$ "converging" to $a, b \in \overline{T}$, identify a_n, b_n with vertices of Q_n . If

$$\overline{Z}_a = \overline{Z}_b = \inf_{[a,b]} \overline{Z},$$

then a_n, b_n become identified in the limit $(d_{gr}(a_n, b_n) = o(n^{1/4}))$.

A theorem by Le Gall says that these are the only identifications to be made: points a_n , b_n in \overline{T}_n such that $\overline{Z}_a + \overline{Z}_b - 2 \min_{[a,b]} Z > 0$ will be far away in the $n^{1/4}$ scale.

A.s. forbidden configurations in the tree with labels

Proposition

A.s. there does not exist a point a in \overline{T} (besides the root) such that $\overline{Z}_b \geq \overline{Z}_a$ for all the descendents of a.

As a consequence of this and the previous discussion, two points $a_n, b_n \in \overline{T}_n$ converging to $a, b \in \overline{T}$ with *a* an ancestor of *b* are not identified in the limit, i.e. are far away in scale $n^{1/4}$.

A.s. forbidden configurations in the tree with labels

Proposition

A.s. there does not exist a point a in \overline{T} (besides the root) such that $\overline{Z}_b \geq \overline{Z}_a$ for all the descendents of a.

As a consequence of this and the previous discussion, two points $a_n, b_n \in \overline{T}_n$ converging to $a, b \in \overline{T}$ with *a* an ancestor of *b* are not identified in the limit, i.e. are far away in scale $n^{1/4}$.

Assume the existence of $o(n^{1/4})$ -length loops γ_n in Q_n .

• Let D_n be the component separated from the root by γ_n

- The tree \overline{T}_n must enter D_n , in the limit all labels inside D_n are $\geq \ell$
- To avoid forbidden configurations, the tree must have a branch leaving D_n after entering
- This allows to find ancestors a_n, b_n far away in \overline{T}_n but at $o(n^{1/4})$ -distance in Q_n , which is excluded.

Assume the existence of $o(n^{1/4})$ -length loops γ_n in Q_n .

- Let D_n be the component separated from the root by γ_n
- The tree \overline{T}_n must enter D_n , in the limit all labels inside D_n are $\geq \ell$
 - To avoid forbidden configurations, the tree must have a branch leaving D_n after entering
- This allows to find ancestors a_n, b_n far away in \overline{T}_n but at $o(n^{1/4})$ -distance in Q_n , which is excluded.

Assume the existence of $o(n^{1/4})$ -length loops γ_n in Q_n .

- Let D_n be the component separated from the root by γ_n
- **2** The tree \overline{T}_n must enter D_n , in the limit all labels inside D_n are $\geq \ell$
- To avoid forbidden configurations, the tree must have a branch leaving D_n after entering
- This allows to find ancestors a_n, b_n far away in \overline{T}_n but at $o(n^{1/4})$ -distance in Q_n , which is excluded.

Assume the existence of $o(n^{1/4})$ -length loops γ_n in Q_n .

- Let D_n be the component separated from the root by γ_n
- **2** The tree \overline{T}_n must enter D_n , in the limit all labels inside D_n are $\geq \ell$
- To avoid forbidden configurations, the tree must have a branch leaving D_n after entering
- This allows to find ancestors a_n, b_n far away in \overline{T}_n but at $o(n^{1/4})$ -distance in Q_n , which is excluded.

