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Planar maps

Definition
A planar map is a proper embedding of a connected graph into the
two-dimensional sphere, considered up to orientation-preserving
homeomorphisms of the sphere.

One is interested in the properties
of various families of maps.
Familiar ones are triangulations of
the sphere, where all faces are
(topological) triangles.
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Enumeration results
A basic enumeration result is [Tutte 1963]

Theorem

#Mn =
2

n + 2
3n Catn ∼

2√
π

12nn−5/2 ,

Mn the set of rooted planar planar maps with n edges.

Counting maps:
Bijective recursive equations for generating functions, leads to
Tutte’s quadratic method
The limiting free energy of matrix models are generating functions
for planar maps [t’Hooft 1974, Brézin, Itzykson, Parisi & Zuber
1978]
Enumerating factorizations of permutations and branching covers,
representation theory [Goulden-Jackson 2008]
Bijective approaches [Cori-Vauquelin 1981, Schaeffer 1998]
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Enumeration by bijective methods

These are, at present, the most suited to understand why random
maps should “approximate a random surface” (discretization for
2DQG, [Ambjørn et al. 90’s]).

Bijective methods allow to encode maps within tree structures with
various decorations: buds, distinguished types of vertices, labels,
and so on.
Advantage: can keep track of geodesic distances to a base vertex
Using this, [Chassaing & Schaeffer, 2004] show that the typical
distance between two vertices of a n-faces quadrangulation is of
order n1/4, and exhibit limit distributions involving the ISE
(Integrated Super-Brownian Excursion).

G. Miermont (Fondation SMP) Geometry of random planar maps CCF’08 4 / 18



Enumeration by bijective methods

These are, at present, the most suited to understand why random
maps should “approximate a random surface” (discretization for
2DQG, [Ambjørn et al. 90’s]).

Bijective methods allow to encode maps within tree structures with
various decorations: buds, distinguished types of vertices, labels,
and so on.
Advantage: can keep track of geodesic distances to a base vertex
Using this, [Chassaing & Schaeffer, 2004] show that the typical
distance between two vertices of a n-faces quadrangulation is of
order n1/4, and exhibit limit distributions involving the ISE
(Integrated Super-Brownian Excursion).

G. Miermont (Fondation SMP) Geometry of random planar maps CCF’08 4 / 18



Enumeration by bijective methods

These are, at present, the most suited to understand why random
maps should “approximate a random surface” (discretization for
2DQG, [Ambjørn et al. 90’s]).

Bijective methods allow to encode maps within tree structures with
various decorations: buds, distinguished types of vertices, labels,
and so on.
Advantage: can keep track of geodesic distances to a base vertex
Using this, [Chassaing & Schaeffer, 2004] show that the typical
distance between two vertices of a n-faces quadrangulation is of
order n1/4, and exhibit limit distributions involving the ISE
(Integrated Super-Brownian Excursion).

G. Miermont (Fondation SMP) Geometry of random planar maps CCF’08 4 / 18



Enumeration by bijective methods

These are, at present, the most suited to understand why random
maps should “approximate a random surface” (discretization for
2DQG, [Ambjørn et al. 90’s]).

Bijective methods allow to encode maps within tree structures with
various decorations: buds, distinguished types of vertices, labels,
and so on.
Advantage: can keep track of geodesic distances to a base vertex
Using this, [Chassaing & Schaeffer, 2004] show that the typical
distance between two vertices of a n-faces quadrangulation is of
order n1/4, and exhibit limit distributions involving the ISE
(Integrated Super-Brownian Excursion).

G. Miermont (Fondation SMP) Geometry of random planar maps CCF’08 4 / 18



A guess

Let Qn be the set of rooted planar quadrangulations with n faces, and
qn be a uniformly distributed element in Qn. Endow the set Vn of its
vertices with the graph distance dgr.

One expects
(Vn, n−1/4dgr) −→n→∞

(S, d) ,

where (S, d) is a random metric space.

A conjectured limit space arises in [Marckert & Mokkadem 2006], [Le
Gall 2007]
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Topologies on metric spaces

A natural framework for random metric spaces is to compare them
using the Gromov-Hausdorff distance. If (X , d), (X ′, d ′) are compact
metric, let

dGH(X , X ′) = inf
φ,φ′

δH(φ(X ), φ′(X ′)) ,

the infimum being taken over isometric embeddings of X , X ′ into a
common metric space (Z , δ) and δH is the usual Hausdorff distance
between compact subsets of Z .

Proposition
This endows the space M of isometry classes of compact spaces with
a complete, separable distance.
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Gromov-Hausdorff convergence

This topology yields powerful approximation methods, a bit like
weak convergence for measures. For instance, every space is
well-approximated by its ε-nets. dGH-convergence also preserves
closed metric conditions, like being an R-tree, or being a path
metric space.
However, a caveat is that topological/dimension properties are not
preserved under dGH-convergence.

1
n

S1
S0
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Regular convergence

Whyburn (1935) gave the following criterion for 2-sphere topology
preservation under Hausdorff convergence:

δ

Proposition
Let Xn → X in (M, dGH), where
Xn, n ≥ 1 is a path metric space
homeomorphic to the 2-sphere.
Assume that for every ε > 0, there

exists δ, N > 0 such that for n ≥ N,
every loop γ on Xn with diameter
≤ δ is contractible in its
ε-neighborhood. Then either X is
homeomorphic to the 2-sphere, or
is a singleton.
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A sphericity theorem

Partial answers to the approximation of random surfaces by random
maps have been brought recently by [Le Gall 2007], [Le Gall & Paulin,
2008]. We are going to focus on the following result.

Theorem

The family of laws of (isometry classes of) (Vn, n−1/4dgr) is relatively
compact in the set of probability measures on (M, dGH), endowed with
the weak topology.
Moreover, any limiting point for this family is supported by spaces that
are homeomorphic to the 2-sphere.

Le Gall & Paulin obtain this result by reasoning in a “continuous”
framework. We discuss an alternative, “discrete-world” based
approach.
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Schaeffer’s bijection

Let Tn be the set of rooted plane trees with n edges,
Tn be the set of labelled trees (t, l) where l : V (t) → Z satisfies
l(root) = 1 and

|l(u)− l(v)| ≤ 1 , u, v neighbors .

Last, let Tn be those (t, l) ∈ Tn for which l ≥ 1 (well-labeled trees).

Theorem
The construction to follow yields a bijection between Tn and Qn.
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Schaeffer’s bijection

1

2

2 3

3

2

21

0

Note that the labels are geodesic distances in the resulting map
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The Brownian tree

The Brownian tree arises as the scaling limit of many discrete random
tree models, e.g. uniform random element Tn of Tn:

(V (Tn), (2n)−1/2dgr) → T ,

for the Gromov-Hausdorff distance.

Build T◦ as an R-tree, by grafting segments drawn from a Poisson
measure on R+ with intensity tdt recursively at a uniform location
in the tree constructed at each stage.
Then let T be (the isometry class of) the metric completion of T◦.
T has a well-know construction from the Brownian excursion
[Aldous 1993], [Le Gall 1993], hence its name.
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Brownian labels on the Brownian tree

Once the tree is build, one can
consider a white noise
supported by the tree, or,
equivalently, branching
Brownian paths.
Informally, we let Z be a
centered Gaussian process
run on T , with covariance
function

Cov (Za, Zb) = dT (root, a ∧ b) ,

a ∧ b the most recent common
ancestor of a, b.

G. Miermont (Fondation SMP) Geometry of random planar maps CCF’08 14 / 18



Brownian labels on the Brownian tree

Once the tree is build, one can
consider a white noise
supported by the tree, or,
equivalently, branching
Brownian paths.
Informally, we let Z be a
centered Gaussian process
run on T , with covariance
function

Cov (Za, Zb) = dT (root, a ∧ b) ,

a ∧ b the most recent common
ancestor of a, b.

G. Miermont (Fondation SMP) Geometry of random planar maps CCF’08 14 / 18



Brownian labels on the Brownian tree

Once the tree is build, one can
consider a white noise
supported by the tree, or,
equivalently, branching
Brownian paths.
Informally, we let Z be a
centered Gaussian process
run on T , with covariance
function

Cov (Za, Zb) = dT (root, a ∧ b) ,

a ∧ b the most recent common
ancestor of a, b.

root

a

b

G. Miermont (Fondation SMP) Geometry of random planar maps CCF’08 14 / 18



Convergence of labelled trees

Let (Tn, Ln) be uniform in Tn, then(
1

(2n)1/2 Tn,

(
9

8n

)1/4

Ln

)
−→ (T , Z )

Let (T n, Ln) be uniform in Tn, then(
1

(2n)1/2 T n,

(
9

8n

)1/4

Ln

)
−→ (T , Z ) ,

the Brownian tree with Brownian labels, conditioned on the labels
being non-negative.
The latter is the same tree with labels (T , Z ), but re-rooted at the
point a∗ where Z attains its infimum [Le Gall & Weill, 2005].
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)
−→ (T , Z )

Let (T n, Ln) be uniform in Tn, then(
1

(2n)1/2 T n,

(
9

8n

)1/4

Ln

)
−→ (T , Z ) ,

the Brownian tree with Brownian labels, conditioned on the labels
being non-negative.
The latter is the same tree with labels (T , Z ), but re-rooted at the
point a∗ where Z attains its infimum [Le Gall & Weill, 2005].
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Identification of points in the limit
Start from the convergence of rescaled (T n, Ln) to (T , Z ). Let Qn ∈ Qn
be encoded by (T n, Ln), assume (V (Qn), n−1/4dgr) → (S, d).
Take points an, bn ∈ T n “converging” to a, b ∈ T , identify an, bn with
vertices of Qn. If

Z a = Z b = inf
[a,b]

Z ,

then an, bn become identified in the limit (dgr(an, bn) = o(n1/4)).

a

b

[a, b] A theorem by Le Gall says that
these are the only identifications to
be made: points an, bn in T n such
that Z a + Z b − 2 min[a,b] Z > 0 will
be far away in the n1/4 scale.
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A.s. forbidden configurations in the tree with labels

Proposition

A.s. there does not exist a point a in T (besides the root) such that
Z b ≥ Z a for all the descendents of a.

≥ r

r

As a consequence of this and the
previous discussion, two points
an, bn ∈ T n converging to a, b ∈ T
with a an ancestor of b are not
identified in the limit, i.e. are far
away in scale n1/4.
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Proof of the main theorem

Assume the existence of o(n1/4)-length loops γn in Qn.

γn

Qn

1

Dn

1 Let Dn be the component
separated from the root by γn

2 The tree T n must enter Dn, in
the limit all labels inside Dn are
≥ `

3 To avoid forbidden
configurations, the tree must
have a branch leaving Dn after
entering

4 This allows to find ancestors
an, bn far away in T n but at
o(n1/4)-distance in Qn, which
is excluded.
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