
THÈSE
en vue de l’obtention du grade de Docteur, délivré par

l’ÉCOLE NORMALE SUPERIEURE DE LYON

École Doctorale N◦512
École Doctorale en Informatique et Mathématiques de Lyon

Discipline : Informatique

Soutenue publiquement le 18/12/2024, par :
par :

Hugo THIEVENAZ

Scalable Trace-based Compile-Time Memory Allocation
Compilation d’allocation mémoire par analyse de trace avec passage à l’échelle

Devant le jury composé de :

ANCOURT, Corinne Directrice de recherche Rapporteure
Mines Paris & Université PSL

CLAUSS, Philippe Professeur Rapporteur
Université de Strasbourg

CHARLES, Henri-Pierre Directeur de recherche Examinateur
CEA

JIMBOREAN, Alexandra Ramon y Cajal Researcher Examinatrice
Université de Murcia

KETTERLIN, Alain Maître de conférences Examinateur
Université de Strasbourg

TOUATI, Sid Professeur Examinateur
Université Côte d’Azur

ALIAS, Christophe Chargé de recherche HDR Directeur de thèse
Inria Lyon

KIMURA, Keiji Professeur Co-Directeur de thèse
Université de Waseda

2

Contents

1 Introduction 7
1.1 The Journey of Compilation . 7
1.2 Our Approach: the Polytrace Methodology . 8
1.3 Contributions . 9
1.4 Outline . 10

2 Background 13
2.1 Polyhedral Model . 13

2.1.1 Program Model . 14
2.1.2 Dependences . 16
2.1.3 Intermediate Representation . 18
2.1.4 Scheduling . 19
2.1.5 Tiling . 19

2.2 Array Contraction . 21
2.2.1 Array Liveness Analysis . 23
2.2.2 Successive Modulo . 25

2.3 Application to High-Level Synthesis . 26
2.3.1 High-Level Synthesis (HLS) . 26
2.3.2 Data-aware Process Networks (DPN) . 27

3 Related Work 33
3.1 Polyhedral Memory Optimization . 33

3.1.1 Memory Allocation . 33
3.1.2 Array Liveness Analysis . 35
3.1.3 Polyhedral Process Networks and Buffer Sizing 36

3.2 Scaling the Polyhedral Model . 37
3.2.1 Mitigating the Cost of ILP . 38
3.2.2 Library-Level Improvements . 38

3.3 Trace Analysis and Speculation . 39
3.3.1 Inference from Execution Traces . 39
3.3.2 Speculative Optimizations . 39

3.4 Conclusion . 40

3

4 CONTENTS

4 Canonical Array Contraction 41
4.1 Overview . 42
4.2 Localizability . 42
4.3 θ-uniformity . 47
4.4 Trace-based Array Contraction . 51

4.4.1 Overview . 51
4.4.2 Trace Selection . 52
4.4.3 Fast Trace generation . 54
4.4.4 Trace buffer allocation . 57

4.5 Experimental Validation . 58
4.5.1 Setup . 58
4.5.2 Applicability . 59
4.5.3 Scalability . 60

4.6 Conclusion . 62

5 Linear Array Contraction 65
5.1 Outline . 66
5.2 Program Model . 68
5.3 Correctness . 70
5.4 Liveness Extrapolation by Widening . 72

5.4.1 Parameter Selection . 72
5.4.2 Infer Polyhedral Constraints from Traces 73
5.4.3 Widening Algorithm . 75
5.4.4 Narrowing . 76

5.5 Linear Allocation . 77
5.5.1 Correctness . 77
5.5.2 Iterating on the Next Dimension . 80
5.5.3 Efficiency . 80
5.5.4 Algorithm . 81

5.6 Experimental Validation . 83
5.6.1 Setup . 83
5.6.2 Liveness Analysis . 83
5.6.3 Linear Array Contraction . 84
5.6.4 Detailed Results . 87

5.7 Conclusion . 91

6 Conclusion 97
6.1 Contributions . 97
6.2 Publications . 98
6.3 Perspectives . 99

6.3.1 An Improved Conflict Set Algorithm . 99
6.3.2 Global Array Space Optimization . 99
6.3.3 Other Compilation Optimizations . 99

CONTENTS 5

A Résumé du travail de thèse 101
A.1 Introduction . 101
A.2 Contraction de tableau canonique . 102
A.3 Contraction de tableau linéaire . 102

6 CONTENTS

Chapter 1

Introduction

High-Level Synthesis (HLS) [23, 11, 21, 7] consists in compiling a circuit from a high-level pro-
gram. With HLS, there is no runtime, every scheduling and allocation decision from high-level
task-grain parallelism to low-level operator pipeling must be taken at compile-time, which raises
numerous challenges. A circuit might be seen as a huge, low-level, parallel synchronous pro-
gram. Hence, precise scalable compilation techniques must be designed – in particular large scale
automatic parallelization is required. Automatic parallelization techniques developped in the
context high-performance computing (HPC), in particular those of the polyhedral model [33]
meet the right level of precision and expressivity for this purpose. However, they strongly lack
of scalability and cannot be used directly in HLS.

The broader goal of our research was to reduce the cost of doing those heavy analyses, by
experimenting with a new approach that uses program information obtained at execution time.
Our intuition was to exploit the ideas of the domain of dynamic optimizations, which trade their
overhead for on-the-fly program transformations. Therefore, the problem we decided to tackle
was defined with this in mind. What if this paradigm of execution-time optimization could be
instrumented to empower compile-time optimizations, or even subsume them?

1.1 The Journey of Compilation

One starting point for automatic program optimization is the seminal paper of Prosser in 1959
[52]. In the 1960s, data-driven models were used to perform program optimizations. Karp
et al. [38] proposed their Uniform Recurrence Equation, a foundational work on which the
polyhedral model was built. Frances Allen et al. [8] laid the basis of Data-flow analysis by
using the Control-flow Graph, an intermediate representation of a program which describes its
possible paths of execution. Kildall et al. [40] then proposed the fixpoint method to perform
global program analysis. These contributions have, at least in part, been the starting point for
automatic compile-time optimizations. This was one of the first of many static analyses, methods
that take as input the program’s source code or a transformation of it.

By nature, compilers make the interface between software and hardware and must address the
complexity of both. With the end of Dennard scaling, hardware has become more specialized and,
as a consequence, more heterogeneous. In turn, software get more resource-hungry and complex.

7

8 CHAPTER 1. INTRODUCTION

Modern-day computation heavy applications are often algorithms processing large amounts of
data, to quote a few: rendering engines, video processing tools, but also AI-related processes
such as Deep Neural Networks or Large Language Models, who all digest very large data sets.
Hence the need to develop compilation models specialized for these different domains of tasks. In
particular, the polyhedral model was specifically designed for automatic parallelization and related
program transformations on such compute-intensive HPC and embedded applications. It is one
such model focusing on programs with heavy computations, which we want to parallelize, i.e.
to partition a computation into smaller subcomputations to be run concurrently. Furthermore,
polyhedral HLS [35, 5, 66, 45, 7] has also been a research subject where optimizations require
powerful polyhedral static parallelization, for example to synthesize systolic networks [54].

There exists numerous specialized compilers whose their premise is less about which language
to compile, but rather what end goal do they target. A general comprehensive compiler like
gcc (which its history by itself demonstrates the point, from compiling C to supporting many
languages and implementing many classical optimizations) cannot be put in the same category
alongside verified compilers like CompCert, or High-Level Synthesis tools like VivadoHLS,
or frontend frameworks like LLVM for large-scale compilation. Remark that, for example, the
latter exploits the polyhedral model through Polly, which is a backend implementing several
polyhedral optimizations such as automatic parallelization and vectorization.

Finally, the optimizations a compiler can apply have also naturally grown in complexity over
time, becoming resource-hungry themselves. Array contraction [4], scheduling [31], tiling [17],
are all program transformations of the polyhedral model that are usually realised at compile-time
using costly geometrical operations, and parametric integer linear programming [29] known to be
expensive and to cause major scalability issues.

Our work is centered around improving the scalability of the polyhedral optimisations, espe-
cially its biggest offenders cited before, geometrical operations and parametric ILP. On many
suitable programs for this model, the optimizations are still very costly. The problem is there-
fore twofold: how to deal with the scalability of the analyses, while still retaining the necessary
correctness?

1.2 Our Approach: the Polytrace Methodology

Our approach is to reproduce the results of an expensive polyhedral optimization by applying
a scalable, lightweight analysis on a few execution traces and by interpolating the results, or at
least by making a conservative extrapolation.

Polyhedral optimization deals with Static Control Parts [12], which basically consists of state-
ments with affine array access functions nested inside regular loop nests. The static nature of the
control entails that execution traces only depend on the data size, not on the data themselves.
Also, polyhedral optimizations manipulate affine objects, typically polyhedra (for instance de-
pendence analysis) and affine functions (for instance scheduling). Their affine nature make them
predictable from a finite number of informations: an affine function f might be deduced from a
finite number of points (x, f(x)).

For instance, if the program is such that the memory footprint is given by some affine mapping
f of some program parameter N , we may exploit execution traces to interpolate f . From the

1.3. CONTRIBUTIONS 9

traces with N = 3 and N = 4, some trace analysis may deduce that f(3) = 2 and f(4) = 3. Then,
we could interpolate, or retro-engineer a general expression of f , f(N) = N−1 working for any N .
The hope is that trace analysis will be scalable, unlike pure static polyhedral computations. In
the same way, polyhedra might be retro-engineered. For instance, if the set of points P (1) = {0}
can be produced from the trace obtained by taking N = 1 and P (2) = {0, 1} from N = 2,
we might interpolate the general domain P (N) = {i | 0 ≤ i < N}. If the interpolation is not
possible, we may want to extrapolate an overapproximation P (N) ⊆ {i | 0 ≤ i}.

In general, precise assumption must be done on the program to ensure the correctness of
such interpolations. For instance, the footprint might perfectly be bounded by some affine form
f(N) ≤ a.N + b without being an affine form itself. Also, there might be several guesses from a
trace. For instance, the polyhedron P (N) might also be interpolated as Q(N) = {i | 0 ≤ 2i ≤
N}, which is not the same as P (N). Hence, the main challenge of our approach is to delimit
accurately the program model (assumption) and to show that, under these assumptions, the
interpolation leads to a correct result.

To summarize, our stategy to deal with the scalability problem of polyhedral methods is based
on processing execution traces of a program to apply lightweight trace-based analysis rather than
expensive polyhedral computations. There are two bets made here. First, this approach was faster
than the original polyhedral analysis process. Second, there are minimum parameter values for
which a trace produced with those values or greater would ensure the approach is correct. The
second is required, as we work on HLS, but it is also tied to the first, as parameter values directly
impact trace size and therefore analysis runtime.

In this PhD thesis, we will focus on the memory allocation problem for the purpose of HLS,
which is known to be of poor scalability. While this document focuses on the techniques we de-
vised to realise memory allocation using our trace-based approach, we believe that our Polytrace
methodology can be used for other polyhedral compiler optimizations.

1.3 Contributions

With our strategy explained, we can now present the contributions of this work. The following
are two techniques to realise the Array contraction optimization, which consists in reducing the
allocated memory of the arrays of a program as much as possible, as to minimize the program’s
memory requirement.

Canonical Array Contraction. This contribution’s scope is Data-aware Process Networks
(DPN) [7], an intermediate dataflow representation for HLS. This DPN form consists in parti-
tioning the program into sets of processes that communicate through channels. These channels
have to be allocated (and sized), as to minimize the memory consumption. The main problem is
that the number of channels to size is huge (see Table 4.9). We show how we can replace a correct
and accurate, but poorly scalable, buffer allocation algorithm with a scalable trace analysis that
retains correctness and accuracy. Compared to state-of-the-art polyhedral techniques on array
contraction, we present a new method for liveness analysis that operates on execution traces to
build the conflict sets. We present a technique to select appropriate parameters for the trace ex-
ecution, and a lightweight trace analysis. Finally, we prove that the underlying theory is correct,

10 CHAPTER 1. INTRODUCTION

and present the experimental validation of our technique which demonstrate its scalability.

Linear Array Contraction. In turn, this contribution is focused on more general programs,
and yielding linear, or affine, parametrized mappings. Similar to our canonical method, we use a
new method of building the conflict sets by realising liveness analysis on execution traces. This
time however, we reconstruct parametrized conflict sets from the instances obtained by executing
the program by extrapolation. We realise this with the following process. First, we present
an instrumentalization of the NLR algorithm [39] that takes as input the conflict information
resulting from the execution trace,and produces the corresponding polyhedral constraints. Next,
we get rid of the constraints depending on program parameters using our widening operator ∇,
which naturally induces over-approximation. It also makes the polyhedra that results from the
constraints open, meaning the solutions to these constraints can be infinite. We therefore close
those constraints by narrowing the associated polyhedra. Then, we present an adaptation of the
SMO algorithm [14], by reformulating their conflict set partitionning, and associated heuristics
i.e. correctness and efficiency constraints to operate on difference sets, which lowers the workload
of the method compared to using conflict sets. Subsequently, we yield linear contraction mappings
that solve the constraints of the difference sets. Finally, we present our experimental results that
validate the scalability of our technique, by rephrasing liveness analysis to apply on execution
traces, and by making the contraction operate on lighter objects (difference rather than conflict
sets). Those results also show that the footprint overhead resulting from the over-approximation
of the conflicts is negligible.

1.4 Outline

This manuscript will present the background notions, related work, and contributions regarding
trace-based array contraction. It is structured as follows.

Chapter 2 describes the theorical background needed for the rest of this document. It will
introduce the polyhedral model, the corresponding program representation and its associated no-
tions. Then, we describe the array contraction optimization (memory allocation), which consists
in allocating, sizing and potentially reducing the memory requirements of a program. Finally, we
present the notions relevant to High-Level Synthesis, which is the context in which the programs
considered in Chapter 4 evolve.

Chapter 3 describes the research related to our work, in terms of memory optimization tech-
niques, scalability in the polyhedral model, and trace analysis and speculative execution.

Then, Chapters 4 and 5 present our contributions, which are two techniques for memory opti-
mization that both use trace analysis.

Chapter 4 describes our canonical array contraction method, which infers mappings of con-
stant sizes for the buffers of a DPN program. We show how to analyse the execution trace of a
DPN program to infer the sizes of the buffers that will communicate data between channels.

1.4. OUTLINE 11

Chapter 5 describes our linear array contraction method, which in turns infers mappings
of parametrized sizes for the arrays of a program. We show how to apply liveness analysis
on execution traces for successive parameter values, to deduce the program’s patterns for any
parameter.

Chapter 6 concludes this document with a summary of our contributions, and discusses several
research directions spanning from our work.

12 CHAPTER 1. INTRODUCTION

Chapter 2

Background

This PhD thesis focuses on improving the scalability of memory allocation in the context of
the polyhedral model for the purpose of High-Level Synthesis. This Chapter introduces the
framework used to reason about the programs to optimize, and then presents the notions relevant
to our work. In particular, Section 2.1 presents the polyhedral model, the general framework
behind our work. Then, Section 2.2 presents memory allocation and discusses the underlying
scalability issues. Finally, Section 2.3 presents High-Level Synthesis and outlines the Data-aware
Process Networks, the intermediate representation for HLS used in Chapter 4.

2.1 Polyhedral Model

To facilitate both algorithmic and scientific reasoning, program models are used to represent the
program’s features as mathematical properties. They encompass the structure of the program
with respect to certain attributes, which usually translates to limitations about the program’s
representation.

The polyhedral model [33] is an intermediate representation of a program as a graph over
points of Zn. The class of programs that can be represented in this model, and therefore subject
to polyhedral optimizations, are named Static Control Programs [12], that are comprised of
(sequences of possibly nested) for loops where all loop bounds and conditions are affine functions
of the surrounding loop iterators and program parameters. Polyhedral model make possibles to
reason about programs at iteration-level and to derive powerful program optimisations.

A polyhedral compiler has typically the components outlined on Figure 2.1. A source program,
written in a high-level programming langage – typically C – and fitting certain restrictions
(Section 2.1.1) is abstracted away to the polyhedral intermediate representation (Section 2.1.3).
In turn, the intermediate representation may need some restructuring depending on the program
transformation we may want to apply (Section 2.1.5). Then, the polyhedral compiler reorganizes
the computation (Scheduling, Section 2.1.4) and the data (Allocation, Section 2.2). Finally, a
polyhedral code generator generates the final, optimized program. Usually, the final program
is expressed in the same programming language than the source program. In that case, the
polyhedral compiler is said to be a source-to-source compiler.

In this section, we will introduce the necessary notions for understanding the polyhedral model.

13

14 CHAPTER 2. BACKGROUND

Source Program Abstraction

IR

Scheduling
Allocation

Code GenerationTarget Program

Restructuring

Figure 2.1: Typical polyhedral compilation flow

The next sections will present the compilation problem that we tackled in this context, the array
contraction problem (Section 2.2) and the application domain, the compilation of circuits, usually
refered to as High-Level Synthesis (Section 2.3).

2.1.1 Program Model

The polyhedral model focuses on static control programs, essentially for loop kernels manipulat-
ing arrays with affine indices:

Definition 2.1.1 (Static control program) A program part is static control (or polyhedral)
if and only if:

• It only contains assignment statements, for loops and conditionals.

• Loop bounds, conditions and array indices are affine functions of program parameters N⃗ ,
and if nested, surrounding loop counters.

Most of linear algebra kernels and signal processing applications fit in this category. Program
parameters N⃗ are usually input and output array size. Typically, dimensions of matrices. The
sequence of operations executed by a static control program (its execution trace) depends only
on N⃗ , not on the input values. Also, each operation is uniquely identified as an iteration instance
of a statement S:

Definition 2.1.2 (Statement instance, iteration vector and domain) Each execution of
a statement S, nested in a n-depth loop, namely an instance or operation, can be represented by
⟨S, i⃗⟩ where i⃗ is a n-dimensional iteration vector of the surrounding loop indices. Its iteration
domain DS, the set of all possible values for the iteration vector of S, forms a graph over points
of Zn.

2.1. POLYHEDRAL MODEL 15

Motivating example Figure 2.2 depicts the Blur filter, the motivating example we will use
throughout this thesis to illustrate our contributions. It is essentially a 2D producer/consumer
with a phase shifting on the i loop, the producer iterations (writing blurx) being represented with
grey points and the consuming iterations (reading blurx) being represented with black points.
Red arrow depicts direct dependences held by the array blurx. Three arrays are operated on:
the in array holds the numerical values describing an input image, blurx hosts the blurring
intermediate computations, and out contains the resulting blurred image. More precisely, the
computation has two phases.

• Phase 1. From i = 0 to i = 1, the writes into blurx will contain the blurring of the input
array in alongside the vertical axis j.

• Phase 2. For i ≥ 2, the vertical blurring of in continues. However, since the values of
blurx from i = 0 to i = 2 get available, the blurring along i begins in parallel, by means
of summing the values of blurx for i− 2 to i into output array out.

1 for(i=0; i<N; i++)
2 for(j=0; j<N; j++) {
3 P: blurx[i][j] = in[i][j] +
4 in[i][j+1] + in[i][j+2];
5 if(i>=2)
6 C: out[i][j] = blurx[i-2][j] +
7 blurx[i-1][j] + blurx[i][j];
8 }

i

j

0

1

2

3

4

0 1 2 3 4

(a) Kernel (b) Polyhedral
representation

Figure 2.2: Blur filter

The instances of the same statement ⟨C, i⃗⟩ are executed in the lexicographic order of the
iterations i⃗: ⟨C, i⃗⟩ ≺ ⟨C, j⃗⟩ whenever i⃗≪ j⃗:

Definition 2.1.3 (Lexicographic order) u⃗ is lexicographically less than v⃗, u⃗ ≪ v⃗ if there
exists an index k such that:

• ∀i < k, u⃗i = v⃗i, and

• u⃗k < v⃗k.

When considering instances of different statements ⟨S, i⃗⟩ and ⟨T, j⃗⟩, we need to restrict the
comparison to the iterators of the common loops of S and T . We define cropST (⃗i) to be the
parts of i⃗ pertaining to those common loops:

16 CHAPTER 2. BACKGROUND

Definition 2.1.4 (sequential execution order) ⟨S, i⃗⟩ is executed before ⟨T, j⃗⟩ in the sequen-
tial execution order, ⟨S, i⃗⟩ ≺ ⟨T, j⃗⟩, iff:

• S = T and i⃗≪ j⃗

• S ̸= T and:

– Either cropST (⃗i)≪ cropST (⃗j)

– Either cropST (⃗i) = cropST (⃗j) and S is before T in the textual order of the program

Example (cont’d) Consider ⟨P, i, j⟩ and ⟨C, i′, j′⟩. P and C share the loops i and j, hence
cropPC(i, j) = (i, j). Then ⟨P, i, j⟩ ≺ ⟨C, i′, j′⟩ iff (i, j) ≪ (i′, j′) or (i, j) = (i′, j′), since P is
before C in the textual order of the program. The full predicate translates to i < i′ or (i = i′

and j < j′) or (i = i′ and j = j′). Note that each disjunction corresponds to a loop depth. This
will make possible to structure dependences.

2.1.2 Dependences

Polyhedral compilers may reorganize the computation to reach various goals. However, this
restructuration is constrained by data dependences, that impose a minimal execution order to
follow:

Definition 2.1.5 (Data Dependence) There is a dependence from ⟨S, i⃗⟩ to ⟨T, j⃗⟩ iff:

• ⟨S, i⃗⟩ is executed before ⟨T, j⃗⟩ in the sequential order: ⟨S, i⃗⟩ ≺ ⟨T, j⃗⟩.

• Both operations access the same data (e.g. array cell):

– a write to a read generates a flow dependence: ⟨S, i⃗⟩ →flow ⟨T, j⃗⟩
– a read to a write generates an anti dependence: ⟨S, i⃗⟩ →anti ⟨T, j⃗⟩
– a write to a write generates an output dependence: ⟨S, i⃗⟩ →output ⟨T, j⃗⟩
– a read to a read generates an input dependence: ⟨S, i⃗⟩ →input ⟨T, j⃗⟩

Usually, input dependences are ignored as they do not constrain the execution order. However
they could be useful in the circuit synthesis context, when a certain input order is expected, for
instance when the data are read from a FIFO. The whole dependence relation is usually denoted
by →=→flow ∪ →anti ∪ →output. Note that anti and output dependences express resource
conflicts, while flow dependences express the computation itself. Anti and output dependences
might be removed by turning the program into dynamic single assignment form [61] (each array
cell is written once at most): since there is only one write per array cell, no output dependence
may remain. Also, an anti dependence r →anti w implies the read r to written before by some
operation w0 – at least as an input – which would entails two writes w0 and w of the same cell,
and then contradicts the dynamic single assignment property.

The dependences might represented by a Polyhedral Reduced Dependence Graph (PRDG):

2.1. POLYHEDRAL MODEL 17

Definition 2.1.6 (PRDG) A Polyhedral Reduced Dependence Graph (PRDG) is a graph whose
nodes are program statements, and whose edges represent data dependences between statement
instances.

S
∆ST−−−→ T ⇐⇒ ∆ST := {(⃗i, j⃗) | ⟨S, i⃗⟩ → ⟨T, j⃗⟩} ≠ ∅

∆ST is a dependence polyhedron. It might be labeled by the type of dependence:

∆ℓ
ST = {(⃗i, j⃗) | ⟨S, i⃗⟩ →ℓ ⟨T, j⃗⟩} for ℓ ∈ {flow, anti, output}

Example (cont’d) Note that the program is in dynamic single-assignment form: each cell is
written once at most. Hence, there are only flow dependences. Figure 2.2.(b) depicts some flow
dependences instances (red arrows) between instances of P and C. Let us write the conditions
for having a dependence ⟨P, i, j⟩ →flow ⟨C, i, j⟩:

• ⟨P, i, j⟩ is executed before ⟨C, i, j⟩: (i, j)≪ (i′, j′) or (i, j) = (i′, j′)

• Both operations access the same array cell:

– From the write blurx[i][j] to the read blurx[i′][j′]: (i, j) = (i′, j′)

– From the write blurx[i][j] to the read blurx[i′ − 1][j′]: (i, j) = (i′ − 1, j′)

– From the write blurx[i][j] to the read blurx[i′ − 2][j′]: (i, j) = (i′ − 2, j′)

This way:

∆PC =

(i, j, i′, j′) | (i, j) ∈ DP and (i′, j′) ∈ DC and
((i, j)≪ (i′, j′) or (i, j) = (i′, j′)) and

(i, j) = (i′, j′) or
(i, j) = (i′ − 1, j′) or
(i, j) = (i′ − 2, j′)

(2.1)

In turn, the lexicographic order is an exclusive disjunction (i, j)≪ (i′, j′) iff i < i′ or (i = i′ and
j < j′), each term of the disjunction corresponding to a loop depth. Usually, we turn Eq 2.1
to a disjunctive normal form and we consider each conjunction term as a separate dependence
polyhedron – hence a separate edge of the PRDG. Indeed, conjunction of affine constraints are
more suitable to perform polyhedral operations. We end up with one dependence polyhedron per
depth d and per read r, ∆d,r

PC . For instance for the read 3 blurx[i′ − 2][j′] at depth 1, we have:

∆1,3
PC = {(i, j, i′, j′) | 0 ≤ i < i′ < N and i = i′ − 2 and j = j′}

The final PRDG will then have 9 edges (3 ordering terms × 3 reads).

Direct dependences A dependence w →flow r means that w is executed before r and that
w write a cell, later accessed by r. However, we may want to retrieve the last write w0 which
produces the value read by r. The dependence w0 →flow r is called a direct dependence, or
sometimes a producer/consumer dependence. On the Blur filter example 2.2, the dependence
⟨P, i − 2, j⟩ →flow ⟨C, i, j⟩ is a direct dependence relating the production of blurx[i][j] to its
consumption as blurx[i′ − 2][j′].

18 CHAPTER 2. BACKGROUND

The computation of direct dependences is slightly more complex than the PRDG, as it re-
quires to retrieve the last write w0 executed before r [30]:

w0 = max
≺
{w | w →flow r}

On the blur filter example, for the target read blurx[i-2][j] of ⟨C, i, j⟩, we would have:

w0(i, j) = max≺{⟨P, i′, j′⟩ | ⟨P, i′, j′⟩ →flow ⟨C, i, j⟩}
=

{
⟨P, i− 2, j⟩ if 0 ≤ i− 2, j < N
⊥ otherwise

In general, a direct dependence can always be written as hC (⃗i) →flow ⟨C, i⃗⟩, where h is a
piecewise affine mapping called the source function or the dependence function. The restriction
of hC to the sources from statement P is denoted by hPC . It is such that

hPC (⃗i) = j⃗ ⇐⇒ hC (⃗i) = ⟨P, j⃗⟩

Note that hPC yields a source iteration.
Direct dependences are very useful in automatic parallelization, for instance to place syn-

chronizations [9]. In High-Level Synthesis, they might be used as a multiplexers [62, 7].

2.1.3 Intermediate Representation

A common intermediate representation on polyhedral compilers is the dynamic single assignment
form [30]:

Definition 2.1.7 (Dynamic single assignment form, DSA) A program is in dynamic sin-
gle assignment form if and only if each data location is written once at most during any program
execution.

Dynamic single assignement is more powerful than Static Single Assignment form (SSA) [24],
which only require to write different data locations in the program text. With dynamic single
assignment form, only direct dependences remain. In a way, it is a dataflow representation of the
program which abstracts away data organization and keeps only the useful dataflow information
about the computation.

As for SSA, the program is rephrased to ensure the DSA property: each operation ⟨T, i⃗⟩
will write an array T [⃗i]. As for SSA, the main difficulty is to rephrase the reads in terms of
the new locations T [⃗i]. The solution proposed in [30] is to create for each read r its respective
dependence function hT,r, and substitute in hT,r (⃗i) each ⟨S, u(⃗i)⟩ by the data location S[u(⃗i)].
In a way, dependence functions plays for DSA the same role as ϕ-functions for SSA: encoding
the source statement of the read.

Example (cont’d) The Blur filter is already in DSA form. Using the algorithm [30], we would
obtain the following code:

2.1. POLYHEDRAL MODEL 19

1

2 for(i=0; i<N; i++)
3 for(j=0; j<N; j++) {
4 P: P[i][j] = in[i][j] + in[i][j+1] + in[i][j+2];
5 if(i>=2)
6 C: C[i][j] = P[i-2][j] + P[i-1][j] + P[i][j];
7 }

Listing 2.1: blur filter C code

Once the program is in DSA form, a typical polyhedral compiler would reorganize the computa-
tions of a statement S using a scheduling function θS (Section 2.1.4), and the data using a data
mapping function σS (Section 2.2), and that for all statements. This PhD thesis focuses on the
computation of such data mapping functions.

2.1.4 Scheduling

In the polyhedral model, program transformations are specified using a scheduling function:

Definition 2.1.8 (Schedule) A schedule defines an execution order by assigning to each op-
eration ⟨S, i⃗⟩ a timestamp θS (⃗i). Affine schedules rely on affine mappings of the form θS (⃗i) =
AS i⃗ + BN⃗ + c⃗, where N⃗ are the program parameters. The timestamps are ordered with the
lexicographic order ≪.

A schedule θ induces an execution order ≺θ such that ⟨S, i⃗⟩ ≺θ ⟨T, j⃗⟩ if and only if θS (⃗i)≪
θT (⃗j). In a way, a schedule maps each operation to a common set of iterations (the set of
timestamps), that are then executed according to the lexicographic ordering. When the schedule
maps two operations at the same time, they are prescribed to be executed in parallel.

A schedule is correct if the dependences are satisfied: whenever ⟨S, i⃗⟩ → ⟨T, j⃗⟩, we must
ensure that ⟨S, i⃗⟩ is executed before ⟨T, j⃗⟩: θS (⃗i)≪ θT (⃗j).

The affine shape of the schedule makes it possible to express many classical loop transfor-
mations (loop fusion, loop distribution, loop skewing). Trickier transformations may require to
reorganize the program statements (loop unroll) or the iteration domain (loop tiling), as we will
describe in the next section.

2.1.5 Tiling

A loop tiling is a partition of iteration domains into atomic tiles. Atomicity means that a tile
might be abstracted in a function: once the tile inputs are available, the tile computation can
be completed without requiring further synchronization. Loop tiling is often used in automatic
parallelization to distribute a computation on parallel units, while tuning the granularity level
by adjusting the tile size. In a tile, the dependence distance (number of iterations between the
source and the target of a dependence) is bounded by the tile volume. Hence, loop tiling also
tends to improve data locality.

Rectangular loop tiling associates, to each iteration i⃗ ∈ DS of a statement S, a tile tileS (⃗i) =
i⃗/⃗b, where b⃗ ∈ (N \ {0})n is the tile size along each dimension (assuming DS might be plunged
into a space of dimension n), and / is a component-wise euclidian division. For each statement

20 CHAPTER 2. BACKGROUND

S, the tiled iteration domain is D̂S = {(T⃗ , i⃗) | i⃗ ∈ DS , T⃗ = tileS (⃗i)}. Usually, T⃗ are referred to as
tile counters or tile coordinates. We can then specify a schedule which prescribes an execution per
tile, typically θS(T⃗ , i⃗) = (T⃗ , φ(⃗i)) for any (T⃗ , i⃗) ∈ D̂S . If T⃗ = (T1, . . . , Tn), the set of iterations
obtained by setting the value of T1, . . . , Tn−1 is called a tile band.

Affine loop tiling [43, 44, 15] dives the iteration domainDS of each statement S into a common
iteration space through an affine mapping ϕS before applying rectangular loop tiling: tileS (⃗i) =
ϕS (⃗i)/⃗b. Affine loop tiling might be required when rectangular loop tiling does not satisfy the
atomicity condition. Often, the components ϕkS of ϕS are referred to as tiling hyperplanes.

A sufficient condition for tiling correctness is to enforce forward dependences between tiles:
whenever ⟨S, i⃗⟩ → ⟨T, j⃗⟩, tileS (⃗i) ≤ tileT (⃗j), where ≤ is componentwise – this rephrases to
ϕS (⃗i) ≤ ϕT (⃗j) whenever ⟨S, i⃗⟩ → ⟨T, j⃗⟩. This way, there will never be interdependence between
tiles, which guarantees the atomicity.

Example (cont’d) The blur filter might be tiled with ϕS(i, j) = ϕT (i, j) = (j, i). Figure 2.3
depicts the tiling obtained with tile size b1 = b2 = 4. For each dependence s → t, ϕ(s) ≤ ϕ(t)
is verified, hence the tiling is correct. Also, the dependence are all held by the last hyperplane
(i). The first hyperplane (j) does not hold any dependence, hence it splits the iteration domain
into fully independent parts – no communication nor synchronization are required. Thick line
delimits tile bands. The first tile band contains the tiles T⃗ = (0, 0) and (0, 1), the second tile
band contains the tiles T⃗ = (1, 0) and (1, 1).

i

j

0

1

2

3

4

0 1 2 3 4

Figure 2.3: Blur filter, tiling

Full tiles A tile is full with respect to a statement S if all its vertices belong to the iteration
domain of S, DS .

Recall that a tiling is defined into the common iteration space targeted by each ϕS , as a
rectangular tiling. On that common iteration space, the origin vertice of tile T⃗ is M̂0(T⃗) = b⃗× T⃗ ,
where × is the componentwise multiplication. Then, the remaining vertices k = 1, . . . , n are
obtained as M̂k(T⃗) = M̂0(T⃗) + (⃗b − 1⃗) × e⃗k where − is the componentwise subtraction, 1⃗ is
a vector of 1 and E = {e⃗1, . . . , e⃗n} is the canonical basis in dimension n (e⃗1 = (1, 0, . . . , 0),

2.2. ARRAY CONTRACTION 21

e⃗2 = (0, 1, 0, . . . , 0), and so on). The corresponding vertice in the original iteration domain of S
is Mk(T⃗) = ϕ−1

S (M̂k(T⃗)). Finally the predicate to check whether or not a tile T⃗ is full is:

fulltileS(T⃗) =
n∧

k=0

Mk(T⃗) ∈ DS

Usually, it is better to precompute the domain of full tiles w.r.t. a statement S:

FS = {T⃗ | fulltileS(T⃗) ∧ ∃⃗i : (T⃗ , i⃗) ∈ D̂S}

2.2 Array Contraction

Once the computations specified in the polyhedral intermediate representation have been reor-
ganized, the data must be compiled. This means, finding an allocation function σA for each array
A such that each virtual data location (single assignment array cell) ℓ of the intermediate repre-
sentation is mapped to an actual physical data location σ(ℓ). Many approaches exists, essentially
classified into inter-array allocation and intra-array allocation. Inter-array allocation [14] maps
any array cell A[⃗i] to a location Global[σA(⃗i)] in a common data space shared by all the data,
similarly to a scheduling function for the timestamps. Intra-array allocation maps each array cell
A[⃗i] into a dedicated private space Ac[σA(⃗i)]. For instance, this applies to buffer allocation in
the context of circuit synthesis, which is the main motivation of this PhD thesis. Hence, we will
focus on intra array allocation. In the following, array allocation means intra array allocation.

Example (cont’d) On the Blur filter example, with the canonical schedule θP (i, j) = (i, j, 1)
and θC(i, j) = (i, j, 2), a valid array allocation (also named array contraction) could be:

1 for(i=0; i<N; i++)
2 for(j=0; j<N; j++) {
3 P: Pc[i%3][j] = in[i][j] + in[i][j+1] + in[i][j+2];
4 if(i>=2)
5 C: Cc[i][j] = Pc[(i-2) %3][j] + Pc[(i-1) %3][j] + Pc[i%3][j];
6 }

This problem is analogous to register allocation in a compiler back-end. In particular, the allo-
cation function depends on the liveness of array cells, which, in turn, depends on the scheduling
function.

Array liveness On a program in DSA form, an array cell A[⃗i] is defined once (by an operation
WA(⃗i)) and is alive until its last read RA(⃗i). In particular, there exists a direct dependence
WA(⃗i)→flow RA(⃗i). The time interval [θ(WA(⃗i)), θ(RA(⃗i))[is said to be the life interval of A[⃗i].
As for register allocation, the last read is excluded to ensure that intervals [tw, tr[and [t′w, t

′
r[do

not overlap when tr = t′w, since a write is executed after a read on a timestamp.

Definition 2.2.1 (Conflict relation) Array cells A[⃗i] and A[⃗j] are conflicting, noted as A[⃗i] ▷◁
A[⃗j], if and only if their life intervals intersect. In other words, A[⃗i] ▷◁ A[⃗j] if they are alive on
the same execution date.

22 CHAPTER 2. BACKGROUND

Note that conflict relations depend on the organization of life intervals, which in turn depends
on the schedule θ. The conflict relation is symmetric and reflexive (by convention). The following
is an alternative representation of conflicts, that expresses the vectors relating two conficting array
cells.

Definition 2.2.2 (Difference set) The difference set (or ∆-set) for A is:

∆A = {⃗i− j⃗ | A[⃗i] ▷◁ A[⃗j]}

Pursuing the analogy with scheduling, conflict relations are to dependence relations what differ-
ence sets are to dependence vectors. Since the conflict relation is symmetric, i⃗− j⃗ ∈ ∆A if and
only if −(⃗i− j⃗) = j⃗ − i⃗ ∈ ∆A. Hence the difference set is 0-symmetric.

i

j

0

1

2

3

N − 1 = 4

0 1 2 3 4

∆i

∆j

−4

−3

−2

−1

0

1

2

3

N − 1

−2 −1 0 1 2

(a) Conflict relation ▷◁ (b) Conflict polyhedron ∆blurx

Figure 2.4: Blur filter, liveness analysis

Example (cont’d) Figure 2.4 depicts the liveness of the array blurx. Red arrows depict
direct dependences through blurx, while green edges illustrate the conflict relation. Note that
the conflict relation links written array cells = (data), not iterations (computations). This
representation of the conflict relation is possible only because the program satisfies the dynamic
single assignment property. For sake of clarity, we do not draw all the conflicts edges. Note
that extremal conflict edges also occurs starting from ⟨P, 2, 4⟩ to any ⟨P, i, j⟩, 3 ≤ i ≤ 4 and
0 ≤ j ≤ 3. (b) represents the conflict polyhedron, gathering all the vectors corresponding two
conflicting blurx cells.

Correctness An array allocation σ for A is correct if and only if it satisfies the conflict relation:

A[⃗i] ▷◁ A[⃗j], i⃗ ̸= j⃗ =⇒ σ(⃗i) ̸= σ(⃗j) (2.2)

2.2. ARRAY CONTRACTION 23

For intra-array allocation, the litterature focuses on linear mappings σ(⃗i) = A⃗i mod b⃗, where
mod is the componentwise modulo function. This includes the particular case of canonical
mappings σ(⃗i) = i⃗ mod b⃗ (where A is the identity matrix). The mapping footprint, size of the
compiled target array Ac, is simply the product of the modulo.

Example (cont’d) For blurx, a correct canonical mapping is σ(i, j) = (i mod 3, j mod N),
while a correct linear mapping may be σ′(i, j) = −i + 2j mod 2N + 1 – this will be detailed in
Chapter 5. Note that σ has a footprint of 3N while σ′ has a smaller footprint 2N + 1. As a
rule of thumb, linear mappings usually improve the footprint by a constant factor compared to
canonical mappings (i.e., one dimension can be bounded by a constant rather than a parameter).

2.2.1 Array Liveness Analysis

We now discuss array liveness analysis on dynamic single assignment programs. This is a critical
step, which does not scale well. The result of the analysis itself is a potentially large union of
polyhedra, which hinders the scalability of the subsequent array contraction.

Two array cells S [⃗i] and S [⃗j] are conflicting if and only if their life intervals [θ(WS (⃗i)), θ(RS (⃗i))[
and [θ(WS (⃗j)), θ(RS (⃗j))[overlap. This translates to the following ordering constraints:

(θ(WS (⃗i))≪ θ(RS (⃗j))) ∧ (θ(WS (⃗j))≪ θ(RS (⃗i))) (2.3)

For each write WS (⃗i), the last read RS (⃗i) might be precomputed with the same algorithm as for
computing direct dependences. However, when the program is tiled, this translates to a piece-
wise affine mapping with many pieces, as all the tiling corner cases must be considered. This
incurs to a dramatically heavy overhead. Instead, we observe that WS (⃗i)→flow RS (⃗i) is a direct
dependence. Hence, we enumerate all the direct dependence couples ⟨S, hST (⃗i)⟩ →flow ⟨T, i⃗⟩ and
⟨S, hSU (⃗j)⟩ →flow ⟨U, j⃗⟩ through an array cell A[⃗i] (resp. A[⃗j]) and we verify the constraints:

θS(hST (⃗i))≪ θU (⃗j) and θS(hSU (⃗j))≪ θT (⃗i) (2.4)

This is summarized on Algorithm 1. Note that the lexicographic ordering in Eq 2.4 must be
mutually distributed to obtain a Disjunctive Normal Form. In other words, all the combinations
of depth for both ≪ must be considered. This is inefficient. If h is the number of dependence
edges holding a value of S, and d is the maximum depth of a timestamp, then the number of
emptyness testings (line 5) and the number of rational projections (line 7) is in O(h2d2). Usually,
h is in O(R), with R the number of read locations of S in the program. With p the complexity
of a rational projection and e the complexity of the emptiness testing, the overall complexity
is in O(R2d2(e + p)). On tiled programs, d2, as well as e and p, tend to be higher since the
dimensionality of the iteration domains double. This causes major scalability issues when there
are many arrays to allocate. This typically happens in the HLS context where many buffers need
to be allocated.

Example (cont’d) Consider the array Pc. We have 3 direct dependence pieces:

1. hPC(i, j) = ⟨P, i− 2, j⟩ when 0 ≤ i− 2, j < N, i < N

24 CHAPTER 2. BACKGROUND

Algorithm 1: ArrayLivenessAnalysisDSA
Data: Array S, Schedule θ, direct dependence function h
Result: Conflict relation ▷◁, Difference Set ∆S

1 begin
2 foreach direct dependence piece hST do
3 foreach direct dependence piece hSU do

4 ▷◁ℓ :=

{
(⃗i, j⃗) | θS(hST (⃗i))≪ θU (⃗j), θS(hSU (⃗j))≪ θT (⃗i),

i⃗ ∈ domhST , j⃗ ∈ domhSU

}

5 if ▷◁ℓ ̸= ∅ then
6 ▷◁ := ▷◁ ∪ ▷◁ℓ
7 ∆S := ∆S ∪ project({(δ⃗, i⃗, j⃗) | δ⃗ = i⃗− j⃗, i⃗ ▷◁ j⃗}, δ⃗)
8 end
9 end

10 end
11 return ▷◁,∆S

12 end

2. hPC(i, j) = ⟨P, i− 1, j⟩ when 0 ≤ i− 1, j < N, i < N

3. hPC(i, j) = ⟨P, i, j⟩ when 0 ≤ i, j < N

The scheduling function is θP (i, j) = (i, j, 0) and θC(i, j) = (i, j, 1). Then, we consider all the 9
pairs of pieces (h, h′). For instance, piece 1 and 2 leads to the following constraints:

θP (i− 2, j)≪ θC(i
′, j′), θP (i

′ − 1, j′)≪ θC(i, j)

Which correspond to :

i− 2 < i′ or
i− 2 = i′, j < j′ or
i− 2 = i′, j = j′, 0 < 1

 ,

i− 1 < i′ or
i− 1 = i′, j < j′ or
i− 1 = i′, j = j′, 0 < 1

Hence for piece 1 and 2, 9 pairs must be considered. For each combination, we apply the
emptiness testing, and when it is non-empty, we compute the difference set with a projection
on δ⃗ = (i, j)− (i′, j′). All in all, we experimentally count 81 iterations and 39 non-empty cases
leading to a projection. Note that for tiled programs, the schedule dimension is doubled which
makes the complexity even worse.

A direct attempt of optimization would be to consider only half of the combinations, as (h, h′)
and (h′, h) should lead to symmetric difference sets, and then compute the symmetric closure of
the difference set. Experimentally, there is no improvement since the symmetric closure turns
out to use up all the saved time.

2.2. ARRAY CONTRACTION 25

2.2.2 Successive Modulo

We now describe the successive modulo algorithm [42] to compute canonical allocations σa(⃗i) =
i⃗ mod b⃗. If δ⃗ ∈ ∆a \ {⃗0}, then some a[⃗i] and a[⃗i + δ⃗] are conflicting. Hence a correct allocation
σa should satisfy: σa(⃗i) ̸= σa(⃗i+ δ⃗):

i⃗ mod b⃗ ̸= (⃗i+ δ⃗) mod b⃗

If a is monodimensional, this translates to: i⃗1 mod b⃗1 ̸= (⃗i1 + δ⃗1) mod b⃗1, where i⃗1 denotes
the first coordinate of i⃗. A sufficient condition to enforce this constraint is ∀ δ⃗1 ∈ ∆a, b⃗1 > δ⃗1.
The smallest one being b⃗1 = 1 +max∆a.

If a is multidimensional, the b⃗i might be computed incrementally from b⃗1 to b⃗n. With the
same reasoning, we have b⃗1 = 1 + max{δ⃗1 | δ⃗ ∈ ∆a}. This solves all the conflicts a[⃗i] ▷◁ a[⃗j]
where i⃗1 ̸= j⃗1, but lefts unsolved the conflicts with i⃗1 = j⃗1 (or δ⃗1 = i⃗1− j⃗1 = 0). Hence, we focus
on unsolved conflicts to compute the remaining b⃗k: ∆a := ∆a ∩ {δ⃗1 = 0}. This is summarized
on Algorithm 2.

Algorithm 2: SuccessiveModulo
Data: Difference set ∆a, Array dimension n
Result: Allocation σ : i⃗ 7→ i⃗ mod b⃗

1 begin
2 for k := 1 to n do
3 b⃗k := 1 + max{δ⃗k | δ⃗ ∈ ∆a}
4 ∆a := ∆a ∩ {δ⃗ | δ⃗k = 0}
5 end
6 return σ : i⃗ 7→ i⃗ mod b⃗

7 end

Example (cont’d) On ∆blurx depicted on 2.4 (b), we have b⃗1 = 1 + max{δi | (δi, δj) ∈
∆blurx} = 1 + 2 = 3. We then focus on unsolved conflicts: ∆a := ∆a ∩ {(δi, δj) | δi = 0}, which
gives {(δi, δj) | δi = 0,−N < δj < N}. Then, b⃗2 = 1 + max{δj | δi = 0,−N < δj < N} = N .
Finally, we get: σblurx(i, j) = (i mod 3, j mod N).

Scalability In general, ∆a is a union of convex polyhedra, ∆a =
⋃n

ℓ=1∆a,ℓ. Hence, the maxi-
mum of line 3 is computed as bk(N⃗) = max{bk,1(N⃗), . . . , bk,n(N⃗)} where bk,ℓ(N⃗) = max{δ⃗k | δ⃗ ∈
∆a,ℓ}. Since ∆a,ℓ is parametrized by the program parameters N⃗ and the modulo is expected to
be an integer, each bk,ℓ(N⃗) is computed with parametric integer linear programming [29]. The
result is a piece-wise affine mapping depending on program parameters N⃗ :

bk,ℓ(N⃗) =

{
N⃗ ∈ D1

k,ℓ : b
1
k,ℓ(N⃗)

. . .

26 CHAPTER 2. BACKGROUND

Then, the global maximum is obtained by combining the piecewise affine mappings bk,ℓ in the
same way as array dataflow analysis [30]: each n-uple of pieces from bk,1(N⃗) . . . bk,n(N⃗) is con-
sidered. Say that Di1

k,1 : b
i1
k,1(N⃗) from bk,1(N⃗), ..., Din

k,n : bink,n(N⃗) from bk,n(N⃗). For each feasible
n-uplet (Di1

k,1 ∩ . . . ∩Din
k,n ̸= ∅) we derive the max{bi1k,1(N⃗), . . . , bink,n(N⃗)}. This is very expensive

and, with the potentially large number n of ∆a,ℓ, leads to the non-scalability of the algorithm.

Relaxed successive modulo When all the parameters are bounded by integer constants
N⃗k ∈ [ℓk, uk], the algorithm may be relaxed by adding the constraints N⃗k ∈ [ℓk, uk] to each ∆a,ℓ,
and computing an integer maximum (non parametrized) by using a pure ILP algorithm (non-
parametrized), far more efficient than its parametrized version. This relaxed version is scalable,
at the price of a non-parametrized result and a restricted range of parameters. This algorithm
will be used as a baseline in the experiments of Chapter 4.

2.3 Application to High-Level Synthesis

This section outlines the challenges of High-Level Synthesis and the required background for
this PhD thesis (Section 2.3.1). In particular, the data-aware process networks, which the HLS
intermediate representation used in Chapter 4, is defined and discussed (Section 2.3.2).

2.3.1 High-Level Synthesis (HLS)

High-Level Synthesis (HLS) [23] is the process of compiling a circuit from a high-level descrip-
tion, usually a C program with pragmas to guide the synthesis choices. An HLS tool is then a
compiler, with an intermediate circuit representation summarizing the components of the pro-
gram, a front-end generating said intermediate representation from the source program and a
back-end generating the circuit description (usually in the vhdl language) from the intermediate
representation.

Intermediate representation Most commercial HLS tools use an intermediate representation
close to those of a classical compiler. It generates a hierarchical control-flow graph, decorated
with statement-level data-flow dependences [11, 21], which could be in SSA-form or one its gated
variants [19].

Front-end With this level of information, and without restriction on the input program, the
possible front-end level compiler analysis and optimizations are limited. Usually, the tools apply
classical dragon-book [2] transformations (code hoisting, constant propagation, loop pipelining,
etc) [23, 19] . Most interesting transformations are not possible – or strongly limited – because
of data dependence over-approximation.

Back-end In turn, the back-end of HLS tools is quite matured and can generate finely opti-
mized finite-state machines and data-path, low-level pipeline scheduling and resource allocation
[22].

2.3. APPLICATION TO HIGH-LEVEL SYNTHESIS 27

How to optimize the HLS process? These observations lead to two complementary ap-
proaches:

• Source-to-source optimization for HLS which tries to overcome the inherent limits of HLS
front-end, typically by applying polyhedral optimizations [50, 5, 47].

• Polyhedral HLS that attempts to craft a HLS tool using the precepts of polyhedral model,
with an appropriate intermediate representation, front- and back-end [48, 7].

What are the challenges? With HLS, everything must be compiled. We cannot rely on a
runtime library. Even the caching system does not exists and the data transfers with the external
memory must be scheduled at compile-time [5]. Speculative optimizations are possible [28], but
still very restrictive. Hence, the goal is correct-by-construction program transformations.

The circuit must be massively parallel. Especially with FPGA synthesis, to exploit the full
potential of the chip; we must compile a massively parallel program. This causes major scalability
issues, as we will see in the next section. A pass which lasts tens of second on a simple program
can in turn last minutes in the HLS context. This makes Polyhedral HLS a good target to stress
and improve the scalability of polyhedral transformations. In this PhD thesis, we focus on buffer
allocation for DPN using array contraction.

2.3.2 Data-aware Process Networks (DPN)

The intermediate representation must capture the computation and the data-flow at iteration
level to enable polyhedral optimization. With Data-aware Process Networks (DPN) [7], the
program is represented as a set of processes communicating through channels. DPN focuses on
tiled programs and features data transfers with the external memory at tile level. DPN are a
particular case of Regular Process Networks (RPN).

Regular Process Network

A Regular Process Network (RPN) [7] is a set of processes communicating through channels.
The execution is locally sequential (a process executes sequentially) and globally dataflow, as
the processes run in parallel and synchronize through channels. A RPN is obtained from a static
control program by specifying:

• A partition P = {P1, . . . , Pq} of the computions into processes. Each Pi is a subset of
operations to be achieved by the process i.

• A scheduling function θi per process i, specifying the sequential execution order of the
process i. For each operation o ∈ Pi, θi(o) is the execution date of o. θi is expected to be
injective (sequential order).

• A partition C = {C1, . . . , Cr} of the direct dependences into channels. Each direct depen-
dence w →flow r ∈ Ci will be solved by the channel i (write to channel i, read from channel
i).

28 CHAPTER 2. BACKGROUND

Execution The execution of a RPN is locally sequential (each process executes its operations
sequentially) and globally parallel: the processes execute in parallel and synchronize through
channels.

Correctness and efficiency Any partitioning P and C leads to a correct RPN [7]. The
difficulty is to find a partitioning minimizing the overall latency, while fitting the memory limit
of the FPGA.

DPN Partitioning

A DPN is an RPN with a partitioning driven by a loop tiling. The operations are partitioned by
statement: a single process is produced per statement. Special processes Load(a) and Store(a)
are produced for each array a and aim at communicating data with the external memory. The
schedule assumes a tiled execution: for each tile, the required data is loaded by the tile, which
is executed, then the data is stored.

With DPN partitioning, tile bands are considered as reuse units: only the data coming from a
different tile band is loaded. Consequently, only the data going to a different tile band is stored.
The data writes and reads are stored into a channel. In other words:

• Direct dependences inside a tile band (source and target inside the same tile band) are
solved with a local buffer.

• Other dependences are solved through the external memory: when a direct dependence
s→flow t goes outside of the tile band of s, the latter sends the data to the Store process,
which, in turn writes it to the external memory. t retrieves the data from a Load process,
which will read it from the external memory.

Figure 2.5 depicts an example of DPN partitioning. We assume a loop tiling ϕ(i, j) = (j, i+ j).
The direct dependences are (i− 1, j)→flow (i, j) and (i, j − 1)→flow (i, j). The tile bands are
depicted in blue. The dependence inside a tile are solved through channels 2 and 3, while direct
dependences between tile bands are solved through the external memory. Assuming such a direct
dependence s →flow t, s will send the data through channel 4 to the Store process, which will
spill the data to the external memory. Then, when the target tile is about to be executed, the
Load process will load that data from the external memory, and write it to channel 1. Note the
two channels 2 and 3: in the DPN-partitioning, there is one channel per read. This is required
to enforce a determinist execution [7].

Process scheduling Any correct sequential schedule θ prescribes a correct local execution
order θP for each process P (assuming a process per statement). The schedule must be chosen
to reduce the overall latency. In general, a process makes a computation thanks to a pipelined
arithmetic operator. If two successive inputs i1 and i2 are dependent (i2 is computed from i1), the
pipeline will stall until i2 is available. This situation may be avoided by scheduling the program
so the dependence distance between i1 and i2 is at least the operator latency. In particular,
iterations between i1 and i2 must be independent. This is done by tiling the program so the
last tiling hyperplane carries all the dependences: ϕnS (⃗i) < ϕnT (⃗j) whenever ⟨S, i⃗⟩ →flow ⟨T, j⃗⟩.

2.3. APPLICATION TO HIGH-LEVEL SYNTHESIS 29

i

j

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9 10 11

C

C

C Load

1

C2 3

4

Store

(a) DPN partitioning (b) DPN

Figure 2.5: Data-aware process network

Then, the operations of each process P are executed slice by slice (of ϕnP) [6]. In other words,
the first dimension of θP (⃗i) is set to ϕnP (⃗i) for each process P , then a completion is applied
to obtain a correct schedule θP . This schedule is called a slicing schedule. On Figure 2.5,
θ(T1, T2, i, j) = (T1, T2, i+ j, j) is a correct slicing schedule.

Parallelization factor With this partitioning, parallelism can be added to a DPN by subdi-
viding the tile bands. This is illustrated in Figure 2.6. The parallelization factor is the number
of sub-tile bands. To saturate FPGA resources, it is common to have a parallelization factor of
several tens, typically 64. Note that this implies large tiles, except in the direction of the tile
band.

Example (cont’d) Figure 2.7 depicts the DPN assuming the tiling illustrated in Figure 2.3.
For each tile, the DPN loads the data (Load(In)), computes the tile (the two compute processes),
and then stores the result (Store(Out)). The execution is dataflow: once a data is loaded, the
Load process retrieves the data of the next tile, while the computation of the current tile is
achieved. Note that the read of blurx[i,j] by ⟨C, i, j⟩ will be read as blurx[i-1,j] by ⟨C, i+ 1, j⟩
and finally read as blurx[i-2,j] by ⟨C, i+ 2, j⟩. Hence the data read as blurx[i,j] from buffer s0
shall pass through a buffer s1 to be subsequently read as blurx[i-1,j]. Once read as blurx[i-1,j],
the same data is passed through a buffer s2 to be read as blurx[i-2,j]. The same apparatus applies
for the reads in[i,j+2], in[i,j+1], in[i,j]. This apparatus is called systolization, it is a feature of
DPN. Figure 2.8 illustrates the outcome of a parallelization factor of 2 on that example.

30 CHAPTER 2. BACKGROUND

i

j

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9 10 11

C1

C2

C1

C2

C1

Load

1

C12 3

4

C25 6

7

Store

(a) DPN partitioning (b) DPN

Figure 2.6: Data-aware process network: parallelization

Compiling a DPN

DPN compilation involves more than 12 steps, the main ones being:

1. Data-flow analysis and transformation to single-assignment form

2. Buffer partitionning and Load/Store generation

3. Parallelization

4. Buffer FIFOization

5. Buffer systolization

6. Buffer sizing

Step 1 computes the direct dependences and turns the program into a System of Affine Re-
currence Equations, which is then post-processed to produce the DPN.

Step 2 adds Load/Store buffers according to DPN partitioning and refines the multiplexing.
The set of data to be loaded/stored per tile is also computed following Alias et al.’s method [5].

Step 3 partitions the compute process and the buffers according to the parallelization parti-
tioning. This usually multiplies the number of buffers by the parallelization factor.

2.3. APPLICATION TO HIGH-LEVEL SYNTHESIS 31

for(i=0; i<N; i++)

for(j=0; j<N; j++)

blurx[i,j] = in[i,j+2] +

in[i,j+1] +

in[i,j];

s0 s1 s2

for(i=2; i<N; i++)

for(j=0; j<N; j++)

out[i,j] = blurx[i,j] +

blurx[i-1,j] +

blurx[i-2,j];

Load(in)

Store(out)

Figure 2.7: Blur filter, DPN

Step 4 restructures the buffer partitioning to enable FIFO communication pattern. This usu-
ally multiply by a factor 2 the numbre of buffers.

Step 5 systolizes the buffers as blurx in the example, when appropriate. This step generates
additional buffers for the initialization of the pipeline.

Step 6 allocates and sizes all the buffers. For each buffer, a program summarizing the pro-
duction and the consumption of the values is generated, and then fed to an array contraction
algorithm. Due to the large number of buffers, the compilation time is dominated by array
contraction, hence the need for scalable array contraction.

Example (cont’d) For systolization buffers, we have to consider the direct dependences de-
picted on Figure 2.9(a). For instance, ⟨C, i, j⟩ holds the read blurx[i][j] and writes it to
buffer s1, so that ⟨C, i + 1, j⟩ can read it as blurx[i − 1][j]. Hence the direct dependence
⟨C, i− 1, j⟩ →flow ⟨C, i, j⟩ for any 2 ≤ i− 1, 0 ≤ i, j < N . Therefore, s1 might be allocated by
applying array contraction on a program summarizing the writes and the reads associated to that
direct dependence. The liveness analysis for buffer s1 is detailed, leading to the conflict poly-
hedron in (b). Array contraction leads to the canonical mapping σs1(i, j) = (i mod 2, j mod 4),
or the smaller linear mapping σs1(i, j) = j mod 4. Chapter 4 presents a trace-based method
to find such canonical mappings. Then, Chapter 5 will present a trace-based method to find
parametrized linear mappings.

32 CHAPTER 2. BACKGROUND

i

j

0

1

2

3

4

0 1 2 3 4

for(i=0; i<N; i++)

for(j=0; j<N; j++)

blurx[i,j] = in[i,j+2] +

in[i,j+1] +

in[i,j];

c0 c1 c2

for(i=2; i<N; i++)

for(j=0; j<N; j++)

out[i,j] = blurx[i,j] +

blurx[i-1,j] +

blurx[i-2,j];

Load(in)

Store(out)

for(i=0; i<N; i++)

for(j=0; j<N; j++)

blurx[i,j] = in[i,j+2] +

in[i,j+1] +

in[i,j];

c0 c1 c2

for(i=2; i<N; i++)

for(j=0; j<N; j++)

out[i,j] = blurx[i,j] +

blurx[i-1,j] +

blurx[i-2,j];

Load(in)

Store(out)

Figure 2.8: Blur filter, DPN with a parallelization factor of 2

i

j

0

1

2

3

4

0 1 2 3 4

s0
s1 s2

s0
s1 s2

δi

δj

−3

−2

−1

0

1

2

3

−1 0 1

(a) Conflict relation for s1 (b) Conflict polyhedron for s1

Figure 2.9: Blur filter, liveness analysis for systolization buffers

Chapter 3

Related Work

Our work on scalable trace-based compile-time memory allocation has three main characteristics.
First, the premise of our work is to explore the use of execution traces of a polyhedral program.
Second, this choice of trace analysis is motivated by reducing the cost of common operations
of the polyhedral analysis domain, mainly parametric ILP. Third, our work has focused on the
problem of array contraction for allocating communicating buffers in HLS. Hence, this related
work section will be split in three parts, going in reverse order. To start, we will review memory
optimizations in the polyhedral model (Section 3.1). Then, we will glance at work that seek to
scale up polyhedral optimizations (Section 3.2). To conclude, we will present work that relates
to trace analysis in polyhedral compilation (Section 3.3).

3.1 Polyhedral Memory Optimization

This section reviews state-of-the-art memory optimizations techniques in the polyhedral model.
Section 3.1.1 reviews the approaches for allocating arrays. These approaches require array live-
ness analysis, reviewed in Section 3.1.2. Finally, Section 3.1.3 addresses process networks closed
to DPN and their buffer sizing techniques.

3.1.1 Memory Allocation

The approaches may be divided in two categories. Intra-array allocation attempts to find a
memory allocation per array A[⃗i] 7→ Â[σA(⃗i)], while inter-array allocation maps arrays elements
into a common global array space A[⃗i] 7→ Global[σA(⃗i)].

Intra-array allocation In 1998, Lefebvre et al. [42] show that memory allocation during the
automatic parallelization can be realised using Parametric ILP. It directly uses data dependency
analysis and lifetime analysis of array elements to expose reuse across parallel tasks. The method
proceeds as follows: transform a program using data expansion to turn it into DSA, then de-
termine the cells’ utility spans i.e. lifetimes, clearly exposing data reuse opportunities. Finally,
contract the dynamic single assignment arrays with respect to a scheduling function. This paper
introduces the successive modulo method presented in Section 2.2.2. As discussed, this algorithm
is simple, but not scalable.

33

34 CHAPTER 3. RELATED WORK

Quilleré et al. [53] tackle the memory allocation problem for Alpha programs [41] by looking
for projective allocation functions. Their approach selects a projection minimizing the dimension
of the target array and is able to reach a proven tight bound on the target dimensionality. They
show that it is enough for such mappings to be one-dimensional only, provided the dependencies
are uniform. Compared to successive modulo, this approach might reduce the the footprint
by a constant factor (as for affine mappings described later). However, the algorithm is rather
complex and might not be easily rephrased with trace analysis, unlike successive modulo.

Darte et al. [26] rephrases the intra-array allocation problem as finding a critical lattice for the
conflict polyhedron. The correctness condition 2.2 might be rephrased as δ⃗ = i⃗− j⃗ ∈ ∆a, δ⃗ ̸= 0
implies δ⃗ ̸∈ kerσ. When σ is a linear mapping i⃗ 7→ A⃗i mod b⃗, kerσ is a lattice, and σ 7→ kerσ
is a bijection: it is then sufficient to find the lattice L = kerσ to have σ. Hence the problem is
to find a lattice whose intersection with ∆a is reduced to {0}: L ∩∆a = {0}, such a lattice is
called an admissible lattice for ∆a. Furthermore, detL is the footprint of σ: the smaller if detL,
the better is σ. Such a lattice is known as a critical lattice in number theory, and mathematical
apparatus exist to find it, notably Roger’s successive minima procedure [34] that Darte rephrases
as an effective algorithm, together with two other gauge-based heuristics assuming the matrix
A. In this paper, ∆a is not parametrized and is assumed to be convex, which is not realistic, as
a conflict polyhedron is generally a union of convex 0-symmetric polyhedra (starred polyhedron)
whose width may involve program parameters. However these limitations are lifted in [25].
Unlike successive modulo, this approach is light and scalable. However, it still assumes the
conflict polyhedron ∆a, whose computation is not scalable. Alias et al. [4] used this idea to
develop a complete intra-array contraction source-to-source transformation at compile-time, and
proposes an array liveness analysis method to do so. Their paper already pointed out the lack
of scalability of liveness analysis.

Bhaskaracharya et al. [13] present their array space partitionning approach. They propose a
method to derive a linear mapping σ : i⃗ 7→ A⃗i mod b⃗ dimension per dimension as the successive
modulo method. Each dimension is called a storage hyperplane, similarly to affine tiling. For
each dimension, a storage hyperplane is found to satisfy is much conflicts as possible while
minimizing the footprint. Farkas lemma is used to formulate the constraints. Then, unsolved
conflicts are kept to compute the subsequent dimensions of σ. This is the same methodology than
Feautrier’s greedy scheduling algorithm [31], with the analogy conflict↔ dependence, allocation
σ ↔ schedule θ, footprint ↔ latency. However, this is just an analogy. Unlike dependences,
the conflict relation does not have a natural partition with the depth notion that allowed to
find an optimal greedy algorithm [64]. So far, there is no a priori partitioning of conflicts into
subsets whose complete resolution would lead to a provably optimal allocation. This is the main
drawback of this approach. Also, the conflict relation tends to be huge, as discussed in Section
2.2.2 which may cause inefficiencies. In chapter 5, we will propose a similar rephrasing starting
from the conflict polyhedron ∆a instead of the conflict relation ▷◁ as they did, and we will show
that the constraints are lighter.

Inter-array memory allocation De Greef et al. [27] presented a data placement technique,
with the focus on embedded systems. This work considers the notion of local and global array
space, showing how arrays can be made to fit into a single global array space that can then be
allocated. They present a method to check if arrays are compatible, that is, no element of both

3.1. POLYHEDRAL MEMORY OPTIMIZATION 35

arrays are alive at the same time. This technique can be intuitively done by projecting the array
space over the relative logical time dimension, and check for overlap. But it can also be done
by analysing the lifetimes of the two arrays being compared, i.e., the time span between the last
read of an array and the last write of another, or also, by checking if the arrays have periodical
alternating lifetimes. A second method checks if two arrays can be merged, and a special case
arises when one array A1 reads from a second array A2, and the cells of A2 die and can be reused.
This case is not uncommon and is a reuse opportunity. Finally, they present a greedy algorithm
to piece mergeable array spaces together, by sorting the arrays and placing them in the global
space, shifting it until there is no conflict left. They note that splitting the local arrays can
further improve this memory reduction.

Bhaskaracharya et al. [14] extend their approach to inter-array allocation with a similar
goal than De Greef’s compatible and mergeable arrays paper [27]. However, the approach of De
Greef only contracts along the original basis and therefore misses reduction opportunities. For
each array cell a[i], an allocation to a unified global array space is seeked A[⃗i] 7→ Global[σa(⃗i)]
with a mapping σa : i⃗ 7→ A⃗i+ b⃗ mod c⃗ affine per array. The same analogy might be drawn with
Feautrier’s greedy scheduling algorithm, now with affine-per-statement schedules. Actually, intra-
array allocation is analogous to the scheduling of perfect loop nests, while inter-array allocation
is analogous to scheduling of non-perfect loop nests. Inter-array allocation requires an affine
mapping, which makes possible shifts into the unified global array space. Once an array a is
completely allocated, additional dimensions may be required in the global space to allocate some
other array b. If the global indices of a are not prefixing some global indices of b, then space
is wasted for each additional dimension. This is mitigated by decoalescing: the algorithm is
applied to subsets of arrays, separately. Then, the results are merged into the global array space.
However, as for the intra-array algorithm, the algorithm is not optimal because of the conflict
relation structure. Also, the linear constraints complexity are dictated by the complexity of the
conflict relation ▷◁, which again, may be huge. Furthermore, the decoalescing is not provably
optimal.

3.1.2 Array Liveness Analysis

As discussed in Section 2.2.1, liveness analysis for arrays is a critical step for building scalable
memory allocation algorithms. However, most papers simply assume the conflict relation to be
given and do not explain how to compute it, or do not compute the liveness explicitely and rely on
partial liveness informations (which is not sufficient for our purposes) such as De Greef’s binary
occupied address time domain (BOATD) [27] or Strout’s universal occupancy vectors (UOV) [58]
and its variants [59, 65]. As far as we know, the first in-depth discussion of array liveness
analysis was done in the PhD thesis of Isoard [36] which presents several techniques to compute
the conflict relation from a static control program (SCoP). Unlike the technique presented in
Section 2.2.1, the program is not expected to be in dynamic single assignment form (DSA). Each
of these techniques, namely the butterfly, cross-product and triangle are depicted on Figure 3.1
and discussed below. The pictures of liveness patterns for butterfly, cross-product and triangle
are borrowed from [36].

The butterfly technique considers pairs Wx →flow Rx, Wy →flow Ry accessing distinct
array elements A[x] and A[y] so that θ(Wx) ≪ θ(Ry) and θ(Wy) ≪ θ(Rx). For each pair, the

36 CHAPTER 3. RELATED WORK

Liveness analysis Direct (Section 2.2.1) Butterfly Cross-product Triangle

Strategy
h(Rx) Rx

h(Ry) Ry

Wx Rx

Wy Ry

Wx Rx

t

Wy Ry

Wx Rx

t

Wy

Program model SCoP & DSA SCoP SCoP SCoP
Complexity O(R2d2) O(W 2R2d4) O(W 2R2d4) O(W 2Rd2)

Scalable No No No No

Figure 3.1: Array liveness analysis approaches and their complexity (worst case number of poly-
hedral emptiness testings and projections).

array cells A[x] and A[y] are conflicting. Hence, the conflict relation is obtained by projecting
the constraints on (x, y). The complexity is not analyzed, but we can estimate the number of
projections and emptiness testings as O(W 2R2d4) where W (resp. R) is the number of writes
(resp. reads) to the array in the program text and d the maximum loop depth. Indeed, for each
quadruplet (Wx, Rx,Wy, Ry) (termW 2R2), we need to express 4 order relations: θ(Wx)≪ θ(Rx),
θ(Wy) ≪ θ(Ry), θ(Wx) ≪ θ(Ry), θ(Wy) ≪ θ(Rx), hence O(d4) pieces to examinate (emptiness
testing) and to exploit (projection to retrieve the conflict relation). Note that the term d tends
to be larger in our case since the loop depth doubles on tiled programs.

Also, they propose a cross-product method, which computes the set Live(t) of array cells
alive at that timestamp t as an affine relation t 7→ Live(t) and finally the conflict relation as
a composition ▷◁ := Live ◦ Live−1. As mentioned in their discussion, that composition incurs
the same cross product than the butterfly method with the same complexity. Indeed, Live(t)
involves ordering constraints θ(Wx) ≪ t ≪ θ(Rx) with O(WRd2) pieces. The composition
Live ◦ Live−1 will process (emptiness testing and projection) the cross product of these pieces,
hence O(W 2R2d4) pieces at worst.

Finally, their triangle method mitigates this problem and considers only a write executed
in some liveness interval (Wx →flow Rx and θ(Wy) ∈ [θ(Wx), θ(Rx)[). Again, we can es-
timate the complexity as O(W 2Rd2) projections and emptiness testings. Indeed, for each
triplet (Wx, Rx,Wy), we just need to express the ordering constraints θ(Wx) ≪ θ(Wy) and
θ(Wy)≪ θ(Rx) (hence the term d2).

All these techniques have a worst complexity than than the method presented in Section 2.2.1
and which is experimentally demonstrated to be unscalable in Chapter 4, Table 4.8. In the next
two chapters, we show how to use lightweight trace analysis to produce a scalable array liveness
analysis.

3.1.3 Polyhedral Process Networks and Buffer Sizing

The closest work to DPN are the Polyhedral Process Networks (PPN) introduced by Rijpkema
[55] as a dataflow model of computation for programming heterogeneous multiprocessor plat-
forms. PPN improves on Kahn Process Networks [37], as their process networks have bounded
memory sizes, and support more storage types than FIFOs. PPN might be viewed as a particular

3.2. SCALING THE POLYHEDRAL MODEL 37

case of RPN, where each program statement is mapped to a process and with a single commu-
nicating buffer per couple (producer, read). In his PhD thesis, Turjan [60] proposed a complete
compilation chain to derive automatically a PPN from a program specification. In particular, he
addressed buffer sizing using a bounding box technique: the buffer size is exactly the volume of
data read. This does not exploit data reuse and this leads to oversized buffers.

Clauss et al. [20] proposed a method to estimate the memory requirements, later used
by Verdoolaege [62] to size FIFOs in the PPN context. They build a polynomial L(t) which
estimates the memory used at each execution point t of the program. Then, the maximization
M = maxt L(t) provides an upper bound on the memory used. Since they consider FIFO
communication patterns, each write is read once. Hence L(t) = W (t)− R(t) where W (t) is the
number of writes before t and R(t) is the number of reads before t. In turn, W (t) = card{⃗i ∈
DW | θ(⃗i)≪ t} and R(t) = card{⃗i ∈ DR | θ(⃗i)≪ t} where DW is the iteration domain of writes,
DR those of reads and θ is a global schedule. Since W (t) and R(t) are counting polynomials,
so is L(t). Finally, the maximum M is obtained from the Bernstein expansion of L. However,
the approach is inherently limited to dynamic single assignment programs whose arrays cells are
read once, which limits its applicability for buffer sizing. Extending this technique to general
access patterns would require to consider the last read for each write, whose computation might
be expensive for tiled programs.

Later, Verdoolaege [62] built on the technique developped with Clauss et al [20] to size FIFO
buffers of PPNs. Also, they proposed a way to size non-FIFO buffers without computing a last
read. However, their formulation relies on multiple ordering constraints, which leads to a large
union of convex polyhedra as the cross product must be computed. The obtained set of polyhedra
is then subtracted from the consumer iteration, which is even worse in terms of complexity. Also,
this work is only concerned with buffer sizing, it does not compute an allocation function.

All these approaches size a buffer by assuming its producer and consumer processes to follow
some global affine schedule – the original program sequential schedule in [60], an affine schedule
closed to the dataflow execution in [62]. Although correct – at worst, the process network will
follow that schedule – it might causes buffer oversizing. Turjan [60] proposed preliminary ideas
to estimate the memory requirements of a PPN by considering the global dataflow execution of
the processes. Turjan derives a bound ℓ so that if the PPN executes without deadlock, then the
total buffer size is ≥ ℓ. The bound is not proven to be tight, it is only a necessary condition: the
minimal correct size could perfectly be bigger than ℓ. Also the PPN is assumed to be acyclic,
which is not realistic. For instance, all the PPNs obtained from the Polybenchs are cyclic.

This concludes our overview of memory optimization techniques in the polyhedral model. We
will now take a look at papers that worked on scaling different aspects of the polyhedral model,
and while the works listed above naturally sought to improve the memory reduction, analysis
runtimes and applicability of their techniques, the following papers were directly driven with the
idea to polish parts of the overall polyhedral computation.

3.2 Scaling the Polyhedral Model

Polyhedral compilation often relies on parametric ILP and geometric operations over polyhedra,
whose complexity is often exponential in the number of variables and constraints. Unfortunately,

38 CHAPTER 3. RELATED WORK

this leads to non-scalable analysis, which may even freeze on complex programs. Hence, the
research on speeding up polyhedral optimizations has mostly revolved around alleviating this
pressure. Section 3.2.1 reviews state-of-the-arts approaches for mitigating the cost of specific
polyhedral compilation steps, while Section 3.2.2 presents the most recent library-level approach.

3.2.1 Mitigating the Cost of ILP

In 2006, Feautrier [32] sought to speed-up automatic parallelization by improving the construction
of an affine schedule. The paper presents a dataflow model of computation, the communicating
regular processes (CRP) and presents a scalable modular scheduling algorithm to derive a global
schedule for a CRP. A CRP is a set of processes communicating through infinite arrays. Each
process executes a static control program in DSA form. In particular, each channel is single
assignment, and each channel cell has a unique date of production given by a channel schedule.
This structure suggests a modular scheduling algorithm. Each process is scheduled independently.
The space of valid schedules ΘP for a process P involves the coefficients CP of its input and
output channel schedules. Each ΘP is projected out on CP , the constraints are concatenated and
a global channel schedule is found. In turn, the values obtained for each CP are injected into
ΘP and a local schedule is found for each process P . Note that each scheduling step involves a
smaller set of constraints/variables than the global greedy affine scheduling algorithm [31]. This
approach allows to effectively scale the scheduling algorithm and might be applied beyond the
CRP context providing a decomposition into independent sub-problems. In general, divide-and-
conquer approaches are worth to investigate for scaling polyhedral compilation.

A different approach was taken by Acharya et al. [1], who sought to get rid of ILP in the
Pluto algorithm [15] by relaxing the ILP as a rational LP problem, and scaling the result to
obtain integer solutions. Then, they scale the coefficients up to integrals using Mixed Integer
Programming, but argue that other polynomial time heuristics could be used so their algorithm
does not use ILP. However, for the Polybench kernels, the speed-ups are not noticeable, or
sometimes create additional overhead.

3.2.2 Library-Level Improvements

Pitchanathan et al. [49] propose the fast polyhedral library (FPL), optimizing the usual op-
erations on Presburger sets required in polyhedral compilers (subtraction, emptiness testing,
coalesce, etc) by tuning the integer representation (quoted as integer precision). The operations
are carefully implemented, avoiding pointer indirections and limiting memory size. The authors
claims that their implementation supercedes the state-of-the-art isl in performance and ease of
use, and the performance improvement (notably by number of memory allocations) is due to
using more suitable precision for the data and by exploiting vector instructions. However, FPL
does not provide parametric integer linear programming (for instance a lexicographic maximum),
which is mandatory in most polyhedral analysis. In particular, the successive modulo algorithm
presented in Section 3.1.1 and used as baseline throughout this PhD thesis cannot be realised. In-
stead, the current version of FPL proposes ILP and LP algorithms (not discussed in the paper).
The gain compared to state-of-the-art libraries like GLPK [46] remains to be established.

This concludes our quick overview of work on the scaling of polyhedral methods. In the last

3.3. TRACE ANALYSIS AND SPECULATION 39

part, we will be looking at inference in a wide sense, that is, reconstruction of program properties
from traces, but also prediction of beneficial program transformations.

3.3 Trace Analysis and Speculation

The vast majority of work in the polyhedral model focuses on static optimizations, as Static
Control Parts are meant to be easily analysable at compile-time, and the information required for
optimizing these affine loop nests are stored in the Intermediate Representation of the program.
This is why dynamic approaches, including trace-based approaches, are much less common to
our knowledge. Section 3.3 presents analysis to retrieve a polyhedral representation from an
execution trace – this is a fundamental building block in our approach. Then, Section 3.3.2
reviews state-of-art dynamic analysis in the polyhedral model.

3.3.1 Inference from Execution Traces

The Nested Loop Recognition (NLR) algorithm [39] by Ketterlin and Clauss is able to retrieve,
from a trace of memory accesses, an equivalent affine loop nest. The goals are to predict the pos-
sible data accesses by simply extending the domains of the iteration vectors, and as a byproduct,
to compress the input as a loop nest representation. The algorithm takes as input a sequence of
(multidimensional) scalar variables or memory addresses, and output loop nests that reproduce
the input. It is a greedy algorithm that stacks the terms of the sequence, checking if a triplet of
values can be grouped into a loop, or if the new value can already belong to an existing loop
created earlier in the process. The algorithm has a time complexity linear in the execution trace
and demonstrates to be very efficient in practice. This work is important to ours, as we directly
use their method to reconstruct a conflict polyhedron from an execution trace in Chapter 5.

Similarly, the work of Rodriguez et al. [56] is focused on recognizing loop nests from memory
address traces. For each trace entry, either it is recognized as a next iteration, either a new
dimension (loop) is added, either it is not recognized at all. Hence, many cases must be consider.
For instance, the next iteration of (i, j) might be (i, j + 1) or (i + 1, 0). Also, the new loop
k could be inserted in several positions: (k, i, j), (i, k, j) or (i, j, k). Their algorithm explores
that solution space, guaranteeing to obtain the minimal solution should it exist. However,
the complexity increases exponentially with the number of irregularities, dispite the pruning
techniques proposed by the authors. This makes this work less useful to us, as our primary focus
is to reduce the runtime of the array contraction optimization.

3.3.2 Speculative Optimizations

Apollo [18] is a polyhedral optimizer which, from an irregular code, speculates an equivalent
affine loop nest and applies a polyhedral optimization. The code is divided into slices (e.g.
the iterations of the first enclosing loop). On the first slice, the first iterations are collected and
passed to NLR to predict an affine loop nest (e.g. the enclosed loop nest). In turn, that loop nest
is optimized thanks to a state-the-art polyhedral optimizer (e.g. Pluto [16]) and the optimized
code is efficiently obtained by instanciating code bones, which also check the correctness of the
speculation. The same speculated loop nest is used for the next slices. If it no longer works,

40 CHAPTER 3. RELATED WORK

a new affine loop nest is speculated. If the speculation is wrong, the system backtracks to the
original code, executed as a background task at program start-up. This system is able to mine
hidden regular computations in non-static control programs without complex static analysis.
However, the speculation verification and the parallel execution of the original code causes an
overhead. In particular, the memory should be allocated twice: for the original code and for
the optimized code. That speculation scheme is very useful for software optimization. However,
this would not apply for our purpose as we target hardware memory optimization. Indeed, once
a memory is synthesized, it cannot be “deallocated” if the speculation was wrong. Instead, we
exploit execution traces to produce a correct by construction memory analysis.

In the same vein, PolyJIT [57] is a polyhedral loop optimizer built on top of LLVM. Being
Just-In-Time, it applies its transformations during execution, i.e. at runtime. It works by de-
tecting hot regions, that is, compute-intensive program parts. These are the parts for which, if
polyhedral optimizations can be applied, the potential speedup outweight the dynamic overhead.
It is important to note that these hot regions are profiled at compile-time, and then the trans-
formations are applied at runtime. This is the exact opposite of our approach: we use runtime
informations collected from very small execution traces to infer compile-time optimizations.

3.4 Conclusion

In this chapter, we reviewed state-of-the-art approaches for memory optimization in the polyhe-
dral domain, array liveness analysis and application to HLS context. We show that all the tech-
niques developed so far do not scale. Either because they rely on non-scalable liveness analysis,
either because they are themselves non-scalable. Also, we review attempts to scale polyhedral
compilation – none of them are specifically concerned with array contraction. In particular,
divide-and-conquer techniques seem to give effective results when the problem is modularizable,
which is not the case for array contraction. Finally, we review state-of-art trace-based techniques
in the polyhedral model. So far, traces are used for speculation. There is no need to have a correct
result, it will be checked at runtime. In our case, we seek for optimizing memory for hardware
and speculation does not apply. Hence, correct-by-construction techniques are required.

In the next two chapters, we will present our analysis to obtain canonical and linear memory
mappings using correct-by-construction scalable trace-based analysis.

Chapter 4

Canonical Array Contraction

High-Level Synthesis requires scalable automatic parallelization. Usually, the parallelization
factors applied to cover an FPGA lead to a huge circuit with hundreds of communicating buffers.
However, in the polyhedral model, buffer allocation inherits from the high unscalability of array
liveness analysis, as discussed in Chapter 3. For instance, a direct application of the successive
modulo algorithm [42] would not finish after hours.

In this chapter, we propose a scalable algorithm to allocate buffers of a data-aware process
network (DPN), the HLS intermediate representation introduced in Chapter 2. Our method relies
on lightweight trace analysis and produces provably correct results in seconds with the same
precision than state-of-the-art array allocation algorithms. This chapter focuses on canonical
mappings i⃗ 7→ i⃗ mod b⃗ of constant size (⃗b is a constant vector) and shows how to reproduce the
results of the successive modulo algorithm [42] with a lightweight trace analysis on a carefully
selected small execution trace. Note that constant mappings are sufficient for our purpose, as
we seek to synthesize each buffer (a constant size is required).

The main difficulty of this work is to produce a correct by construction allocation. The
buffer allocation should not only work on the selected execution trace but on any possible exe-
cution trace. Sections 4.2 and 4.3 present the underlying hypothesis and program restrictions,
experimentally shown to fit most Polybench kernels and demonstrate the underlying theoretical
results required to prove the correctness of our approach. In particular, we introduce the notion
of localizability (Section 4.2), which implies that a finite execution trace is sufficient to derive
an allocation. This is completed with the notion of θ-uniformity (Section 4.3) which eases the
selection of that execution trace. Then, Section 4.4 presents the steps of our algorithm (trace
selection, trace generation, trace allocation) and discusses all the technical details. Finally, Sec-
tion 4.5 presents the results of our methods on benchmarks of the Polybench/C suite [51] and
demonstrate the applicability and the scalability of our method on real-life HLS problems.

41

42 CHAPTER 4. CANONICAL ARRAY CONTRACTION

4.1 Overview

The goal of this chapter is to exploit trace analysis to build an efficient and scalable procedure for
DPN buffer allocation. Consider the example of the buffer s1 from the Blur filter DPN introduced
in the previous chapter and reproduced in Figure 4.1. The data produced at iteration ⟨C, 2, 0⟩ is

i

j

0

1

2

3

4

0 1 2 3 4

s1

Figure 4.1: Systolization buffer s1

consumed at iteration ⟨C, 3, 0⟩ and never after. Hence, it conflicts exactly with the data written
by the green iterations. Since the associated direct dependence function is hCC(i, j) = (i− 1, j)
for any 3 ≤ i < N, 0 ≤ j < N , the same liveness pattern will repeat. Hence, it is sufficient
to consider the first one to infer the mapping. The main challenge addressed in this chapter is
to find the smallest execution trace which contains such a liveness pattern (Section 4.4.2). We
demonstrate that it is possible provided the following conditions on the program:

• The buffers should be localizable (Section 4.2). Under this condition, there exists a finite
execution trace which makes possible to find a valid mapping (Theorem 4.2.2).

• The buffers should be θ-uniform (Section 4.3). Under this condition, we can characterize
and retrieve a correct execution trace (Theorem 4.4.1).

Then, we propose a complete approach to select the execution trace (Section 4.4.2), to generate
the trace (Section 4.4.3) and finally to infer the mapping from the trace (Section 4.4.4).

4.2 Localizability

The notion of localizability plays a critical role in our contributions. Localizability ensures that
mappings will have a constant modulo and will be computable from a single trace.

Definition 4.2.1 (Localizability) A direct dependence edge from a source statement S to a
target statement T , denoted by hST , is localizable w.r.t. an affine loop tiling ϕ (of depth n) if
and only if there exists some constant c such that

∀⃗i ∈ domhST , ϕ
n
T (⃗i)− ϕnS(hST (⃗i)) ≤ c

4.2. LOCALIZABILITY 43

If ∀⃗i ∈ domhST , ϕ
n
T (⃗i)− ϕnS(hST (⃗i)) = c, then hST is said to be tightly localizable.

Pluto’s algorithm [14] computes an affine mapping of the form N⃗ 7→ UN⃗ + v⃗ with ϕT (⃗j) −
ϕS (⃗i) ≤ UN⃗ + v⃗ for any dependence edge (⃗i, j⃗) ∈ ∆ST . However, dependence edges ∆ST

contains direct dependence edges (⟨S, hST (⃗i)⟩, ⟨T, i⃗⟩), for i⃗ ∈ domhST . Therefore, the mapping
UnN⃗ + vn is an upper approximation of c. When the linear part of the mapping is non-zero
(Un ̸= 0), then the mapping cannot be expressed as a constant function for any parameter.
Therefore, we cannot conclude for non-localizability. We can only conclude when Un = 0⃗ that
all the dependences are localizable, with a constant c upper bounded by vn.

Definition 4.2.2 (Array localizability) An array is localizable if and only if all the depen-
dences that use this array are localizable. In that case, their maximum localizability constant is
the localizability constant of the array.

Definition 4.2.3 (Array tight localizability) An array is tightly localizable if and only if all
the dependences that use this array are tightly localizable with the same constant c. In that case,
c is the localizability constant of the array.

Example (cont’d) Consider the buffer s1 from the Blur filter example 2.2 introduced in
Chapter 2. The tiling is ϕP (i, j) = ϕC(i, j) = (j, i). Its only direct dependence is hCC(i, j) =
(i − 1, j) whenever 3 ≤ i < N, 0 ≤ j < N . Since ϕ2C(i, j) − ϕ2C(hCC(i, j)) = i − (i − 1) = 1,
hCC is tighly localizable, so is s1. This property is depicted in Figure 4.2. In the remainder of
this section, we show that there is only the need for a constant set of operations to compute the
modulo mappings. In general, this set of operations is exactly the yellow area, since DPN have
a slicing schedule (here θP (i, j) = (i, j, 0), θC(i, j) = (i, j, 1)).

i

j

0

1

2

3

4

0 1 2 3 4

s1

s1

c = 1

Figure 4.2: Localizability analysis: systolization buffer s1

44 CHAPTER 4. CANONICAL ARRAY CONTRACTION

First, we prove that, on single assignment programs, the smallest sequence of operations
required to compute a conflict set is executed between the source and the target of a critical
dependence.

Lemma 4.2.1 (Critical dependence) Consider a single assignment program with a single
producer statement P and a single consumer statement C, and a schedule θ. There exists a
direct dependence ⟨P, i⃗⟩ →flow ⟨C, j⃗⟩ such that:

footprint(A) ≤ card{⟨P, k⃗⟩ | ⟨P, i⃗⟩ ⪯θ ⟨P, k⃗⟩ ≺θ ⟨C, j⃗⟩}

This direct dependence is called a critical dependence.

Proof. Since the program is single assignement, each array cell is written once. Hence, to
simplify the presentation, a write w can be bound to the array cell written. w is alive until its
last read r – note the direct dependence w →flow r. Meanwhile, all array cells w′ written in the
time interval [θ(w), θ(r)] are conflicting with w: w′ ▷◁ w.

The footprint(A) is reached at some time step t0. Consider the maximum live interval
[θ(w), θ(r)] (in terms of cardinality) such that t0 ∈ [θ(w), θ(r)]. Let W be the set of array cells
conflicting at t0: by hypothesis cardW = footprint(A) and w ∈W .

• Any w′ ∈W is executed before r. Otherwise it would not conflict with w.

• Any w′ ∈W is executed after w. Otherwise, that would contradicts the maximality of the
interval [θ(w), θ(r)].

Hence, any write of W is executed in the time interval [θ(w), θ(r)].
Therefore, footprint(A) = cardW is smaller that the volume of writes in the interval [θ(w), θ(r)].
□

Example (cont’d) On our example, footprint(s1) = 4 – it is realised with the mapping
(i, j) 7→ j mod 4. A critical dependence could be ⟨C, 2, 0⟩ →flow ⟨C, 3, 0⟩, and the corresponding
set of writes {⟨C, 2, 0⟩, ⟨C, 2, 1⟩, ⟨C, 2, 2⟩, ⟨C, 2, 3⟩}, whose cardinal is exactly footprint(s1).

The next step is to prove that, on localizable buffers under the DPN partitioning, a critical
dependence crosses a finite number of tiles. Since the tiles have a constant volume, they can be
used as the minimal set of operations to compute the conflicts and the mapping.

Theorem 4.2.2 (Constant mapping) If A is localizable, then footprint(A) is constant on the
DPN partitioning scheme with constant tile size b⃗. Furthermore, the maximum number of tiles
reached by a critical dependence is ⌊ c

bn
⌋+2, with c the localizability constant of A and bn the tile

size in the last tiling direction.

Proof.

• By the program being in DPN form, there exists an unique producer P and a consumer C
such that the array A is entirely written by P and entirely read by C.

4.2. LOCALIZABILITY 45

• Since DPN has the dynamic single assignment property, by the previous lemma, there
exists some direct dependence ⟨P, hPC (⃗i)⟩ → ⟨C, i⃗⟩ such that

footprint(A) ≤ card{⟨P, j⃗⟩ | ⟨P, hPC (⃗i)⟩ ⪯ ⟨P, j⃗⟩ ≺ ⟨C, i⃗⟩}

Since A is localizable, there exists a constant c such that ϕnC (⃗i)− ϕnP (hPC (⃗i)) ≤ c for any
i⃗ ∈ domhPC where n is the number of tiling hyperplanes. Hence ϕnC (⃗i) ≤ ϕnP (hPC (⃗i)) + c.
With bn the tile size along the last hyperplane, Tn

P the last tile counter of ⟨P, hPC (⃗i)⟩ and
Tn
C the last tile counter of ⟨C, i⃗⟩, we have:

Tn
C = ⌊ϕ

n
C (⃗i)
bn
⌋ ≤ ⌊ϕ

n
P (hPC (⃗i))+c

bn
⌋

= ⌊ϕ
n
P (hPC (⃗i)

bn
+ c

bn
⌋

≤ ⌊ϕ
n
P (hPC (⃗i)

bn
⌋+ ⌊ c

bn
⌋+ 1

= Tn
P + ⌊ c

bn
⌋+ 1

The DPN ensures that ⟨P, hPC (⃗i)⟩ and ⟨C, i⃗⟩ belong to the same tile band. Hence the
number of tiles reached by the critical dependence ⟨P, hPC (⃗i)⟩ →flow ⟨C, i⃗⟩ is bounded by
⌊ c
bn
⌋ + 2. Since the tile size is constant, there is a constant number of iterations between

⟨P, hPC (⃗i)⟩ and ⟨C, i⃗⟩. Hence card{⟨P, j⃗⟩ | ⟨P, hPC (⃗i)⟩ ⪯ ⟨P, j⃗⟩ ≺ ⟨C, i⃗⟩} is constant, and
therefore footprint(A) is constant. □

Example (cont’d) Consider the critical dependence instance ⟨C, 2, 0⟩ →flow ⟨C, 3, 0⟩. The
iterations conflicting with ⟨C, 2, 0⟩ are included in the yellow region, whose volume (c+1)×4 = 8
is constant. Hence, the footprint is constant. Note that, depending on the schedule, conflicting
iterations may go outside of that region. For instance, that would be the case for an intra-
tile schedule (i, j) 7→ (i + j, j). However, conflicting iterations are confined into 2 + ⌊c/bn⌋ =
2 + ⌊1/4⌋ = 2 consecutive tiles (in a band) at most, whose volume is constant by hypothesis.

The direct consequence of this theorem is that a constant mapping is possible and correct
for a program in DPN partitioning with constant tile size.

Corollary 4.2.3 Let A a localizable array. Then on the DPN partitioning scheme, there exists
a correct σA with constant moduli.

Checking array localizability

To check the localizability of a buffer, we propose the algorithm 3, which essentially verifies the
constraints of definition 4.2.1. The algorithm is able to check the tight localizability (resulting in
(tighly_localizable,c)) and, otherwise, the localizability in the general meaning (resulting
in (localizable,c)).

For each direct dependence, Φ describes the set of differences δ between the last tile of the des-
tination and the source (line 4). The actual set of δ is extracted thanks to a projection (5). Then

46 CHAPTER 4. CANONICAL ARRAY CONTRACTION

we check the constraints of definition 4.2.1 to conclude. When all the dependences are tightly lo-
calizable with the same constant c (line 20), the algorithm concludes (tighly_localizable,c).
Otherwise (lines 8 and 12) the algorithm expects localizable dependences. When the set of δ is
unbounded (line 15), the algorithm can directly conclude that the buffer is not localizable.

Algorithm 3: IsLocalizable
Data: Buffer to allocate A, Tiling ϕ
Result: (localizable,c) or (tighly_localizable,c) with the localizability constant

c, no if A is not localizable
1 begin
2 c := 0
3 foreach direct dependence hST held by A do
4 Ψ :=

(
δ = ϕlastT (⃗i)− ϕlastS (hST (⃗i)) ∧ i⃗ ∈ domhST

)

5 Φ := project(Ψ, {δ})
6 if Φ has only constraints δ = c′ for some constant c′ then
7 c := max{c, c′}
8 if not first iteration and c ̸= c′ then
9 tight := false

10 end
11 else
12 if Φ has a constraint δ ≤ c′ for some constant c′ then
13 c := max {c,min{c′ | δ ≤ c′ is a constraint of Φ}}
14 tight := false

15 else
16 return no
17 end
18 end
19 end
20 if tight then
21 return tightly_localizable(c)
22 else
23 return localizable(c)
24 end
25 end

Example (cont’d) Consider the buffer s1 for the DPN implementing Blur filter with the
tiling ϕP (i, j) = ϕC(i, j) = (j, i). Its direct dependence function is hCC(i, j) = (i− 1, j) for any
3 ≤ i < N, 0 ≤ j < N . Applying our algorithm, we have:

Ψ := (δ = ϕC(i, j)− ϕC(hCC(i, j))) ∧ 3 ≤ i < N ∧ 0 ≤ j < N

4.3. θ-UNIFORMITY 47

Since ϕ2C(i, j)− ϕ2C(hCC(i, j)) = i− (i− 1) = 1, this simplifies to:

Ψ := (δ = 1) ∧ 3 ≤ i < N ∧ 0 ≤ j < N

And then: Φ = {δ | δ = 1}, hence we deduce that the buffer s1 is tightly localizable with
localizability constant c = 1.

As it will discussed later in Section 4.5.2, most polybench kernels lead to DPN with tightly
localizable buffers with a small localizability constant. Hence, localizability is not an actual
limitation.

4.3 θ-uniformity

When a buffer is localizable, it is sufficient to consider the execution trace between the source
tile and the target tile of a critical dependence s →flow t to compute the mapping. In this
section, we present an additional constraint on the dependences to ease the location of a critical
dependence, and thereby find the right trace.

Consider the direct dependence depicted on Figure 4.3.(a). Producer and consumer are
instances of the same statement, with tiling ϕ(i, j) = (j, i) and intra tile schedule θ(i, j) = (i, j)
and direct dependences (i, j)→flow (i+ 1, j + i) for any valid iterations (i, j) and (i+ 1, j + i).
The dependence is tighly localizable with c = ϕ2(i+ 1, j + i)− ϕ2(i, j) = i+ 1− i = 1. In that
case, a critical dependence is only reached from the second to the third tile (denoted by the bold
arrow). Hence one can consider an execution trace with N ≥ 4 to compute a correct mapping.
Since the dependence distance changes while moving along the direction of the tile band, one
should evaluate and maximize the dependence distance to find the critical dependence. To avoid
that situation, one may consider a simplified program model where dependences are invariant
by translation along the direction of the tile band. This way, focusing only on the first full tiles
only will be correct for parameter selection.

First, we need to define the tile band direction. On the previous example, it is the vector
β⃗ = (1, 0). In general, one has to deal with non-perfect loop nests where some statements may
have a dimension lower than the tiling itself. Hence, we rely on the following result:

Theorem 4.3.1 (Tile band direction) Consider a tiling ϕS (⃗i) = AS i⃗ + BSN⃗ + c⃗ of depth n
and A′

S the matrix with the n − 1 first lines of AS. Then, there exists β⃗S such that the vector
right Rβ⃗S is the solution of A′

S i⃗ = 0. β⃗S is called a tile band direction of ϕS.

Proof. Note that by construction of the tiling ϕS , AS has exactly dimDS linearly independant
line vectors. When removing the last line of AS , this either removes one of those vectors (case 1:
rgA′

S = dimDS − 1) or not (case 2: rgA′
S = dimDS). Applying the rank theorem to i⃗ 7→ A′

S i⃗,
we have: dimDS = rgA′

S + dimkerA′
S (*).

• Case 1: (*) leads to dimDS = dimDS − 1 + dimkerA′
S , hence dimkerA′

S = 1. Let β⃗S be
a basis of kerA′

S , then: kerA′
S = Rβ⃗S .

• Case 2: (*) leads to dimDS = dimDS+dimkerA′
S , hence dimkerA′

S = 0. Hence kerA′
S =

{⃗0} and then: β⃗S = 0⃗. □

48 CHAPTER 4. CANONICAL ARRAY CONTRACTION

i

j

0

1

2

3

0 1 2 3 4

c = 1

i

i

j

0

1

2

3

0 1 2 3 4

0 1 2 3 4

c = 1 i

i

j

0

1

2

3

0 1 2

0 1 2

c = 1

(a) Non θ-uniform (b) θ-uniform (c) θ-uniform

Figure 4.3: Locating the critical dependence

Note that case 2 can only arise on statements S whose iteration dimension dimDS is strictly less
than the tiling dimension n. Typically, those are the initilization statements before a reduction,
for instance C[i][j] = 0 in the matrix product.

Example (cont’d)

• Consider Figure 4.3.(a). The unique statement has a fully dimensional tiling ϕ(i, j) = (j, i).
Hence its tile band direction satisfies j = 0, generated by β⃗ = (1, 0).

• Example (b). We have two statements P (the one-dimension producer) and C (the two-
dimensional consumer) with ϕP (i) = (0, i) and ϕC(i, j) = (j, i). The tile band direction for
ϕP satisfies 0 = 0, hence β⃗P = (1). Note that we are on a degenerate version of case 1, the
“linearly independent” dimension i was removed. The tile band direction for ϕC satisfies
j = 0, hence β⃗C = (1, 0).

• Example (c). Again, we have two statements P (the one-dimension producer) and C (the
two-dimensional consumer) with ϕP (i) = (i, 0) and ϕC(i, j) = (i, j). The tile band direction
for ϕP satisfies i = 0, hence β⃗P = (0). Now, it is a degenerate version of case 2: the “linearly
independant” dimension i was kept. The tile band direction for ϕC satisfies i = 0, hence
β⃗C = (0, 1).

Since we consider non-perfect loop nests, there is no straightforward notion of dependence
vector. However, all the operations are plunged into the same set of execution dates throught
the scheduling function θ. Hence the idea to consider the difference of execution dates between
the target and the source of a direct dependence.

4.3. θ-UNIFORMITY 49

Definition 4.3.1 (θ-dependence function) Consider a scheduling function θ and a direct de-
pendence ⟨P, hPC (⃗i)⟩ →flow ⟨C, i⃗⟩. The associated θ-dependence function is defined as ∆θPC (⃗i) =
θC (⃗i)− θP (hPC (⃗i)).

The execution dates are assumed to have the same dimension. In practice, we can always enforce
this property by padding execution dates with 0s.

Example (cont’d)

• Example (a) has the intra tile schedule θ(i, j) = (i, j) and direct dependence (i, j) →flow

(i+1, j+ i). Hence ∆θ(i, j) = (i+1, j+ i)− (i, j) = (1, i): when going forward in the band
direction β⃗S = (1, 0), i increases, and so does ∆θ(i, j). Our goal is to avoid that situation
by enforcing a constant vector when moving along the tile band direction.

• Example (b) has the intra-tile schedule θP (i) = (i, 0) and θC(i, j) = (i, j + 1) and the
dependence ⟨P, i− 1⟩ →flow ⟨C, i, j⟩. Hence ∆θPC(i, j) = (i, j+1)− (i− 1, 0) = (1, j+1).
When moving in the tile band direction βC = (1, 0), ∆θPC stays constant: we have the
same dependence pattern along the tile band.

• Example (c) has the intra-tile schedule θP (i) = (0, i) and θC(i, j) = (j, i+1) and the direct
dependence ⟨P, i⟩ →flow ⟨C, i, 0⟩. Hence ∆θPC(i, j) = (0, i+ 1)− (0, i) = (0, 1). This is a
constant vector, which will then stays constant along the tile band.

A dependence is θ-uniform if it does not change when moving on the tile band direction:

Definition 4.3.2 (θ-uniform dependence) Consider a direct dependence d, its θ-dependence
function ∆θPC , and the tile band direction β⃗C . The dependence is θ-uniform if for any valid
target iteration i⃗,

∆θPC (⃗i) = ∆θPC (⃗i+ β⃗C)

Note that uniform dependences are θ-uniform. Indeed, a uniform dependence has a constant
∆θPC , in particular ∆θPC (⃗i) = ∆θPC (⃗i + β⃗C). On our main motivating example, the direct
dependence for the buffer s1 is uniform (with vector (1, 0)), hence it is θ-uniform.

Finally, we extend θ-uniformity to arrays, as for localizability:

Definition 4.3.3 (θ-uniform buffer) A buffer A is θ-uniform if and only if all the direct de-
pendences held by A are θ-uniform.

When a buffer is θ-uniform, there is a finite dependence pattern repeating along the tile band
direction. Hence, the trace only needs to contain the first instance of that dependence pattern.
To enforce critical dependences, this first instance should be made of full tiles. This will be the
purpose of the parameter selection algorithm presented in section 4.4.2.

Note that θ-uniformity does not imply localizability. Consider for instance the degenerate
case of a single dependence d = ⟨P, hPC (⃗i0)⟩ →flow ⟨C, i⃗0⟩ from the first tile to the last tile of tile
band. domhPC is restricted to a single point i⃗0. Hence aff domhPC = {⃗i0} and β⃗C ̸ ↑ domhPC

which makes the dependence θ-uniform. However, it is not localizable as ϕnC (⃗i0) − ϕnP (hPC (⃗i0)

50 CHAPTER 4. CANONICAL ARRAY CONTRACTION

is a width of the iteration domain which may be parametrized, hence it is not bounded by a
constant c.

However localizability and θ-uniformity seem to imply tight-localizability. In the following,
we will consider tightly localizable and θ-uniform buffers. Again, as it will be discussed in
Section 4.5.2, most Polybench kernels are compiled to DPNs whose buffers have those properties.
Hence, it is not an actual limitation.

Checking θ-uniformity

We give an easy-to-check sufficient condition for the θ-uniformity of a dependence, which is used
in Algorithm 4.

First, if no valid iterations i⃗ and i⃗+ β⃗C exists in domhPC , we may immediatly conclude that
the dependence is θ-uniform – indeed, the dependence is not used along the tile band. For having
i⃗ and i⃗ + β⃗C in domhPC , it is sufficient to have β⃗C as a line of aff domhPC , the affine hull of
domhPC (obtained by keeping only the equalities of domhPC). Let us write {⃗i | A⃗i+BN⃗+ c⃗ = 0}
the equalities of domhPC . It is sufficient to have Aβ⃗C = 0. In our algorithm, this test is written
as β⃗C ↑ domhPC (line 3).

If the test fails, we can conclude that the dependence is θ-uniform. Otherwise, we still need
to check that ∆θPC (⃗i) = ∆θPC (⃗i + β⃗C) for any i⃗, i⃗ + β⃗C ∈ domhPC . Generally, ∆θPC is an
affine mapping i⃗ 7→ APC i⃗+BPCN⃗ + c⃗PC . Hence, we need to check that APC i⃗+BPCN⃗ + c⃗PC =
APC (⃗i+ β⃗C) +BPCN⃗ + c⃗PC , which simplifies to APC β⃗C = 0 or lin∆θPC(β⃗C) = 0 (line 5).

Algorithm 4: IsThetaUniform

Data: Buffer to allocate A, Tiling ϕ, Tile band direction (per statement) β⃗
Result: Is A θ-uniform? (yes or no)

1 begin
2 foreach direct dependence hPC held by A do
3 if β⃗C ↑ domhPC then
4 Set ∆θPC (⃗i) := θC (⃗i)− θP (hPC (⃗i))

5 if lin∆θPC(β⃗C) ̸= 0 then
6 return no
7 end
8 end
9 end

10 return yes
11 end

Example (cont’d)

• Example (a). We have domhPC = {(i, j) | 0 ≤ i, j < N}, hence aff domhPC = {(i, j) | true}
and β⃗C = (1, 0) ↑ domhPC . Also, lin∆θPC(i, j) = (0, i).

4.4. TRACE-BASED ARRAY CONTRACTION 51

Hence APC β⃗C =

(
0 0
1 0

)(
1
0

)
=

(
0
1

)
̸=

(
0
0

)
. Hence the dependence is not

θ-uniform.

• Example (b). Again, domhPC = {(i, j) | 0 ≤ i, j < N}, hence aff domhPC = {(i, j) | true}
and β⃗C = (1, 0) ↑ domhPC . Also, lin∆θPC(i, j) = (0, j).

Hence APC β⃗C =

(
0 0
0 1

)(
1
0

)
=

(
0
0

)
. Hence the dependence is θ-uniform.

• Example (c). domhPC = {(i, j) | 0 ≤ i < N, j = 0}, hence aff domhPC = {(i, j) |j = 0}
and β⃗C = (0, 1) ̸↑ domhPC – the check yields 1 = 0; the dependence does not go along the
tile band. Hence, we can conclude that the dependence is θ-uniform.

4.4 Trace-based Array Contraction

In this section, we present our algorithm to infer a correct buffer allocation using execution
traces. We first outline our algorithm, then we detail the steps.

4.4.1 Overview

DPN(1)

DPN(p)

Localizability
θ-uniformity

Trace Selection

Trace Generation

Buffer Allocation

buffer

σbuffer

cbuffer

~N0

Trace(~N0)

Figure 4.4: Overview of our approach

Our approach is summarized on Figure 4.4. First, localizability analysis (Algorithm 3)
and θ-uniformity analysis (Algorithm 4) are applied to the non-parallelized version of the DPN
(DPN(1)) to reduce the cost of our approach. Indeed, each buffer bk of DPN(p) (DPN(1) par-
allelized with a factor p) solves a subset of direct dependences solved by a buffer b of DPN(1).
If a set of dependence instances is localizable (resp. θ-uniform), then any subset will share this
property. Hence, the localizability and the θ-uniformity of b with ensure those of bk.

Then, for each buffer of DPN(p), we compute the minimal parameters required to produce
an execution trace of sufficient size to infer a correct buffer allocation (Trace selection, Section
4.4.2). Then, we generate the trace. In particular, we will show the refinements to operate solely

52 CHAPTER 4. CANONICAL ARRAY CONTRACTION

on the relevant parts of the trace (Section 4.4.3). Finally, we will present our array contraction
algorithm that analyses this trace (Section 4.4.4).

4.4.2 Trace Selection

For each buffer, we select an execution trace (with parameters value N⃗) which makes possible
to infer a correct mapping, while being as small as possible to ensure the efficiency of the whole
process. To ensure the correctness, this execution trace must contain a critical dependence
(Lemma 4.2.1).

Since the buffer is localizable, Theorem 4.2.2 ensures the existence of such a trace and predicts
that it will cross at most ⌊ c

bn
⌋+2 consecutive tiles of a tile band, with c the localizability constant

of the buffer and bn the tile size in the last tiling direction. We enforce that number of tiles to 2
by assuming a tile size bn ≥ c+1. Since DPN have a slicing schedule, the mapping obtained this
way will be correct for any greater bn.

We assume θ-uniform buffers solving direct dependences generated by a single dependence
function hPC , and that dependence instances from full tiles to full tiles exists when the program
parameters are big enough. In practice, most buffers satisfy this property. Under these condi-
tions, there exists a critical dependence starting from the first full tile reached by a producer
instance:

Theorem 4.4.1 (Parameter selection) Consider a θ-uniform DPN buffer resolving only de-
pendences d(⃗i) = ⟨P, hPC (⃗i)⟩ →flow ⟨C, i⃗⟩, for any i⃗ ∈ domhPC . If d has an instance from a
full tile to a full tile for program parameters big enough, Then, there exists a critical dependence
instance ⟨P, hPC (⃗i0)⟩ →flow ⟨C, i⃗0⟩ such that ⟨P, hPC (⃗i0)⟩ belongs to the first full tile reached by
the producer operations P = {⟨P, hPC (⃗i)⟩ | i⃗ ∈ domhPC}.

Proof. Since the critical dependence d0 = ⟨P, hPC (⃗i0)⟩ →flow ⟨C, i⃗0⟩ is θ-uniform, we can
translate it to the dependence d′0 = ⟨P, hPC (⃗i0 + k.β⃗C)⟩ →flow ⟨C, i⃗0 + k.β⃗C⟩, i.e. into any full
tile covered by domhPC that shares the same schedule difference. Hence, the volume of writes
between the source and the target of d′0 is at least the same as for d0, and d′0 is also critical. In
particular, we can choose a translation so that ⟨P, hPC (⃗i0 + k.β⃗C)⟩ belongs to the first full tile
reached by the producer operations P = {⟨P, hPC (⃗i)⟩ | i⃗ ∈ domhPC}. □

Hence, our algorithm 5 selects the minimum parameter value so that any direct dependence
has at least one instance from a full tile to a full tile. Since inter-tile dependences have a depen-
dence distance greater or equal than intra-tile dependence, we impose that these dependences
cross a tile whenever possible (line 3). If not, we consider intra-tile dependence instances (line
4). Since critical dependences cover at most 2 tiles (bn ≥ c + 1, see above), we are sure to
reach a critical dependence. If not, there is no dependence instance from a full tile to a full tile.
Hence the hypothesis of Theorem 4.4.1 are not fulfilled and we conservatively fail (line 6). In
that case, the buffer will not be contracted with our method. Finally, we keep the minimum
feasible parameters N⃗ (line 10). Note that the set of feasible parameters Φ is usually a quadrant
(constraints N1 ≥ v1, . . . Nk ≥, vk). In that case, min≪ might be extracted syntactically from
the constraints. Otherwise, we rely on integer linear programming.

4.4. TRACE-BASED ARRAY CONTRACTION 53

Algorithm 5: GetParameters
Data: Buffer to contract A, dependence function hPC , Tiling ϕ
Result: Parameter instance N⃗0, fail if the hypothesis of Theorem 4.4.1 are not satisfied

1 begin
2 Ψ := i⃗ ∈ domhPC ∧TP = tileP (hPC (⃗i))∧TC = tileC (⃗i)∧ fulltileP (TP)∧ fulltileC(TC)
3 Φ := project(Ψ ∧ Tn

P < Tn
C , N⃗)

4 if Φ = ∅ then
5 Φ := project(Ψ ∧ Tn

P = Tn
C , N⃗)

6 if Φ = ∅ then
7 return fail
8 end
9 end

10 N⃗0 := min≪Φ

11 return N⃗0

12 end

Example (cont’d) In the remainder, we get back to the example of the buffer s1, illustrated on
Figure 4.2. The direct dependence function is hCC(i, j) = (i−1, j) for any 3 ≤ i < N, 0 ≤ j < N .
Writing TC = (TC1 , TC2) the source tile (with ⟨C, i − 1, j⟩) and T ′

C = (T ′
C1
, T ′

C2
) the target tile

(with ⟨C, i, j⟩), the constraints TC = tileC(hCC (⃗i)) ∧ T ′
C = tileC (⃗i) are:

4TC1 ≤ j < 4(TC1 + 1), 4TC2 ≤ i− 1 < 4(TC2 + 1),
4T ′

C1
≤ j < 4(T ′

C1
+ 1), 4T ′

C2
≤ i < 4(T ′

C2
+ 1)

The full tile constraints fulltileC(TC) ∧ fulltileC(T
′
C) are:

4TC1 ≤ N − 4, TC1 ≥ 0, 4TC2 ≤ N − 4, TC2 ≥ 1,
4T ′

C1
≤ N − 4, T ′

C1
≥ 0, 4T ′

C2
≤ N − 4, T ′

C2
≥ 1

In particular, the first tile (0, 0) is not full. Hence:

Ψ :=

(TC1 , TC2 , T
′
C1
, T ′

C2
, i, j) | 3 ≤ i < N, 0 ≤ j < N,

4TC1 ≤ j < 4(TC1 + 1), 4TC2 ≤ i− 1 < 4(TC2 + 1),
4T ′

C1
≤ j < 4(T ′

C1
+ 1), 4T ′

C2
≤ i < 4(T ′

C2
+ 1),

4TC1 ≤ N − 4, TC1 ≥ 0, 4TC2 ≤ N − 4, TC2 ≥ 1,
4T ′

C1
≤ N − 4, T ′

C1
≥ 0, 4T ′

C2
≤ N − 4, T ′

C2
≥ 1

Then, we get: Φ = project(Ψ ∧ TC2 < T ′
C2
, N) = {N | N ≥ 12} and finally: N0 = min≪Φ = 12,

which covers 3× 3 tiles. Since the critical dependence is already in the tile (1, 0), it would have
been sufficient to choose N = 8. However, our algorithm conservatively assumes that the critical
dependence could hold between two consecutive tiles and choose N = 12.

54 CHAPTER 4. CANONICAL ARRAY CONTRACTION

4.4.3 Fast Trace generation

A trace is an application T : t 7→ (W (t), R(t)) mapping each execution date t (obtained from the
scheduling function) to a set of array cells written W (t) and a set of array cells reads R(t) such
that, at date t, we execute the reads R(t) in parallel, and then the writes W (t) in parallel. The
trace will be used in section 4.4.4 to compute the liveness information of arrays cells, and then
the mapping.

We generate the trace using the algorithm 7. Given a program P , with a schedule affine per
statement θ and a parameter binding σ, mapping each program parameter to a constant value,
the trace is generated separately for each statement (line 4). In turn, Algorithm 6 generates
the trace recursively for each statement. For each iteration of the enclosing loop (line 9), the
iterations of the inner loops are recursively generated. The current enclosing iteration vector
is stored in the binding σ, mapping loop counters to their current values. Whenever the inner
statement is reached (line 2), there is an operation ⟨S, i⃗⟩, where i⃗ is obtained from σ. In that
case, the algorithm returns an elementary trace t 7→ (W (t), R(t)) where t = θS (⃗i), W (t) is the
singleton with the array cell written by ⟨S, i⃗⟩ and R(t) is the set of array cells read by ⟨S, i⃗⟩.
For each recursive call, the traces obtained recursively are fused using an union operator ⊔ such
that T ⊔ T ′(t) = (W (t) ∪W ′(t), R(t) ∪ R′(t)) if T (t) = (W (t), R(t)) and T ′(t) = (W ′(t), R′(t)).
If some T (t) is not defined, T ⊔ T ′(t) = T ′(t). If some T ′(t) is not defined, T ⊔ T ′(t) = T (t).
Thanks to the trace structure, the actual interpretation order of the operations does not matter,
as they would be reordered anyway.

Algorithm 6: tracegen_stmt
Data: Statement S, Iteration domain DS , Scheduling function θS , counter and

parameter binding σS
Result: Trace TS

1 begin
2 if σS binds all counters of DS then
3 return entry(TS , S,DS , σS , θS)

4 else
5 TS := ∅
6 Let i be the next loop counter enclosing S, not assigned in σS
7 ℓ := max{c ∈ Z | i ≥ c is a constraint of D′

S}
8 u := min{c ∈ Z | i ≤ c is a constraint of D′

S}
9 for ivalue = ℓ to u do

10 σ′S := σS [i 7→ ivalue]
11 TS := TS ⊔ tracegen_stmt(S, σS(DS), θS , σS)

12 end
13 return TS
14 end
15 end

Note that this algorithm works providing the iteration domains DS are row-echelon: the
constraints involving a counter c must only use counters from enclosing loops. Otherwise, the

4.4. TRACE-BASED ARRAY CONTRACTION 55

Algorithm 7: tracegen
Data: Program P , Scheduling function θ, parameter binding σ
Result: Trace TP

1 begin
2 T := ∅
3 foreach Statement S of P do
4 T := T ⊔ tracegen_stmt(S, σ(DS), θS , σ)
5 end
6 return T

7 end

loop bounds ℓ and u (line 9) would not evaluate to integers. Usually, this happens when the
constraints are directly extracted from a loop nest.

Handling loop tiling

In general, the iteration domains for tiled programs are not row echelon, as tile counters are
usually defined with additional constraints.

On the example of the s1 buffer, the tiled iteration domain is D = {(T1, T2, i, j) | 2 ≤ i <
N, 0 ≤ j < N, 4T1 ≤ j < 4(T1 + 1), 4T2 ≤ i < 4(T2 + 1)}, and the enclosing counters are
T1, T2, i, j, in that order. Hence T1 is expected to not depend on any counter, T2 to depend on
T1 at most, i to depend on T1, T2 at most and j to depend on T1, T2, i; which is not the case
with the constraints of D.

Hence, we apply the algorithm 8, inspired from the Ancourt & Irigoin code generation method
[10]. For each counter, the algorithm uses a projection to keep only constraints with enclosing
counters (line 5), ensuring a row-echelon form.

Algorithm 8: ToRowEchelon
Data: Iteration domain DS , list of nesting counters ℓC
Result: Row-echelon domain RS

1 begin
2 foreach counter i of ℓC in reverse order do
3 RS := RS ∪ {constraints of DS involving i}
4 ℓC := ℓC \ i
5 DS := proj(DS , ℓc)

6 end
7 return RS

8 end

Example (cont’d) On the example, we obtain the following constraints. At the first iteration
(j counter), we filter the constraints 4T1 ≤ j < 4(T1 + 1), 0 ≤ j < N .

56 CHAPTER 4. CANONICAL ARRAY CONTRACTION

• At next iteration (counter i), projecting on (T1, T2, i) and filtering the constraints with i
yields: 4T2 ≤ i < 4(T2 + 1), 2 ≤ i < N .

• At next iteration (counter T2), projecting on (T1, T2) and filtering the constraints with T2
yields: T2 ≥ 0, 4T2 < N .

• At next iteration (counter T1), projecting on T1 and filtering the constraints with T1 yields:
T1 ≥ 0, 4T1 < N .

Finally, the equivalent row-echelon domain is:
{

(T1, T2, i, j) | T1 ≥ 0, 4T1 < N,T2 ≥ 0, 4T2 < N, 4T2 ≤ i < 4(T2 + 1), 2 ≤ i < N,
4T1 ≤ j < 4(T1 + 1), 0 ≤ j < N

}

Generally, the original non-tile domain (i, j) is already in row-echelon. Hence, we just need to
process the tile counters.

Prune useless operations

Finally, the algorithm is slightly modified to stop once the first two consecutive full tiles are
reached, which is the relevant execution trace according to Theorem 4.4.1. We just need to
play with the full tile predicate fulltileS(T) (examplified in Section 4.4.2) for each statement S
(producer and consumer) to detect that situation. Operations prior to these full tiles are kept
in the trace.

Example (cont’d) For sizing s1, we build a producer/consumer program summarizing the
writes and the reads to s1 with the same schedule (θC(T1, T2, i, j) = (T1, T2, i, j)). With N = 12,
the two first consecutive full tiles are (T1, T2) ∈ {(0, 1), (0, 2)}. Hence the trace is made of read
and write access for the operations {⟨C, i, j⟩ | 2 ≤ i < 12, 0 ≤ j < 4}. The first trace entries are:

Timestamp t W (t) R(t)

(0,1,2,0) {s1[2, 0]} ∅
(0,1,2,1) {s1[2, 1]} ∅
(0,1,2,2) {s1[2, 2]} ∅
(0,1,2,3) {s1[2, 3]} ∅
(0,1,3,0) {s1[3, 0]} {s1[2, 0]}
(0,1,3,1) {s1[3, 1]} {s1[2, 1]}
(0,1,3,2) {s1[3, 2]} {s1[2, 2]}
(0,1,3,3) {s1[3, 3]} {s1[2, 3]}
.

Note that these first trace iterations already reach a critical dependence through s1[2, 0], for
instance.

4.4. TRACE-BASED ARRAY CONTRACTION 57

4.4.4 Trace buffer allocation

Conflict set Array contraction relies on conflict set ∆a, obtained from a conflict relation ▷◁:
∆a = {⃗i − j⃗ | a[⃗i] ▷◁ a[⃗j]}. On a trace, we can simply apply the classical liveness analysis, by
considering each array access as a separate location. For each trace entry t 7→ (W (t), R(t)), we
have: {

In(t) = (Out(t) ∪R(t)) \W (t)
Out(t) = In(t+ 1) if t+ 1 is a trace entry

We implemented set operations with bit sets to accelerate the computation. Then, a[⃗i] ▷◁
a[⃗j] ⇐⇒ a[⃗i], a[⃗j] ∈ In(t) for some t. Finally, we deduce the conflict set ∆a by computing
i⃗− j⃗ for each pair of conflicting array cells.

On our example, we have the following liveness. To simplify the presentation, the array cell
s1[i, j] is denoted ij.

Timestamp t W (t) R(t) In(t)

(0,1,2,0) {s1[2, 0]} ∅ ∅
(0,1,2,1) {s1[2, 1]} ∅ {20}
(0,1,2,2) {s1[2, 2]} ∅ {20, 21}
(0,1,2,3) {s1[2, 3]} ∅ {20, 21, 22}
(0,1,3,0) {s1[3, 0]} {s1[2, 0]} {20, 21, 22, 23}
(0,1,3,1) {s1[3, 1]} {s1[2, 1]} {21, 22, 23, 30}
(0,1,3,2) {s1[3, 2]} {s1[2, 2]} {22, 23, 30, 31}
(0,1,3,3) {s1[3, 3]} {s1[2, 3]} {23, 30, 31, 32}
.

This leads to the conflict set depicted in Figure 2.9.(b). For instance, the verticals points with
δi = 0 might be obtained from the differences of conflicting cells of In(0, 1, 3, 0) = {20, 21, 22, 23}.
The vertical points with δi = 1 might be obtained from the differences of conflicting cells of
In(0, 1, 3, 3) = {23, 30, 31, 32}.

Array contraction Once ∆a is obtained, we can derive a mapping by applying a trace version
of the successive modulo algorithm. Algorithm 9 presents the whole method. After computing
∆A as a finite set of points (line 4), we apply our trace version of the successive modulo algorithm
(line 5). Since ∆A is no longer a polyhedron, the modulo b⃗k are simply computed by iterating
on the points of ∆A. In our example, we obtain the mapping (i, j) 7→ (i mod 2, j mod 4). As
stated in the background chapter, the footprint (maximum number of conflicting cells at any
timestamp, which is 4 here) shows this result is not optimal (2× 4 > 4) and might be improved
by extending our approach to linear mapping. This will be the purpose of the next chapter. All
the steps of this algorithm are linear in the trace size |T |, except the computation of ∆A (line 4),
which is in O(|T |2). As we will see in the experiments, this will dominate the execution time of
our approach.

58 CHAPTER 4. CANONICAL ARRAY CONTRACTION

Algorithm 9: GetConstantMapping
Data: Array to contract A, execution trace T
Result: Constant mapping i⃗ 7→ i⃗ mod b⃗

1 begin
2 (In,Out) := liveness(T)
3 ▷◁ :=

⋃
t
{(A[⃗i], A[⃗j]) | A[⃗i], A[⃗j] ∈ In(t)}

4 ∆A := {⃗i− j⃗ | A[⃗i] ▷◁ A[⃗j]}
5 for each array dimension k in increasing order do
6 b⃗k ← 1 + max{δ⃗k | δ⃗ ∈ ∆A, δ⃗ℓ = 0 for 0 ≤ ℓ < k}
7 end
8 return i⃗ 7→ i⃗ mod b⃗

9 end

4.5 Experimental Validation

This section presents the experimental validation of our method as a buffer allocator into an HLS
tool. We first show that most of benchmark kernels fit our program restrictions (localizability
and θ-uniformity), (Section 4.5.2). Then, we demonstrate the scalability of our approach on a
real-life HLS process (Section 4.5.3).

4.5.1 Setup

We have applied our algorithm to allocate the buffers of the DPNs produced from the kernels of
the Polybench benchmarks [51]. The setup is summarized in Figure 4.5. We have implemented
our algorithm as a tool named PoLa, which represents 5637 lines of C++ code. Each DPN is
produced using the Dcc compiler [7] with a parallelization factor of 64. Then, for each DPN
buffer, Dcc feeds PoLa with a producer/consumer program summarizing the writes and reads to
the buffer. In turn, PoLa analyses this program and yields the allocation (depicted as σbuffer).

Polybenchs Dcc PoLa
C kernel

buffer P/C

σbuffer

Figure 4.5: Experimental setup

Baseline The baseline is the original parametrized successive modulo algorithm (Baseline) and
the non-parametrized relaxed successive modulo (Relaxed baseline) presented in Section 2.2.2.
Relaxed baseline assumes parameters in the interval I = [4, 4096]. When parameters are outside
of this interval, the relaxed algorithm does not come with any guarantee, which is quite limitating.

4.5. EXPERIMENTAL VALIDATION 59

On all the examples, I happens to contain the minimum parameter value ensuring, thanks to
our study, correct constant mappings for any program parameters.

The timings were measured on a PC with an Intel core i9-10885H CPU 2.40GHz with 64GB
of DDR memory. All the timings are measured in seconds.

4.5.2 Applicability

Our method expects each DPN buffer to be tightly localizable and θ-uniform. Using Algorithms
3 and 4, we checked these properties on the DPN obtained from the Polybenchs kernels. As
mentioned in Section 4.4.1, we consider DPNs with a parallelization factor of 1 for these checks.
The results are summarized on Table 4.7. For each kernel, we check if it is fully tileable (Tileable).
In other words, if there exists an affine tiling without cuts. This is a prerequisite to produce a
DPN. If a kernel is not fully tileable, it is not considered. Then, we provide the results for tight
localizability (Tightly Localizable) with the maximum localizability constant obtained among
all the buffers (Localizability constant). Finally, we check for θ-uniformity of all the buffers
(θ-uniform). We added an entry for the Blur filter discussed throughout this chapter (blur).

We observe that most Polybench kernels are tightly-localizable. Among the non-tightly
localizable kernels, none are localizable. Hence, there wasn’t any non-tightly localizable but
localizable kernel. Also, the localizability constant is usually 1. This is because most dependences
are either reduction dependences (from an iteration to the next, following the last hyperplane)
or initialization dependences (as on Figure 4.3.(c)). Note the exception of stencils, where the
last tiling hyperplane is slanted and leads to a localizability constant ≥ 2. Finally, we note that
most of the tightly localizable kernels are also θ-uniform, with the exception of lu and trisolv. In
both cases, this is due to a broadcast dependence, spreading a value across the computation. For
instance, Figure 4.6 depicts the trisolve kernel (a) and the faulty dependences (b). The tiling is

1 for (i = 0; i < N; i++)
2 {
3 R: x[i] = b[i];
4 for (j = 0; j <i; j++)
5 S: x[i] = x[i] - L[i][j] * x[j];
6 T: x[i] = x[i] / L[i][i];
7 }

i

i

j

0

1

2

3

0 1 2 3 4

0 1 2 3 4

(a) Kernel (b) Broadcast Dependences

Figure 4.6: Trisolve is not θ-uniform

ϕR(i) = (i, 0), ϕS(i, j) = (i, j), ϕT (i) = (i, i), the tile band direction is βS = (0, 1) and the intra-
tile schedule is θR(i) = (i, 0, 0), θS(i, j) = (i, j, 1), θT (i) = (i, i, 1). The dependence broadcasting
the value of x[i] computed by ⟨T, i⟩ is ⟨T, i⟩ →flow ⟨S, i′, i⟩ whenever i < i′ < N . Hence

60 CHAPTER 4. CANONICAL ARRAY CONTRACTION

∆θTS(i
′, i) = θS(i

′, i) − θT (i) = (i′ − i, 0, 0). In particular, lin θTS(βS) = (−1, 0, 0) ̸= (0, 0, 0),
hence the dependence is not θ-uniform.

Out of eligible kernels (both tightly-localizable and θ-uniform), dcc failed to compile a par-
allelized DPN for fdtd-2d, gesummv, heat-3d, symm and trmm. Hence, we will focus on the
remaining kernels: bicg, gemm, jacobi-1d, jacobi-2d, mvt, seidel-2d, syr2k and syrk. We also add
the blur filter blur to our benchmarks.

Kernel Tileable Localizable Localizability constant θ-uniform

2mmYES NO

3mm NO

adi YES FAIL

atax NO

bicg YES PASSED 1 PASSED

cholesky YES FAIL

doitgen NO

durbin NO FAIL

fdtd-2d YES PASSED 1 PASSED

gemm YES PASSED 1 PASSED

gemver NO

gesummv YES PASSED 1 PASSED

gramschmidt NO

heat-3d YES PASSED 2 PASSED

jacobi-1d YES PASSED 2 PASSED

jacobi-2d YES PASSED 2 PASSED

lu YES PASSED 1 FAIL

ludcmp NO

mvt YES PASSED 1 PASSED

seidel-2d YES PASSED 2 PASSED

symm YES PASSED 1 PASSED

syr2k YES PASSED 1 PASSED

syrk YES PASSED 1 PASSED

trisolv YES PASSED 1 FAIL

trmm YES PASSED 1 PASSED

Figure 4.7: Kernel eligibility statistics

4.5.3 Scalability

Figure 4.8 (a) and (b) depicts the scalability analysis of our approach. For each kernel, we
compare the cumulative runtime (in seconds) of buffer allocation using our approach (blue bar in

4.5. EXPERIMENTAL VALIDATION 61

Kernel Tile size
bicg (64b, 2)
blur (64b, 2)
gemm (8b, 8b, 2)
jacobi-1d (64b, 3)
jacobi-2d (8b, 8b, 3)
mvt (64b, 2)
seidel-2d (8b, 8b, 3)
syr2k (8b, 8b, 2)
syrk (8b, 8b, 2)

Table 4.1: Tile sizes for the scalability analysis

(a), Column Pola in (b)), relaxed successive modulo (orange bar in (a), Column Relaxed baseline
in (b)) and the original successive modulo (Column Baseline in (b)). We provide the speedups
Relaxed baseline / Pola (first Column Speed-up in (b)) and Baseline / Pola (second Column
Speed-up in (b)). Different tile sizes were tested, as specified in Table 4.1. For instance, on the
bicg kernel, we tested tile sizes (64b, 2) for b = 4 and b = 8. On the gemm kernel, we tested tile
sizes (8b, 8b, 2) for b = 4, 8, 16, 32. Since the parallelization factor is 64, the kernel is split into
processes operating on sub tiles of size (b, 2) for bicg and (b, b, 2) for gemm. Note that the inner
tile size is set to c+ 1 with c the maximum localizability constant, as discussed in Section 4.4.2.
For instance, on blur the maximum localizability constant is c = 1 (Table 4.7), hence the inner
tile size is 1 + 1 = 2. As discussed, the mappings obtained this way are correct for any larger
inner tile size, since DPN have a slicing schedule.

We select b as a power of 2 and we report all the results such that speed-up is observed
compared to the baseline. For instance, for bicg, the maximum tile size resulting in a speedup is
(64× b, 2) with b = 8, hence (512, 2).

As anticipated, the successive modulo method does not scale at all. In particular for 2D
stencils jacobi-2d and seidel-2d, where the time limit of 2h30m was reached. This simply means
that, by itself, this method is not suitable for large scale buffer allocation. Compared to relaxed
sucessive modulo, we achieve an O(10) speedup in most cases. This demonstrates that, on
Polybench kernels, not only our method scales, but it is better than the relaxed scalable version
of successive modulo.

Figure 4.9 depicts the timings step-by-step (b) and the normalized timings (a). Column
Parameters gives the parameters selected to generate the execution trace, Column Trace provides
the cumulative trace size, Column Buffers gives the number of buffers to allocate, Columns Pola
and Baseline give the cumulative execution time of our approach and the baseline and Column
Speed-up gives the ratio Baseline / Pola.

Our method significantly reduces the time of buffer allocation, the most spectacular speed-
ups being obtained on the gemm kernel. For tile size with b = 4, the execution time is reduced by
one order of magnitude. Unsurprisingly, the execution time increases with the number of buffers
to allocate (e.g. jacobi-2d and seidel-2d) and the tile size. Indeed, the bigger the tile size is, the

62 CHAPTER 4. CANONICAL ARRAY CONTRACTION

bigger the execution trace will be, hence the resulting execution time.
When the tile size increases, the execution time is dominated by the liveness analysis, followed

by trace generation. For instance, on gemm, for smaller tile size, the trace generation (green)
dominates. Then, the bigger is the tile size, the more liveness analysis (blue) dominates. This
is explained by the complexity of trace generation and liveness analysis. Trace generation is
linear in the trace size. Liveness analysis by itself (Algorithm 9, line 2) is linear in the trace
size. However, the difference set computation (line 4) is linear in the size of the conflict relation,
whose size is quadratic in the trace size, as we deal with dynamic single assignment programs.

4.6 Conclusion

In this chapter, we have shown how a non-scalable buffer allocation algorithm might be rephrased
with a scalable trace analysis producing the same result. Specifically, we proposed a complete
correct-by-construction trace-based algorithm to allocate DPN buffers. We prove the correctness
of our algorithm under specific program hypothesis, for the buffers shall be both localizable and
θ-uniform. Finally, we validate our approach on the Polybench benchmark suite. In particular,
we show that our program hypothesis cover most of the polybench kernels. We demonstrate that
the scalability of our algorithm for allocating channels of large-scale parallel circuits. This shows
the effectiveness of the Polytrace methodology for producing scalable polyhedral compilers.

Our work may be improved in many directions. First, the experimental results show that the
execution time is dominated by the computation of the difference set ∆a, whose complexity is
quadratic in the trace size. The scalability might be further improved by optimizing that part.
The current version iterates on all the couples (⃗i, j⃗) such that a[⃗i] ▷◁ a[⃗j] to compute the set of
i⃗ − j⃗. This leads to build all the points of ∆a, while we just need the vertices. Also, ∆a is 0-
symmetric, hence, only half of its vertices need to be computed. Focusing on the computation of
those vertices would reduce drastically the overall complexity. The time spent for trace generation
is the second hot spot after liveness analysis. So far, we generate the trace for two consecutive
tiles to be sure that a critical dependence is reached (Theorem 4.4.1). Refining the location of a
critical dependence would reduce further the execution trace, hence the trace generation time.

4.6. CONCLUSION 63

4 8 4 8 2 4 8 16 32 4 8 4 4 8 4 4 8 4 8

0

5

10

15

20

25

30

bicg blur gemm jacobi-1d jacobi-2d mvt seidel-2d syrk syr2k

216.9 250.7
58.0

370.0

T
im

in
g

pola Baseline

(a) Comparison with relaxed successive modulo

Kernel b Pola Relaxed Baseline Speed-up Baseline Speed-up

bicg 4 2.11 19.81 9.3 48 22
8 6.49 19.46 2.9 51 7.8

blur 4 0.91 8.31 9 54.9 60
8 3.89 10.26 2.6 58.7 15

gemm

4 0.92 13.97 15 227 244
8 1.47 17.51 12 237 161
16 2.93 15.39 5.2 224 76
32 10.29 13.07 1.2 253 24

jacobi-1d 4 4.35 26.54 6 23m51 329
jacobi-2d 4 216.94 250.68 1.15 >2h30m >43

mvt 4 1.73 5.46 3.1 63.8 36
8 6.16 6.83 1.1 64.8 10

seidel-2d 4 58.07 370.02 6.3 >2h30m >155

syrk 4 1.66 19.29 11.5 358 214
8 14.42 18.96 1.3 460 31

syr2k 4 1.86 18.85 10 358 191
8 15.52 19.12 1.2 460 29

(b) Detailed timings (seconds)

Figure 4.8: Scalability analysis. Baseline: Successive modulo, Relaxed baseline: relaxed succes-
sive modulo (Section 2.2.2)

64 CHAPTER 4. CANONICAL ARRAY CONTRACTION

(a) Normalized

Kernel b Parameters Trace Buffers Parameter
selection

Trace
generation

Liveness
analysis

Successive
modulo

Total

bicg 4 (M,N) = (256, 256) 5120 391 0.64 0.72 0.52 0.22 2.11
8 (M,N) = (512, 512) 10240 391 0.65 1.03 3.89 0.91 6.49

blur 4 N = 256 6144 260 0.15 0.25 0.37 0.11 0.91
8 N = 512 12288 260 0.15 0.39 2.88 0.45 3.89

gemm

4 (NI,NJ,NK) = (32, 32, 4) 8192 198 0.26 0.60 0.05 0.00 0.92
8 (NI,NJ,NK) = (64, 32, 4) 16384 198 0.27 1.01 0.16 0.01 1.47
16 (NI,NJ,NK) = (128, 32, 4) 32768 198 0.28 1.86 0.75 0.02 2.93
32 (NI,NJ,NK) = (256, 32, 4) 65536 198 0.33 4.33 5.54 0.07 10.29

jacobi-1d 4 (T,N) = (256, 516) 9972 958 1.02 0.88 1.21 0.86 4.35
jacobi-2d 4 (T,N) = (32, 97) 59910 2786 5.25 11.08 83.40 114.99 216.94

mvt 4 N = 256 4096 262 0.33 0.66 0.51 0.22 1.73
8 N = 512 8192 262 0.33 1.02 3.88 0.91 6.16

seidel-2d 4 (T,N) = (32, 67) 51781 2230 3.54 11.31 17.23 21.89 58.07

syrk 4 (M,N) = (4, 64) 12224 197 0.24 0.92 0.37 0.12 1.66
8 (M,N) = (4, 128) 40320 197 0.32 3.23 9.57 1.29 14.42

syr2k 4 (M,N) = (4, 64) 12224 198 0.26 1.07 0.39 0.13 1.86
8 (M,N) = (4, 128) 40320 198 0.28 3.31 10.54 1.38 15.52

(b) Detailed timings (seconds)

Figure 4.9: Step-by-step analysis of our approach

Chapter 5

Linear Array Contraction

In this chapter, we take a different approach to memory sizing by focusing on linear mappings σ :
i⃗ 7→ A⃗i+ b⃗ with parametrized modulos b⃗. Compared to canonical mappings, linear mappings may
reduce the footprint by a constant factor. Also parametrized modulo makes possible to apply the
contribution of this chapter beyond the DPN context. As discussed in Chapter 3, there are many
approaches to compute a linear mapping. However, unlike the successive modulos, specializing
these algorithms on an execution trace and generalizing each trace result to a mapping working
for any execution trace is quite challenging. Hence, we will not attempt to provide a trace
specialization. Instead, we will exploit traces to derive the array liveness and we improve [13] to
derive a linear allocation using ILP problems with less constraints and variables.

We start by presenting the program model on which our algorithm operates (Section 5.3).
This class of programs is totally unimodular programs, with quasi-uniform dependences and
schedule. This is not that restrictive, as most Polybench kernels fit in the category. However,
tiled programs do not fit directly and would need an additional postprocessing left to future work.
For instance, they might be considered if a finite subset of tiles could be processed separetely to
allocate the buffers.

Then, we show how a correct array liveness analysis might be derived from a small number of
execution traces. For each trace, a conflict polyhedron is retrieved. Then we rely on a widening
operator ∇, to extrapolate trace-level conflict polyhedra to a generalized conflict polyhedron
(Section 5.4). Because our goal is to reconstruct a generalized mapping for any parameter
N⃗ ≥ N⃗0, we want to infer a general pattern from a sequence of traces. This widening operator ∇
realises just that, by keeping only the relevant constraints. The key point is the correctness of the
widening operator, whose proofs are presented in Section 5.3. Also, we present a pure polyhedral
algorithm to derive a linear allocation (Section 5.5). Mainly, we reformulate the ideas of [13]
to reduce the complexity of the ILP problems incurred. Finally, we present the experimental
validation of our contributions (Section 5.6).

65

66 CHAPTER 5. LINEAR ARRAY CONTRACTION

5.1 Outline

Consider again the Blur filter depicted on Figure 5.1 and presented in Chapter 2.

1 for(i=0; i<N; i++)
2 for(j=0; j<N; j++) {
3 blurx[i][j] = in[i][j] +
4 in[i][j+1] + in[i][j+2];
5 if(i>=2)
6 out[i][j] = blurx[i-2][j] +
7 blurx[i-1][j] + blurx[i][j];
8 } i

j

0

1

2

3

N − 1 = 4

0 1 2 3 4

(a) Kernel (b) Liveness

Figure 5.1: Blur filter

Liveness analysis Using the methodology described in Chapter 4, we run several instances of
Blur filter, e.g. for N = 3 and N = 4, and we end up with the conflict sets depicted on Figure
5.2. Observe that constraints depending on a parameter −N < δj < N are changing from N = 3
to N = 4 while the others constraints are kept. This way, constraints depending on a parameter
might be detected. Hence, we may extrapolate the conflict sets using a widening operator ∇
removing all the constraints depending on a parameter. This way, we obtain a conflict set correct
for any program parameter consisting of three conflict polyhedra: ∇ (∆blurx(3),∆blurx(4)) =
∆̂blurx,1 ∪ ∆̂blurx,2 ∪ ∆̂blurx,3 where:

∆̂blurx,1 = {(δi, δj) | δi = −2, 0 ≤ δj}
∆̂blurx,2 = {(δi, δj) | − 1 ≤ δi ≤ 1}
∆̂blurx,3 = {(δi, δj) | δi = 2, δj ≤ 0}

Note that the conflict set does not have to be monotonic (N⃗ ≤ N⃗ ′ implies ∆a(N⃗) ⊆ ∆(N⃗ ′)) to
ensure the correctness of the widening. The only important point is to be able to detect and
remove parametrized constraints from a few traces. This will be discussed in Section 5.2 and
Section 5.3.

Finally, we apply a narrowing on the conflict set to enforce closed polyhedra (and then finite
modulos):

∆a,1 = {(δi, δj) | δi = −2, 0 ≤ δj < N}
∆a,2 = {(δi, δj) | − 1 ≤ δi ≤ 1,−N < δj < N}
∆a,3 = {(δi, δj) | δi = 2,−N < δj ≤ 0}

Our widening operator detects and removes constraints c(N⃗) ≥ 0 depending on program
parameters. The challenge is to detect them from several non-parametrized conflict sets, e.g.

5.1. OUTLINE 67

δi

δj

-2

-1

0

1

2

-2 -1 0 1 2

(a) ∆blurx(3)

δi

δj

-3

-2

-1

0

1

2

3

-2 -1 0 1 2

(b) ∆blurx(4)

Figure 5.2: Blur filter: Conflict polyhedron instances for blurx

∆blurx(3) and ∆blurx(4). At first glance, the parametric constraints are the moving constraints
fromN = 3 toN = 4. The next problem is, how to make sure that non-moving constraints do not
depend on a parameter? In general, this strongly depends on the selection of parameter values.
For instance, when ∆(N⃗) = {i | 0 ≤ 2i ≤ N}, N = 0 and N = 1 will give the same polyhedron
{0, 1}. This choice of parameter does not succeed to detect the constraint 2i ≤ N . Multiple
parameters might also be an issue: when ∆(M,N) = {i | 0 ≤ i ≤M −N}, (M,N) = (1, 1) and
(M,N) = (2, 2) would give the same constraints.

Hence, the tricky step is to build a set of parameter instances (parameter selection) N such
that, for any constraint c(N⃗) ≥ 0 of ∆(N⃗) depending on N⃗ , there exists N⃗0, N⃗1 ∈ N such that
c(N⃗0) ̸= c(N⃗1). In other words, N must allow for detecting parametric constraints.

In general, the parameter selection N depends on the conflict set’s constraints shape, which in
turn depends on the program (iteration domains, array access function, scheduling function). We
show that under suitable restrictions, we can guarantee the correctness of our widening operator.
Finally, we show how to select the proper values of parameters.

Linear mappings We show how to compute near-optimal linear mappings σ with a limited
amount of variables and constraints. On the Blur example, we obtain the mapping σblurx(i, j) =
−i + 2j mod 2N + 1. Our method exploits the analogies conflict sets ↔ dependences, linear
mappings ↔ schedule, modulo ↔ latency and rephrase the ideas of affine scheduling for the
inferrence of array mappings, in the same way as [14] on conflict relations. The main advantage

68 CHAPTER 5. LINEAR ARRAY CONTRACTION

compared to [14] is a smaller number of constraints and variables.
The remainder of this chapter is structured as follows. Section 5.2 outlines the program

restrictions considered in this chapter. Then, Section 5.3 proves that under these restrictions,
the widening extrapolation is correct. Section 5.4 details our approach to compute array liveness
with a such a widening operator. Section 5.5 presents an afficient algorithm to compute a
linear mapping on the resulting conflict polyhedra. Finally, Section 5.6 presents an experimental
validation of all our contributions.

δi

δj

-3

-2

-1

0

1

2

N − 1

-2 -1 0 1 2

(a) Before Splitting

δi

δj

-3

-2

-1

0

1

2

N − 1

-2 -1 0 1 2

−i+ 2j mod 2N + 1

(b) After splitting

Figure 5.3: Blur filter: Conflict polyhedron

5.2 Program Model

This section outlines the program restrictions of our approach: the program is assumed to be
totally unimodular (Definition 5.2.3) and the dependences and the schedule are assumed to be
quasi-uniform (Definitions 5.2.5 and 5.2.6).

Definition 5.2.1 (Unimodular, totally unimodular) A matrix A is said to be unimodular
if and only if | detA| = 1. A is said to be totally unimodular if and only if any square non-
singular submatrix of A is unimodular.

Totally unimodular matrices play an important role in ILP to ensure that the vertices of a
simplex has integer coordinates, hence that the solution of a rational linear program are the same

5.2. PROGRAM MODEL 69

than the corresponding integer linear program. This notion allows us to get rid of the cases like
{i | 2i ≤ N} – which are not suitable because the rational vertice N/2 is not integer for any N .
A sufficient condition for a matrix A to be totally unimodular, which will be used in the proofs
of section 5.3, is the following:

• All the elements are either unit or null, i.e. −1, 0 or 1.

• Each line has at most two non-null elements.

• For each line with two non-null elements, the non-null elements have an opposite sign.

Note that this is a specialization of Hoffman’s sufficient condition. The actual condition covers
more cases (where two line elements can share the same sign), but that specialization is sufficient
for our purposes. We now inject this notion in the world of programs:

Definition 5.2.2 (Totally unimodular polyhedron) A convex parametric polyhedron P (N⃗) =
{⃗i | A⃗i+BN⃗ + c⃗ ≥ 0} is totally unimodular if and only if A is totally unimodular.

Definition 5.2.3 (Totally unimodular program) A program is totally unimodular if and
only if all its iteration domains are totally unimodular.

Totally unimodular programs are the focus of this chapter. Any static control program with
for loops with step 1 or -1, whose bounds depends on parameters (any affine form) and counters
(at most one counter with a coefficient 1) and whose conditions involved at most two counters
with opposite signs (in the same equation side) is totally unimodular. Note that this definition
is not very restrictive. For instance, all the Polybench kernels [51] are totally unimodular.

We assume the schedules to be quasi-uniform:

Definition 5.2.4 (Quasi-uniform matrix) A matrix A is quasi-uniform if and only if each
line has at most one non-null element and this non-null element is equal to 1.

This includes compositions of projections, permutations and translations, which are very common
in affine scheduling. However this excludes loop skewing. This restriction fits the sufficient
conditions above for total unimodularity. We now inject this notion in the world of schedules:

Definition 5.2.5 (Quasi-uniform schedule) A schedule θ(⃗i) = A⃗i + BN⃗ + c⃗ is said to be
quasi-uniform if and only if A is quasi-uniform.

On totally unimodular program, this means for loops must have a unit step.
Finally, we also expect direct dependences to be quasi-uniform.

Definition 5.2.6 (Quasi-uniform direct dependence) A direct dependence piece hS (⃗i) =
A⃗i + BN⃗ + c⃗ ∀⃗i ∈ D is said to be quasi-uniform if A is quasi-uniform. A direct dependence
function is quasi-uniform if and only if all its pieces are quasi-uniform.

To summarize, we expect the program to be totally unimodular, and both schedules and direct
dependences to be quasi-uniform. All the polybench kernels satisfy in these constraints, except
durbin (array access y[k-i-1] results in non-quasi-uniform dependence), ludcmp (for i loop

70 CHAPTER 5. LINEAR ARRAY CONTRACTION

with step -1) and adi (array access p[i][N-3-j+1] results in non-quasi-uniform dependence).
The classical definition of loop tiling, however, does not fit these constraints. To apply our
method to tiled programs, tiles should be outlined in functions, then the contraction should be
applied to functions separately. This extension is not addressed in this chapter and is left for
future work.

5.3 Correctness

Consider a parametrized polyhedron ∆a(N⃗) = {x⃗ | Ax⃗+BN⃗ + c⃗ ≥ 0}. When instanciating the
parameter with some N⃗0 and N⃗0 + δ⃗, both polyhedron instances will keep the same linear part
A. The only changing part will be the constant part, incremented by Bδ in ∆k(N⃗0 + δ⃗):

∆a(N⃗0) = {x⃗ | Ax⃗+BN⃗0 + c⃗ ≥ 0}
∆a(N⃗0 + δ⃗) = {x⃗ | Ax⃗+BN⃗0 + c⃗+Bδ⃗ ≥ 0}

In this section, we show that, when the program is totally unimodular and all dependences
and schedule are quasi-uniform, all the liveness constraints ∆a involving the i-th parameter N⃗i

will have a different constant part, when instantiated on N⃗0 and some N⃗0 + δ⃗. This will ensure
the correctness of our widening operator.

Lemma 5.3.1 (Total unimodularity of liveness constraints) If P is totally unimodular,
dependences are quasi-uniform, and θ is quasi-uniform, then the conflict relation is a union of

polyhedra ▷◁ (N⃗) =
⋃d

i=1{x⃗ |∃y⃗ : Ai

(
x⃗
y⃗

)
+BiN⃗ +ci ≥ 0} where each Ai is totally unimodular.

Proof. By definition, we have:

▷◁ (N⃗) := {⃗i, j⃗ | ∃⃗iC , j⃗C : i⃗, j⃗ ∈ DP ∧ i⃗C , j⃗C ∈ DC : i⃗ ≺θ j⃗C ∧ j⃗ ≺θ i⃗C ∧ hPC (⃗iC) = i⃗ ∧ hPC (⃗jC) = j⃗}

This union comes from the expansion of ≺θ in the ordering constraints:
▷◁ (N⃗) :=

⋃
k,ℓ {⃗i, j⃗ | ∃⃗iC , j⃗C : i⃗, j⃗ ∈ DP ∧ i⃗C , j⃗C ∈ DC : i⃗≺k

θ j⃗C ∧ j⃗≺ℓ
θ i⃗C ∧ hPC (⃗iC) = i⃗ ∧ hPC (⃗jC) = j⃗}

From now, consider a term ▷◁k,ℓ in this union.
Assuming:

• DP = {⃗i | AP i⃗+BP N⃗ + c⃗P ≥ 0}

• DC = {⃗i | AC i⃗+BCN⃗ + c⃗C ≥ 0}

• θP (⃗i) = TP i⃗+ UP N⃗ + v⃗P

• θC (⃗i) = TC i⃗+ UCN⃗ + v⃗C

• hPC (⃗i) = Q⃗i+ r

5.3. CORRECTNESS 71

▷◁k,ℓ is defined by constraints A
(
x⃗
y⃗

)
+ BN⃗ + c⃗ ≥ 0, x⃗ = (⃗i, j⃗), y⃗ = (⃗iC , j⃗C), with (each line

block correspond to a constraint):

A =

i⃗ j⃗ i⃗C j⃗C
AP

AP

AC

AC

−TP TC
T ′
P −T ′

C

−TP TC
T ′′
P −T ′′

C

−Id Q
Id −Q

−Id Q
Id −Q

Where T ′
P , T

′′
P are submatrices (k first lines) of TP and T ′

C , T
′′
C are submatrices (ℓ first lines)

of TC encoding the equalities in the first terms of the lexicographic ordering (≺k
θ , ≺ℓ

θ).
By hypothesis, all the elements are either −1, 0 or 1. Each line has at most two non-null

elements, and for each line with two non-null elements, the non-null elements have an opposite
sign. This is a sufficient condition for A to be totally unimodular. □

We now demonstrate the core result of this section: under these hypothesis, the difference
set ∆a(N⃗) have vertices defined by an affine mapping on program parameters N⃗ . This ensures
that when N⃗ is moving, the constraints depending on N⃗ are also moving (and then might be
detected by the widening). We first show the result on the conflict relation polyhedron:

Theorem 5.3.2 (Affine vertices, relation) Each vertice of ▷◁ (N⃗) is defined by an integer
affine mapping of N⃗ .

Proof. It is sufficient to show the property for ▷◁k,ℓ (N⃗) with arbitrary k, ℓ. From Lemma

5.3.1, ▷◁k,ℓ (N⃗) is defined by constraints: A

i⃗

j⃗

i⃗C
j⃗C

+BN⃗+ c⃗ ≥ 0, where A is totally unimodular

and i⃗C , j⃗C are existential variables. A vertice y⃗ is the solution of A′y⃗ +B′N⃗ + c⃗′ = 0, such that
A′y⃗ + B′N⃗ + c⃗′ ≥ 0 is a maximal subsystem of Ay⃗ + BN⃗ + c⃗ ≥ 0 and A′ is full row rank.
Since A is totally unimodular, A′ is totally unimodular and its columns (and y) can always be

permuted so A′ = [U V], with U unimodular. Writing y⃗ =

(
y⃗′

0

)
(where the 0s cover the

columns of V), we have: Uy⃗′ +B′N⃗ + c⃗′ = 0. Hence y′ = U−1(−B′N⃗ − c⃗′). The vertice is then:

y⃗ =

(
U−1(−B′N⃗ − c⃗′)

0

)
. Since U is unimodular, so is U−1. Hence U−1 has integer coefficients,

72 CHAPTER 5. LINEAR ARRAY CONTRACTION

hence the vertice is defined by the integer affine mapping: µ : N⃗ 7→
(
U−1(−B′N⃗ − c⃗′)

0

)
. The

vertices of ▷◁k,ℓ (N⃗) are obtained by keeping only the (⃗i, j⃗) coordinates, hence a subset of lines
of µ(N⃗), on which the result holds.

Finally, we can demonstrate the main result:

Theorem 5.3.3 (Affine vertices, delta) Each vertice of ∆(N⃗) is defined by an integer affine
mapping of N⃗ .

Proof. The conflict polyhedron ∆(N⃗) is the image of each (⃗i, j⃗) ∈ ▷◁ through the linear
mapping φ(⃗i, j⃗) = i⃗− j⃗:

∆(N⃗) = φ(▷◁ (N⃗)) =
⋃

k,ℓ

φ(▷◁k,ℓ (N⃗))

By convexity and linearity, the vertices of ∆(N⃗) are images through φ of (a subset of) vertices
from ▷◁ (N⃗). From theorem 5.3.2, each vertice µ of ▷◁ (N⃗) is an affine integer mapping of N⃗ , so
are vertices φ ◦ µ of ∆(N⃗). □

It follows that, if a vertice µ(N⃗) has a coordinate Di ·N⃗+ d⃗i depending on some N⃗j (Dij ̸= 0),
choosing a new parameter with the same coordinates – except for N⃗i, replaced by N⃗i+1 – would
cause the vertice to shift, hence all its neighboring faces. This way, that shift will cause all the
constraints depending on N⃗i to change. As discussed at the beginning of this section, the change
can only be the constant parts of the constraints. This is summarized in the following corollary:

Corollary 5.3.4 (Strict monotonicity) Let δ⃗i = (0, . . . 0, 1, 0 . . . 0) with |δ⃗i| = |N⃗ | and where
1 is in the ith coordinate. Then, the constraints ∆(N⃗) involving Ni occurs with a different
constant part in ∆(N⃗ + δ⃗i).

5.4 Liveness Extrapolation by Widening

This Section presents our array liveness algorithm using the widening apparatus. Section 5.4.1
presents our algorithm to select the parameter instances. Then, Section 5.4.2 shows how to use
the NLR algorithm [39] to retrieve the affine constraints for the different conflict set instances
obtained. Finally, Section 5.4 presents our widening algorithm for the extrapolation. A general
narrowing algorithm is also presented to bound the obtained conflict set.

5.4.1 Parameter Selection

We show how to select the first parameter instance, and how to derive the other required pa-
rameter instances thanks to Corollary 5.3.4.

5.4. LIVENESS EXTRAPOLATION BY WIDENING 73

Selecting the First Parameter We need to select value of parameters such that critical
dependences hold, as for canonical array contraction. For this purpose, it is sufficient to select
a value of N⃗0 so that each dependence edge has at least one instance using algorithm 10. For
each dependence (represented by a polyhedral set of instances ∆S,T), we retrieve the parameter
domain such that at least one instance exists (line 4). Finally, Φ contains the set of parameters
such that at least one instance of each dependence exists. It remains to output the smaller one
(line 6).

Algorithm 10: GetParameters
Data: Arrays to contract A, Direct dependence graph G
Result: Parameter instance N⃗0

1 begin
2 Φ := Universe
3 foreach dependence edge ∆S,T ∈ G solved through an array of A do
4 Φ := Φ ∩ project(∆S,T , N⃗)
5 end
6 return min≪Φ

7 end

Selecting the remaining parameters Following Corollary 5.3.4, constraints depending on
N⃗i will have different constant parts from ∆a(N⃗0) to ∆a(N⃗0 + δ⃗i). Hence, the set of parameters
N required to make the extrapolation is:

N = {N⃗0} ∪ {N⃗0 + δ⃗i | i ∈ J1, |N⃗0|K}

Example (cont’d) The dependence graph restricted to blurx accesses has 3 edges, from the
write of blurx[i][j] by some ⟨P, i, j⟩ to each of the 3 reads by ⟨C, i′, j′⟩: blurx[i′][j′] (edge 1),
blurx[i′− 1][j′] (edge 2), blurx[′i− 2][j′] (edge 3). All the 3 edges occurs when N − 1 is at least
2 from ⟨P, 0, 0⟩. Hence Φ = N ≥ 3 and N0 = 3. The set of parameters is then N = {3, 4}.

5.4.2 Infer Polyhedral Constraints from Traces

For each parameter set N⃗ ∈ N , we generate the program’s execution trace, then we compute a
liveness analysis from which we deduce a conflict set ∆a(N⃗) for each array a, as a finite set of
integer vectors. This is similar to our method in the previous chapter.

We use the NLR algorithm [39] to retrieve polyhedral constraints from ∆a(N⃗). We simply
interpret ∆a(N⃗) as an execution trace Ta(N⃗), where the points are ordered with the lexicographic
ordering. From that, NLR finds an equivalent polyhedral program generating Ta(N⃗), where each
statement S contains an affine function uS computing the trace entries. We modified NLR to
retrieve the polyhedral constraints of DS , the iteration domain of S. Then, we retrieved the
corresponding polyhedral domain with a simple projection:

PS := project({(⃗i, j⃗) | i⃗ ∈ DS , j⃗ = uS (⃗i)}, j⃗)

74 CHAPTER 5. LINEAR ARRAY CONTRACTION

Finally the polyhedral constraints expressing ∆a(N⃗) are:

∆a(N⃗) =
⋃

S statement
PS

Example (cont’d) The trace liveness analysis ends up with the set of points ∆blurx(3) and
∆blurx(4) depicted in Figure 5.4. NLR rephrases ∆blurx(3) and ∆blurx(4) as a program with
three statements, each statement iterating on a subset framed on the Figure 5.4. From that, we
infer: ∆blurx(3) = ∆blurx,1(3)∪∆blurx,2(3)∪∆blurx,2(3) and ∆blurx(4) = ∆blurx,1(4)∪∆blurx,2(4)∪
∆blurx,2(4) with:

∆blurx,1(3) = {(δi, δj) | δi = −2, 0 ≤ δj < 3}
∆blurx,1(4) = {(δi, δj) | δi = −2, 0 ≤ δj < 4}
∆blurx,2(3) = {(δi, δj) | − 1 ≤ δi ≤ 1,−3 < δj < 3}
∆blurx,2(4) = {(δi, δj) | − 1 ≤ δi ≤ 1,−4 < δj < 4}
∆blurx,3(3) = {(δi, δj) | δi = 2,−3 <δj ≤ 0}
∆blurx,3(4) = {(δi, δj) | δi = 2,−4 <δj ≤ 0}

Note that ∆blurx,ℓ(3) = {δ⃗ | Aℓδ⃗ + b⃗(3) ≥ 0} and ∆blurx,ℓ(4) = {δ⃗ | Aℓδ⃗ + b⃗(4) ≥ 0} for some
matrix Aℓ, ℓ = 1, 2, 3. The only moving part is the constant vector.

δi

δj

-2

-1

0

1

2

-2 -1 0 1 2

(a) ∆blurx(3)

δi

δj

-3

-2

-1

0

1

2

3

-2 -1 0 1 2

(b) ∆blurx(4)

Figure 5.4: Blur filter: Conflict polyhedron instances for blurx and NLR splitting

Note that the order in which the elements of ∆a(N⃗) are fed to the NLR algorithm is crucial,
because of its greedy nature. We found that the lexicographic ordering leads to expected results.

5.4. LIVENESS EXTRAPOLATION BY WIDENING 75

How to derive an ordering which allows to retrieve a minimal set of convex polyhedra is an open
problem.

Our widening method (described in the next section) expects the polyhedral constraints of
the different instances ∆a(N⃗) to only differ on the constant part for any N⃗ ∈ N :

∆a,ℓ(N⃗) = {δ⃗ | Aℓδ⃗ + bℓ(N⃗) ≥ 0} for any part ℓ

As discussed in the beginning of Section 5.3, this should always be the case. However, it can
happen that NLR does not succeed to find it. A possible issue is that NLR retrieves a loop
starting from three consecutive iterations. If N is too small, it is possible that that the loop
detection fails, which would end up with a big union of single point polyhedra, whereas the next
parameter N +1 would enable loop detection, giving proper polyhedra. To avoid that situation,
we heuristically add an NLR increment to the value of N⃗ found by the parameter selection
algorithm 10 to enforce loop detection. We found that an increment of 1 was sufficient on our
benchmarks. In particular, it covers the case of reduction dependences, whose distance is 1 and
which would led to select parameters covering only two iterations otherwise. Hence the actual
N used on our experiments for the Blur filter kernel is N = {4, 5} instead of {3, 4}.

5.4.3 Widening Algorithm

For each array a, we obtain a set of polyhedral constraints, that we assume to only differ on the
constant part:

∆a(N⃗) =
⋃

ℓ∈I
{δ⃗ | Aℓδ⃗ + bℓ(N⃗) ≥ 0} for any part ℓ

Where I is some finite indexing set. If it is not the case, our method simply fails.
The purpose of the widening is to find an extrapolation of the conflict polyhedra ∆a(N⃗),

for N⃗ ∈ N = {N⃗1, . . . , N⃗k}, denoted by ∇
(
∆a(N⃗1), . . . ,∆a(N⃗k)

)
, which is correct for any

parameter:
∆a(N⃗) ⊆ ∇

(
∆a(N⃗1), . . . ,∆a(N⃗k)

)
for any parameter N⃗ (5.1)

This way, ∇
(
∆a(N⃗1), . . . ,∆a(N⃗k)

)
could be used as a correct conflict set for array contraction

of a.
The main idea is to remove constraints depending on parameters. However, we need to

operate the constraints in such a way we can detect the presence of a parameter. From corollary
5.3.4, if some parameter is involved in a constraint Aℓ[i] · δ⃗ + cℓ(N⃗)[i] ≥ 0 (i-th constraint),
then ∃N⃗ , N⃗ ′ ∈ N , N⃗ ̸= N⃗ ′ such that cℓ(N⃗)[i] ̸= cℓ(N⃗

′)[i]. Hence, it is sufficient to remove the
constraints whose constant part has changed.

This is achieved by Algorithm 11: for each sub-polyhedra ℓ, the i-th constraint is kept only
if the constant part is the same for all the parameters of N (line 9).

76 CHAPTER 5. LINEAR ARRAY CONTRACTION

Algorithm 11: Widening

Data: Conflict polyhedra ∆(N⃗1), . . . ,∆(N⃗k)

Result: Widened polyhedron ∇
(
∆(N⃗1), . . . ,∆(N⃗k)

)

1 begin
2 Let ∆(N⃗p) =

⋃
ℓ∈I{δ⃗ | Aℓδ⃗ + b⃗ℓ(N⃗p)}, 1 ≤ p ≤ k

3 if ∆(N⃗p) cannot be written this way then
4 fail
5 end
6 Let sℓ be the number of lines of Aℓ

7 foreach ℓ ∈ I, 1 ≤ i ≤ sℓ do
8 if ∀p, q, 1 ≤ p ̸= q ≤ k: b⃗ℓ(N⃗p)[i] = b⃗ℓ(N⃗q)[i] then
9 Add constraint Aℓ[i] · δ⃗ + b⃗ℓ(N⃗p)[i] ≥ 0 to Φℓ

10 end
11 end
12 return

⋃
ℓ∈I Φℓ

13 end

Example (cont’d) We obtain the polyhedra ∆blurx(3) = ∆blurx,1(3)∪∆blurx,2(3)∪∆blurx,2(3)
and ∆blurx(4) = ∆blurx,1(4) ∪∆blurx,2(4) ∪∆blurx,2(4) with:

∆blurx,1(3) = {(δi, δj) | δi = −2, 0 ≤ δj < 4}
∆blurx,1(4) = {(δi, δj) | δi = −2, 0 ≤ δj < 5}
∆blurx,2(3) = {(δi, δj) | − 1 ≤ δi ≤ 1,−4 < δj < 4}
∆blurx,2(4) = {(δi, δj) | − 1 ≤ δi ≤ 1,−5 < δj < 5}
∆blurx,3(3) = {(δi, δj) | δi = 2,−4 <δj ≤ 0}
∆blurx,3(4) = {(δi, δj) | δi = 2,−5 <δj ≤ 0}

Recall that ∆blurx,ℓ(3) = {δ⃗ | Aℓδ⃗ + b⃗ℓ(3) ≥ 0} and ∆blurx,ℓ(4) = {δ⃗ | Aℓδ⃗ + b⃗ℓ(4) ≥ 0} for
some matrix Aℓ, ℓ ∈ I = {1, 2, 3}. The only changing part is the constant vector. Hence,
constraints for N = 3 and N = 4 might be paired together and our widening algorithm ap-
plies. Then, the widening removes the changing constraints, which results in the extrapolation
∇ (∆blurx(3),∆blurx(4)) = ∆̂blurx,1 ∪ ∆̂blurx,2 ∪ ∆̂blurx,3 where:

∆̂blurx,1 = {(δi, δj) | δi = −2, 0 ≤ δj}
∆̂blurx,2 = {(δi, δj) | − 1 ≤ δi ≤ 1}
∆̂blurx,3 = {(δi, δj) | δi = 2, δj ≤ 0}

5.4.4 Narrowing

The widening tends to make the polyhedra open, hence to create conflict vectors δ⃗ whose size can
be of any size. Array contraction requires conflict vectors with bounded sizes. As it is, ∆̂blurx

leads to an infinite modulo in the j direction.

5.5. LINEAR ALLOCATION 77

Remark that an array a has a fixed size M1× . . .×Md, where d is the dimension of a. Hence,
any cell (i1, . . . id) of a is such that 0 ≤ i1, . . . , id, i1 < M1, . . . , id < Md. Therefore, any conflict
vector is bounded, and we have:

Ca := −Mr < δir < Mr ∀0 ≤ r ≤ d

This way, ∆̂a shall be bounded by intersecting with Ca. By analogy with abstract interpretation,
we call that process narrowing. In the following, widening will take on a broader sense and refer
to widening followed by narrowing.

Example (cont’d) Remark that blurx has a bounded size N × N . Hence, any cell (i, j) of
blurx is such that 0 ≤ i, j < N . Therefore, −N < δi, δj < N . Hence, the conflict polyhedron
narrows the conflict polyhedron. In consequence, the constraints of ∆̂blurx are intersected with
Cblurx = {(δi, δj) | − N < δi < N,−N < δj < N} and we update the conflict polyhedron
∆̂a = ∆̂a,1 ∪ ∆̂a,2 ∪ ∆̂a,3, where:

∆̂a,1 = {(δi, δj) | δi = −2, 0 ≤ δj < N}
∆̂a,2 = {(δi, δj) | − 1 ≤ δi ≤ 1,−N < δj < N}
∆̂a,3 = {(δi, δj) | δi = 2,−N < δj ≤ 0}

5.5 Linear Allocation

This section describes our algorithm to derive a linear allocation σ(⃗i) =Mi⃗ mod b⃗ from a differ-
ence set ∆a. We built on the ideas of the SMO algorithm [14], that we rephrase to operate on
difference set ∆a rather than a conflict relation ▷◁. Experimentally, we demonstrate that it leads
to simpler constraints (as ∆ sets have about two times less constraints than conflict relations).
Hence, we believe that our approach is more likely to scale.

The algorithm proceeds similarly to greedy affine scheduling [31]. We compute each line
τ⃗k of M and each component b⃗k of b⃗ iteratively, starting from the first one k = 1. Then,
resolved conflicts are removed and we iterate on the next dimension. Each line is computed
with an ILP encoding the correctness and the efficiency of the mapping. Section 5.5.1 explains
the construction of the correctness constraints (conflict satisfaction). Section 5.5.2 explains how
to keep unsolved constraints for computing the subsequent dimensions. Finally, Section 5.5.3
explains how to encode the efficiency constraints (reducing the footprint).

5.5.1 Correctness

General Formulation

The mapping σ must be correct: any pair of conflicting array cells a(⃗i) ▷◁ a(⃗j) must be mapped
to different locations: σ(⃗i) ̸= σ(⃗j). Let δ⃗ ∈ ∆a \{0}. By definition, there exists some array index
i⃗ such that a(⃗i) ▷◁ a(⃗i + δ⃗). Since i⃗ ̸= i⃗ + δ⃗ (δ⃗ ̸= 0), we must have σ(⃗i) ̸= σ(⃗i + δ⃗). This means
that for some k we must have:

τ⃗k · i⃗ mod b⃗k ̸= τ⃗k · (⃗i+ δ⃗) mod b⃗k ∀δ⃗ ∈ ∆a \ {0} (5.2)

78 CHAPTER 5. LINEAR ARRAY CONTRACTION

We will first focus on finding a τ⃗k such that τ⃗k · i⃗ ̸= τ⃗k · (⃗i+ δ⃗), then we will show how to deduce
the modulo b⃗k in Section 5.5.3. By linearity, this might be rephrased as τ⃗k · δ⃗ ̸= 0, and we say
that τ⃗k satisfies δ⃗. Hence the following correctness constraint:

correct(τ⃗k) : for all δ⃗ ∈ ∆a \ {0} : τ⃗k · δ⃗ ̸= 0

Conflict Set Partitioning

Depending of the shape of ∆a and its dimension, it is possible that no solution exists: no τ⃗k
can satisfy all the δ⃗ ∈ ∆a at once. We choose to greedily satisfy as much constraints as possible
and to delay the satisfaction of unsatisfied δ⃗ to subsequent dimensions, just like greedy affine
scheduling. Hence the strategy to partition ∆a into sub-polyhedra ∆a = ∪ℓ∈I∆a,ℓ, that hold
the satisfaction granularity – either τ⃗k satisfies all δ⃗ of ∆a,ℓ for some ℓ ∈ I, or not. How to
make such a partitionning is still an open problem [14]. The partionning of the conflict relation
▷◁ induced by the lexicographic ordering constraints between two conflicting liveness intervals
▷◁= ∪k,ℓ ▷◁k,ℓ seems to provide a solution [14], but needs to be analyzed still. In this thesis, we
will refine the partioning induced by the NLR reconstruction : (∆a,ℓ)ℓ∈I . This leads to consider
the conjunction of the following constraints for ℓ ∈ I:

correct(τ⃗k, ℓ) : ∀δ⃗ ∈ ∆a,ℓ \ {0} : τ⃗k · δ⃗ ̸= 0 (5.3)

Each correct(τ⃗k, ℓ) will have its own decision variable, equal to 1 when satisfied and 0 when
not satisfied. This is described in the next section.

Partitionning strategy We need to write the constraints correct(τ⃗k, ℓ) for each ℓ ∈ I,
hence the trade-off:

• Find a partitionning of ∆a with a fine enough granularity to find an interesting mapping.
At worst, the trivial partition of singletons ∆a = ∪

δ⃗∈∆a
{δ⃗} (hence I = ∆a, ∆a,δ⃗

= {δ⃗})
will work for non-parameterized ∆a.

• Avoid too many partitions, which would increase the complexity of the final integer linear
program (there will be one constraint set per partition). Naturally, the trivial partition
would have a prohibitive cost (as many constraints correct(τ⃗k, ℓ)) as card I = card∆a)!

Since the conflict relation is symmetric, a[⃗i] ▷◁ a[⃗j] iff a[⃗j] ▷◁ a[⃗i]. By definition of ∆a, this
entails that: δ⃗ = i⃗− j⃗ ∈ ∆a ⇐⇒ −δ⃗ = j⃗ − i⃗ ∈ ∆a. Hence ∆a is 0-symmetric. In particular, if
τ⃗k satisfies δ⃗ (τ⃗k · δ⃗ ̸= 0), then τ⃗k also satisfies −δ⃗, as τ⃗k · −δ⃗ = −(τ⃗k · δ⃗) ̸= 0.

Hence, we will just consider the “positive half” of ∆a, using the lexicographic order:

∆+
a = ∆a ∩ {δ⃗ | δ⃗ ≫ 0}

Note that 0 is excluded from ∆+
a , as the correctness constraints are defined over ∆a \ {0} (Eq.

5.5.1). Solving τ⃗ over ∆+
a is sufficient to ensure the correctness, as stated by the following

theorem.

Theorem 5.5.1 If τ⃗ solves any δ⃗ ∈ ∆+
a , Then τ⃗ solves any δ⃗ ∈ ∆a \ {0}.

5.5. LINEAR ALLOCATION 79

Proof. First, note that ≪ is a total order, hence for any δ⃗ ̸= 0, either δ⃗ ≫ 0 or δ⃗ ≪ 0.
Hence, with ∆−

a = ∆a ∩ {δ⃗ | δ⃗ ≪ 0}, ∆−
a ∪ ∆+

a is a partition of ∆a \ {0}. By contradiction,
consider a τ⃗ solving any δ⃗ ∈ ∆+

a but that does not solve some δ⃗0 ∈ ∆−
a (τ⃗ · δ⃗0 = 0). Hence

0 = −(τ⃗ · δ⃗0) = τ⃗ · −δ⃗0 : τ⃗ does not solve −δ⃗0 ∈ ∆+
a , which contradicts the hypothesis.

However, this splitting may not be sufficient. Consider the conflict polyhedron ∆blurx depicted
on Figure 5.3(a). This will partition ∆+

blurx into three subsets with δi = 0, 1, 2. The subset
E = {(δi, δj) | δi = 1,−N < δj < N} will necessarily have some δ⃗ with τ⃗ · δ⃗ > 0 and some δ⃗
with τ⃗ · δ⃗ < 0. This does not suit our encoding of τ⃗ · δ⃗ ̸= 0 ∀δ⃗ ∈ E by either τ⃗ · δ⃗ > 0 ∀δ⃗ ∈ E or
τ⃗ · δ⃗ < 0 ∀δ⃗ ∈ E, as described in next section.

Hence, we heuristically choose to refine the partitionning by intersecting with quadrants Q
with all the lexicographically positive combinations of constraints δ⃗i > 0 and δ⃗i ≤ 0 for all indices
i. We remark that experimentally, this enables interesting solutions.

Example (cont’d) After splitting, by intersecting with ∆+ = {δ⃗ = (∆i, δj) | δ⃗ ≫ 0} and the
lexicographically positive quadrants δi > 0, δj > 0 and δi > 0, δj ≤ 0, we obtain the polyhedra
∆̃blurx = ∆̃blurx,1 ∪ ∆̃blurx,2 ∪ ∆̃blurx,3 ∪ ∆̃blurx,4, where:

∆̃blurx,1 = {(δi, δj) | δi = 0, 1 ≤ δj < N}
∆̃blurx,2 = {(δi, δj) | δi = 1, 1 ≤ δj < N}
∆̃blurx,3 = {(δi, δj) | δi = 1,−N < δj ≤ 0}
∆̃blurx,4 = {(δi, δj) | δi = 2,−N < δj ≤ 0}

Encoding as an Integer Linear Program

The constraints correct(τ⃗k, ℓ) cannot be directly encoded as an integer linear program, because
of the quantification ∀δ⃗ ∈ ∆a,ℓ and the inequality (or disequality [63]) τ⃗k · δ⃗ ̸= 0. Hopefully, both
problems have already been addressed in the polyhedral community. The quantification may be
removed using the affine form of Farkas lemma, in the same way as for affine scheduling [32];
and the inequality τ⃗k · δ⃗ ̸= 0 may be rephrased by following the lines of [15]:

τ⃗k · δ⃗ ̸= 0⇔ 1− (1− ϵℓ,1)(c⃗ · N⃗ + d+ 1) ≤ τ⃗k · δ⃗ ≤ −1 + (1− ϵℓ,2)(c⃗ · N⃗ + d+ 1) (5.4)

This holds for c⃗ and d big enough. The variables ϵℓ,1, ϵℓ,2 ∈ {0, 1} make possible to express the
three cases τ⃗k · δ⃗ = 0, τ⃗k · δ⃗ ≥ 1 and τ⃗k · δ⃗ ≤ 1. While ϵℓ,1 = 1 implies the ≥ 1 case, ϵℓ,2 = 1 implies
the ≤ 1 case. Also, ϵℓ,1 = 0 turns 1− (1− ϵℓ,1)(c⃗ · N⃗ +d+1) ≤ τ⃗k · δ⃗ to −(c⃗ · N⃗ +d) ≤ τ⃗k · δ⃗, which
is always true providing c⃗ and d are big enough. Symmetrically, ϵk,2 = 0 makes the following
constraint true (and so it can be disposed of): τ⃗k · δ⃗ ≤ −1 + (1 − ϵℓ,2)(c⃗ · N⃗ + d + 1). This is
summarized in the following table:

ϵℓ,1 ϵℓ,2 Effect
0 0 True (no constraint)
1 0 τ⃗k · δ⃗ ≥ 1

0 1 τ⃗k · δ⃗ ≤ −1
1 1 False (cannot happen)

80 CHAPTER 5. LINEAR ARRAY CONTRACTION

In particular, the constraints correct(τ⃗k, ℓ) are solved if τ⃗k · δ⃗ ≥ 1 (ϵℓ,1 = 1, ϵℓ,2 = 0)
or τ⃗k · δ⃗ ≤ 1 (ϵℓ,1 = 0, ϵℓ,2 = 1), hence if µℓ = ϵℓ,1 + ϵℓ,2 = 1. Similarly, the constraints
correct(τ⃗k, ℓ) are not solved – neither τ⃗k ·δ⃗ ≤ −1 nor τ⃗k ·δ⃗ ≥ −1 for any δ⃗ – when ϵℓ,1 = ϵℓ,2 = 0,
hence µℓ = ϵℓ,1 + ϵℓ,2 = 0. This way, µℓ is a decision variable expressing if correct(τ⃗k, ℓ) is
solved. Note that µℓ = 0 means that there exists δ⃗ ∈ ∆a,ℓ unsolved by τ⃗k. Some other δ⃗ ∈ ∆a,ℓ

might be solved by τ⃗k. The final correctness constraints with µℓ for each ℓ ∈ I are denoted by
correct(τ⃗k, ℓ, µ).

An objective function is then to maximize the partitions ∆i,ℓ solved, for ℓ ∈ I. Since
0 ≤ µℓ ≤ 1, an objective function to maximize is then ν =

∑
ℓ∈I µℓ. Note that ν is exactly the

number of partitions solved by τ⃗ . When ν = card I, τ⃗ solves all the conflict vectors δ⃗ ∈ ∪ℓ∈I∆a,ℓ.
Otherwise, there remains unsolved conflicts δ⃗ (τ⃗ · δ⃗ = 0) which will have to be solved in the next
dimensions, in the same way as for multidimensional scheduling.

5.5.2 Iterating on the Next Dimension

If τ⃗ does not solve all the conflicts, there remains δ⃗ ∈ ∪ℓ∈I∆a,ℓ such that τ⃗ · δ⃗ = 0. In other
words, there exists conflicting array indices i⃗ and i⃗ + δ⃗ mapped to the same target array cell:
τ⃗ · i⃗ = τ⃗ · (⃗i+ δ⃗). Those unsolved conflict vectors δ⃗ are gathered in the polyhedra ∆a,ℓ such that
µℓ = 0.

Like multidimensional affine scheduling, we focus on unsolved conflicts and we iterate the
process to find the subsequent τ⃗ :

I ′ = {ℓ ∈ I | s.t. µℓ = 0}
∆′

a,ℓ = ∆a,ℓ ∩ {δ⃗ | τ⃗ · δ⃗ = 0} for each ℓ ∈ I ′

The process stops when all the conflicts are solved: I ′ = ∅.

5.5.3 Efficiency

The mapping σ : i⃗ 7→Mi⃗ mod b⃗ must ensure a footprint b1 . . . bn as small as possible, hence the
need to minimize the modulo vector b⃗. Since the lines τ⃗k of M are computed iteratively, we will
wrap in the same integer linear program the computation of τ⃗k and the corresponding dimension
bk of b⃗ with the objective to minimize it.

Consider δ⃗ ∈ ∆a \ {0}. Simplifying Equation 5.2 by linearity, we deduce:

τ⃗k · δ⃗ mod bk ̸= 0

It is sufficient to choose bk > |τ⃗k · δ⃗|, the smallest one being bk := 1 + max{|τ⃗k · δ⃗|, δ⃗ ∈ ∆a}.
Hence, to reduce the footprint, we need to minimize the quantity |τ⃗k · δ⃗|. Since δ⃗ ∈ ∆a \ {0},
and ∆a is a polyhedron parametrized by N⃗ , |τ⃗k · δ⃗| must be bounded by some affine form of N⃗ ,
|τ⃗k · δ⃗| ≤ e⃗ · N⃗ + f , similarly to latency constraints in affine scheduling:

efficient(τ⃗k, ℓ, e⃗, f) : −(e⃗ · N⃗ + f) ≤ τ⃗k · δ⃗ ≤ e⃗ · N⃗ + f for all δ⃗ ∈ ∆a,ℓ (5.5)

It is then sufficient to minimize lexicographically the vector (e⃗, f): first we minimize the param-
eter coefficient e⃗ to tend towards a constant modulo. Then, we minimize the constant part f .

5.5. LINEAR ALLOCATION 81

Finally, the modulo is bk := 1 + e⃗ · N⃗ + f . Note that efficient(τ⃗k, ℓ, e⃗, f) is bound to ∆a,ℓ.
To be bound to ∆a, we will consider the conjunctions of those constraints for ℓ ∈ I. As for the
correctness constraints the universal quantification on ∆a,ℓ may be removed and turned to an
integer linear program using the affine form of Farkas lemma [33, 3].

5.5.4 Algorithm

Algorithm 12 depicts our algorithm to compute the mapping σ : i⃗ 7→ Mi⃗ mod b⃗. Each line
τ⃗k of M and the corresponding modulo bk are computed iteratively, starting from k = 1. At
each iteration, we solve the integer linear program, as described above (line 4) which conssist
of the conjunction of the correctness and efficiency constraints for each partition ∆a,ℓ, ℓ ∈ I of
the difference set ∆a. From the correctness constraints, we get the decisions variables µℓ s.t.
µℓ = 1 if and only if τ⃗k solves ∆a,ℓ, and 0 otherwise. From the efficiency constraints, we have the
coefficients e⃗ and f of the affine form bounding |τ⃗k · δ⃗| for any δ⃗ ∈ ∪ℓ∈I∆a,ℓ. As explained earlier,
this yields the modulo bk := 1 + e⃗ · N⃗ + f . The objective function is first to greedily solve as
much partition ∆a,ℓ as possible, hence to maximize

∑
ℓ∈I µℓ, or to minimize −∑

ℓ∈I µℓ. Second,
to minimize the modulo; by first minimizing the coefficients e⃗ of N⃗ and second by minimizing
the constant part f . Once the integer linear program is solved, we obtain τ⃗k and we retrieve bk
(line 6). Finally, we keep only the unsolved conflicts in ∆a for the next iteration (line 8). If all
the conflicts are solved (I = ∅, no more partition of ∆a to consider), the algorithm returns the
solution (line 11).

Algorithm 12: LinearAllocation
Data: Difference set ∆a = ∪ℓ∈I∆a,ℓ

Result: Linear mapping σ : i⃗ 7→Mi⃗ mod b⃗
1 begin
2 k := 1
3 repeat

4

min≪(−∑
ℓ∈I µℓ, e⃗, f)

s.t.{ ∧
ℓ∈I correct(τ⃗k, ℓ, µ)∧
ℓ∈I efficient(τ⃗k, ℓ, e⃗, f)

5 Mk := τ⃗k

6 bk := 1 + e⃗ · N⃗ + f
7 I := {ℓ ∈ I | µℓ = 0}
8 ∆a,ℓ := ∆a,ℓ ∩ {τ⃗ | τ⃗ · δ⃗ = 0} for each ℓ ∈ I
9 k := k + 1

10 until I = ∅
11 return σ : i⃗ 7→Mi⃗ mod b⃗

12 end

Example (cont’d) The main difficulty is to get a proper encoding of correctness and efficiency
constraints in a single integer linear program. This is done thanks to the fkcc tool, which

82 CHAPTER 5. LINEAR ARRAY CONTRACTION

provides an easy-to-use DSL to specify such constraints [3].

Correctness Figure 5.5 depicts the first half of the fkcc program, which encodes the correct-
ness constraints. First, we declare decision variables (line 1), and define objective variables (line
2), conflict sets (lines 5-8) and τ⃗k (encoded as an affine form H such that H(δ⃗) = τ⃗k · δ⃗ + c,
the constant being later forced to zero, line 11). The first difficulty is to deal with Eq (5.5.1).
Consider the first inequality (the same reasonning applies for the second inequality):

1− (1− ϵℓ,1)(c⃗ · N⃗ + d+ 1) ≤ τ⃗k · δ⃗ ∀δ⃗ ∈ ∆a \ {0}

Since ∆a contains only lexicographically positive vectors, we can safely write:

1− (1− ϵℓ,1)(c⃗ · N⃗ + d+ 1) ≤ H(δ⃗) ∀δ⃗ ∈ ∆a

After simplification, this gives:

H(δ⃗) + (1− ϵℓ,1)(c⃗ · N⃗)− ϵℓ,1(d+ 1) + d ≥ 0 ∀δ⃗ ∈ ∆a

On the example, N⃗ = (N). Experimentally, it seems sufficient to take c⃗ = (10) and d = 10 as
big enough values. This simplifies to:

H(δ⃗) + (10− 10ϵℓ,1).N − 11ϵℓ,1 + 10 ≥ 0 ∀δ⃗ ∈ ∆a

We end up with an affine form φ(δ⃗, N) = H(δ⃗) + (10− 10ϵℓ,1).N − 11ϵℓ,1 + 10 non-negative
on a non-empty polyhedron ∆a. Note that decision variables ϵ are considered as parameters and
are treated as special constants (line 1). This can be linearized by playing with the affine form
of Farkas. This is completly automated with fkcc thanks to solve and positive_on primitives
(lines 35-37) : H_linear_p1 will contain an equivalent conjunction of affine constraints. Finally,
line 42 filters the only required variables: the coefficients of H (actually τ⃗k). Repeating this
process for each partition of ∆a, we end-up with a conjunction of affine constraints expressing
correct(τ⃗k).

Efficiency Consider Equation 5.5.3 and the first inequality:

−(e⃗ · N⃗ + f) ≤ τ⃗k · δ⃗ for all δ⃗ ∈ ∆a,ℓ

This can be rewritten as:

H(δ⃗) + (e⃗ · N⃗ + f) ≥ 0 for all δ⃗ ∈ ∆a,ℓ

Again, this translates to the non-negativity of the affine form ψ(δ⃗, N⃗) = H(δ⃗) + (e⃗ · N⃗ + f)
on the non-empty polyhedron ∆a,ℓ, and the affine Farkas lemma may also help to derive affine
constraints (Figure 5.6, line 12). The same apparatus applies for the other inequality. Finally,
the result is obtained by lexicographically minimizing the constraints (line 25) with variable
order prescribed with the keep primitive (line 23). The final result is:

5.6. EXPERIMENTAL VALIDATION 83

inv_nu = −4
nu = 4
bound_0 = 2
bound_1 = 0
H_0 = −1
H_1 = 2
H_2 = 0
x_11_counter = 1
x_12_counter = 0
x_21_counter = 1
x_22_counter = 0
x_31_counter = 0
x_32_counter = 1
x_41_counter = 0
x_42_counter = 1

The modulo is b1(N) = 1 + bound0.N + bound1 = 2N + 1, τ⃗1 = (H0, H1) = (−1, 2) – on Figure
5.3.(b), the red line has normal τ⃗1. The four conflict sets are solved (nu = 4), positively on ∆̂blurx,1

and ∆̂blurx,2 (above the red line), negatively on ∆̂blurx,3 and ∆̂blurx,4 (below the red line). Hence
the algorithm ends after one iteration and returns the mapping σ(i, j) = −i+ 2j mod 2N + 1.

5.6 Experimental Validation

This section presents an experimental validation of our contributions. Section 5.6.2 assesses the
scalability of our liveness approach, while Section 5.6.3 assesses the scalability of our linear array
contraction method and the accuracy of our liveness approach (despite the approximation made
by the widening). Finally, Section 5.6.4 presents a detailed analysis of the results for each kernel
benchmark.

5.6.1 Setup

We have implemented our liveness algorithm in PoLa. We applied by hand our linear mapping
algorithm using the fkcc tool. We conducted our experiments on the kernels depicted on Figure
5.10. All the stencils are implemented with a perfect loop nest and single-assignment arrays.

• Blur filter (motivating example) applies a composition of two 1D convolutions on a picture
modeled as a 2D array.

• Jacobi 1D is a 1D stencil, 3 points, with dependences from the previous timestamp.

• Seidel 1D is a 1D stencil, 3 points, with a dependence from the same timestamp.

• Jacobi 2D is a 2D stencil, 5 points, with dependences from the previous timestamp.

• Heat 3D is a 3D stencil, 7 points, with dependences from the previous timestamp.

The timings were measured on a machine equipped with an Intel core i9-10885H CPU 2.40GHz
with 64GB of DDR memory. All the timings are measured in seconds.

5.6.2 Liveness Analysis

Table 5.1 summarizes the performances of our liveness analysis approach. The baseline is the
PoCo implementation of the usual liveness analysis for arrays described in 2.2.1, exploring each

84 CHAPTER 5. LINEAR ARRAY CONTRACTION

couple of liveness interval (write1, read1), (write2, read2) to build the conflict relation ▷◁ and
then retrieving ∆a by using a projection of {(⃗i, j⃗, δ⃗) | δ⃗ = i⃗− j⃗, i⃗ ▷◁ j⃗} on δ⃗.

For each kernel, we give the parameter selection N (Parameters), the cumulative trace size
(Trace), the total execution time of our approach (Timing). As for the baseline, we provide the
cumulative number of pairs of liveness intervals considered, including the empty ones (Iterations)
and the projections (Projections) for the pairs of intersecting liveness intervals; as well as the
total execution time (Timing). Finally, we give the speed-up factor (Speed-up) with the formula
Timing(Baseline) / Timing(Our method). Our method appears to be more scalable than the
baseline with a speed-up ranging from 1.9 for Heat 3D to 17 for the Blur filter kernel. Unsur-
pringly, the more parameters we have, the more traces we have to generate. This explains the
gap between Blur and the 1D stencils Jacobi 1D and Seidel 1D. It is worth to note that trace
size directly scales with the dimension of the loop nest, hence the total execution time. This
explains the timing gap between 1D stencils (Jacobi 1D, Seidel 1D), 2D stencil (Jacobi 2D) and
3D stencil (Heat 3D). Still, we observe a speed-up with our method, as the complexity of the
baseline also increases with the depth of the loop nest.

Figure 5.2 details step-by-step the performances of our method, that highlights which step
dominates the execution time. (a) gives a normalized comparison between the benchmarks, while
(b) gives the timing details. For each kernel, we provide the timing for the following:

• the computation of the PRDG (Dependence Analysis)

• the liveness analysis, computing ∆a(N⃗) for each parameter instance N⃗ ∈ N (Liveness
analysis)

• the inference of polyhedral constraints with NLR (NLR)

• the inference of N (Parameter selection)

• the generation of execution traces (Trace generation)

The execution tends to be dominated by the trace liveness analysis. Liveness analysis consists of
two steps: a linear pass computing the liveness itself ▷◁, then a pass computing the conflict set
∆a = {⃗i− j⃗ | i⃗ ▷◁ j⃗}. This pass is quadratic in the trace size, as we enumerate each couple (⃗i, j⃗).
Hence that point should be improved on to enhance the scalability of our algorithm. The other
steps remain negligible in comparison. In particular, the widening itself (NLR and widening) is
particularly fast.

5.6.3 Linear Array Contraction

Table 5.3 illustrates the complexity of liveness constraints, when expressed with conflicts set (Our
method), and when expressed as a conflict relation. We provide the number of polyhedral pieces
(|∆| and | ▷◁ |), which impacts directly the complexity of the integer linear program required to
derive the mapping σ. Also, we give the total cumulative number of constraints (constraints).
The number of constraints directly impacts the number of Farkas variables, which would need to
be projected out. In turn, this impacts the performance of the projection (keep construction in
Figure 5.5 and Figure 5.6). |∆| grows with the dimension of the array, because of the splitting.

5.6. EXPERIMENTAL VALIDATION 85

Kernel Our method Baseline Speed-upParameters Trace Timing Iterations Projections Timing
Blur filter 4,5 40 0.007 81 39 0.1 17
Jacobi 1D (6,4),(7,4),(6,5) 52 0.024 81 54 0.07 2.9
Seidel 1D (6,4),(7,4),(6,5) 52 0.024 81 37 0.1 4.4
Jacobi 2D (6,4),(7,4),(6,5) 336 0.19 256 160 0.84 4.4
Heat 3D (6,4),(7,4),(6,5) 1856 5.7 900 504 11.3 1.9

Table 5.1: Liveness analysis is faster with our approach (timing in seconds)

(a) Normalized

Kernel Dependence
analysis

Liveness
analysis

NLR Parameter
selection

Trace
generation

Widening Total

Blur filter 0.002 0.002 0.0002 0.00079 0.0006 0.0004 0.007
Jacobi 1D 0.013 0.0011 0.0001 0.0088 0.0009 0.0002 0.024
Seidel 1D 0.012 0.0012 0.0001 0.008 0.0009 0.0004 0.024
Jacobi 2D 0.078 0.059 0.0005 0.041 0.008 0.0006 0.19
Heat 3D 0.078 5.5 0.002 0.07 0.03 0.0006 5.7

(b) Raw data

Table 5.2: Liveness timing step-by-step (seconds)

86 CHAPTER 5. LINEAR ARRAY CONTRACTION

Kernel Our method (∆) Baseline (▷◁) Compaction factor|∆| constraints | ▷◁ | constraints
Blur filter 4 12 3 24 2
Jacobi 1D 2 6 2 15 2.5
Seidel 1D 2 6 2 14 2.3
Jacobi 2D 6 28 7 77 2.75
Heat 3D 14 87 7 106 1.2

Table 5.3: Liveness constraints are simpler with our approach

Kernel Our method Baseline (from exact ∆) Overhead (%)
Blur filter (i, j) 7→ −i+ 2j mod 2N + 1 same 0
Jacobi 1D (t, i) 7→ i− t mod N (t, i) 7→ i− t mod N − 1 1

N−1

Seidel 1D (t, i) 7→ −i mod N (t, i) 7→ −i mod N − 2 2
N−2

Jacobi 2D (t, i, j) 7→
(
−2t+ i mod N + 2
−j mod N

)
(t, i, j) 7→

(
−2t+ i mod N
−j mod N − 2

)
4

N−2

Heat 3D (t, i, j, k) 7→

−2t+ i mod N + 2
−j mod N
−k mod N

 (t, i, j, k) 7→

−2t+ i mod N
−j mod N − 2
−k mod N − 2

 6N−4

(N−2)2

Table 5.4: Mappings found and footprint overhead due to widening

The compaction factor is the ratio constraints(▷◁) / constraints(∆). It is due to the factoring
enabled by the ∆-sets: differents pieces with (⃗i, i⃗ + δ⃗) in ▷◁ are factored as a single δ⃗ in ∆.
We believe that this gain in complexity makes the conflict set ∆ more appropriate than the
conflict relation ▷◁ to design scalable array contraction algorithms. Unfortunately, the tool SMO
implementing [14] was not stable enough to work with the conflict relations we automatically
generated on our examples. Hence, no timing measures nor deeper scalability experiments were
possible.

Table 5.4 summarizes the mappings obtained by applying our method on the conflict sets
obtained with our method (after splitting), and on the exact conflict sets obtained with the
original liveness analysis algorithm of PoCo, simplified to keep only the lexicographically positive
conflicts {(⃗i, j⃗) | i⃗ ▷◁ j⃗, j⃗ − i⃗ ≫ 0} and using ISL coalescing as expected by [14]. The widening
over-approximates the conflict sets and may increase the mapping footprint. We measured that
increasing, as a percent of the footprint obtained from the exact conflict set (Overhead):

overhead =
footprint(σwidening)− footprint(σexact)

footprint(σexact)

For instance, on Jacobi 2D, we obtain: (N+2)N−N(N−2)
N(N−2) = 4

N−2 . On all our examples, the
overhead is O(1

N), which tends to be negligible for big values of N . If we want to apply our
method on tiled programs, the overhead will depend on the tile size in the same way. Then, the
tile size should be sufficiently large to keep a reasonnable overhead.

5.6. EXPERIMENTAL VALIDATION 87

5.6.4 Detailed Results

This section discusses the detail of the results obtained for each kernel: conflict sets, splitting,
linear allocation.

Blur filter

With the NLR increment, the parameter selection is N = {4, 5}, which ends-up with the same
behavior and the same results than provided throughout this chapter.

Jacobi 1D

Figure 5.7 depicts the liveness analysis for the Jacobi 1D kernel (a) and the results found by our
approach ((b) and (c)).

t

i

1

2

3

N − 2 = 4

1 2 3 4

δt

δi

−3

−2

−1

0

1

2

3 N − 1

−1 0 1
δt

δi

−3

−2

−1

0

1

2

3 N − 1

−1 0 1

i− t mod N

(a) Conflict relation ▷◁A (b) ∆̂A (before splitting) (c) ∆̃A (after splitting)

Figure 5.7: Jacobi 1D: Liveness analysis

On (a), we depict the iteration domain (a single one, since the loop nest is perfect) and some
direct dependences (in red). All the kernels considered are single assignement, hence, we may
draw directly the conflict relation on the iteration domain, binding an iteration to the array cell it
writes. The critical dependence is (t, i)→ (t+1, i+1), which induces conflicts depicted in green.
After widening and narrowing, we get the conflict set depicted in (b): ∆̂A = ∆̂A,1 ∪ ∆̂A,2 ∪ ∆̂A,3,
where:

∆̂A,1 = {(δt, δi) | δt = −1, 0 ≤ δi < N}
∆̂A,2 = {(δt, δi) | δt = 0,−N < δi < N}
∆̂A,3 = {(δt, δi) | δt = 1,−N < δi ≤ 0}

88 CHAPTER 5. LINEAR ARRAY CONTRACTION

After splitting, we obtain the polyhedron ∆̃A = ∆̃A,1 ∪ ∆̃A,2, where:

∆̃A,1 = {(δt, δi) | δt = 0, 1 ≤ δi < N}
∆̃A,2 = {(δt, δi) | δt = 1,−N < δi ≤ 0}

Note that the exact conflict set should have −(N − 2) ≤ δi ≤ N − 2 instead. This is the
approximation made by the liveness analysis.

From ∆̃A, we apply our linear contraction algorithm, which finds the mapping i− t mod N .
Remark the red hyperplane whose normal is τ⃗1 = (−1, 1): it solves all the conflicts, since there
is no intersection with any δ⃗ ̸= 0 of ∆̃A.

Seidel 1D

Figure 5.8 depicts the Seidel 1D liveness analysis and the results obtained by our approach.

t

i

1

2

3

N − 2 = 4

1 2 3

δt

δi

−3

−2

−1

0

1

2

3 N − 1

−1 0 1
δt

δi

−3

−2

−1

0

1

2

3 N − 1

−1 0 1

−i mod N

(a) Conflict relation ▷◁A (b) ∆̂A (before splitting) (c) ∆̃A (after splitting)

Figure 5.8: Seidel 1D: Liveness analysis

As for Jacobi 1D, note the direct dependences (in red), including the critical one (t, i) →
(t, i + 1), which induces the conflicts depicted in green. Our method produces, after widening
and narrowing, the conflict polyhedron depicted in (b): ∆̂a = ∆̂A,1 ∪ ∆̂A,2 ∪ ∆̂A,3, where:

∆̂A,1 = {(δt, δi) | δt = −1, 1 ≤ δi < N}
∆̂A,2 = {(δt, δi) | δt = 0,−N < δi < N}
∆̂A,3 = {(δt, δi) | δt = 1,−N < δi ≤ −1}

After splitting, we obtain the conflict polyhedron depicted in (c): ∆̃A = ∆̃A,1 ∪ ∆̃A,2, where:

∆̃A,1 = {(δt, δi) | δt = 0, 1 ≤ δi < N}
∆̃A,2 = {(δt, δi) | δt = 1,−N < δi ≤ −1}

5.6. EXPERIMENTAL VALIDATION 89

Again, the exact conflict set should satisfy −(N − 3) ≤ δi ≤ N − 3. This is the approximation
made by our widening.

On ∆̃A, we apply our linear array contraction method which derives the normal to the red
hyperplane, τ⃗1 = (0,−1), corresponding to the mapping σA(t, i) = −i mod N . That mapping
solves all the conficts δ⃗ ∈ ∆̃A.

Jacobi 2D

Figure 5.9 illustrates the liveness analysis on the Jacobi 2D kernel.

t

i

j

1

2

3

4

5

N − 2

1 2
1

2

3

4

5

6

.

δt

δi

δj

−3

−2

−1

0

1

2

3 N − 1

−1 0 1

−3

−2

−1

0

1

2

3

δt

δi

δj

−3

−2

−1

0

1

2

3 N − 1

−1 0 1

−3

−2

−1

0

1

2

3

(
−2t+ i mod N + 2
−j mod N

)

(a) Conflict relation ▷◁A (b) ∆̂A (before splitting) (c) ∆̃A (after splitting)

Figure 5.9: Jacobi 2D: Liveness analysis

(a) depicts direct dependences from some source iteration s⃗ = (t0, i0, j0). The critical
dependence is (t, i, j) → (t + 1, i + 1, j). We depicted in green the set of writes conflict-
ing with the write at s⃗. (c) shows the conflict set obtained after widening and narrowing:
∆̂A = ∆̂A,1 ∪ ∆̂A,2 ∪ ∆̂A,3 ∪ ∆̂A,4 ∪ ∆̂A,5, where:

∆̂A,1 = {(δt, δi, δj) | δt = 1, δi = 1,−N < δi < N,−N < δj ≤ −1}
∆̂A,2 = {(δt, δi, δj) | δt = 1,−N < δi ≤ 0,−N < δj < N}
∆̂A,3 = {(δt, δi, δj) | δt = 0,−N < δi, δj < N}
∆̂A,4 = {(δt, δi, δj) | δt = −1, 0 ≤ δi < N,−N < δj < N}
∆̂A,5 = {(δt, δi, δj) | δt = −1, δi = −1, 1 ≤ δj < N}

After the splitting, we obtain the polyhedron depicted in (c): ∆̃A = ∆̃A,1 ∪ ∆̃A,2 ∪ ∆̃A,3 ∪ ∆̃A,4 ∪

90 CHAPTER 5. LINEAR ARRAY CONTRACTION

∆̃A,5 ∪ ∆̃A,6, where:

∆̃A,1 = {(δt, δi, δj) | δt = 1, δi = 1,−N < δj ≤ −1} (blue segment)
∆̃A,2 = {(δt, δi, δj) | δt = 1,−N < δj ≤ 0,−N < δi ≤ 0} (blue rectangle)
∆̃A,3 = {(δt, δi, δj) | δt = 1, 1 ≤ δj < N,−N < δi ≤ 0} (green rectangle)
∆̃A,4 = {(δt, δi, δj) | δt = 0, 1 ≤ δi < N,−N < δj ≤ 0} (light yellow, left)
∆̃A,5 = {(δt, δi, δj) | δt = 0, 1 ≤ δi < N, 1 ≤ δj < N} (light yellow, right)
∆̃A,6 = {(δt, δ⃗i, δj) | δt = 0, δi = 0, 1 ≤ δj < N} (orange line)

Note that the exact conflict set should satisfy −(N−3) ≤ δi, δj ≤ N−3, this is the approximation
made by our method.

We applied our linear contraction algorithm on ∆̃A:

• The first iteration computes the normal τ⃗1 = (−2, 1, 0), hence the first mapping dimension
(t, i, j) 7→ (−2t + i mod N + 2). The intersection between the hyperplane directed by τ⃗1
(depicted in red) and ∆̃A is the segment S = [(0,−(N − 2), 0), (0, (N − 2), 0)] which is
non-null, hence we need a second iteration to satisfy those conflicts.

• The second iteration on unsolved conflicts S gives the normal τ⃗2 = (0, 0,−1), hence the
second mapping dimension (t, i, j) 7→ (−j mod N). The intersection between the hyper-
plane whose normal is τ⃗2 is {0}, hence our algorithm terminates and finally outputs the

mapping σA(t, i, j) =
(
−2t+ i mod N + 2
−j mod N

)
.

Heat 3D

After widening and narrowing, we obtain the conflict polyhedron ∆̂A = ∆̂A,1 ∪ ∆̂A,2 ∪ ∆̂A,3 ∪
∆̂A,4 ∪ ∆̂A,5 ∪ ∆̂A,6 ∪ ∆̂A,7, where:

∆̂A,1 = {(δt, δi, δj, δk) | δt = 1, δi = 1, δj = 0,−N < δk ≤ −1}
∆̂A,2 = {(δt, δi, δj, δk) | δt = 1, δi = 1,−N < δj ≤ −1,−N < δk < N}
∆̂A,3 = {(δt, δi, δj, δk) | δt = 1−N < δi ≤ 0−N < δj, δk < N}
∆̂A,4 = {(δt, δi, δj, δk) | δt = 0,−N < δi, δj, δk < N}
∆̂A,5 = {(δt, δi, δj, δk) | δt = −1,−N < δi ≥ 0,−N < δj, δk < N}
∆̂A,6 = {(δt, δi, δj, δk) | δt = −1, δi = −1, 1 ≤ δj < N,−N < δk < N}
∆̂A,7 = {(δt, δi, δj, δk) | δt = −1, δi = −1, δj = 0, 1 ≤ δk < N}

5.7. CONCLUSION 91

After splitting, we obtain a polyhedron ∆̃A = ∪14ℓ=1∆̃A,ℓ, with:

∆̃A,1 = {(δt, δi, δj, δk) | δt = 1, δi = 1, δj = 0,−N < δk < 0}
∆̃A,2 = {(δt, δi, δj, δk) | δt = 1, δi = 1,−N < δj < 0,−N < δk ≤ 0}
∆̃A,3 = {(δt, δi, δj, δk) | δt = 1, δi = 1,−N < δj < 0, 1 ≤ δk < N}
∆̃A,4 = {(δt, δi, δj, δk) | δt = 1,−N < δi ≤ 0,−N < δj, δk ≤ 0}
∆̃A,5 = {(δt, δi, δj, δk) | δt = 1,−N < δi, δk ≤ 0, 1 ≤ δj < N}
∆̃A,6 = {(δt, δi, δj, δk) | δt = 1,−N < δi, δj ≤ 0, 1 ≤ δk < N}
∆̃A,7 = {(δt, δi, δj, δk) | δt = 1,−N < δi ≤ 0, 1 ≤ δj, δk < N}
∆̃A,8 = {(δt, δi, δj, δk) | δt = 0, 1 ≤ δi < N,−N < δj, δk ≤ 0}
∆̃A,9 = {(δt, δi, δj, δk) | δt = 0, 1 ≤ δi, δj < N,−N < δk ≤ 0}
∆̃A,10 = {(δt, δi, δj, δk) | δt = 0, 1 ≤ δi, δk < N,−N < δj ≤ 0}
∆̃A,11 = {(δt, δi, δj, δk) | δt = 0, 1 ≤ δi, δk < N, 1 ≤ δj < N}
∆̃A,12 = {(δt, δi, δj, δk) | δt = 0, δi = 0, 1 ≤ δj < N,−N < δk ≤ 0}
∆̃A,13 = {(δt, δi, δj, δk) | δt = 0, δi = 0, 1 ≤ δj, δk < N}
∆̃A,14 = {(δt, δi, δj, δk) | δt = 0, δi = 0, δj = 0, 1 ≤ δk < N}

Again, we should have −(N − 3) ≤ δi, δj, δk ≤ N − 3, this is the approximation made by our
method. We apply our linear array contraction algorithm which finds the mapping in three
iterations:

• Iteration 1 finds the dimension (t, i, j, k) 7→ −2t+ i mod N +2, which left unsolved ∆̃A,12,
∆̃A,13 and ∆̃A,14. We then iterate on these three polyhedra intersected with −2δt+ δi = 0.

• Iteration 2 finds the dimension (t, i, j, k) 7→ −j mod N , which still leaves unsolved ∆̃A,14 ∧
−2δt+ δi = 0. We then iterate on that polyhedron intersected with −δj = 0.

• Iteration 3 finds the dimension (t, i, j, k) 7→ −k mod N , which solves ∆̃A,14 ∧ −2δt+ δi =
0 ∧ −δj = 0. Hence our algorithm terminates and outputs the mapping σA(t, i, j, k) =

−2t+ i mod N + 2
−j mod N
−k mod N

5.7 Conclusion

In this chapter, we proposed a fast and scalable liveneness analysis based on trace analysis.
The generality is ensured by a widening operator, followed by a narrowing operator to bound the
extrapolation. We prove the correctness of our approach when the program is totally unimodular,
and when both dependences and schedule are quasi-uniform, notions that we introduced for this
purpose. Experimental evaluation shows that our approach is faster than the state-of-the-art
polyhedral liveness analysis, which opens the way for scalable channel allocation in the context
of HLS. Also, we proposed a linear array allocation algorithm, rephrasing the ideas of affine
scheduling on difference sets. We show that it ensures lighter ILP problems (less variables
and constraints) than a similar rephrasing on conflict relations, which is the approach of the

92 CHAPTER 5. LINEAR ARRAY CONTRACTION

SMO algorithm [14]. With our linear allocation algorithm, we evaluate how the liveness over-
approximation introduced by the widening impacts the quality of the final allocation. We show
that, on all the benchmarks, the overhead is small and tends towards 0 when the parameters
increase.

There is room for many improvements. First, the complexity of our liveness analysis might
be further reduced by limiting the number of traces. Note that the number of traces is 1 + |N⃗ |,
|N⃗ | being the number of parameters. A possible clue is to reduce the number of parameters.
For instance, by introducing an upper bound parameter M > N⃗i and deal only with M when
producing the traces. Experimentally, this provides correct results on all our benchmarks, though
the correctness still has to be formally proven (or a counter-example to be exhibited).

Also, the final goal is to use that technique in the context of DPN buffer allocation, as for
the canonical allocation technique presented in the previous chapter. An adaption is required,
as the tiled programs are not totally unimodular (because of tiling constraints T⃗S = ϕS (⃗i)/⃗b).
However, the technique might be applied on tiles separately. A possible clue to investigate would
be to allocate buffers on some well-chosen generic tile, ensuring the correctness for the whole
program.

5.7. CONCLUSION 93

1 parameters := {x_11 , x_12 , x_21 , x_22 , x_31 , x_32 , x_41 , x_42 } ;
2 ob j e c t i v e := []−>{[inv_nu , nu] : inv_nu = −nu and nu = (x_11 + x_12) +
3 (x_21 + x_22) + [. . .] and x_11 >= 0 and x_11 <= 1 and [. . .] } ;
4
5 D1 := [] −> { [di , dj ,N] : d i = 0 and 1 <= dj and dj <= N−1};
6 D2 := [] −> { [di , dj ,N] : d i = 1 and 1 <= dj and dj <= N−1};
7 D3 := [] −> { [di , dj ,N] : d i = 1 and −1∗(N−1) <= dj and dj <= 0} ;
8 D4 := [] −> { [di , dj ,N] : d i = 2 and −1∗(N−1) <= dj and dj <= 0} ;
9

10 #H(di , dj) = H_0. d i + H_1. dj + H_2
11 H := affine_form (2) with H;
12
13 #Force constant H_2 to 0 (l a t e r)
14 H_linear := []−>{[H_0,H_1,H_2] : H_2 = 0} ;
15
16 ###
17 # Con f l i c t r e s o l u t i o n :
18 # H(di , dj) >= 1 − (1−x_l1) (a .N + b + 1) (1)
19 # H(di , dj) <= −1 + (1−x_l2) (a .N + b + 1) (2)
20 # a , b big enough , f o r a l l (di , dj ,N) \ in D1 U D2 U D3 U D4
21 ###
22
23 # (1) i s wr i t t en as :
24 # H(di , dj) + (a − a . x_l1) .N − (b+1)x_l1 + b >= 0
25 # (2) i s wr i t t en as :
26 # −H(di , dj) + (a − a . x_l2) .N − (b+1)x_l2 + b >= 0
27 # a = [10 , . . . , 1 0] , b = 10
28
29 to_index := { [di , dj ,N]−>[di , dj] } ;
30 to_parameter := { [di , dj ,N]−>[N] } ;
31
32 #D1
33
34 #H(di) >= 1 − (1−x_l1) (a .N + b + 1) (1)
35 H_solve_p1 := solve (H. to_index)
36 + { [di , dj ,N]−> (10−10∗x_11) ∗N + (−11)∗x_11 + 10}
37 − (positive_on D1) = 0 ;
38 #H(di) <= −1 + (1−x_l2) (a .N + b + 1) (2)
39 H_solve_n1 := solve { [di , dj ,N]−> (10−10∗x_12) ∗N + (−11)∗x_12 + 10}
40 − (H. to_index) − (positive_on D1) = 0 ;
41 #Both
42 H_solve1 := keep H_0,H_1,H_2 from H_solve_p1∗H_solve_n1 ;
43
44 #same f o r D2 , D3 , D4
45 [. . .]
46
47 H_solve := H_solve1∗H_solve2∗H_solve3∗H_solve4 ;

Figure 5.5: Blur filter: encoding correctness constraints

94 CHAPTER 5. LINEAR ARRAY CONTRACTION

1 ###
2 # Bound : −(uN + w) <= tau . (di , d j) <= uN + w
3 # f o r a l l (di , dj ,N) \ in D1 U D2 U D3 U D4
4 ###
5
6 #bound (N) = bound_0 .N + bound_1
7 bound := affine_form (1) with bound ;
8
9 #D1

10
11 #H(di , dj) >= −(bound_0 .N + bound1) f o r a l l (di , dj ,N) \ in D1
12 H_lo_1 := solve (H. to_index) + (bound . to_parameter) − (positive_on D1) = 0 ;
13 #H(di , dj) <= bound_0 .N + bound_1 f o r a l l (di , dj ,N) \ in D1
14 H_up_1 := solve (bound . to_parameter) − (H. to_index) − (positive_on D1) = 0 ;
15 #both
16 H_bound_1 := keep bound_0 , bound_1 ,H_0,H_1,H_2 from H_lo_1 ∗ H_up_1;
17
18 #D2, D3 , D4 : same
19 [. . .]
20
21 H_bound := H_bound_1∗H_bound_2∗H_bound_3∗H_bound_4 ;
22
23 f i n a l := keep inv_nu , nu , bound_0 , bound_1 ,H_0,H_1,H_2, x_11 , x_12 , x_21 , x_22 , x_31 , x_32 ,

x_41 , x_42 from ob j e c t i v e ∗H_bound∗H_solve∗H_linear ;
24
25 lexmin (f i n a l) ;

Figure 5.6: Blur filter: encoding efficiency constraints

5.7. CONCLUSION 95

1 for(i=0; i<N; i++)
2 for(j=0; j<N; j++) {
3 blurx[i][j] = in[i][j] +
4 in[i][j+1] +

in[i][j+2];
5 if(i>=2)
6 out[i][j] =

blurx[i-2][j] +
7 blurx[i-1][j] +

blurx[i][j];
8 }

1

2 for (i = 1; i <= N - 2; i++)
3 A[0][i] = In[i];
4 for (t = 1; t < TSTEPS; t++)
5 for (i = 1; i <= N - 2;

i++)
6 A[t][i] = 0.3*
7 ((i==1?In[0]:A[t-1][i-1])

+
8 A[t-1][i] +
9 (i==N-2?In[N-1]:A[t-1][i+1]);

(a) Blur filter (b) Jacobi 1D

1

2 for (i = 1; i <= N - 2; i++)
3 A[0][i] = In[i];
4

5 for (t = 1; t < TSTEPS; t++)
6 for (i = 1; i <= N - 2;

i++)
7 A[t][i] = 0.3 *
8 ((i==1?In[0]:A[t][i-1])

+
9 A[t-1][i] +

10 (i==N-2?In[N-1]:A[t-1][i+1]);

1

2 for (i = 1; i <= N - 2; i++)
3 for (j = 1; j <= N - 2; j++)
4 A[0][i][j] = In[i][j];
5

6 for (t = 1; t < TSTEPS; t++)
7 for (i = 1; i <= N - 2; i++)
8 for (j = 1; j <= N - 2; j++)
9 A[t][i][j] = 0.2 *

10 ((i==1? In[0][j]: A[t-1][i-1][j])+
11 (i==N-2?In[N-1][j]:A[t-1][i+1][j])+
12 A[t-1][i][j]+
13 (j==1? In[i][0]: A[t-1][i][j-1])+
14 (j==N-2?In[i][N-1]:A[t-1][i][j+1]);

(c) Seidel 1D (d) Jacobi 2D

1

2 for (i = 1; i <= N - 2; i++)
3 for (j = 1; j <= N - 2; j++)
4 for (k = 1; k <= N - 2; k++)
5 A[0][i][j][k] = In[i][j][k];
6

7 for (t = 1; t < TSTEPS; t++)
8 for (i = 1; i <= N - 2; i++)
9 for (j = 1; j <= N - 2; j++)

10 for (k = 1; k <= N - 2; k++)
11 A[t][i][j][k] = 0.16 *
12 ((i==1? In[0][j][k] :A[t-1][i-1][j][k])+
13 (i==N-2?In[N-1][j][k]:A[t-1][i+1][j][k])+
14 (j==1? In[i][0][k] :A[t-1][i][j-1][k])+
15 A[t-1][i][j][k]+
16 (j==N-2?In[i][N-1][k]:A[t-1][i][j+1][k])+
17 (k==1? In[i][j][0] :A[t-1][i][j][k-1])+
18 (k==N-2?In[i][j][N-1]:A[t-1][i][j][k+1]));

(e) Heat 3D

Figure 5.10: Benchmarks

96 CHAPTER 5. LINEAR ARRAY CONTRACTION

Chapter 6

Conclusion

Our research aimed at investigating the use of trace analysis in the process of automatic opti-
mizations. We have focused on the problem of memory allocation, and outlined suitable program
models for both constant and parametrized memory mappings. We realise that both in the con-
text of HLS, and for computing linear parametrized mappings on polyhedral programs. We
demonstrate experimentally that our methods scale better than the state-of-the-art approaches.
This scalability is attained thanks to the simplification of the problems, due to the fact that
we operate on traces. Projections and maximisation can be done directly on small set of points
instead of using expensive polyhedral methods.

In this chapter, we will conclude the work presented in this manuscript by summarizing our
contributions. We shall then end on questions we left open, as well as discussing potentially
interesting future work that could further valorize our contributions.

6.1 Contributions

Canonical Array Contraction In the context of Data-Aware Process Networks where pro-
grams are tiled, we created a lightweight method to size the many buffers that the DPN form
induces. Because of this, even with the simplest example kernels, the underlying method for
sizing their buffers needs to be as lightweight as possible. We demonstrate that trace analysis
on a small part of a trace is sufficient for this purpose:

• We outline the program model suitable for this approach. We propose an analysis of
the program and its dependencies to deduce the program buffers’ localizability and θ-
uniformity. A program and its arrays being localizable ensures that the buffers can be sized
with constant modulo mappings and might be derived from a single execution trace.

• In turn, when the localizable buffers are θ-uniform, we can select the trace to be con-
sidered for liveness analysis. A direct dependence being θ-uniform means the associated
dependence function does not change while moving along the tile band.

• We present our trace analysis algorithm, which analyses the liveness on the trace and
applies an instance of the successive modulo to derive memory allocations.

97

98 CHAPTER 6. CONCLUSION

• We present the results of our experimental validation, by comparing our method to the
baseline parametrized successive modulo algorithm and its relaxed non-parametrized ver-
sion. We first demonstrate that most Polybench kernels satisfy our assumptions, hence
our program model is not too restrictive. Then, we demonstrate the scalability of our
method, showing speed-ups ranging from 7.8 to 329 over the parametrized baseline, and
from 1.1 to 11.5 over the relaxed non-parametrized baseline.

Linear Array Contraction We iterated on this trace-based approach by considering para-
metric memory mappings of linear form. This led to the creation of another similar lightweight
approach, where we once again execute programs with small parameters to obtain small traces
of executions, in order to infer array liveness thanks to a widening operator. Furthermore, we
propose a polyhedral linear array contraction algorithm that operates on conflict sets instead of
conflict relations. This way, the constraints are lighter than the SMO approach.

• In a similar fashion to our canonical methodology, we detail the required program properties
for our approach to guarantee the correctness of our approach. We introduce the notion of
totally unimodular programs. Also, the schedules and direct dependences of the program
are expected to be quasi-uniform. Less kernels have only quasi-uniform dependences: this
requirement excludes 3 kernels from our benchmarks.

• We go over our liveness extrapolation algorithm, which notably includes our trace analysis
algorithm. It consists in reconstructing conflict polyhedra from the execution trace, using
the NLR algorithm. It is worth to note that the latter has been re-tooled to output conflict
polyhedra rather than loop nests.

• We present our approach to perform linear array contraction. We built an algorithm which
operates on difference sets rather than conflict relations, greatly reducing the constraints
to be solved.

• To conclude, we present our experimental results, describing the setup then comparing
our array liveness approach to the baseline. We discuss its scalability by enumerating the
speed-ups over the kernels, ranging from 1.9 to 17. We show that some overhead originates
from the extrapolation of the conflict set, leading to mappings of greater size than using
the exact difference set, but of which overhead is in O(1

N). Finally, we give detailed results
on each benchmark.

6.2 Publications

The ideas developed in Chapter 4 have been published to C3PO’22 [P2] and IMPACT’22 [P3]
into a preliminary form. The IMPACT’22 publication is a preliminary paper which describes a
technique that uses an oracle to determine if the deduced mapping is correct, while the C3PO’22
paper is a more comprehensive description of this technique, which no longer relied on an oracle,
and instead measured the maximal footprint of the program at each execution point to infer
its correctness. In addition to this PhD work, we contributed a COMPAS’22 paper [P1], which

6.3. PERSPECTIVES 99

exploits this memory sizing to apply array scalarization (or scalar promotion), a technique that
transform array accesses into register accesses to speed up computations.

6.3 Perspectives

We discuss future research directions that arise from our work. Our experimental validations
showed interesting results, and we believe there is much untapped potential in this trace-based
methodology.

6.3.1 An Improved Conflict Set Algorithm

In our approach, the successive modulo method used to determine the contraction coefficients
iterates over the entire difference set by measuring the maximum distance alongside each dimen-
sion iteratively, and keeping the maxima. This can be improved if there exists an non-costly,
efficient way to find the vertices of the polyhedra representing the difference set. A faster way
of finding those moduli would then be to only measure the distance between the origin and
the vertices. This would greatly reduce the time spent in the liveness analysis, especially for
respectively highly tiled programs and highly-dimensional programs, where we see the liveness
analysis pass dominating the execution time, because the liveness iterates over all the points of
the difference set. We believe this improvement to be most impactful on runtimes, and on the
easier side to implement.

6.3.2 Global Array Space Optimization

We realise intra-array contraction in our work. Therefore we did not consider creating an inter-
array contraction approach. We think that, for this enhancement to be correct, one would
perhaps need to relax the correct-by-construction constraints we have established and consider
speculative execution, similar to Apollo’s method. We believe this improvement can be im-
pactful on the memory contraction factor, though it would no longer target HLS.

6.3.3 Other Compilation Optimizations

As stated in our motivation for our trace-based method for the array contraction optimization, we
believe that many other polyhedral program transformations could also benefit from a lightened
approach using trace analysis. Large-scale scheduling and tiling on compute-intensive programs,
such as Polybench kernels or Deep-Neural Networks, could benefit from smaller execution traces.
We believe this research direction can be fruitful, as the theoretical work on program model is
already done, and both scheduling and tiling are problems that are relatively close to memory
allocation.

100 CHAPTER 6. CONCLUSION

Appendix A

Résumé du travail de thèse

Dans ce chapitre, nous donnons une présentation synthétique de ce document en Français. De
nombreux détails seront donc omis de cette partie, notamment les algorithmes, exemples et
preuves, et nous invitons les lecteur·ices à consulter le document en Anglais si besoin.

A.1 Introduction

Le domaine de la Synthèse Haut-Niveau (HLS) concerne les techniques de compilation de pro-
grammes haut-niveau en circuits. Pour se faire, toutes les décisions de compilation, comme
l’ordonnancement ou l’allocation, seront prises à priori de la phase de production du circuit. Un
circuit peut être vu comme à un programme synchrone bas niveau massivement parallèle. Les
techniques de compilation employées devront donc pouvoir passer à l’échelle. Celles du domaine
du Calcul Haute-Performance sont précises et expressives, mais ne conviennent pas pour des
programmes de telle taille, les rendant inefficaces pour la HLS. Nous nous sommes donc penchés
sur l’invention de nouvelles techniques pour pallier à ce coût prohibitif. L’intuition de départ
fût de s’inspirer des techniques du domaine de l’analyse dynamique, dont le principe réside dans
l’analyse des informations du programme qui sont disponibles à l’exécution, afin de déduire les
optimisations de compilation. En somme, la méthode générale est donc d’exécuter puis étudier
un programme source, et en déduire des optimisations de manière plus rapide que les analyses
statiques classiques.

La méthodologie Polytrace. Notre motivation est donc de produire des résultats similaires
aux analyses statiques du domaine de la compilation polyédrique, en travaillant avec des algo-
rithmes plus efficaces sur des objets plus légers. Pour cela, nous exploitons la prédictabilité des
nids de boucles affines (SCoPs), de la même manière que les méthodes polyédriques. Cependant,
notre approche est de travailler sur les traces d’exécution des programmes. Il y a donc deux
hypothèses formulées, la première étant la rapidité d’une telle approche comparée aux analyses
polyédriques classiques. La seconde est qu’il est possible de déterminer, pour quels paramètres
d’exécution, la trace du programme analysée mène à un résultat correct.

101

102 APPENDIX A. RÉSUMÉ DU TRAVAIL DE THÈSE

A.2 Contraction de tableau canonique

Dans le contexte des data-aware process networks (DPN), où les programmes sont tuilés, nous
proposons une méthode rapide pour compiler les canaux de communication (buffers) d’un DPN.
Les programmes sous cette forme comportent généralement un très grand nombre de canaux
de communication, donc la méthode de compilation utilisée (contraction de tableau) doit être la
plus légère possible. Nous montrons que l’analyse de trace, sur une petite partie de celle-ci, est
suffisante pour réaliser cette optimisation.

• Nous définissons le modèle de programmes adapté pour cette approche. Nous proposons
une analyse du programme et de ses dépendences pour en déduire la localisabilité et la
θ-uniformité des tableaux temporaires du programme. S’ils sont localisables, ils peuvent
être de taille constante et il suffit d’analyser une seule trace pour conclure. S’ils sont en
plus θ-uniformes, il est possible de selectionner la trace pour obtenir un résultat correct.

• Nous présentons notre algorithme d’analyse de trace, qui réalise l’analyse de durée de vie
sur la trace et utilise la technique des modulos successifs pour en déduire les allocations
mémoires correctes.

• Nous présentons les résultats de nos expérimentations, en comparant notre approches avec
une implémentation de référence des modulos successifs paramétrés et une version relaxée
non-paramétrée. Nous montrons que la plupart des exemples de Polybench satisfont nos
hypothèses, et donc que notre modèle de programme n’est pas trop contraignante. Ensuite,
nous démontrons que notre méthode passe à l’échelle, en montrant que les temps d’analyse
obtenus sont 7.8 à 329 fois plus petits que ceux de la version paramétrée, et de 1.1 à 11.5
fois plus petits que ceux de la version non-paramétrée.

A.3 Contraction de tableau linéaire

En suivant l’idée de l’approche basée sur l’analyse de trace, nous nous sommes penchés sur les
fonctions d’allocations paramétrées, donc linéaires. Nous avons créé une méthode similaire à
la première, qui analyse l’exécution de trace. Cette fois, nous considérons plusieures traces,
générées avec de petits paramètres, et reconstruisons une allocation paramétrée en utilisant le
widening. De plus, nous décrivons un algorithme polyédrique de contraction de tableau, qui
travaille sur des ensembles de conflits au lieu de relations de conflits. Cela permet de travailler
sur des contraintes plus légères que celles de l’approche de SMO.

• D’une manière similaire à notre approche canonique, nous détaillons les propriétés du
programme qui sont requises pour assurer que notre méthode est correcte. Les programmes
doivent être totalement unimodulaires. De plus, les ordonnancements et les dépendences
directes du programme doivent être quasi-uniformes. Cette notion exclut 3 programmes
de notre base de tests.

• Ensuite, nous décrivons notre algorithme d’extrapolation des durées de vie, dans lequel se
trouve notre algorithme d’analyse de traces. Il consiste en la reconstruction d’un polyèdre

A.3. CONTRACTION DE TABLEAU LINÉAIRE 103

de conflits à partir de traces d’exécution, en utilisant l’algorithme NLR. Ce dernier a été
modifié pour calculer des polyèdres de conflits plutôt que des nids de boucle.

• Nous présentons notre approche pour la contraction linéaire de tableau. Nous présentons un
algorithme qui calcule sur des ensembles de différences plutôt que des relations de conflits,
ce qui réduit considérablement le nombre de contraintes à résoudre par la suite.

• Pour conclure, nous étayons nos résultats expérimentaux, en décrivant la configuration
necéssaire, puis en comparant notre approche à une implémentation de référence. Nous
discutons de la capacité de cette approche de passer à l’échelle, en étudiant les temps
d’analyses des deux méthodes, et en constatant des facteurs de réduction allant de 1.9
à 17. Nous montrons que l’extrapolation de l’ensemble de conflits induit des fonctions
d’allocations plus grandes que celles déduites en utilisant l’ensemble des différences exact,
mais que ce surplus de taille est en O(1

N). Enfin, nous détaillons les résultats sur chaque
exemple.

104 APPENDIX A. RÉSUMÉ DU TRAVAIL DE THÈSE

Personal Bibliography

[P1] Alec Sadler, Christophe Alias, and Hugo Thievenaz. A polyhedral approach for scalar pro-
motion. In Conférence francophone d’informatique en Parallélisme, Architecture et Système
(COMPAS’22), 2022.

[P2] Hugo Thievenaz, Keiji Kimura, and Christophe Alias. Lightweight array contraction by
trace-based polyhedral analysis. In C3PO 2022-International Workshop on Compiler-
assisted Correctness Checking and Performance Optimization for HPC, 2022.

[P3] Hugo Thievenaz, Keiji Kimura, and Christophe Alias. Rephrasing polyhedral optimizations
with trace analysis. In 12th International Workshop on Polyhedral Compilation Techniques
(IMPACT’22), 2022.

105

106 PERSONAL BIBLIOGRAPHY

Bibliography

[1] Aravind Acharya, Uday Bondhugula, and Albert Cohen. Polyhedral auto-transformation
with no integer linear programming. In Proceedings of the 39th ACM SIGPLAN Conference
on Programming Language Design and Implementation, pages 529–542, 2018.

[2] V Aho Alfred, S Lam Monica, and D Ullman Jeffrey. Compilers principles, techniques &
tools. pearson Education, 2007.

[3] Christophe Alias. fkcc: the farkas calculator. In Formal Methods. FM 2019 International
Workshops: Porto, Portugal, October 7–11, 2019, Revised Selected Papers, Part II 3, pages
526–536. Springer, 2020.

[4] Christophe Alias, Fabrice Baray, and Alain Darte. Bee+ cl@ k: An implementation of lattice-
based array contraction in the source-to-source translator rose. ACM SIGPLAN Notices,
42(7):73–82, 2007.

[5] Christophe Alias, Alain Darte, and Alexandru Plesco. Optimizing remote accesses for of-
floaded kernels: Application to high-level synthesis for fpga. ACM SIGPLAN Notices,
47(8):285–286, 2012.

[6] Christophe Alias, Bogdan Pasca, and Alexandru Plesco. Fpga-specific synthesis of loop-nests
with pipelined computational cores. Microprocessors and Microsystems, 36(8):606–619, 2012.

[7] Christophe Alias and Alexandru Plesco. Data-aware process networks. In Proceedings of the
30th ACM SIGPLAN International Conference on Compiler Construction, pages 1–11, 2021.

[8] Frances E Allen. Control flow analysis. ACM Sigplan Notices, 5(7):1–19, 1970.

[9] Corinne Ancourt, Coelho Fran, and Irigoin Ronan Keryell. A linear algebra framework for
static hpf code distribution. A; a, 1(t2):1, 1993.

[10] Corinne Ancourt and François Irigoin. Scanning polyhedra with do loops. In Proceedings
of the third ACM SIGPLAN symposium on Principles and practice of parallel programming,
pages 39–50, 1991.

[11] Ivan Augé, Frédéric Pétrot, François Donnet, and Pascal Gomez. Platform-based design
from parallel C specifications. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 24(12):1811–1826, 2005.

107

108 BIBLIOGRAPHY

[12] Cédric Bastoul, Albert Cohen, Sylvain Girbal, Saurabh Sharma, and Olivier Temam.
Putting polyhedral loop transformations to work. In Languages and Compilers for Parallel
Computing: 16th International Workshop, LCPC 2003, College Station, TX, USA, October
2-4, 2003. Revised Papers 16, pages 209–225. Springer, 2004.

[13] Somashekaracharya G Bhaskaracharya, Uday Bondhugula, and Albert Cohen. Automatic
storage optimization for arrays. ACM Transactions on Programming Languages and Systems
(TOPLAS), 38(3):1–23, 2016.

[14] Somashekaracharya G Bhaskaracharya, Uday Bondhugula, and Albert Cohen. Smo: An
integrated approach to intra-array and inter-array storage optimization. In Proceedings of the
43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pages 526–538, 2016.

[15] Uday Bondhugula, Aravind Acharya, and Albert Cohen. The pluto+ algorithm: A practical
approach for parallelization and locality optimization of affine loop nests. ACM Transactions
on Programming Languages and Systems (TOPLAS), 38(3):1–32, 2016.

[16] Uday Bondhugula, Albert Hartono, J. Ramanujam, and P. Sadayappan. A practical auto-
matic polyhedral parallelizer and locality optimizer. In Proceedings of the ACM SIGPLAN
2008 Conference on Programming Language Design and Implementation, Tucson, AZ, USA,
June 7-13, 2008, pages 101–113, 2008.

[17] Uday Bondhugula, Albert Hartono, Jagannathan Ramanujam, and Ponnuswamy Sadayap-
pan. A practical automatic polyhedral parallelizer and locality optimizer. In Proceedings of
the 29th ACM SIGPLAN Conference on Programming Language Design and Implementation,
pages 101–113, 2008.

[18] Juan Manuel Martinez Caamaño, Aravind Sukumaran-Rajam, Artiom Baloian, Manuel
Selva, and Philippe Clauss. Apollo: Automatic speculative polyhedral loop optimizer. In
IMPACT 2017-7th International Workshop on Polyhedral Compilation Techniques, page 8,
2017.

[19] João M. P. Cardoso and Pedro C. Diniz. Compilation Techniques for Reconfigurable Archi-
tectures. 2009.

[20] Philippe Clauss, Federico Javier Fernández, Diego Garbervetsky, and Sven Verdoolaege.
Symbolic polynomial maximization over convex sets and its application to memory re-
quirement estimation. IEEE transactions on very large scale integration (VLSI) systems,
17(8):983–996, 2009.

[21] Philippe Coussy, Cyrille Chavet, Pierre Bomel, Dominique Heller, Eric Senn, and Eric
Martin. Gaut: A high-level synthesis tool for dsp applications: From c algorithm to rtl
architecture. High-level synthesis: From algorithm to digital circuit, pages 147–169, 2008.

[22] Philippe Coussy, Gwenole Corre, Pierre Bomel, Eric Senn, and Eric Martin. High-level
synthesis under i/o timing and memory constraints. In 2005 IEEE International Symposium
on Circuits and Systems, pages 680–683. IEEE, 2005.

BIBLIOGRAPHY 109

[23] Philippe Coussy and Adam Morawiec. High-Level Synthesis: From Algorithm to Digital
Circuit. Springer, 2008.

[24] Ron Cytron, Jeanne Ferrante, Barry K Rosen, Mark N Wegman, and F Kenneth Zadeck.
An efficient method of computing static single assignment form. In Proceedings of the 16th
ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pages 25–35,
1989.

[25] Alain Darte, Alexandre Isoard, and Tomofumi Yuki. Extended lattice-based memory allo-
cation. In Proceedings of the 25th International Conference on Compiler Construction, pages
218–228, 2016.

[26] Alain Darte, Rob Schreiber, and Gilles Villard. Lattice-based memory allocation. In Pro-
ceedings of the 2003 international conference on Compilers, architecture and synthesis for
embedded systems, pages 298–308, 2003.

[27] Eddy De Greef, Francky Catthoor, and Hugo De Man. Array placement for storage size
reduction in embedded multimedia systems. In Proceedings IEEE International Conference
on Application-Specific Systems, Architectures and Processors, pages 66–75. IEEE, 1997.

[28] Steven Derrien, Thibaut Marty, Simon Rokicki, and Tomofumi Yuki. Toward speculative
loop pipelining for high-level synthesis. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 39(11):4229–4239, 2020.

[29] Paul Feautrier. Parametric integer programming. RAIRO-Operations Research, 22(3):243–
268, 1988.

[30] Paul Feautrier. Dataflow analysis of array and scalar references. International Journal of
Parallel Programming, 20:23–53, 1991.

[31] Paul Feautrier. Some efficient solutions to the affine scheduling problem, part II: Multi-
dimensional time. International Journal of Parallel Programming, 21(6):389–420, December
1992.

[32] Paul Feautrier. Scalable and structured scheduling. International Journal of Parallel Pro-
gramming, 34:459–487, 2006.

[33] Paul Feautrier and Christian Lengauer. Polyhedron model. Encyclopedia of parallel com-
puting, 1:1581–1592, 2011.

[34] P. M. Gruber and C. G. Lekkerkerker. Geometry of Numbers. North Holland, second edition,
1987.

[35] Don E Heller and Ilse CF Ipsen. Systolic networks for orthogonal decompositions. SIAM
Journal on Scientific and Statistical Computing, 4(2):261–269, 1983.

[36] Alexandre Isoard. Extending Polyhedral Techniques towards Parallel Specifications and Ap-
proximations. PhD thesis, 2016.

110 BIBLIOGRAPHY

[37] Gilles Kahn. The semantics of a simple language for parallel programming. In IFIP congress,
volume 74, pages 471–475, 1974.

[38] Richard M Karp, Raymond E Miller, and Shmuel Winograd. The organization of com-
putations for uniform recurrence equations. Journal of the ACM (JACM), 14(3):563–590,
1967.

[39] Alain Ketterlin and Philippe Clauss. Prediction and trace compression of data access ad-
dresses through nested loop recognition. In Proceedings of the 6th annual IEEE/ACM inter-
national symposium on Code generation and optimization, pages 94–103, 2008.

[40] Gary A Kildall. A unified approach to global program optimization. In Proceedings of the
1st annual ACM SIGACT-SIGPLAN symposium on Principles of programming languages,
pages 194–206, 1973.

[41] Hervé Le Verge, Christophe Mauras, and Patrice Quinton. The alpha language and its use
for the design of systolic arrays. Journal of VLSI signal processing systems for signal, image
and video technology, 3(3):173–182, 1991.

[42] Vincent Lefebvre and Paul Feautrier. Automatic storage management for parallel programs.
Parallel computing, 24(3-4):649–671, 1998.

[43] Amy W Lim and Monica S Lam. Maximizing parallelism and minimizing synchronization
with affine partitions. Parallel computing, 24(3-4):445–475, 1998.

[44] Amy W Lim, Shih-Wei Liao, and Monica S Lam. Blocking and array contraction across
arbitrarily nested loops using affine partitioning. In Proceedings of the eighth ACM SIGPLAN
symposium on Principles and practices of parallel programming, pages 103–112, 2001.

[45] Junyi Liu, John Wickerson, Samuel Bayliss, and George A Constantinides. Polyhedral-based
dynamic loop pipelining for high-level synthesis. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 37(9):1802–1815, 2017.

[46] Andrew Makhorin. Glpk (gnu linear programming kit). http://www. gnu. org/s/glpk/glpk.
html, 2008.

[47] Antoine Morvan, Steven Derrien, and Patrice Quinton. Polyhedral bubble insertion: A
method to improve nested loop pipelining for high-level synthesis. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 32(3):339–352, 2013.

[48] A Mozipo, D Massicote, Patrice Quinton, and Tanguy Risset. Automatic synthesis of a
parallel architecture for kalman filtering using mmalpha. In International conference on
parallel computing in electrical engineering (PARELEC 98), pages 201–206, 1999.

[49] Arjun Pitchanathan, Christian Ulmann, Michel Weber, Torsten Hoefler, and Tobias Grosser.
Fpl: Fast presburger arithmetic through transprecision. Proceedings of the ACM on Program-
ming Languages, 5(OOPSLA):1–26, 2021.

BIBLIOGRAPHY 111

[50] Alexandru Plesco. Transformations de Programmes Et Optimisations de L’architecture Mé-
moire Pour la Synthèse de Haut Niveau D’accélérateurs Matériels. PhD thesis, Citeseer,
2010.

[51] L.N Pouchet. Polybench/c 3.2. https://web.cs.ucla.edu/~pouchet/software/
polybench/, 2012.

[52] Reese T Prosser. Applications of boolean matrices to the analysis of flow diagrams. In Papers
presented at the December 1-3, 1959, eastern joint IRE-AIEE-ACM computer conference,
pages 133–138, 1959.

[53] Fabien Quilleré and Sanjay Rajopadhye. Optimizing memory usage in the polyhedral
model. ACM Transactions on Programming Languages and Systems (TOPLAS), 22(5):773–
815, 2000.

[54] Patrice Quinton. Automatic synthesis of systolic arrays from uniform recurrent equations.
In Proceedings of the 11th Annual Symposium on Computer Architecture, Ann Arbor, USA,
June 1984, pages 208–214, 1984.

[55] Edwin Rijpkema, Ed F Deprettere, and Bart Kienhuis. Deriving process networks from
nested loop algorithms. Parallel Processing Letters, 10(02n03):165–176, 2000.

[56] Gabriel Rodríguez, José M Andión, Mahmut T Kandemir, and Juan Touriño. Trace-based
affine reconstruction of codes. In Proceedings of the 2016 International Symposium on Code
Generation and Optimization, pages 139–149, 2016.

[57] Andreas Simbürger, Sven Apel, Armin Größlinger, and Christian Lengauer. Polyjit: Polyhe-
dral optimization just in time. International Journal of Parallel Programming, 47(5):874–906,
2019.

[58] Michelle Mills Strout, Larry Carter, Jeanne Ferrante, and Beth Simon. Schedule-
independent storage mapping for loops. In Proceedings of the eighth international conference
on Architectural support for programming languages and operating systems, pages 24–33, 1998.

[59] William Thies, Frédéric Vivien, and Saman Amarasinghe. A step towards unifying sched-
ule and storage optimization. ACM Transactions on Programming Languages and Systems
(TOPLAS), 29(6):34–es, 2007.

[60] Alexandru Turjan. Compiling nested loop programs to process networks. Leiden University,
2007.

[61] Peter Vanbroekhoven. Dynamic single assignment. In Symposium in Program Acceleration
through Application and Architecture driven Code, Knoxville, TN, USA, pages 5–7, 2002.

[62] Sven Verdoolaege. Polyhedral process networks. Handbook of Signal Processing Systems,
pages 1335–1375, 2013.

[63] Sven Verdoolaege. A polyhedral compilation library with explicit disequality constraints. In
IMPACT 2024-14th International Workshop on Polyhedral Compilation Techniques, 2024.

https://web.cs.ucla.edu/~pouchet/software/polybench/
https://web.cs.ucla.edu/~pouchet/software/polybench/

112 BIBLIOGRAPHY

[64] Frédéric Vivien. On the optimality of feautrier’s scheduling algorithm. In Euro-Par 2002
Parallel Processing: 8th International Euro-Par Conference Paderborn, Germany, August
27–30, 2002 Proceedings 8, pages 299–309. Springer, 2002.

[65] Tomofumi Yuki and Sanjay Rajopadhye. Memory allocations for tiled uniform dependence
programs. In Proceedings of the 3rd International Workshop on Polyhedral Compilation Tech-
niques, pages 13–22. Citeseer, 2013.

[66] Wei Zuo, Yun Liang, Peng Li, Kyle Rupnow, Deming Chen, and Jason Cong. Improving high
level synthesis optimization opportunity through polyhedral transformations. In Proceedings
of the ACM/SIGDA international symposium on Field programmable gate arrays, pages 9–18,
2013.

113

114 BIBLIOGRAPHY

Résumé

Cette thèse, intitulée “Compilation d’allocation mémoire par analyse de trace avec passage à
l’échelle”, étudie l’utilisation de l’analyse de traces pour calculer des allocations mémoire effi-
caces. Le but plus large est d’exploiter les informations du programme qui sont disponibles à
l’exécution pour aller plus vite que les techniques d’analyses statiques tradictionnelles, car elles
ne parviennent pas à passer à l’échelle pour des noyaux de programmes qui sont plus lourds en
termes de nombres d’instructions et qui sont de dimension élevée. Le cas d’étude est la syn-
thèse haut-niveau dans le modèle polyédrique où le passage à l’échalle est indispensable. Nous
proposons de nouvelles méthodes de contraction de tableaux basée sur des analyses de trace pas-
sant à l’échelle. Nous donnons une étude théorique et pratique de ces méthodes, en donnant des
preuves pour des nouveaux algorithmes et en les implémentant pour quantifier leurs performances
en terme de temps d’analyse mais aussi de facteur de réduction de mémoire. Les programmes
utilisés pour mesurer les performances sont des exemples adaptés provenant de la collection de
programmes PolyBench. Les modifications sont généralement les facteurs de parallélisation, le
tuilage, et l’ajustement du padding. Les contributions clés de ces travaux sont la création de
deux nouvelles méthodes d’analyse pour la contraction de tableau. La première a pour but de
donner des tailles constantes pour les tableaux temporaires, ce qui importe grandement dans
le contexte des canaux de communications des applications de calcul haute-performance. La
seconde méthode est une approche plus générale qui reconstruit les conflits entre cases tableau,
puis une allocation de tableau linéaire capable de produire des tailles paramétriques pour les
tableaux. L’ensemble a mené à l’implémentation d’un outil nommé PoLa qui comporte 5637
lignes de code en C++.

Abstract

This thesis, titled “Scalable trace-based compile-time memory allocation”, studies the use of trace
analysis to infer efficient memory allocations. The broader goal is to use program information
at runtime as a way to outpace traditional static analysis techniques, which fail to scale for
kernels of high dimensions and many statements. The use-case is polyhedral High-Level Synthesis
where scalable methods are required. We propose novel methods for array contraction based
on lightweight, scalable, trace analysis. Then, we provide a thorough theoretical study of our
algorithms as well as implementations to quantify performance in analysis time but also memory
reduction. The example programs used for performance measurement were variations of the
polyhedral benchmark suite “PolyBench”. The variations are most often parallelism factor, tiling,
and adjustment of padding. Key contributions of this thesis are the design of two new methods
of analysis for the array contraction optimization. The first one focuses on yielding constant sizes
for temporary arrays, which is relevant in the context of communication buffer sizing for High-
Performance Computing applications. The second method is a more general approach to memory
allocation which reconstructs the array liveness information and the conflict relation between
array cells, as well as an algorithm to compute linear allocations able to produce parametric
sizes for the arrays. This research lead to the implementation of a tool named PoLa that totals
5637 lines of C++ code.

	Introduction
	The Journey of Compilation
	Our Approach: the Polytrace Methodology
	Contributions
	Outline

	Background
	Polyhedral Model
	Program Model
	Dependences
	Intermediate Representation
	Scheduling
	Tiling

	Array Contraction
	Array Liveness Analysis
	Successive Modulo

	Application to High-Level Synthesis
	High-Level Synthesis (HLS)
	Data-aware Process Networks (DPN)

	Related Work
	Polyhedral Memory Optimization
	Memory Allocation
	Array Liveness Analysis
	Polyhedral Process Networks and Buffer Sizing

	Scaling the Polyhedral Model
	Mitigating the Cost of ILP
	Library-Level Improvements

	Trace Analysis and Speculation
	Inference from Execution Traces
	Speculative Optimizations

	Conclusion

	Canonical Array Contraction
	Overview
	Localizability
	theta-uniformity
	Trace-based Array Contraction
	Overview
	Trace Selection
	Fast Trace generation
	Trace buffer allocation

	Experimental Validation
	Setup
	Applicability
	Scalability

	Conclusion

	Linear Array Contraction
	Outline
	Program Model
	Correctness
	Liveness Extrapolation by Widening
	Parameter Selection
	Infer Polyhedral Constraints from Traces
	Widening Algorithm
	Narrowing

	Linear Allocation
	Correctness
	Iterating on the Next Dimension
	Efficiency
	Algorithm

	Experimental Validation
	Setup
	Liveness Analysis
	Linear Array Contraction
	Detailed Results

	Conclusion

	Conclusion
	Contributions
	Publications
	Perspectives
	An Improved Conflict Set Algorithm
	Global Array Space Optimization
	Other Compilation Optimizations

	Résumé du travail de thèse
	Introduction
	Contraction de tableau canonique
	Contraction de tableau linéaire

